JP2014058406A - Instrument for nondestructively producing high-concentration hydrogen solution - Google Patents

Instrument for nondestructively producing high-concentration hydrogen solution Download PDF

Info

Publication number
JP2014058406A
JP2014058406A JP2010245269A JP2010245269A JP2014058406A JP 2014058406 A JP2014058406 A JP 2014058406A JP 2010245269 A JP2010245269 A JP 2010245269A JP 2010245269 A JP2010245269 A JP 2010245269A JP 2014058406 A JP2014058406 A JP 2014058406A
Authority
JP
Japan
Prior art keywords
hydrogen
agent
raw water
producing
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010245269A
Other languages
Japanese (ja)
Other versions
JP4769903B1 (en
Inventor
Fumitake Sato
文武 佐藤
Tomoki Seo
知樹 瀬尾
Ryosuke Kurokawa
亮介 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizu KK
Original Assignee
Mizu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010245269A priority Critical patent/JP4769903B1/en
Application filed by Mizu KK filed Critical Mizu KK
Priority to CN201180029611.3A priority patent/CN103068722B/en
Priority to TW100120663A priority patent/TWI399344B/en
Priority to EP11795737.3A priority patent/EP2583937A4/en
Priority to KR1020127029840A priority patent/KR101292859B1/en
Priority to PCT/JP2011/063601 priority patent/WO2011158832A1/en
Priority to JP2012500395A priority patent/JP5038546B2/en
Application granted granted Critical
Publication of JP4769903B1 publication Critical patent/JP4769903B1/en
Priority to US13/715,617 priority patent/US8574503B2/en
Priority to HK13111086.7A priority patent/HK1183657A1/en
Publication of JP2014058406A publication Critical patent/JP2014058406A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Sorption (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an instrument for producing hydrogen-dissolved liquid which does not change constituents of raw water while facilitating the hydrogen generating reaction.SOLUTION: The instrument comprises a hydrogen generating system stored in a separator, the hydrogen generating system comprising: a hydrogen generating agent that reacts with raw water to generate hydrogen; a metal-ion sequestering agent that sequesters metal ions eluted from the hydrogen generating agent; and a pH adjusting agent that inhibits or removes hydroxide ions.

Description

本発明は、非破壊的高濃度水素溶液の製造器具に係わる。   The present invention relates to an apparatus for producing a non-destructive high concentration hydrogen solution.

水素水を製造する方法として、家庭用電解水素水生成装置を用いる方法や水素発生剤としての金属マグネシウムの金属片を水と接触させる方法が知られている(特開2007−167696)。   As a method for producing hydrogen water, a method using a household electrolytic hydrogen water generator or a method of bringing a metal piece of metal magnesium as a hydrogen generator into contact with water is known (Japanese Patent Application Laid-Open No. 2007-167696).

特開2007−167696JP2007-167696A

水素発生剤を用いて水素溶液を得ようとする場合、水素発生剤は、原水(または原液、以下同)に水素分子を溶存させる際に、その原水の特性まで変化させてしまうことが多い。たとえば、水素発生剤が金属マグネシウムである場合、水素発生の際、以下の式(1)、(2)に従い、原水にマグネシウムイオンを溶出させるとともに、そのpHをアルカリ側に傾ける。   When trying to obtain a hydrogen solution using a hydrogen generating agent, the hydrogen generating agent often changes the properties of the raw water when dissolving hydrogen molecules in the raw water (or raw solution, hereinafter the same). For example, when the hydrogen generating agent is magnesium metal, when hydrogen is generated, magnesium ions are eluted in the raw water according to the following formulas (1) and (2), and the pH is inclined to the alkali side.

[数1]
Mg+2HO→Mg(OH)2++H ・・・式(1)
Mg(OH)2+→Mg2++2OH ・・・式(2)
しかしながら、水素発生反応の前後で、自然的または人口的にすでに組成されている原水の成分構成を変えてしまうことは基本的に望ましいことではない。成分の変化は茶やミネラルウォーターなど飲料の味を変えることに繋がる。
[Equation 1]
Mg + 2H 2 O → Mg (OH) 2 + + H 2 Formula (1)
Mg (OH) 2 + → Mg 2+ + 2OH (2)
However, it is basically not desirable to change the composition of raw water that is already naturally or artificially composed before and after the hydrogen generation reaction. Changes in ingredients lead to changing the taste of beverages such as tea and mineral water.

無論、水素発生反応があまり進行していない時点で水素溶存液を使用してしまえば、マグネシウムの溶出や液性のアルカリ性化は最小限度にとどめることができる。だがその場合、低い溶存水素濃度の水素溶存液で満足せざるを得ない。   Of course, if the hydrogen-dissolved solution is used when the hydrogen generation reaction has not progressed so much, the elution of magnesium and the alkalinity of the liquid can be minimized. However, in that case, a hydrogen-dissolved solution having a low dissolved hydrogen concentration must be satisfied.

したがって、水素発生反応を促進させながらも、原水の成分構成はできるだけ変えることのない(つまり、非破壊的な)水素溶存液の製造器具が望まれている。   Therefore, there is a demand for an apparatus for producing a hydrogen-dissolved liquid that promotes the hydrogen generation reaction but does not change the composition of raw water as much as possible (that is, non-destructive).

本発明は、金属マグネシウムなど水素発生剤、該水素発生剤に由来する金属イオンを封鎖するための金属イオン封鎖剤、及びpH調整剤からなる水素発生系を隔離体に収容してなる非破壊的高濃度水素溶液の製造器具を用いる。   The present invention is a non-destructive method comprising a separator that contains a hydrogen generation system comprising a hydrogen generator such as metal magnesium, a metal ion sequestering agent for sequestering metal ions derived from the hydrogen generator, and a pH adjuster. Use high concentration hydrogen solution production equipment.

こうした器具を用いて、原水で水素発生反応を促進することにより、マグネシウムイオン(あるいは、水素発生の際に水素発生剤より溶出する陽イオンなど副生成物)が増加することなく、かつ、原水のpHも変えることのない、高濃度または過飽和水素溶液を得ることができる。こうした器具を用いれば、家庭、職場、街中、店頭など場所を問わず、任意の飲料の香味を変化させることなく、簡単に高濃度水素飲料を製造することができる。   By using such a device to accelerate the hydrogen generation reaction in raw water, magnesium ions (or by-products such as cations eluted from the hydrogen generating agent during hydrogen generation) do not increase, and raw water A highly concentrated or supersaturated hydrogen solution can be obtained without changing the pH. By using such a device, it is possible to easily produce a high-concentration hydrogen beverage without changing the flavor of any beverage regardless of the location such as home, workplace, city, store.

本発明の一実施の形態に係る製造器具を示す図である。It is a figure which shows the manufacturing instrument which concerns on one embodiment of this invention.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明において原水とは、本発明を用いて水素を溶存させられる対象である水または水溶液などの液体である。原水は、飲料水、茶やコーヒーなど飲料を含む。原水に水素を溶存させることで得られる水素溶液は、吸入(噴霧)、飲用、注射などを介して生体に適用されるがこれに限るものではない。水素溶液の作用成分は水素であり、その作用は主として酸化ストレスの抑制であるがこれに限るものではない。   In the present invention, the raw water is a liquid such as water or an aqueous solution that is an object in which hydrogen is dissolved using the present invention. Raw water includes beverages such as drinking water, tea and coffee. A hydrogen solution obtained by dissolving hydrogen in raw water is applied to a living body through inhalation (spraying), drinking, injection, and the like, but is not limited thereto. The working component of the hydrogen solution is hydrogen, and its action is mainly to suppress oxidative stress, but is not limited thereto.

本発明において水素発生剤とは、水素を発生させる物質である。水素よりイオン化傾向の高い金属、水素化金属を含む水素化化合物など、水と接触することで水素を発生させる物質は水素発生剤に含まれる。水との反応性の良さを考慮し、金属カルシウム、水素化カルシウム、金属マグネシウム、水素化マグネシウムなどは好適に用いられる。反応生成物の安全性などを考慮し、金属マグネシウムは特に好適に用いられる。   In the present invention, the hydrogen generator is a substance that generates hydrogen. Substances that generate hydrogen by contact with water, such as metals having a higher ionization tendency than hydrogen and hydrogenated compounds containing hydrogenated metals, are included in the hydrogen generating agent. In consideration of good reactivity with water, metallic calcium, calcium hydride, metallic magnesium, magnesium hydride and the like are preferably used. In consideration of the safety of the reaction product, magnesium metal is particularly preferably used.

本発明の金属イオン封鎖剤は、水に全くあるいはほとんど溶解せず、隔離体の内部において金属イオンを吸着する性質を有する不溶性または難溶性の物質、及び、水に溶解することで金属イオンを捕捉するとともに生体にとって安全な物質を生成する物質を含む。原水の成分構成を変えないという観点からは、陽イオン交換樹脂など、不溶性または難溶性の金属イオン封鎖剤が好ましい。なかでも、金属イオンの吸着とともに、水素イオン(H)を放出する、スルホン酸基を交換基とする酸性陽イオン交換樹脂またはカルボン酸基を交換基とする酸性陽イオン交換樹脂を含む、水素イオン型陽イオン交換樹脂は、pH調整剤としての機能も兼ねるため、さらに好ましい。 The sequestering agent of the present invention is an insoluble or hardly soluble substance having a property of adsorbing metal ions inside the isolator, and hardly or hardly dissolves in water, and traps metal ions by dissolving in water. In addition, a substance that generates a substance safe for the living body is included. From the viewpoint of not changing the composition of raw water, an insoluble or hardly soluble sequestering agent such as a cation exchange resin is preferable. Among them, hydrogen containing an acidic cation exchange resin having a sulfonic acid group as an exchange group or an acidic cation exchange resin having a carboxylic acid group as an exchange group, which releases a hydrogen ion (H + ) along with the adsorption of a metal ion. An ionic cation exchange resin is more preferred because it also serves as a pH adjuster.

本発明のpH調整剤は、クエン酸、アジピン酸、リンゴ酸、酢酸、コハク酸、グルコン酸、乳酸、リン酸、塩酸、硫酸など水素イオン(H)を供給することで水酸化物イオン(OH)を抑制(中和または生成防止)する性質を有する物質、及び加水分解を受け不溶性の水酸化物を形成することで水酸化物イオンを除去する物質を含む。原水の成分構成を変えにくいという観点からは、アルミニウムイオンを含む鉱石など、加水分解を受け不溶性の水酸化物を形成するpH調整剤は好ましい。なかでも、硫酸アンモニウムアルミニウムなどのミョウバンは、加水分解を受け不溶性の水酸化アルミニウムを生成する一方、マグネシウムイオンやカルシウムイオンに対する金属イオン封鎖剤(凝集剤)としての機能も兼ねるため、さらに好ましい。 The pH adjuster of the present invention supplies hydroxide ions (H + ) by supplying hydrogen ions (H + ) such as citric acid, adipic acid, malic acid, acetic acid, succinic acid, gluconic acid, lactic acid, phosphoric acid, hydrochloric acid and sulfuric acid. A substance having a property of suppressing (neutralization or prevention of formation) OH ) and a substance that removes hydroxide ions by hydrolysis to form an insoluble hydroxide. From the viewpoint that the composition of raw water is difficult to change, a pH adjuster that forms an insoluble hydroxide upon hydrolysis, such as an ore containing aluminum ions, is preferable. Among them, alum such as ammonium aluminum sulfate is more preferable because it is hydrolyzed to produce insoluble aluminum hydroxide and also functions as a sequestering agent (flocculating agent) for magnesium ions and calcium ions.

上述のように、水素イオン型陽イオン交換樹脂やミョウバンは、一剤で金属イオン封鎖剤としての機能とpH調整剤としての機能を兼ねる。隔離体に収納する剤数は少ないほど余分な成分の溶出を心配する必要がないため、これは好ましいことである。さらに言えば、水素イオン型陽イオン交換樹脂のような、金属イオン封鎖能とpH調整能を有する不溶性の高分子物質は、ミョウバンのように加水分解を受けることもないため、原水の成分構成を変えないという観点から特に好ましい物質である。   As described above, the hydrogen ion type cation exchange resin and alum have a function as a sequestering agent and a function as a pH adjusting agent in one agent. This is preferable because the smaller the number of agents stored in the separator, the more unnecessary it is to worry about elution of extra components. Furthermore, insoluble polymer materials with sequestering ability and pH adjustment ability, such as hydrogen ion type cation exchange resin, are not subject to hydrolysis like alum. It is a particularly preferable substance from the viewpoint of not changing.

また、水素発生剤の経時劣化を抑制するために、金属イオン封鎖剤やpH調整剤など水素発生系に含まれる物質の水和数や含水率は少ない方が好ましい。すなわち、水和数でいうと、3水和物以下、好ましくは2水和物以下、より好ましくは1水和物以下、特に好ましくは無水和物や無水物であることが望ましい。含水率でいうと、含水率40重量%以下、好ましくは30重量%以下、より好ましくは20重量%以下、特に好ましくは15重量%以下であることが望ましい。   Moreover, in order to suppress deterioration with time of the hydrogen generating agent, it is preferable that the hydration number and moisture content of substances contained in the hydrogen generating system such as a sequestering agent and a pH adjuster are small. That is, in terms of the hydration number, it is desirable to be a trihydrate or less, preferably a dihydrate or less, more preferably a monohydrate or less, particularly preferably an anhydrate or an anhydride. In terms of water content, it is desirable that the water content is 40% by weight or less, preferably 30% by weight or less, more preferably 20% by weight or less, and particularly preferably 15% by weight or less.

本発明の隔離体は、水素発生剤、金属イオン封鎖剤、及びpH調整剤など水素発生系を収容する容器である。隔離体は原水を透過する一方、水素発生系に含まれる物質や水素発生に伴うその残渣物は透過し難くされていることを特徴とする。隔離体のポアサイズは、1000μm以下、好ましくは500μm以下、より好ましくは150μm以下、特に好ましくは50μm以下であることが望ましい。隔離体は、不織布による袋状容器やプラスティック製の多孔容器などを含む。隔離効果をより期すために、不織布による袋状容器などで隔離した水素発生系を、さらに硬質な多孔容器などで入れ子状に隔離することは望ましいことである。   The separator of the present invention is a container containing a hydrogen generation system such as a hydrogen generator, a sequestering agent, and a pH adjuster. While the isolator permeates the raw water, the substance contained in the hydrogen generation system and the residue resulting from the hydrogen generation are made difficult to permeate. The pore size of the separator is desirably 1000 μm or less, preferably 500 μm or less, more preferably 150 μm or less, and particularly preferably 50 μm or less. The separator includes a non-woven bag-like container, a plastic porous container, and the like. In order to further enhance the isolation effect, it is desirable to isolate the hydrogen generation system isolated in a non-woven bag-like container in a nested manner with a hard porous container or the like.

また、本発明の金属マグネシウムなど水素発生剤の平均粒径は、隔離体の外部へ透過することなく、かつ、微粒子化による活性の増大も期せるような粒径であることが望ましい。すなわち、水素発生剤の平均粒径は、隔離体のポアサイズ以上(隔離体が入れ子になっている場合はそれらのうち最もポアサイズが小さい隔離体のポアサイズ以上、以下同)であり、かつ、平均粒径が3000μm以下、好ましくは、隔離体のポアサイズ以上であり、かつ、平均粒径が1000μm以下、さらに好ましくは、隔離体のポアサイズ以上であり、かつ、平均粒径が500μm以下、特に好ましくは、隔離体のポアサイズ以上であり、かつ、平均粒径が250μm以下であることが望ましい。   In addition, the average particle size of the hydrogen generating agent such as metallic magnesium of the present invention is desirably a particle size that does not penetrate to the outside of the separator and can also increase the activity due to the atomization. That is, the average particle size of the hydrogen generating agent is equal to or larger than the pore size of the separator (if the separator is nested, the average pore size of the separator having the smallest pore size among them is the same). The diameter is not more than 3000 μm, preferably not less than the pore size of the separator, and the average particle size is not more than 1000 μm, more preferably not less than the pore size of the separator, and the average particle size is not more than 500 μm, particularly preferably It is desirable that it is not less than the pore size of the separator and the average particle size is not more than 250 μm.

本発明において高濃度水素溶液とは、溶液の溶存水素濃度が0.1ppm以上、好ましくは1.0ppm以上である水素溶液を含む。本発明において過飽和水素溶液とは、常温常圧における溶解度以上の溶存水素濃度であることを含み、1.6ppm以上、2.0ppm以上、3.0ppm以上、4.0ppm以上、5.0ppm以上、6.0ppm以上、7.0ppm以上、8.0ppm以上、9.0ppm以上、10.0ppm以上の高濃度水素溶液を含む。   In the present invention, the high concentration hydrogen solution includes a hydrogen solution having a dissolved hydrogen concentration of 0.1 ppm or more, preferably 1.0 ppm or more. In the present invention, the supersaturated hydrogen solution includes a dissolved hydrogen concentration equal to or higher than the solubility at room temperature and normal pressure, 1.6 ppm or more, 2.0 ppm or more, 3.0 ppm or more, 4.0 ppm or more, 5.0 ppm or more, The high concentration hydrogen solution of 6.0 ppm or more, 7.0 ppm or more, 8.0 ppm or more, 9.0 ppm or more, 10.0 ppm or more is included.

なお、水素溶液の溶存水素濃度を高めることを目的に、本発明の水素発生系を隔離体に収容してなる非破壊的高濃度水素溶液の製造器具を、密閉容器に収容するとともに該密閉容器を適宜振盪することは望ましいことである。図1に本例の製造器具を示す。   For the purpose of increasing the dissolved hydrogen concentration of the hydrogen solution, a nondestructive high-concentration hydrogen solution production tool in which the hydrogen generation system of the present invention is housed in a separator is housed in a sealed container and the sealed container. It is desirable to shake appropriately. FIG. 1 shows a manufacturing tool of this example.

この場合、本発明の密閉容器とは、容器の内容物を大気に触れさせないよう工夫が施されている容器を含む。キャップ付きペットボトルやアルミボトルなど蓋付き容器は密閉容器に含まれる。密閉容器は、人が手に持って振盪しやすいように、ポータブルな形態と容量を備えていることが望ましい。2L以下、好ましくは1L以下、特に好ましくは0.5L以下の容量の密閉容器が望ましいがこれに限るものではない。   In this case, the sealed container of the present invention includes a container that has been devised so that the contents of the container are not exposed to the atmosphere. Containers with lids such as plastic bottles with caps and aluminum bottles are included in hermetically sealed containers. It is desirable that the sealed container has a portable form and capacity so that a person can easily hold it in his / her hand. A closed container having a capacity of 2 L or less, preferably 1 L or less, particularly preferably 0.5 L or less is desirable, but not limited thereto.

密閉容器の材質として好ましいのは水素透過性が低い容器である。水素透過性が低いほど発生した水素を容器系外へ逃すことが少ない。   A preferable material for the sealed container is a container having low hydrogen permeability. The lower the hydrogen permeability, the less the generated hydrogen escapes out of the container system.

本発明において密閉容器の水素透過性は次のように測定する。すなわち、特願2009−221567に記載される方法などを参考に、安定的にほぼ飽和濃度(20℃・1気圧で1.6ppm)を保つ水素溶存水を測定対象となる密閉容器内容積の20倍の体積で生成するとともに、浄水(藤沢市水道水を活性炭カラムに通して処理した活性炭処理水など)を満水充填した該密閉容器を該水素溶存水に5時間浸漬する。   In the present invention, the hydrogen permeability of the sealed container is measured as follows. That is, with reference to the method described in Japanese Patent Application No. 2009-221567, hydrogen-dissolved water that stably maintains a substantially saturated concentration (1.6 ppm at 20 ° C. and 1 atm) is 20 The closed container filled with clean water (such as activated carbon treated with Fujisawa city tap water passed through an activated carbon column) is immersed in the hydrogen-dissolved water for 5 hours.

その後、該浄水の溶存水素濃度を測定し、溶存水素濃度が1000ppb以下、好ましくは500ppb以下、より好ましくは100ppb以下、特に好ましくは10ppb以下である密閉容器が本発明の水素透過性が低い容器に含まれる。   Thereafter, the dissolved hydrogen concentration of the purified water is measured, and a sealed container having a dissolved hydrogen concentration of 1000 ppb or less, preferably 500 ppb or less, more preferably 100 ppb or less, particularly preferably 10 ppb or less is a container having low hydrogen permeability of the present invention. included.

密閉容器は、水素発生による内圧の上昇に耐えうる耐圧性能を有していることが望ましい。絶対圧力で0.11MPa、好ましくは0.4MPa、さらに好ましくは0.5MPa、特に好ましくは0.8MPaの内圧に耐えうる耐圧容器であることが望ましい。炭酸飲料用ペットボトルなどは好適に用いられる。密閉容器は、安全に開栓できるようキャップを開ける途中で圧力を逃がす機構(ベントスロット)を口部に備えていることが望ましい。   It is desirable that the sealed container has a pressure resistance capable of withstanding an increase in internal pressure due to hydrogen generation. It is desirable that the pressure vessel be capable of withstanding an internal pressure of 0.11 MPa in absolute pressure, preferably 0.4 MPa, more preferably 0.5 MPa, and particularly preferably 0.8 MPa. A plastic bottle for carbonated beverages is preferably used. It is desirable that the sealed container is provided with a mechanism (vent slot) for releasing pressure in the middle of opening the cap so that it can be safely opened.

本発明において振盪とは、密閉容器に物理的衝撃を与えることにより密閉容器内の溶液と気相の水素を接触させることである。本発明の振盪は、手を用いた自然的振盪のほか機械を用いた人工的振盪が含まれる。振盪器、攪拌機、超音波発生装置などによる振盪はこうした人工的振盪に含まれる。   In the present invention, shaking refers to bringing the solution in the sealed container into contact with hydrogen in the gas phase by applying a physical impact to the sealed container. The shaking of the present invention includes artificial shaking using a machine as well as natural shaking using a hand. Shaking with a shaker, stirrer, ultrasonic generator, etc. is included in such artificial shaking.

なお、本発明の模範的な自然的振盪の例は次の通りである。すなわち、平均的体格を有する日本人30代男性が密閉容器中腹部を利手に保持し、手首のみを動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復振盪する。   Examples of typical natural shaking according to the present invention are as follows. In other words, a Japanese male in his thirties with an average physique holds the abdomen of the sealed container well and moves the wrist only, so that the cap draws a semicircular arc above the wrist at a rate of 2 round-trips / second. Shake 120 times.

また、振盪時間は、消費者への負荷や利便性を考慮し、600秒以内、好ましくは60秒以内、より好ましくは30秒以内、さらに好ましくは10秒以内であることが望ましい。   The shaking time is preferably within 600 seconds, preferably within 60 seconds, more preferably within 30 seconds, and even more preferably within 10 seconds in consideration of the load on the consumer and convenience.

また、振盪のし易さを考慮し、原水を充填した後も、密閉容器には容器容量の15%以下、好ましくは10%以下、特に好ましくは5%以下の容量でヘッドスペースが設けられることが望ましい。   In consideration of ease of shaking, even after filling with raw water, the sealed container should be provided with a head space with a capacity of 15% or less, preferably 10% or less, particularly preferably 5% or less of the container capacity. Is desirable.

振盪により、振盪後の溶液の溶存水素濃度は、振盪前の溶存水素濃度の1.1倍以上に増強されることが好ましく、好ましくは2倍以上、より好ましくは3倍以上、さらに好ましくは順に4倍以上、5倍以上、6倍以上、7倍以上、8倍以上、9倍以上であり、特に好ましくは10倍以上に増強されることである。   By shaking, the dissolved hydrogen concentration of the solution after shaking is preferably increased to 1.1 times or more of the dissolved hydrogen concentration before shaking, preferably 2 times or more, more preferably 3 times or more, and still more preferably in order. It is 4 times or more, 5 times or more, 6 times or more, 7 times or more, 8 times or more, 9 times or more, particularly preferably 10 times or more.

また、振盪前の密閉容器の内圧が大気圧以上の状態にあることは、1.6ppm以上の過飽和水素溶液など、より高濃度の水素溶液を得るためには好ましいことである。水素分子の水素溶液への溶解度は、発生する水素分子が密閉容器に負荷する内圧の上昇に伴い上昇し、時間の経過とともにやがて、常温・常圧下における溶解度を超える。後述の実施例などで、水素発生系を擁する密閉容器を10分間または15時間など適宜な時間放置する理由は、発生した水素ガスにより密閉容器を内側から加圧するためであり、さらには、密閉容器を加圧下で適宜振盪することにより、水素分子の水素溶液への溶解をさらに促進することができるからである。   In addition, it is preferable that the internal pressure of the sealed container before shaking be in the state of atmospheric pressure or higher in order to obtain a higher concentration hydrogen solution such as a supersaturated hydrogen solution of 1.6 ppm or higher. The solubility of hydrogen molecules in a hydrogen solution increases as the internal pressure of the generated hydrogen molecules loaded on the sealed container increases, and over time, exceeds the solubility at normal temperature and normal pressure. The reason why the closed container having a hydrogen generation system is allowed to stand for an appropriate period of time such as 10 minutes or 15 hours in the examples described later is to pressurize the closed container from the inside with the generated hydrogen gas. This is because the dissolution of hydrogen molecules in a hydrogen solution can be further promoted by appropriately shaking under pressure.

ところで、上述の水素イオン型陽イオン交換樹脂など、金属イオン封鎖能とpH調整能を有する不溶性の高分子物質は、金属マグネシウムなど、水素よりイオン化傾向の高い金属や水素化金属を含む水素発生剤と組み合わせられることで、水素発生、金属イオン封鎖、pH調整という三つの機能が密接に連関し合う、無駄のない水素発生系を構成することができる。以下、金属マグネシウムと水素イオン型陽イオン交換樹脂から構成される水素発生系を例に説明する。   By the way, insoluble polymer substances having sequestering ability and pH adjustment ability such as the above-described hydrogen ion type cation exchange resin are metal generators such as metal magnesium, which have a higher ionization tendency than hydrogen and hydrogenation agents containing metal hydrides. Can be combined to form a lean hydrogen generation system in which the three functions of hydrogen generation, sequestering of metal ions, and pH adjustment are closely linked. Hereinafter, a hydrogen generation system composed of metallic magnesium and a hydrogen ion type cation exchange resin will be described as an example.

通常、金属マグネシウムが原水と接触することで、上述の式(1)に従い、水素分子と水酸化マグネシウムが生成する。その反応機構としては、
金属マグネシウムから電子が放出される、
Mg→Mg2++2e・・・式(3)
と、
金属マグネシウムに由来する電子が、水分子を還元することによって水素分子と水酸化物イオンを生成する、
2HO+2e→2OH+H ・・・式(4)
および、金属マグネシウムに由来する電子が、水素イオンを還元することによって水素分子を生成する、
2H+2e→H・・・式(5)
という素反応が考えられる。
Normally, when metal magnesium comes into contact with raw water, hydrogen molecules and magnesium hydroxide are generated according to the above-described formula (1). As the reaction mechanism,
Electrons are emitted from metallic magnesium,
Mg → Mg 2+ + 2e (3)
When,
Electrons derived from metallic magnesium produce hydrogen molecules and hydroxide ions by reducing water molecules.
2H 2 O + 2e → 2OH + H 2 Formula (4)
And, electrons derived from magnesium metal produce hydrogen molecules by reducing hydrogen ions,
2H + + 2e → H 2 Formula (5)
The elementary reaction is considered.

ここで、金属マグネシウムに隣接して水素イオン型陽イオン交換樹脂が存在する場合、式(3)に従い放出されたマグネシウムイオンが、水素イオン型陽イオン交換樹脂に吸着されるとともに、水素イオン型陽イオン交換樹脂から水素イオンが放出される。したがって、式(3)に従い放出された電子は、水分子を還元するよりも優先的に、こうした近傍にある水素イオンを還元する。   Here, when the hydrogen ion type cation exchange resin exists adjacent to the metal magnesium, the magnesium ion released according to the formula (3) is adsorbed to the hydrogen ion type cation exchange resin and the hydrogen ion type cation exchange resin. Hydrogen ions are released from the ion exchange resin. Therefore, the electrons released according to the formula (3) reduce the hydrogen ions in the vicinity in preference to reducing water molecules.

このように本発明の水素発生系においては、水酸化物イオンを生成する水素発生反応である式(4)に優先して、水酸化物イオンを生成しない水素発生反応である式(5)に従い水素を発生させるため、原水のpHを変えることが少ない。また系内では、マグネシウムイオンと水酸化イオンが常に減少した状態に維持される傾向があるため、上述の式(1)の正反応である水素発生反応が促進されやすい。   Thus, in the hydrogen generation system of the present invention, in accordance with formula (5) which is a hydrogen generation reaction that does not generate hydroxide ions, in preference to formula (4) that is a hydrogen generation reaction that generates hydroxide ions. Since hydrogen is generated, there is little change in the pH of raw water. Further, in the system, since magnesium ions and hydroxide ions tend to be constantly reduced, the hydrogen generation reaction, which is the positive reaction of the above formula (1), is easily promoted.

なおここで、水素発生剤、金属イオン封鎖剤、及びpH調整剤は、図1に示すように不織布や多孔容器など隔離体に収容され、剤そのものや反応後の残渣物が原水に移行することがないように設計されている。しかし原水は、隔離体を透過し、隔離体の内容物と接触する。したがって、原水にマグネシウムイオンなどの硬度成分が含まれていれば、隔離体内部の金属イオン封鎖剤は、水素発生剤に由来する金属イオンのみならず、こうした原水に由来する金属イオンをも捕捉することが予想される。   Here, the hydrogen generating agent, the sequestering agent, and the pH adjusting agent are accommodated in a separator such as a nonwoven fabric or a porous container as shown in FIG. 1, and the agent itself or the residue after the reaction is transferred to raw water. Designed not to be. However, the raw water penetrates the separator and comes into contact with the contents of the separator. Therefore, if the raw water contains a hardness component such as magnesium ions, the sequestering agent inside the isolator captures not only metal ions derived from the hydrogen generator but also metal ions derived from such raw water. It is expected that.

しかしながらその予想に反して、隔離体内の金属イオン封鎖能は、原水にもともと含まれる硬度成分をほとんど捕捉しない。すなわち、本発明の、水素イオン型陽イオン交換樹脂など、金属イオン封鎖能とpH調整能を有する不溶性の高分子物質を水素発生系に用いた非破壊的高濃度水素溶液の製造器具は、原水に溶存するマグネシウムなど水素発生剤に由来する金属イオンを増加させることもなければ、逆にそれを低減させることもないといえる。   Contrary to that expectation, however, the sequestering ability in the isolator hardly captures the hardness component originally contained in the raw water. That is, the apparatus for producing a non-destructive high-concentration hydrogen solution using an insoluble polymer substance having a sequestering ability and a pH adjusting ability, such as a hydrogen ion type cation exchange resin, in a hydrogen generation system of the present invention It can be said that the metal ions derived from the hydrogen generator such as magnesium dissolved in the metal are not increased and conversely not reduced.

発明者等はその理由を充分に解明したわけではないが、こうした水素発生系では、隔離体内部の比較的狭い空間において水素発生剤と金属イオン封鎖剤が蜜に接触し合っている(混合している)ため、水素発生剤に由来する金属イオンは、隔離体外部から到来する金属イオンよりも、かなりの程度優先して捕捉されることが考えられる。   The inventors did not fully elucidate the reason, but in such a hydrogen generation system, the hydrogen generator and the sequestering agent are in contact with the nectar in a relatively small space inside the separator (mixed). Therefore, it is conceivable that the metal ions derived from the hydrogen generating agent are captured with a considerably higher priority than the metal ions coming from the outside of the separator.

なお、本発明において、原水の硬度成分を維持した、または変えない状態とは、これに限るものではないが、たとえば以下のような状態を指す。   In the present invention, the state in which the hardness component of raw water is maintained or not changed is not limited to this, but includes the following states, for example.

すなわち、水道水を脱塩素処理して得られる、全硬度(Ca硬度+Mg硬度)が約55〜65ppmにある浄水(藤沢市水道水を活性炭カラムに通して処理して得られる浄水など)である原水を、約515cc充填した炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)の口部空気相に、本発明の非破壊的高濃度水素溶液の製造器具を、それが水中に沈まないように保持しつつキャップを閉め(後述の実施例1を参照)、ボトルを横に倒して10分間放置した後に模範的な自然的振盪(ペットボトル中腹部を利手に保持し、手首のみを左右に動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復する)を行った溶液の全硬度が、(原水の全硬度−25ppm)〜(原水の全硬度+25ppm)、好ましくは(原水の全硬度−15ppm)〜(原水の全硬度+15ppm)、特に好ましくは(原水の全硬度−10ppm)〜(原水の全硬度+10ppm)の範囲に収まっている状態などである。   That is, purified water obtained by dechlorination of tap water, having a total hardness (Ca hardness + Mg hardness) of about 55 to 65 ppm (such as purified water obtained by treating Fujisawa city tap water through an activated carbon column). In the mouth air phase of a carbonated beverage plastic bottle filled with about 515 cc of raw water (filled with water up to about 530 cc capacity), the non-destructive high concentration hydrogen solution production apparatus of the present invention is placed in water. Close the cap while keeping it from sinking (see Example 1 below), lay the bottle on its side and let it stand for 10 minutes, then model natural shaking (hold the middle of the PET bottle abdomen, wrist The total hardness of the solution that was performed by reciprocating only left and right so that the cap draws a semicircular arc over the wrist at a rate of 2 reciprocations / second) (total hardness of raw water −25 ppm) to (Total hardness of raw water +25 pm), preferably (total hardness of raw water−15 ppm) to (total hardness of raw water + 15 ppm), particularly preferably (total hardness of raw water−10 ppm) to (total hardness of raw water + 10 ppm). is there.

なお、本発明において、原水のpHを維持した、または変えない状態とは、これに限るものではないが、たとえば以下のような状態を指す。   In the present invention, the state in which the pH of raw water is maintained or not changed is not limited to this, but refers to the following states, for example.

すなわち、水道水を脱塩素処理して得られる、pHが約7.0〜7.8にある浄水(藤沢市水道水を活性炭カラムに通して処理して得られる浄水など)である原水を、約515cc充填した炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)の口部空気相に、本発明の非破壊的高濃度水素溶液の製造器具を、それが水中に沈まないように保持しつつキャップを閉め(後述の実施例1を参照)、ボトルを横に倒して10分間放置した後に模範的な自然的振盪(ペットボトル中腹部を利手に保持し、手首のみを左右に動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復する)を行った溶液のpHが、(原水のpH−1.5)〜(原水のpH+1.5)、好ましくは(原水のpH−1.0)〜(原水のpH+1.0)、特に好ましくは(原水のpH−0.5ppm)〜(原水のpH+0.5)の範囲に収まっている状態などである。   That is, raw water which is purified water obtained by dechlorination of tap water and having a pH of about 7.0 to 7.8 (such as purified water obtained by passing Fujisawa city tap water through an activated carbon column), The non-destructive high-concentration hydrogen solution production apparatus of the present invention is not submerged in the mouth air phase of a carbonated beverage plastic bottle filled with about 515 cc (about 530 cc capacity when filled with water up to the mouth). Close the cap (see Example 1 below), lay the bottle on its side and let it stand for 10 minutes, then hold the model natural shaking (hold the middle of the PET bottle mid-handed and move only the wrist left and right The pH of the solution obtained by performing a reciprocal movement at a pace of 2 reciprocations / second so that the cap draws a semicircular arc above the wrist by moving to (raw water pH-1.5) to (raw water) pH + 1.5), preferably (pH of raw water−1.0) ~ (PH of the raw water + 1.0), particularly preferably such a state that within the range of (pH-0.5 ppm in the raw water) ~ (pH of the raw water + 0.5).

以下、本発明の実施例を説明する。なお、本願において特に断りがない場合は、各種物性値を計測するのに用いた各種計器類は、pHメーター(温度計含む)が、株式会社堀場製作所製のpHメーター(本体の型式『D−13』、同プローブの型式『9620−10D』)であり、DHメーター(溶存水素計) が、東亜ディーケーケー株式会社製のDHメーター(本体型式『DHDI−1』、同電極(プローブ)型式、『HE−5321』、同中継器型式『DHM−F2』)である。   Examples of the present invention will be described below. Unless otherwise specified in the present application, various meters used for measuring various physical property values are pH meters (including thermometers) manufactured by HORIBA, Ltd. 13 ”, the model of the same probe“ 9620-10D ”), and the DH meter (dissolved hydrogen meter) is a DH meter (main body model“ DHDI-1 ”, the same electrode (probe) model, HE-5321 ”, repeater model“ DHM-F2 ”).

カルシウム硬度及びマグネシウム硬度は、水質分析計『DR/4000』(HACH社製)を用いてカルマガイト比色法により測定した。   The calcium hardness and magnesium hardness were measured by a calmagite colorimetric method using a water quality analyzer “DR / 4000” (manufactured by HACH).

[実施例1〜8,比較例1〜3,参考例1〜2]
市販の強酸性イオン交換樹脂Hタイプ品(DIAION Ion Exchange Resin SK1BH:Mitsubishi Chemical Corporation)を温熱乾燥することで顆粒状の水素イオン型陽イオン交換樹脂(粒径:約425μm〜約1180μm)を得た。得られた水素イオン型陽イオン交換樹脂30mgと金属マグネシウム粉(MG100:株式会社関東金属)300mgを均等に分散し混合することにより得た混合物である水素発生系を、図1に示すように、不織布(プレシゼRegular C5160:旭化成株式会社)に包み込みヒートシールするとともに、筒状の多孔容器(底部:直径約14ミリの円、高さ:約58ミリ)に収容した。炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に浄水(藤沢市水道水を活性炭カラムに通して処理した活性炭処理水)を約515cc充填した後、多孔容器をペットボトル口部に挿入しながら、多孔容器天井部を取り囲む縁(へり)を口部に引掛け、多孔容器が水中に沈まないようにしてキャップを閉めた。得られた水素発生剤に含まれる、金属マグネシウムと水素イオン型陽イオン交換樹脂の重量比は1:0.1である。
[Examples 1-8, Comparative Examples 1-3, Reference Examples 1-2]
A commercially available strong acid ion exchange resin H type product (DIAION Ion Exchange Resin SK1BH: Mitsubishi Chemical Corporation) was dried by heating to obtain a granular hydrogen ion type cation exchange resin (particle size: about 425 μm to about 1180 μm). . As shown in FIG. 1, a hydrogen generation system, which is a mixture obtained by uniformly dispersing and mixing 30 mg of the obtained hydrogen ion type cation exchange resin and 300 mg of metal magnesium powder (MG100: Kanto Metal Co., Ltd.), The film was wrapped in a non-woven fabric (Precise Regular C5160: Asahi Kasei Co., Ltd.) and heat-sealed, and accommodated in a cylindrical porous container (bottom: circle with a diameter of about 14 mm, height: about 58 mm). After filling 515 cc of purified water (activated carbon treated with Fujisawa city tap water through an activated carbon column) into a carbonated plastic bottle (filled with water up to about 530 cc capacity), the porous container is filled with a porous container While being inserted into the container, an edge (edge) surrounding the ceiling of the porous container was hooked on the mouth, and the cap was closed so that the porous container did not sink into water. The weight ratio of metal magnesium and hydrogen ion type cation exchange resin contained in the obtained hydrogen generator is 1: 0.1.

その後ボトルを横に倒し、多孔容器が原水に完全に接触するようにして10分間放置した後、発明者の一人(平均的体格を有する日本人30代男性)がペットボトル中腹部を利手に保持し、手首のみを左右に動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復した(合計60秒)。   The bottle was then laid down and left for 10 minutes with the perforated container in full contact with the raw water, and one of the inventors (a male in his 30s with an average physique) took advantage of the middle of the plastic bottle. The cap was reciprocated 120 times at a rate of 2 reciprocations / second (total 60 seconds) so that the cap would draw a semicircular arc above the wrist by moving only the wrist left and right.

その後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Thereafter, the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the content liquid were measured.

また、水素イオン型陽イオン交換樹脂の含有量を変化させた混合物を複数(実施例2〜8及び比較例1)作成し、実施例1と同じ手順で処理した後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Moreover, after preparing the mixture (Examples 2-8 and Comparative Example 1) which changed content of hydrogen ion type cation exchange resin, and processing it in the same procedure as Example 1, pH of a content liquid, dissolution Hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness were measured.

また比較例として、水素イオン型陽イオン交換樹脂の代わりにリンゴ酸(DL−リンゴ酸:扶桑化学工業株式会社)を含有させた混合物を複数(比較例2〜3)作成し、実施例1と同じ手順で処理した後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Further, as a comparative example, a plurality of mixtures (comparative examples 2 to 3) containing malic acid (DL-malic acid: Fuso Chemical Industry Co., Ltd.) instead of the hydrogen ion type cation exchange resin were prepared. After processing in the same procedure, the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the content solution were measured.

また参考例1として、浄水のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   As Reference Example 1, the pH of purified water, the dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness were measured.

また参考例2として、実施例7に記載される水素発生系を、不織布と多孔容器で隔離することなく直接、浄水を約515cc充填した炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に投与し、ボトルを横に倒した状態で10分間放置した後、実施例1に記載される方法で振盪した内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   In addition, as Reference Example 2, the hydrogen generation system described in Example 7 was directly separated from the nonwoven fabric and the porous container without being separated by a non-woven fabric and a porous bottle of carbonated beverage filled with about 515 cc of purified water (about 530 cc with full water filling to the mouth). Volume) and left for 10 minutes with the bottle lying down sideways, then the pH, dissolved hydrogen concentration, calcium (Ca) hardness, magnesium (Mg) of the content solution shaken by the method described in Example 1 Hardness was measured.

以下、表1としてそれらを記載する。   These are described below as Table 1.

Figure 2014058406
本発明の非破壊的高濃度水素溶液の製造器具においては、金属マグネシウムの重量が一定であり、水素イオン型陽イオン交換樹脂が金属マグネシウムに対して重量比で0.1〜7の範囲で含有されるとき、原水の溶存水素濃度は、水素イオン型陽イオン交換樹脂の含有量に比例して上昇する。またそのときの原水の硬度(Ca硬度とMg硬度)とpHは変わらない。
Figure 2014058406
In the nondestructive high concentration hydrogen solution production apparatus of the present invention, the weight of metal magnesium is constant, and the hydrogen ion type cation exchange resin is contained in the range of 0.1 to 7 by weight with respect to metal magnesium. When this is done, the dissolved hydrogen concentration of the raw water increases in proportion to the content of the hydrogen ion type cation exchange resin. Moreover, the hardness (Ca hardness and Mg hardness) and pH of raw water at that time are not changed.

また、水素イオン型陽イオン交換樹脂が、重量比で30含有されるときであっても、溶存水素濃度はさらに増えることこそないものの、原水の硬度(Ca硬度とMg硬度)とpHはほとんど変わらない。言い換えれば、本発明の非破壊的高濃度水素溶液の製造器具を用いた水素溶液中では、原水のpHと硬度を一定の範囲に抑えるある種の緩衝作用が働いている。   Even when the hydrogen ion type cation exchange resin is contained in a weight ratio of 30, the dissolved hydrogen concentration does not increase further, but the hardness of raw water (Ca hardness and Mg hardness) and pH are almost the same. Absent. In other words, in the hydrogen solution using the nondestructive high-concentration hydrogen solution production apparatus of the present invention, a certain buffering action that keeps the pH and hardness of the raw water within a certain range works.

一方、金属マグネシウムと水素イオン型陽イオン交換樹脂を重量比で1:7の割合で含むが、隔離体には収容されないまま密閉容器内に直接投入された参考例2においては、こうした緩衝作用は一切働いていない。   On the other hand, in Reference Example 2 containing metal magnesium and hydrogen ion type cation exchange resin in a weight ratio of 1: 7, but not directly contained in the separator, this buffering action is Not working at all.

したがって、本発明においては、水素発生系を隔離体に収容することが重要である。また、その水素発生系は、金属マグネシウムなど、水素よりイオン化傾向の高い金属や水素化金属を含む水素発生剤の含有量を1としたとき、水素イオン型陽イオン交換樹脂など、金属イオン封鎖能とpH調整能を有する不溶性の高分子物質を、重量比で0.1以上、好ましくは0.5以上、さらに好ましくは1以上、特に好ましくは5以上含有していることが望ましい。   Therefore, in the present invention, it is important to accommodate the hydrogen generation system in the separator. In addition, the hydrogen generation system has a metal ion sequestering ability such as a hydrogen ion type cation exchange resin when the content of a hydrogen generator containing metal or metal hydride having a higher ionization tendency than hydrogen, such as metal magnesium, is 1. It is desirable that the insoluble polymer substance having pH adjusting ability is contained in a weight ratio of 0.1 or more, preferably 0.5 or more, more preferably 1 or more, particularly preferably 5 or more.

[実施例9〜10,比較例4,参考例3]
市販の強酸性イオン交換樹脂Hタイプ品(DIAION Ion Exchange Resin SK1BH:Mitsubishi Chemical Corporation)を温熱乾燥することで顆粒状の水素イオン型陽イオン交換樹脂(粒径:約425μm〜約1180μm)を得た。得られた水素イオン型陽イオン交換樹脂300mgと金属マグネシウム粉(MG100:株式会社関東金属)300mgを均等に分散し混合することにより得た混合物である水素発生系を、図1に示すように、不織布(プレシゼRegular C5160:旭化成株式会社)に包み込みヒートシールするとともに、筒状の多孔容器(底部:直径約14ミリの円、高さ:約58ミリ)に収容した。炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に浄水(藤沢市水道水を活性炭カラムに通して処理した活性炭処理水)を約515cc充填した後、多孔容器をペットボトル口部に挿入しながら、多孔容器天井部を取り囲む縁(へり)を口部に引掛け、多孔容器が水中に沈まないようにしてキャップを閉めた。得られた水素発生剤に含まれる、金属マグネシウムと水素イオン型陽イオン交換樹脂の重量比は1:1である。
[Examples 9 to 10, Comparative Example 4, Reference Example 3]
A commercially available strong acid ion exchange resin H type product (DIAION Ion Exchange Resin SK1BH: Mitsubishi Chemical Corporation) was dried by heating to obtain a granular hydrogen ion type cation exchange resin (particle size: about 425 μm to about 1180 μm). . As shown in FIG. 1, a hydrogen generation system which is a mixture obtained by uniformly dispersing and mixing 300 mg of the obtained hydrogen ion type cation exchange resin and 300 mg of metal magnesium powder (MG100: Kanto Metal Co., Ltd.) The film was wrapped in a non-woven fabric (Precise Regular C5160: Asahi Kasei Co., Ltd.) and heat-sealed, and accommodated in a cylindrical porous container (bottom: circle with a diameter of about 14 mm, height: about 58 mm). After filling 515 cc of purified water (activated carbon treated with Fujisawa city tap water through an activated carbon column) into a carbonated plastic bottle (filled with water up to about 530 cc capacity), the porous container is filled with a porous container While being inserted into the container, an edge (edge) surrounding the ceiling of the porous container was hooked on the mouth, and the cap was closed so that the porous container did not sink into water. The weight ratio of metal magnesium and hydrogen ion type cation exchange resin contained in the obtained hydrogen generator is 1: 1.

その後ボトルを横に倒し、多孔容器が原水に完全に接触するようにして15時間放置した後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Thereafter, the bottle was laid down and left for 15 hours so that the porous container was completely in contact with the raw water, and then the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the contents were measured.

また実施例10として、水素イオン型陽イオン交換樹脂の含有量を2100mgにした混合物(金属マグネシウムと水素イオン型陽イオン交換樹脂の重量比は1:7)を作成し、実施例9と同じ手順で処理した後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   In addition, as Example 10, a mixture in which the content of the hydrogen ion type cation exchange resin was 2100 mg (weight ratio of metal magnesium and hydrogen ion type cation exchange resin was 1: 7) was prepared, and the same procedure as in Example 9 was made. Then, the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the content liquid were measured.

また比較例4として、水素イオン型陽イオン交換樹脂の含有量を0mgにした混合物(金属マグネシウムと水素イオン型陽イオン交換樹脂の重量比は1:0)を作成し、実施例9と同じ手順で処理した後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Further, as Comparative Example 4, a mixture in which the content of the hydrogen ion type cation exchange resin was 0 mg (the weight ratio of the magnesium metal to the hydrogen ion type cation exchange resin was 1: 0) was prepared. Then, the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the content liquid were measured.

また参考例3として、浄水のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   As Reference Example 3, the pH of the purified water, the dissolved hydrogen concentration, the calcium (Ca) hardness, and the magnesium (Mg) hardness were measured.

以下、表2としてそれらを記載する。   These are described in Table 2 below.

Figure 2014058406
表2に記載されるように、本願の水素発生系を隔離体に収容してなる非破壊的高濃度水素溶液の製造器具を用いることで、原水のpHと硬度を維持したまま、溶存水素濃度を特異的に高めた高濃度水素溶存液が得られる。
Figure 2014058406
As shown in Table 2, the concentration of dissolved hydrogen is maintained while maintaining the pH and hardness of the raw water by using a non-destructive high concentration hydrogen solution production tool in which the hydrogen generation system of the present application is housed in a separator. A high-concentration hydrogen-dissolved solution with a specific increase can be obtained.

[実施例11〜13,参考例3〜4]
ミョウバン(焼みょうばん:富士食糧株式会社)100mgと金属マグネシウム粉(MG100:株式会社関東金属)100mgを均等に分散し混合することにより得た混合物である水素発生系を、図1に示すように、不織布(プレシゼRegular C5160:旭化成株式会社)に包み込みヒートシールするとともに、筒状の多孔容器(底部:直径約14ミリの円、高さ:約58ミリ)に収容した。炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に浄水(藤沢市水道水を活性炭カラムに通して処理した活性炭処理水)を約515cc充填した後、多孔容器をペットボトル口部に挿入しながら、多孔容器天井部を取り囲む縁(へり)を口部に引掛け、多孔容器が水中に沈まないようにしてキャップを閉めた。得られた水素発生剤に含まれる、金属マグネシウムとミョウバンの重量比は1:1である。
[Examples 11 to 13, Reference Examples 3 to 4]
As shown in FIG. 1, a hydrogen generation system, which is a mixture obtained by uniformly dispersing and mixing 100 mg of alum (baked alum: Fuji Foods Co., Ltd.) and 100 mg of metal magnesium powder (MG100: Kanto Metal Co., Ltd.) The film was wrapped in a non-woven fabric (Precise Regular C5160: Asahi Kasei Co., Ltd.) and heat-sealed, and accommodated in a cylindrical porous container (bottom: circle with a diameter of about 14 mm, height: about 58 mm). After filling 515 cc of purified water (activated carbon treated with Fujisawa city tap water through an activated carbon column) into a carbonated plastic bottle (filled with water up to about 530 cc capacity), the porous container is filled with a porous container While being inserted into the container, an edge (edge) surrounding the ceiling of the porous container was hooked on the mouth, and the cap was closed so that the porous container did not sink into water. The weight ratio of metallic magnesium and alum contained in the obtained hydrogen generating agent is 1: 1.

その後ボトルを横に倒し、多孔容器が原水に完全に接触するようにして10分間放置した後、発明者の一人(平均的体格を有する日本人30代男性)がペットボトル中腹部を利手に保持し、手首のみを左右に動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復した(合計60秒)。   The bottle was then laid down and left for 10 minutes with the perforated container in full contact with the raw water, and one of the inventors (a male in his 30s with an average physique) took advantage of the middle of the plastic bottle. The cap was reciprocated 120 times at a rate of 2 reciprocations / second (total 60 seconds) so that the cap would draw a semicircular arc above the wrist by moving only the wrist left and right.

その後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Thereafter, the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the content liquid were measured.

また、ミョウバンの含有量を変化させた混合物を複数(実施例12〜13)作成し、実施例11と同じ手順で処理した後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   In addition, a plurality of mixtures (Examples 12 to 13) with different alum contents were prepared and treated in the same procedure as in Example 11, and then the pH of the liquid contents, dissolved hydrogen concentration, calcium (Ca) hardness, magnesium (Mg) hardness was measured.

また参考例4として、浄水のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   As Reference Example 4, the pH of purified water, the dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness were measured.

また参考例5として、実施例12に記載される水素発生系を、不織布と多孔容器で隔離することなく直接、浄水を約515cc充填した炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に投与し、ボトルを横に倒した状態で10分間放置した後、実施例11に記載される方法で振盪した内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Further, as Reference Example 5, the hydrogen generation system described in Example 12 was directly filled with about 515 cc of purified water without being separated by a nonwoven fabric and a porous container (about 530 cc when filled with water up to the mouth). Volume), left for 10 minutes with the bottle lying down, and then shaken by the method described in Example 11, pH, dissolved hydrogen concentration, calcium (Ca) hardness, magnesium (Mg) Hardness was measured.

以下、表3としてそれらを記載する。   These are described in Table 3 below.

Figure 2014058406
[実施例14,参考例6]
市販の弱酸性イオン交換樹脂Hタイプ品(DIAION Ion Exchange Resin WK40L:Mitsubishi Chemical Corporation)を温熱乾燥することで顆粒状の水素イオン型陽イオン交換樹脂を得た。得られた水素イオン型陽イオン交換樹脂4000mgと金属マグネシウム粉(MG100:株式会社関東金属)300mgを均等に分散し混合することにより得た混合物である水素発生系を、図1に示すように、不織布(プレシゼRegular C5160:旭化成株式会社)に包み込みヒートシールするとともに、筒状の多孔容器(底部:直径約14ミリの円、高さ:約58ミリ)に収容した。炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に浄水(藤沢市水道水を活性炭カラムに通して処理した活性炭処理水)を約515cc充填した後、多孔容器をペットボトル口部に挿入しながら、多孔容器天井部を取り囲む縁(へり)を口部に引掛け、多孔容器が水中に沈まないようにしてキャップを閉めた。得られた水素発生剤に含まれる、金属マグネシウムと水素イオン型陽イオン交換樹脂の重量比は約1:13.3である。
Figure 2014058406
[Example 14, Reference Example 6]
A commercially available weak acidic ion exchange resin H type product (DIAION Ion Exchange Resin WK40L: Mitsubishi Chemical Corporation) was dried by heating to obtain a granular hydrogen ion type cation exchange resin. As shown in FIG. 1, a hydrogen generation system that is a mixture obtained by uniformly dispersing and mixing 4000 mg of the obtained hydrogen ion type cation exchange resin and 300 mg of metal magnesium powder (MG100: Kanto Metal Co., Ltd.) The film was wrapped in a non-woven fabric (Precise Regular C5160: Asahi Kasei Co., Ltd.) and heat-sealed, and accommodated in a cylindrical porous container (bottom: circle with a diameter of about 14 mm, height: about 58 mm). After filling 515 cc of purified water (activated carbon treated with Fujisawa city tap water through an activated carbon column) into a carbonated plastic bottle (filled with water up to about 530 cc capacity), the porous container is filled with a porous container While being inserted into the container, an edge (edge) surrounding the ceiling of the porous container was hooked on the mouth, and the cap was closed so that the porous container did not sink into water. The weight ratio of metal magnesium and hydrogen ion type cation exchange resin contained in the obtained hydrogen generator is about 1: 13.3.

その後ボトルを横に倒し、多孔容器が原水に完全に接触するようにして10分間放置した後、発明者の一人(平均的体格を有する日本人30代男性)がペットボトル中腹部を利手に保持し、手首のみを左右に動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復した(合計60秒)。   The bottle was then laid down and left for 10 minutes with the perforated container in full contact with the raw water, and one of the inventors (a male in his 30s with an average physique) took advantage of the middle of the plastic bottle. The cap was reciprocated 120 times at a rate of 2 reciprocations / second (total 60 seconds) so that the cap would draw a semicircular arc above the wrist by moving only the wrist left and right.

その後、内容液のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   Thereafter, the pH, dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness of the content liquid were measured.

また参考例6として、浄水のpH、溶存水素濃度、カルシウム(Ca)硬度、マグネシウム(Mg)硬度を測定した。   As Reference Example 6, the pH of purified water, the dissolved hydrogen concentration, calcium (Ca) hardness, and magnesium (Mg) hardness were measured.

以下、表4としてそれらを記載する。   Hereinafter, these are described in Table 4.

Figure 2014058406
なお、先に記した、原水の「水素発生の際に水素発生剤より溶出する陽イオンなど副生成物」を維持した、または変えない状態とは、これに限るものではないが、たとえば以下のような状態を指す。
Figure 2014058406
It should be noted that the state of maintaining or not changing the “by-products such as cations eluted from the hydrogen generating agent during hydrogen generation” as described above is not limited to this. It refers to such a state.

高濃度水素溶液の該当陽イオン(たとえば、本発明の器具が水素発生剤として鉄を使用している場合は全鉄)が、(原水の該当陽イオン(mg/L)−4.5mg/L)〜(原水の該当陽イオン(mg/L)+4.5mg/L)、好ましくは(原水の該当陽イオン(mg/L)−3mg/L)〜(原水の該当陽イオン(mg/L)+3mg/L)、さらに好ましくは(原水の該当陽イオン(mg/L)−2mg/L)〜(原水の該当陽イオン(mg/L)+2mg/L)、よりさらに好ましくは(原水の該当陽イオン(mg/L)−1mg/L)〜(原水の該当陽イオン(mg/L)+1mg/L)、特に好ましくは(原水の該当陽イオン(mg/L)−0.5mg/L)〜(原水の該当陽イオン(mg/L)+0.5mg/L)の範囲に収まっている状態などである。   The corresponding cation of the high-concentration hydrogen solution (for example, all iron when the device of the present invention uses iron as a hydrogen generator) is (the corresponding cation (mg / L) of raw water -4.5 mg / L). ) To (corresponding cation of raw water (mg / L) +4.5 mg / L), preferably (corresponding cation of raw water (mg / L) -3 mg / L) to (corresponding cation of raw water (mg / L)) +3 mg / L), more preferably (corresponding cation of raw water (mg / L) -2 mg / L) to (corresponding cation of raw water (mg / L) +2 mg / L), more preferably (corresponding cation of raw water) Ions (mg / L) -1 mg / L) to (corresponding cation of raw water (mg / L) +1 mg / L), particularly preferably (corresponding cation of raw water (mg / L) -0.5 mg / L) to (The corresponding cation of raw water (mg / L) + 0.5 mg / L) And that the state, and the like.

[実施例15〜19,比較例5,参考例7]
市販の強酸性イオン交換樹脂Hタイプ品(DIAION Ion Exchange Resin SK1BH:Mitsubishi Chemical Corporation)を温熱乾燥することで顆粒状の水素イオン型陽イオン交換樹脂(粒径:約425μm〜約1180μm)を得た。得られた水素イオン型陽イオン交換樹脂1200mgと還元鉄(和光純薬株式会社製)600mgを均等に分散し混合することにより得た混合物である水素発生系を、図1に示すように、不織布(タイベック1073B:旭・デュポンフラッシュスパンプロダクツ株式会社)に包み込みヒートシールするとともに、筒状の多孔容器(底部:直径約14ミリの円、高さ:約58ミリ)に収容した。炭酸飲料用ペットボトル(口部までの満水充填で約530cc容量)に藤沢市水道水を満水充填した後、多孔容器をペットボトル口部に挿入しながら、多孔容器天井部を取り囲む縁(へり)を口部に引掛け、多孔容器が水中に沈まないようにしてキャップを閉めた。得られた水素発生剤に含まれる、還元鉄と水素イオン型陽イオン交換樹脂の重量比は1:2である。
[Examples 15 to 19, Comparative Example 5, Reference Example 7]
A commercially available strong acid ion exchange resin H type product (DIAION Ion Exchange Resin SK1BH: Mitsubishi Chemical Corporation) was dried by heating to obtain a granular hydrogen ion type cation exchange resin (particle size: about 425 μm to about 1180 μm). . As shown in FIG. 1, a hydrogen generation system that is a mixture obtained by uniformly dispersing and mixing 1200 mg of the obtained hydrogen ion type cation exchange resin and 600 mg of reduced iron (manufactured by Wako Pure Chemical Industries, Ltd.) as shown in FIG. It was wrapped in (Tyvek 1073B: Asahi DuPont Flash Spun Products Co., Ltd.) and heat-sealed, and housed in a cylindrical porous container (bottom: circle with a diameter of about 14 mm, height: about 58 mm). After filling the bottle of carbonated beverage (full capacity up to about 530cc capacity to the mouth) with Fujisawa city tap water, insert the perforated container into the mouth of the plastic bottle and surround the perimeter of the perforated container (edge) Was put on the mouth, and the cap was closed so that the porous container did not sink into water. The weight ratio of the reduced iron and the hydrogen ion type cation exchange resin contained in the obtained hydrogen generator is 1: 2.

その後ボトルを横に倒し、多孔容器が原水に完全に接触するようにして8時間放置した後、発明者の一人(平均的体格を有する日本人30代男性)がペットボトル中腹部を利手に保持し、手首のみを左右に動かすことでキャップが手首上空に半円の弧を描くように、2往復/秒のペースで120往復した(合計60秒)。   After that, the bottle was laid down and left for 8 hours so that the porous container was completely in contact with the raw water, and one of the inventors (a male in his 30s with an average physique) took advantage of the middle of the plastic bottle. The cap was reciprocated 120 times at a rate of 2 reciprocations / second (total 60 seconds) so that the cap would draw a semicircular arc above the wrist by moving only the wrist left and right.

その後、内容液のpH、溶存水素濃度、全鉄を測定し、味と臭いを確認した。   Thereafter, the pH of the content liquid, the dissolved hydrogen concentration, and the total iron were measured to confirm the taste and odor.

全鉄は、水質分析計『DR/4000』(HACH社製)を用いてFerroVer法により測定した(以下同)。   Total iron was measured by the FerroVer method using a water quality analyzer “DR / 4000” (manufactured by HACH) (hereinafter the same).

また、還元鉄の含有量を変化させた混合物を複数(実施例16〜19)作成し、実施例15と同じ手順で処理した後、内容液のpH、溶存水素濃度、全鉄を測定し、味と臭いを確認した。   Moreover, after preparing multiple (Examples 16-19) the mixture which changed content of reduced iron, and processing in the same procedure as Example 15, pH of a content liquid, dissolved hydrogen concentration, and total iron are measured, The taste and smell were confirmed.

また比較例5として、水素イオン型陽イオン交換樹脂の代わりにリンゴ酸(DL−リンゴ酸:扶桑化学工業株式会社)を含有させた混合物を作成し、実施例15と同じ手順で処理した後、内容液のpH、溶存水素濃度、全鉄を測定した。   Moreover, as Comparative Example 5, a mixture containing malic acid (DL-malic acid: Fuso Chemical Industry Co., Ltd.) was used instead of the hydrogen ion type cation exchange resin, and the mixture was treated in the same procedure as in Example 15, The pH of the content liquid, the dissolved hydrogen concentration, and the total iron were measured.

また参考例7として、藤沢市水道水のpH、全鉄を測定した。   Further, as Reference Example 7, Fujisawa city tap water pH and total iron were measured.

以下、表5としてそれらを記載する。   Hereinafter, these are described in Table 5.

Figure 2014058406
Figure 2014058406

Claims (8)

原水と反応して水素を発生する水素発生剤と、
該水素発生剤より溶出する金属イオンを封鎖する金属イオン封鎖剤と、
水酸化物イオンを抑制または除去するpH調整剤と、を含有する水素発生系を隔離体に収容してなる非破壊的高濃度水素溶液の製造器具。
A hydrogen generating agent that reacts with raw water to generate hydrogen;
A metal ion sequestering agent that sequesters metal ions eluted from the hydrogen generator;
A device for producing a non-destructive high-concentration hydrogen solution comprising a separator that contains a hydrogen generation system containing a pH adjuster that suppresses or removes hydroxide ions.
請求項1に記載の非破壊的高濃度水素溶液の製造器具において、
前記水素発生剤は、金属マグネシウムを含有することを特徴とする、非破壊的高濃度水素溶液の製造器具。
The device for producing a non-destructive high concentration hydrogen solution according to claim 1,
The said hydrogen generating agent contains metallic magnesium, The manufacturing instrument of the nondestructive high concentration hydrogen solution characterized by the above-mentioned.
請求項1または2に記載の非破壊的高濃度水素溶液の製造器具において、
前記金属イオン封鎖剤及び前記pH調整剤は、金属イオン封鎖能とpH調整能を有する一剤であることを特徴とする、非破壊的高濃度水素溶液の製造器具。
The apparatus for producing a non-destructive high concentration hydrogen solution according to claim 1 or 2,
The said sequestering agent and the said pH adjuster are one agent which has sequestering ability and pH control ability, The manufacturing instrument of the nondestructive high concentration hydrogen solution characterized by the above-mentioned.
請求項1から3のすくなくともいずれか一項に記載の非破壊的高濃度水素溶液の製造器具において、
前記金属イオン封鎖能とpH調整能を有する一剤は、水素イオン型陽イオン交換樹脂であることを特徴とする、非破壊的高濃度水素溶液の製造器具。
In the non-destructive high concentration hydrogen solution production apparatus according to any one of claims 1 to 3,
The agent for sequestering metal ions and adjusting pH is a hydrogen ion type cation exchange resin, a device for producing a non-destructive high concentration hydrogen solution.
原水と反応して水素を発生する水素発生剤と、
該水素発生剤より溶出する金属イオンを封鎖する金属イオン封鎖剤と、
水酸化物イオンを抑制または除去するpH調整剤と、を含有する水素発生系を隔離体に収容してなる非破壊的高濃度水素溶液の製造器具を、密閉容器内で原水と反応させる工程と、
前記密閉容器が大気圧以上の内圧にあるときに振盪して、振盪後の前記密閉容器内の原水の溶存水素濃度を振盪前の溶存水素濃度に比べて2倍以上にする工程を有する非破壊的高濃度水素溶液の製造方法。
A hydrogen generating agent that reacts with raw water to generate hydrogen;
A metal ion sequestering agent that sequesters metal ions eluted from the hydrogen generator;
A step of reacting an apparatus for producing a non-destructive high-concentration hydrogen solution containing a hydrogen generating system containing a pH adjuster for suppressing or removing hydroxide ions in a separator with raw water in a sealed container; ,
Non-destructive, having a step of shaking when the sealed container is at an internal pressure higher than atmospheric pressure, and making the dissolved hydrogen concentration of the raw water in the sealed container after shaking double or more compared to the dissolved hydrogen concentration before shaking For producing a highly concentrated hydrogen solution.
請求項5に記載の非破壊的高濃度水素溶液の製造方法において、
前記水素発生剤は、金属マグネシウムを含有することを特徴とする、非破壊的高濃度水素溶液の製造方法。
In the manufacturing method of the non-destructive high concentration hydrogen solution according to claim 5,
The method for producing a nondestructive high-concentration hydrogen solution, wherein the hydrogen generator contains metallic magnesium.
請求項5または6に記載の非破壊的高濃度水素溶液の製造方法において、
前記金属イオン封鎖剤及び前記pH調整剤は、金属イオン封鎖能とpH調整能を有する一剤であることを特徴とする、非破壊的高濃度水素溶液の製造方法。
In the manufacturing method of the non-destructive high concentration hydrogen solution of Claim 5 or 6,
The method for producing a non-destructive high-concentration hydrogen solution, wherein the sequestering agent and the pH adjusting agent are one agent having sequestering ability and pH regulating ability.
請求項5から7のすくなくともいずれか一項に記載の非破壊的高濃度水素溶液の製造方法において、
前記金属イオン封鎖能とpH調整能を有する一剤は、水素イオン型陽イオン交換樹脂であることを特徴とする、非破壊的高濃度水素溶液の製造方法。
The method for producing a non-destructive high concentration hydrogen solution according to any one of claims 5 to 7,
The method for producing a non-destructive high-concentration hydrogen solution, wherein the one agent having a sequestering ability and a pH adjusting ability is a hydrogen ion type cation exchange resin.
JP2010245269A 2010-06-14 2010-11-01 Non-destructive high concentration hydrogen solution manufacturing equipment Expired - Fee Related JP4769903B1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2010245269A JP4769903B1 (en) 2010-06-14 2010-11-01 Non-destructive high concentration hydrogen solution manufacturing equipment
TW100120663A TWI399344B (en) 2010-06-14 2011-06-14 Non-destructive high concentration of hydrogen solution manufacturing equipment
EP11795737.3A EP2583937A4 (en) 2010-06-14 2011-06-14 Apparatus for nondestructively producing high-concentration hydrogen solution
KR1020127029840A KR101292859B1 (en) 2010-06-14 2011-06-14 Apparatus for nondestructively producing high-concentration hydrogen solution
CN201180029611.3A CN103068722B (en) 2010-06-14 2011-06-14 Apparatus for nondestructively producing high-concentration hydrogen solution
PCT/JP2011/063601 WO2011158832A1 (en) 2010-06-14 2011-06-14 Apparatus for nondestructively producing high-concentration hydrogen solution
JP2012500395A JP5038546B2 (en) 2010-06-14 2011-06-14 Non-destructive high concentration hydrogen solution manufacturing equipment
US13/715,617 US8574503B2 (en) 2010-06-14 2012-12-14 Instrument for nondestructively producing high-concentration hydrogen solution
HK13111086.7A HK1183657A1 (en) 2010-06-14 2013-09-27 Apparatus for nondestructively producing high-concentration hydrogen solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010135513 2010-06-14
JP2010135513 2010-06-14
JP2010245269A JP4769903B1 (en) 2010-06-14 2010-11-01 Non-destructive high concentration hydrogen solution manufacturing equipment

Publications (2)

Publication Number Publication Date
JP4769903B1 JP4769903B1 (en) 2011-09-07
JP2014058406A true JP2014058406A (en) 2014-04-03

Family

ID=44693605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010245269A Expired - Fee Related JP4769903B1 (en) 2010-06-14 2010-11-01 Non-destructive high concentration hydrogen solution manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4769903B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205791A (en) * 2014-04-18 2015-11-19 ニッコ−化成株式会社 Hydrogen generation agent, hydrogen generator, and method of producing hydrogen containing liquid
JP2017189136A (en) * 2016-04-13 2017-10-19 株式会社フレッシュ Packed liquid, bottle cap and method for producing hydrogen-containing liquid
JP2020040855A (en) * 2018-09-11 2020-03-19 豊田市 Method for producing hydrogen gas
JP2022120330A (en) * 2021-02-05 2022-08-18 圭 廣岡 Reduced hydrogen water producing apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011158832A1 (en) 2010-06-14 2011-12-22 ミズ株式会社 Apparatus for nondestructively producing high-concentration hydrogen solution
JP5124673B2 (en) * 2011-02-01 2013-01-23 株式会社ヒロマイト Hydrogen water adjustment method and fresh water device
DE102016122768A1 (en) * 2015-12-02 2017-06-14 Miz Company Limited Apparatus and method for producing a hydrogen-containing liquid
CN109924794A (en) * 2017-12-19 2019-06-25 平潭综合实验区富尔康健康科技有限公司 A kind of novel hydrogen-rich cup
IT201800006414A1 (en) * 2018-06-19 2019-12-19 PREPARATIONS FOR pH CORRECTION AND MOLECULAR HYDROGEN PRODUCTION AND THEIR USE IN FOOD AND BEVERAGE
CN111661908A (en) * 2020-06-08 2020-09-15 中国人民解放军陆军军医大学 Preparation method of alkalescent hydrogen-rich water

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003020202A (en) * 2001-07-06 2003-01-24 Yoshiro Tanaka Apparatus for generating hydrogen
JP3684503B2 (en) * 2001-10-09 2005-08-17 第一工業製薬株式会社 Cleaning composition
JP2007167696A (en) * 2005-11-22 2007-07-05 Hidemitsu Hayashi Method and material for modifying drinking water
JP2009126736A (en) * 2007-11-22 2009-06-11 Hiromaito Co Ltd Hydrogen-generating agent and its usage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205791A (en) * 2014-04-18 2015-11-19 ニッコ−化成株式会社 Hydrogen generation agent, hydrogen generator, and method of producing hydrogen containing liquid
JP2017189136A (en) * 2016-04-13 2017-10-19 株式会社フレッシュ Packed liquid, bottle cap and method for producing hydrogen-containing liquid
JP2020040855A (en) * 2018-09-11 2020-03-19 豊田市 Method for producing hydrogen gas
JP2022120330A (en) * 2021-02-05 2022-08-18 圭 廣岡 Reduced hydrogen water producing apparatus
JP7122074B1 (en) 2021-02-05 2022-08-19 圭 廣岡 Reduced hydrogen water generator

Also Published As

Publication number Publication date
JP4769903B1 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5038546B2 (en) Non-destructive high concentration hydrogen solution manufacturing equipment
JP4769903B1 (en) Non-destructive high concentration hydrogen solution manufacturing equipment
JP4744641B1 (en) Device for adding hydrogen to biological fluids
JP4652479B1 (en) Selective hydrogenation device for biological fluids
JP4756102B1 (en) Selective hydrogenation device for biological fluids
JP4950352B1 (en) Selective hydrogenation device for biological fluids

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees