JP2014058964A - 方向自動制御式カバー付抗力型風車 - Google Patents

方向自動制御式カバー付抗力型風車 Download PDF

Info

Publication number
JP2014058964A
JP2014058964A JP2013170082A JP2013170082A JP2014058964A JP 2014058964 A JP2014058964 A JP 2014058964A JP 2013170082 A JP2013170082 A JP 2013170082A JP 2013170082 A JP2013170082 A JP 2013170082A JP 2014058964 A JP2014058964 A JP 2014058964A
Authority
JP
Japan
Prior art keywords
wind
float
cover body
cover
relative position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013170082A
Other languages
English (en)
Inventor
Kenji Ogura
研治 小倉
Shinichi Ogino
真一 荻野
Yuta Amemiya
雄太 雨宮
Ryo Kamihirata
遼 上平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Gakuen
Original Assignee
Tamagawa Gakuen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Gakuen filed Critical Tamagawa Gakuen
Priority to JP2013170082A priority Critical patent/JP2014058964A/ja
Publication of JP2014058964A publication Critical patent/JP2014058964A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

【課題】 カバー体自体に方向制御機能を付与し、構造の簡素化・軽量化が実現できる方向自動制御式カバー付抗力型風車を提供する。
【解決手段】 方向自動制御式カバー付抗力型風車10は、複数の受風体23A〜23Dの下方に配置され、鉛直軸周りに回転可能なフロート13と、フロート13の上面に固定され、風向きに対する所定の相対位置にて、逆風を受ける側の受風体23Aを覆うカバー体26と、を有する。カバー体26は、風によりカバー体26に作用する流体力の作用線がフロート13の中心軸C1上に通ることによって所定の相対位置に停留する一方、風向きが変わったときは、作用線がフロート13の中心軸C1から外れて回転モーメントが生ずることにより、フロート13と一体的に回転して所定の相対位置に戻る。
【選択図】 図3

Description

本発明は、抗力型風車に関し、より詳細には、鉛直方向に延びる風車軸と、この風車軸の周りに放射状に設けられる複数の受風体とを有する方向自動制御式カバー付抗力型風車に関する。
鉛直方向に延びる風車軸の周りに複数の受風体を設けた抗力型風車が知られている。この種の抗力型風車では、風向きに対する方向制御が不要である反面、逆風を受ける側の受風体が抵抗を受けるため、特に風力発電に用いる場合、逆風を受ける側の防風対策が求められる。従来、逆風を受ける側の受風体をカバー体で覆い、エネルギーの変換効率を高める各種の技術が提案されている(例えば、特許文献1参照)。
特許文献1には、旋回基板の旋回中心に垂直中心軸を立設し、この垂直中心軸に複数枚の羽根を設け、各羽根の風受け面として帆布を張設し、垂直中心軸を境として風車の片側半分を覆う遮風カバーを設け、風の向きに対応して装置全体の向きを調節する風向追従手段を設けた風力発電装置が開示されている。
この特許文献1の風力発電装置によれば、風向追従手段により旋回基板を回転させ、風車の逆風側半部分を遮風カバーで覆うことにより、順風側半部分のみに順風を当てることができる。しかしながら、この風力発電装置では、遮風カバーの位置を制御するために、風向センサや駆動モータ等を必要とする。このため、装置が大掛かりなものになり、コストも高くなる。
この点、特許文献2に開示される風力−回転力変換装置では、垂直尾翼付きのフードで、風に抗する側のタービン翼が風の抵抗を受けないようにしており、風向センサや駆動モータ等が不要であり、装置も比較的に簡素なものになる。
また、特許文献3では、羽根車の回転軸を発電機に連結し、回転軸の周りに回転可能な防風カバーを設け、風向きにより搖動する風圧板を防風カバーに連結した風力発電装置が提案されている。この特許文献3に記載される技術においても、風圧板に応動する防風カバーが、羽根車の上流側前面半部を風向きに合わせて覆うため、風向センサや駆動モータ等が不要である。
また、特許文献4では、回転ブレードの逆風側を風量調節ガイドで覆い、回転ブレードを挟んで風量調節ガイドの対面にバランス調節ガイドを設けた低抵抗風力発電装置が提案されている。この特許文献4に記載される技術においても、風向が急に変化した場合、回転ブレードの逆風側を覆うように風量調節ガイドの位置が風向きに合わせて変わるため、風向センサや駆動モータ等が不要である。
ところで、自然エネルギーの有効利用が期待される中、より簡便な風力発電装置が求められている。このため、抗力型風車においても、より簡素で軽い構造が求められている。
特開2010−77946公報 実開昭58−114882号公報 実開昭60−159887号公報 特開2009−293610号公報
しかしながら、特許文献2〜4のいずれの技術においても、逆風を受ける側の受風体を覆うカバー体を方向制御するための部品(特許文献2では垂直尾翼、特許文献3では風圧板、特許文献4ではバランス調節ガイド)が別途必要であるため、構造の簡素化・軽量化には限界があった。このため、垂直尾翼等の部品を用いずに、カバー体を方向制御できる技術が望まれている。
本発明は、このような事情に鑑みてなされたものであり、その目的は、カバー体自体に方向制御機能を付与し、構造の簡素化・軽量化が実現できる方向自動制御式カバー付抗力型風車を提供することにある。
本発明は、以下の構成によって把握される。
本発明の方向自動制御式カバー付抗力型風車は、鉛直方向に延びる風車軸と、前記風車軸の周りに放射状に設けられる複数の受風体と、前記複数の受風体の下方に配置され、鉛直軸周りに回転可能な回転体と、前記回転体の上面に固定され、風向きに対する所定の相対位置にて、逆風を受ける側の受風体を覆い且つ順風を受ける側の受風体を風に曝すカバー体と、を有し、前記カバー体は、風により前記カバー体に作用する流体力の作用線が前記回転体の中心軸上を通ることによって前記所定の相対位置に停留する一方、風向きが変わったときは、前記作用線が前記回転体の中心軸から外れて回転モーメントが生ずることにより、前記回転体と一体的に回転して前記所定の相対位置に戻ることを特徴とする。
この構成によれば、風向きに対する所定の相対位置にカバー体が位置するときは、流体力の作用線が回転体の中心軸上を通るため、カバー体には回転モーメントが生じない。これにより、所定の相対位置にカバー体を停留させ、逆風を受ける側の受風体をカバー体で覆うことができる。一方、風向きが変わったときは、カバー体に生ずる回転モーメントにより、カバー体を回転させて所定の相対位置に戻すことができる。このように、カバー体に作用する流体力の作用線の向きの変化を利用することにより、風向センサや駆動モータ、垂直尾翼等を用いずに、風向きの変化にカバー体を追従させることができる。結果、カバー体自体に方向制御機能を付与することができ、抗力型風車における構造の簡素化・軽量化を実現することができる。
上記の発明の方向自動制御式カバー付抗力型風車は、液体を貯留する液体貯留部と、前記液体貯留部の底部に設けられる垂直軸と、を有し、前記回転体は、前記液体の液面に浮かぶフロートであり、且つ、前記垂直軸に自在軸受を介して支持されることを特徴とする。
この構成によれば、フロートである回転体では重力と浮力が釣り合っている。このため、自在軸受には、回転体等の自重によるスラスト荷重がほとんど加わらないので、自在軸受の軸受抵抗が大幅に低減する。これにより、回転体が円滑に回転するため、風向きの変化に合わせてカバー体の向きを迅速に追従させることができ、しかも、垂直軸および自在軸受の耐久性を高めることができる。
上記の発明の方向自動制御式カバー付抗力型風車では、前記カバー体は、平面形状が半円状に形成される半円筒状の部材であり、前記所定の相対位置において、前記逆風を受ける側の受風体に凹曲面が向き、且つ、前記回転体の中心軸よりも風下側に曲率中心が偏心していることを特徴とする。
この構成によれば、簡素な半円筒状の部材でカバー体を構成できるので、より一層の構造の簡素化・軽量化を実現することができる。
また、カバー体が固定される側に回転体の重心が偏るため、カバー体側が下がるようにして回転体が傾斜する。これにより、回転体では、カバー体側が液体中に沈み込む。この沈み込んだ部分では、カバー体が外側に傾斜し、カバー体に作用する流体力が垂直に直立したカバー体が受ける流体力よりも小さくなるため、風向きが急に大きく変わった場合等にカバー体にかかる流体力等によって生ずる回転モーメントは外側に傾斜したカバー体の方が小さくなり、適正な位置に回転体が停留しやすくなる。したがって、逆風を受ける側の受風体をカバー体で安定的に覆うことができる。
上記の発明の方向自動制御式カバー付抗力型風車では、前記カバー体は、平面形状が半円状又は半楕円状に形成され、且つ、正面形状が半円錐台又は半漏斗状に形成された半円筒状の部材であり、前記所定の相対位置において、前記逆風を受ける側の受風体に凹曲面が向き、且つ、前記回転体の中心軸よりも風下側に曲率中心が偏心していることを特徴とする。
この構成によれば、フロートを用いた抗力型風車においては、フロートを傾斜させなくても、カバー体に作用する流体力が垂直に設置したカバー体に作用する流体力よりも小さくなるため、回転体が過度に回転することなくしっかりと停留し、逆風を受ける側の受風体をカバー体で安定的に覆うことができる。基盤を用いた抗力型風車においては、フロートのような傾斜状態を形成することができなくても、傾斜カバー体によって予め基盤を傾斜させた状態を形成することができるため、より安定的に回転体を停留することができる。
上記の発明の方向自動制御式カバー付抗力型風車は、前記風車軸に連結される発電機と、前記発電機を支持すると共に前記回転体の外側に配置されて海面に浮かぶ環状のフロートと、前記環状のフロートの下部に取り付けられ前記液体貯留部を海水から隔離する隔離体と、を有することを特徴とする。
この構成によれば、構造の簡素化・軽量化が実現できる洋上風力発電装置を得ることができる。本発明者は、本発明の抗力型風車を用いることで、カバー体の無い発電装置に比べ、格段に大きな電力が得られることを実験により確認した。また、液体貯留部が海水から隔離されることで、液体がダンパーとして機能するため、抗力型風車が受ける衝撃(波などから受ける外力)から回転体およびカバー体を保護することができる。ただし、隔離体には通水孔があり、内外における大きな水位差を生じないようになっている。
本発明によれば、カバー体自体に方向制御機能を付与することができ、構造の簡素化・軽量化を実現できる方向自動制御式カバー付抗力型風車を提供することができる。
本発明に係る実施形態の方向自動制御式カバー付抗力型風車の正面図である。 図1のA−A線断面図である。 方向自動制御式カバー付抗力型風車の平面図である。 停留位置におけるカバー体の作用図である。 風向きが変わったときのカバー体の動作例を示す図であり、(a)はカバー体の回転前の状態を示す図、(b)はカバー体の回転後の状態を示す図である。 風向きが変わったときのカバー体の他の動作例を示す図であり、(a)はカバー体の回転前の状態を示す図、(b)はカバー体の回転後の状態を示す図である。 回転体の重心の偏りによる作用を説明する図であり、(a)は回転体の平面図、(b)は(a)のB−B線断面図である。 重錘による作用を説明する図であり、(a)は回転体の平面図、(b)は(a)のC−C線断面図である。 図8のD矢視図であり、リブの構成を説明する図である。 (a)は風速と電力の関係を示すグラフ、(b)は経過時間と電力との関係を示すグラフである。 方向自動制御式カバー付抗力型風車の他の例を示す図であり、図2に対応させて描いた図である。 カバー体26の傾きとカバー体26に作用する流体力との関係を示した概念図であり、(a)はカバー体が内側に傾斜している際に作用する流体力の大きさを示し、(b)はカバー体が外側に傾斜している際に作用する流体力の大きさを示す図である。 カバー体の他の例を示す図であり、(a)はカバー体及びその周辺の正面図、(b)は(a)のA−A線断面図である。 カバー体の他の例を示す図であり、(a)はカバー体及びその周辺の正面図、(b)は(a)のA−A線断面図である。
以下、添付図面を参照して、本発明を実施するための形態(以下、「実施形態」と称する。)について詳細に説明する。なお、実施形態の説明の全体を通して同じ要素には同じ番号を付している。
まず、実施形態の方向自動制御式カバー付抗力型風車(以下、単に「抗力型風車」と称する。)の全体構成を図1に基づいて説明する。
図1に示すように、抗力型風車10は、海面11aに浮かぶ洋上風力発電装置に本発明を適用した例である。抗力型風車10は、同心円状に配置される第1フロート12および第2フロート(回転体に相当)13を有する。第1フロート12の下面には、隔離体15が設けられ、隔離体15の中心部には、垂直軸16が設けられる。第1フロート12の上面には、複数の支柱17が設けられ、複数の支柱17の上端には、天板18が支持される。天板18には、発電機21、風車軸22、複数の受風体23A〜23Dが吊り下げられて支持される。さらに、第2フロート13の内部には、自在軸受25が設けられ、第2フロート13の上面には、カバー体26が設けられる。
次に、抗力型風車10の構成要素を図2、図3に基づいて詳しく説明する。
図2に示すように、第1フロート12は、円環状に形成されると共に第2フロート13の外側に配置され、上面を露出させて海面11aに浮かぶ。なお、係留手段(図示省略)を用いて、第1フロート12あるいは隔離体15を海底基礎に固定・係留させてもよい。
隔離体15は、有底円筒状を呈しており、第1フロート12の下面(環状のフロートの下部に相当)に取り付けられる。この隔離体15により、第1フロート12の内径側には、液体貯留部27が形成される。この液体貯留部27は、隔離体15によって、海水11と隔離されており、任意の液体(例えば、海水や真水等)28を貯留する。
垂直軸16は、鉛直方向に沿って液体貯留部27内を延びる。垂直軸16の下端部は、隔離体15の中心部(液体貯留部の底部に相当)に固定部材31を介して設けられる。垂直軸16の上端部には、自在軸受25の内輪となる球体状の球体部16aが取り付けられる。
支柱17は、複数(この例では3本)設けられる。各支柱17は、第1フロート12の上面に固定されると共に鉛直方向に沿って上方に延びる。天板18は、これら複数の支柱17に支持され、第1フロート12および第2フロート13のそれぞれの上面に対向する。発電機21は、天板18の中央部に取り付けられ、風車軸22に連結される。
風車軸22は、発電機21から鉛直方向に沿って下方に延びる。複数の受風体23A〜23Dは、風車軸22の周りに放射状に設けられる。この例では、90°間隔で配置された4個の受風体23A〜23Dを風車軸22に上下に2段設ける。なお、受風体23A〜23Dとして、ここでは、いわゆるパドル(風杯)と呼ばれる半球殻状あるいは半円錐状のものを用いたが、受風体23A〜23Dの種類は任意である。また、受風体23A〜23Dの個数や配置は、抗力型風車10に求められる能力に応じて、任意に変更可能である。
第2フロート13は、第1フロート12の内径よりも小さい外径で円環状に形成される。第2フロート13は、複数の受風体23A〜23Dの下方近傍に位置する。第2フロート13は、第1フロート12の内径部に隙間32を有して嵌合され、液体28の液面28aに浮かぶ。第2フロート13の内径部には、円筒部33が嵌合される。なお、第2フロート13の内径部を塞ぐため、あるいは、第2フロート13上面の平滑性を確保するために、第2フロート13の上面に円板13aを設けてもよい。
自在軸受25は、第2フロート13の内径部および円筒部33に埋め込まれる基部25aと、基部25aから垂直軸16の先端部に向けて延びる腕部25bと、腕部25bの先端に設けられる軸受け部25cとで構成される。軸受け部25cの内面は、球面状に形成される。軸受け部25cは、垂直軸16の球体部16aに回転自在に嵌合される。
このように軸受け部25cが球体部16aに嵌合されることで、第2フロート13は、自在軸受25を介して垂直軸16に支持される。これにより、第2フロート13は、鉛直軸周りに回転可能になると共に、隙間32があるため、垂直軸16に対して傾斜可能である。なお、受風体23A〜23Dとカバー体26が接触しないように、第2フロート13の傾きは制限されるようになっている。
図3に示すように、カバー体26は、第2フロート13の上面に固定される。カバー体26は、風向きWに対する所定の相対位置(以下、単に「所定の相対位置」と称する。)において、逆風を受ける側の受風体23Aを覆い、且つ、順風を受ける側の受風体23Cを風に曝す。
カバー体26は、平面形状が半円状に形成される半円筒状の部材で構成される。カバー体26の凹曲面26aの半径R1は、第2フロート13の半径R2よりも小さく、且つ、受風体23A〜23Dの円運動の半径R3よりも大きく設定される。半円筒状のカバー体26は、所定の相対位置において、逆風を受ける側の受風体23Aに凹曲面26aが向き、且つ、第2フロート13の中心軸C1よりも風下側に曲率中心C2が距離δ1だけ偏心している。
そして、このカバー体26においては、風向きが変化しても所定の相対位置が維持されるように、カバー体26に作用する流体力の作用線の向きが設定される。
ここで、作用線の向きを設定することによるカバー体26の動作例を図4〜図6に基づいて説明する。なお、図4〜図6においては、カバー体26の動作を分かり易くするため、図3に示される抗力型風車10から第2フロート13とカバー体26を抜き出して示す。
図4では、カバー体26は、逆風を受ける側の受風体23Aを覆い且つ順風を受ける側の受風体23Cを風に曝すように、所定の相対位置に位置している。このとき、カバー体26には、風向きWに沿う方向の抗力F1と、風向きWに直角な方向の揚力F2が働く。すなわち、カバー体26には、抗力F1と揚力F2の合力である流体力が作用する。所定の相対位置では、カバー体26に作用する流体力の作用線Eが第2フロート13の中心軸C1上を通るように設定される。このため、カバー体26には回転モーメントが生じない。結果、カバー体26が所定の相対位置に停留する。
図4に示す風向きWから、例えば、図5(a)に示すように、凸曲面26bに風が強く当たる向きに風向きWが変わる場合、作用線Eが第2フロート13の中心軸C1から距離L1だけ外れるように設定される。これにより、カバー体26には、回転モーメントM1が生ずるため、カバー体26は、図5(b)に示すように、平面視で時計回りに、第2フロート13と一体的に回転して所定の相対位置に戻る。
図4に示す風向きWから、例えば、図6(a)に示すように、凹曲面26aに風が強く当たる向きに風向きWが変わる場合、作用線Eが第2フロート13の中心軸C1から距離L2だけ外れるように設定される。この場合、カバー体26には、平面視で反時計回りの回転モーメントM2が生ずるため、カバー体26は、図6(b)に示すように、反時計回りに、第2フロート13と一体的に回転して所定の相対位置に戻る。
このように、本実施形態では、風向きWが変わっても、カバー体26が回転して所定の相対位置を維持することにより、逆風を受ける側の受風体23Aをカバー体26で常時覆い、順風を受ける側の受風体23Cを風に常時曝すように、カバー体26に働く流体力の作用線Eの向きが設定される。流体力の作用線Eと第2フロート13の中心軸C1との関係をみるため、簡易な風洞天秤を使用して計測を行ったところ、風速6m/sに対し、以下のような数値が得られた。なお、計測に用いたカバー体26の模型は半径100mm、高さ150mmのものである。
・カバー体26の凸曲面26bを風上に向けた場合、抗力F1が0.16N、揚力F2が0.10N、その合力である流体力が0.19Nであった。
・カバー体26の凸曲面を風下に向けた場合、抗力F1が0.40N、揚力F2が0.34N、その合力である流体力が0.52Nであった。
・カバー体26の凸曲面を風向きに対し真横すなわち所定の相対位置に向けた場合、抗力F1が0.22N、揚力F2が0.10N、その合力である流体力が0.24Nであった。
続いて、第2フロート13の重心Gの偏りによる作用を図7〜図9に基づいて説明する。図7(a)に示すように、第2フロート13では、カバー体26側に距離δ2だけ重心Gが偏る。このため、図7(b)に示すように、第2フロート13は、軸受け部25cを中心に回転し、カバー体26側を下げるようにして角度θ1で傾斜する。これにより、第2フロート13のカバー体26側が液体28中に沈み込む。この沈み込んだ部分では、第2フロート13がしっかりと停留する。したがって、逆風を受ける側の受風体23Aをカバー体26で安定的に覆うことができる。
また、図8(a)に示すように、第2フロート13の上面に重錘36を設けてもよい。ここでは、風向きWに沿う中心線C3および風向きWと直角な方向の中心線C4により第2フロート13の上面を4等分した扇状の領域であって、第2フロート13の重心Gが位置する領域(斜線で模式的に示す領域)35に重錘36を設ける。この重錘36により、図8(b)に示すように、第2フロート13の重心Gの偏りがさらに増加するため、停留位置において、第2フロート13がさらに大きな角度θ2で傾斜する。
これに対して、中心軸C1を挟んで領域35と対角方向の扇状の領域内(例えば、図8(a)において符号P1で示す位置)に重錘を設けると、第2フロート13の重心Gの偏りが小さくなるので、第2フロート13の傾斜が緩和されてしまい、第2フロート13の停留位置が安定しなくなる。また、中心線C4を挟んで領域35とは反対側の扇状の領域内(例えば、図8(a)において符号P2で示す位置)に重錘を設けると、第2フロート13の停留位置が不安定になる傾向がある。
この点、領域35に重錘36を設ける場合、重心Gの偏りが確実に増加するため、第2フロート13の停留位置がより安定的に維持される。また、重錘36を設けることは、抗力型風車10の特性を調整するうえで有効な手段でもある。なお、重錘36の大きさ、形状、質量、個数および配置は、抗力型風車10に求められる特性に応じて、任意に設定可能である。また、抗力型風車10の特性を容易に調整可能とするため、第2フロート13に対して重錘36を着脱可能に構成することが好ましい。
ところで、第2フロート13に重錘36を設けると、回転する第2フロート13に生ずる慣性力が増し、第2フロート13が停留しづらくなることが考えられる。この対策として、例えば、空気抵抗を受けて第2フロート13を制動する抵抗体37を第2フロート13の上面に設けたり、図9に示すように、液体28(図2参照)から抵抗を受けて第2フロート13を制動する複数のリブ38を第2フロート13の下面に放射状に設けたりすることが有効である。
以上、説明した抗力型風車10の効果について述べる。
抗力型風車10によれば、所定の相対位置を維持するように、カバー体26に作用する流体力の作用線Eの向きを設定することにより、風向センサや駆動モータ、垂直尾翼等を用いずに、風向きWの変化にカバー体26を追従させることができる。結果、カバー体26自体に方向制御機能を付与することができ、洋上風力発電装置である抗力型風車10において、構造の簡素化・軽量化を実現することができる。
また、液体貯留部27が海水11から隔離されることから、液体28がダンパーとして機能するため、抗力型風車10が受ける衝撃(波などによる外力)から第2フロート13およびカバー体26を保護することができる。
また、第2フロート13では重力と浮力が釣り合っている。このため、自在軸受25には、第2フロート13等の自重によるスラスト荷重(垂直軸16の軸方向の荷重)がほとんど加わらない。このため、自在軸受25の軸受抵抗が大幅に低減する。これにより、第2フロート13が円滑に回転するため、風向きWの変化にカバー体26の向きを迅速に追従させることができ、しかも、垂直軸16および自在軸受25の耐久性を高めることができる。
続いて、逆風を受ける側の受風体23Aに対する防風効果を確認するための実験例について説明する。なお、本発明は、実験例に限定されるものではない。
(実験例1)
○試験品
試験品には、図2に示される第1フロート12および隔離体15の代わりに有底円筒状の水槽を準備し、この水槽に貯留した水に第2フロート13を浮かべた模型を用いた。模型は、直径32mmの受風体23A〜23Dを4個1組で上下2段に計8個組み付けたものであり、風車軸22の周りに受風体23A〜23Dが回転する外径は120mm、第2フロート13の外径は250mmである。カバー体26は半径100mm、高さ150mmのものである。
○対照品
対照品には、試験品からカバー体26(図2参照)を取り外した模型を用いた。
○方法
風洞実験設備を用い、受風体23A〜23D(図2参照)に向けて風を発生させ、風速を徐々に上げていき、風速が4(m/s)、6(m/s)、8(m/s)、10(m/s)のときに、発電機21(図2参照)で得られる電力を測定した。
○結果
実験例1の結果を図10(a)に示す。
図10(a)に示すように、風速4〜10(m/s)の全範囲において、カバー体26(図2参照)の付いた試験品では、カバー体の無い対照品に比べ、約3倍の電力が得られることが示された。
(実験例2)
○試験品
試験品には、実験例1の試験品と同じ模型を用いた。
○対照品
対照品には、実験例1の対照品と同じ模型を用いた。
○方法
風洞実験設備を用い、受風体23A〜23D(図2参照)に向けて風を発生させ、風速を6(m/s)に保ち、発電機21(図2参照)で得られる電力を経時的に測定した。
○結果
実験例2の結果を図10(b)に示す。
図10(b)に示すように、カバー体26(図2参照)の付いた試験品では、カバー体の無い対照品に比べ、約5倍の電力が得られることが示された。なお、実験例1と実験例2では、試験品で得られる電力と対照品で得られる電力との比率が異なる結果であったが、これは、発電機21(図2参照)に対する負荷条件の設定の違いが影響していると推察される。
以上の実験例1,2の結果から、カバー体26を有する抗力型風車10では、逆風を受ける側の受風体23Aに対して高い防風効果が得られ、カバー体の無い発電装置に比べ、少なくとも3倍以上の電力が得られることが確認された。
続いて、本発明に係る抗力型風車の他の例を図11に基づいて説明する。なお、前述した抗力型風車10と共通する要素には同じ符号を付して、重複する説明を省略することとする。
前述した抗力型風車10(図2参照)においては、本発明に係る回転体をフロートで構成して液体に浮かべたが、この他、ターンテーブルで回転体を構成してもよい。
図11に示すように、抗力型風車40では、前述した第1フロート12(図2参照)の代わりに基盤41を用いる。この基盤41には、上方に開放した凹部42が設けられる。凹部42の中心部には、垂直軸43が設けられる。凹部42には、ターンテーブル(回転体に相当)45が隙間32を有して嵌合される。ターンテーブル45は、凹部42の底面を転動可能なボールベアリング46に支持されており、垂直軸43を中心に回転可能である。
カバー体26は、抗力型風車10(図2参照)の場合と同様に、所定の相対位置において、逆風を受ける側の受風体23Aを覆い且つ順風を受ける側の受風体23Cを風に曝す。このとき、風によりカバー体26に作用する流体力の作用線がターンテーブル45の中心軸C1上を通ることで、所定の相対位置に停留する。一方、風向きが変わったときは、作用線がターンテーブル45の中心軸C1から外れてカバー体26に回転モーメントが生ずることで、ターンテーブル45と一体的に回転して所定の相対位置を維持する。
この抗力型風車40によれば、前述した抗力型風車10(図2参照)と同様に、カバー体26に作用する流体力の作用線の向きを設定することにより、風向センサや駆動モータ、垂直尾翼等を用いずに、風向きの変化にカバー体26を追従させることができる。結果、カバー体26自体に方向制御機能を付与することができ、構造の簡素化・軽量化が実現できる抗力型風車40を提供することができる。
なお、抗力型風車40では、ターンテーブル45を支持する手段として、基盤41、凹部42、垂直軸43およびボールベアリング46を用いたが、ターンテーブル45を支持する支持手段は、この他、ターンテーブル45を支持する軸部材および軸受手段(例えば、図2に示される垂直軸16および自在軸受25)をターンテーブル45の中心に配置した構成などでもよく、ターンテーブル45を回転可能に支持できる手段であれば、任意である。また、抗力型風車40においても、より安定的にターンテーブル45の停留位置を維持するため、抗力型風車10(図2参照)と同様に、ターンテーブル45に重錘を設けてもよい。
図12(a)及び(b)は、カバー体26の傾きとカバー体26に作用する流体力との関係を示した概念図である。理解を容易にするため、カバー体26、フロート13及び垂直軸16を簡略的に示すのみとしている。
図12(a)に示すように、フロート13が図面右側に沈み込んだ状態の場合、フロート13と共にカバー体26も垂直軸16に対して内側に傾斜する。この状態で図面右側から左側に向かう風Wを受けると、カバー体26の内壁に沿ってカバー体26の解放上部に風Wが抜ける。このときカバー体26に作用する流体力Fが大きくなり、カバー体26には強い回転力が生じる。そのため、カバー体26が停留せず回転し続けることがある。
一方、図12(b)に示すように、フロート13が図面左側に沈み込んだ状態の場合、フロート13と共にカバー体26も垂直軸16に対して外側に傾斜する。この状態で図面右側から左側に向かう風Wを受けると、カバー体26に作用する流体力Fが(a)の場合に比べて小さくなり、カバー体26の回転力の上昇が抑制される。そのため、カバー体26の回転が風により押し戻され、所定の位置に停留する。
このような原理を利用して、カバー体26の構造を適宜変更することができる。例えば、図13及び図14は、カバー体の他の形態を図示したものである。これまで説明した抗力型風車10,40は、カバー体26が半円筒状に形成され、第2フロート13又はターンテーブル45に対して垂直に設置したものを使用したが、これに代えて、第2フロート13又はターンテーブル45の垂直軸16に対して外側に傾斜するように、平面形状が半円状又は半楕円状に形成され、且つ、正面形状が半円錐台状に形成された傾斜カバー体50又は正面形状が半漏斗状に形成された傾斜カバー体51を使用してもよい。
傾斜カバー体50又は51の傾斜角は、抗力型風車の設置場所や環境条件等によって適宜設定することができる。傾斜カバー体50又は51においては傾斜角が大きいほど強風に対する過度な回転を抑制する効果が高いため、例えば、比較的風が強い場所に抗力型風車を設置する場合は傾斜角を大きくとり、比較的風が弱い場所に抗力型風車を設置する場合は傾斜角を小さくとるなどの変更が可能である。
このような傾斜カバー体50又は51を用いることにより、フロートを用いた抗力型風車10においては、第2フロート13を傾斜させなくても、カバー体に作用する流体力が垂直に設置したカバー体に作用する流体力よりも小さくなるため、回転体が過度に回転することなくしっかりと停留し、逆風を受ける側の受風体をカバー体で安定的に覆うことができる。基盤を用いた抗力型風車40においては、フロートのような傾斜状態を形成することができなくても、傾斜カバー体50又は51によって予め基盤を傾斜させた状態を形成することができるため、より安定的に回転体を停留することができる。
以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施形態に記載の範囲には限定されないことは言うまでもない。上記実施形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。またその様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。
例えば、前述した実施形態では、抗力型風車10,40を示したが、本発明の抗力型風車は、抗力型風車10,40を適宜組み合わせたものであってもよい。
また、実施形態では、本発明の抗力型風車をパドル型風車に用いた例を示したが、本発明は、パドル型風車の他、サボニウス型風車、クロスフロー型風車など、作動時に受風体が逆風を受ける様々な種類の抗力型風車に適用可能である。
10 抗力型風車(方向自動制御式カバー付抗力型風車)
11 海水
11a 海面
12 第1フロート(環状のフロート)
13 第2フロート(回転体)
15 隔離体
16 垂直軸
21 発電機
22 風車軸
23A〜23D 受風体
25 自在軸受
26 カバー体
26a 凹曲面
27 液体貯留部
28 液体
28a 液面
35 領域
36 重錘
40 抗力型風車(方向自動制御式カバー付抗力型風車)
43 垂直軸
45 ターンテーブル(回転体)
50 傾斜カバー体(半円錐台状)
51 傾斜カバー体(半漏斗状)
C1 中心軸
C2 曲率中心
C3 中心線
C4 中心線
E 作用線
G 重心
M1 回転モーメント
M2 回転モーメント
W 風向き

Claims (5)

  1. 鉛直方向に延びる風車軸と、
    前記風車軸の周りに放射状に設けられる複数の受風体と、
    前記複数の受風体の下方に配置され、鉛直軸周りに回転可能な回転体と、
    前記回転体の上面に固定され、風向きに対する所定の相対位置にて、逆風を受ける側の受風体を覆い且つ順風を受ける側の受風体を風に曝すカバー体と、
    を有し、
    前記カバー体は、風により前記カバー体に作用する流体力の作用線が前記回転体の中心軸上を通ることによって前記所定の相対位置に停留する一方、風向きが変わったときは、前記作用線が前記回転体の中心軸から外れて回転モーメントが生ずることにより、前記回転体と一体的に回転して前記所定の相対位置に戻ることを特徴とする方向自動制御式カバー付抗力型風車。
  2. 液体を貯留する液体貯留部と、
    前記液体貯留部の底部に設けられる垂直軸と、を有し、
    前記回転体は、前記液体の液面に浮かぶフロートであり、且つ、前記垂直軸に自在軸受を介して支持されることを特徴とする請求項1に記載の方向自動制御式カバー付抗力型風車。
  3. 前記カバー体は、平面形状が半円状に形成される半円筒状の部材であり、前記所定の相対位置において、前記逆風を受ける側の受風体に凹曲面が向き、且つ、前記回転体の中心軸よりも風下側に曲率中心が偏心していることを特徴とする請求項1又は2に記載の方向自動制御式カバー付抗力型風車。
  4. 前記カバー体は、平面形状が半円状又は半楕円状に形成され、且つ、正面形状が半円錐台又は半漏斗状に形成された半円筒状の部材であり、前記所定の相対位置において、前記逆風を受ける側の受風体に凹曲面が向き、且つ、前記回転体の中心軸よりも風下側に曲率中心が偏心していることを特徴とする請求項1又は2に記載の方向自動制御式カバー付抗力型風車。
  5. 前記風車軸に連結される発電機と、
    前記発電機を支持すると共に前記回転体の外側に配置されて海面に浮かぶ環状のフロートと、
    前記環状のフロートの下部に取り付けられ前記液体貯留部を海水から隔離する隔離体と、を有することを特徴とする請求項1〜4のいずれかに記載の方向自動制御式カバー付抗力型風車。
JP2013170082A 2012-08-23 2013-08-20 方向自動制御式カバー付抗力型風車 Pending JP2014058964A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013170082A JP2014058964A (ja) 2012-08-23 2013-08-20 方向自動制御式カバー付抗力型風車

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012183863 2012-08-23
JP2012183863 2012-08-23
JP2013170082A JP2014058964A (ja) 2012-08-23 2013-08-20 方向自動制御式カバー付抗力型風車

Publications (1)

Publication Number Publication Date
JP2014058964A true JP2014058964A (ja) 2014-04-03

Family

ID=50615636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013170082A Pending JP2014058964A (ja) 2012-08-23 2013-08-20 方向自動制御式カバー付抗力型風車

Country Status (1)

Country Link
JP (1) JP2014058964A (ja)

Similar Documents

Publication Publication Date Title
US11242837B2 (en) Floating offshore wind turbine
KR101640386B1 (ko) 부체식 유체력 이용시스템 및 이것을 이용한 풍력추진선
JP5818743B2 (ja) 自然エネルギー取出装置
JP6396427B2 (ja) 浮体式風力タービン構造体
JP5011279B2 (ja) フロート式風力タービン設備
WO2003072428A1 (fr) Structure de base de type flottant pour la generation d'energie eolienne sur l'ocean
KR20130099036A (ko) 유체의 유동하는 조류로부터 전력을 발생하기 위한 시스템 및 방법
EP2663768B1 (en) Dynamic turbine system
JP2011064097A (ja) 風車装置及びそれを用いた風力発電装置
JP7202551B1 (ja) 浮体式洋上風力発電機
JP2014001689A (ja) 水流エネルギーを利用した発電装置
JP6038825B2 (ja) スパー型浮体構造物及びスパー型浮体構造物の作動方法
JP5543385B2 (ja) 浮体式風力発電装置
JP3766845B2 (ja) 風力発電装置
KR101422476B1 (ko) 부양식 풍력발전시설
JP2014058964A (ja) 方向自動制御式カバー付抗力型風車
JP2021528600A (ja) ロータアセンブリおよびロータアセンブリを含む風車
JP2023106292A (ja) 洋上風力発電機の浮体
WO2019190387A1 (en) A floating vertical axis wind turbine with peripheral water turbine assemblies and a method of operating such
KR101038953B1 (ko) 풍력발전 해양구조물
JP2007120451A (ja) 出力軸に直交する回転羽根軸をもった風車
WO2019073189A4 (en) Vertical axis wind turbine
KR101762821B1 (ko) 해상용 풍력 발전 시스템
JP7392926B2 (ja) 浮体式垂直軸型風車及び浮体式垂直軸型風車発電システム
KR100622629B1 (ko) 유체의 흐름을 이용한 동력발생용 수직축 다익형개폐도어식 터빈