JP2009126736A - Hydrogen-generating agent and its usage - Google Patents

Hydrogen-generating agent and its usage Download PDF

Info

Publication number
JP2009126736A
JP2009126736A JP2007302344A JP2007302344A JP2009126736A JP 2009126736 A JP2009126736 A JP 2009126736A JP 2007302344 A JP2007302344 A JP 2007302344A JP 2007302344 A JP2007302344 A JP 2007302344A JP 2009126736 A JP2009126736 A JP 2009126736A
Authority
JP
Japan
Prior art keywords
water
hydrogen
generating agent
metal hydride
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007302344A
Other languages
Japanese (ja)
Inventor
Takemoto Kamata
健資 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HIROMAITO Co Ltd
Original Assignee
HIROMAITO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HIROMAITO Co Ltd filed Critical HIROMAITO Co Ltd
Priority to JP2007302344A priority Critical patent/JP2009126736A/en
Publication of JP2009126736A publication Critical patent/JP2009126736A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen-generating agent for easily preparing hydrogen water suitable for drinking and having high concentration of dissolved hydrogen and less vaporization residue, in which an effect of eliminating active oxygen can be expected within several ten minutes after the agent is brought into contact with drink water such as tap water. <P>SOLUTION: The hydrogen-generating agent as the purpose can be obtained by mixing a metal hydride compound such as CaH<SB>2</SB>and a solid acid such as citric acid in a fused water-insoluble polymer compound such as polyethylene and then cooling and solidifying it. By bringing the hydrogen-generating agent into contact with tap water, hydrogen water suitable for drinking and having concentration of dissolved hydrogen of at least 0.2 ppm and vaporization residue of at most 500 ppm can be obtained within 30 minutes of contact. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は水道水などの飲料水と接触させることにより、短時間で水中に水素を溶解させて飲料用の水素水を調整するのに適した水素発生剤に関するものである。   The present invention relates to a hydrogen generating agent suitable for adjusting hydrogen water for drinking by dissolving hydrogen in water in a short time by contacting with drinking water such as tap water.

水素を高濃度に溶解した水(以下水素水と呼ぶ)は抗酸化作用があるために飲用すれば体内で発生する活性酸素を消去して生理的に健康に資するといわれている。この水素水は酸化還元電位(以下ORPと省略する)が還元サイドの値を示すため還元水とも呼ばれている。このような水素水を調整するために
(1)水を電気分解して陰極で発生する水素を水に溶解させる方法
(2)水素ガスを直接、水に溶解させる方法
などが知られている。
It is said that water in which hydrogen is dissolved at a high concentration (hereinafter referred to as hydrogen water) has an antioxidant action, so if it is drunk, it eliminates active oxygen generated in the body and contributes to physiological health. This hydrogen water is also called reduced water because the oxidation-reduction potential (hereinafter abbreviated as ORP) indicates the value on the reduction side. In order to adjust such hydrogen water, (1) a method in which water is electrolyzed and hydrogen generated at the cathode is dissolved in water, and (2) a method in which hydrogen gas is directly dissolved in water are known.

(2)の方法は高価な設備を必要としないため最近各種の方法が提案されている。その一つは金属マグネシウム(Mg)と水を接触させて水素を発生させて水素水を調整する方法である(特許文献1)。また、Mgと水の反応で得られる水素水はアルカリ性となるために、あるいはMgと水の反応を促進して水素発生を容易にするために、Mg粉末と固体酸をコーンスターチ等の水溶性賦形剤を用いて錠剤状に成型した酸性還元水生成錠剤が開示されている(特許文献2)。   Since the method (2) does not require expensive equipment, various methods have been proposed recently. One of them is a method for adjusting hydrogen water by bringing metal magnesium (Mg) into contact with water to generate hydrogen (Patent Document 1). In addition, in order to make the hydrogen water obtained by the reaction of Mg and water alkaline, or in order to facilitate the generation of hydrogen by promoting the reaction of Mg and water, Mg powder and a solid acid are added with water solubility such as corn starch. An acid-reduced water-generating tablet formed into a tablet using a form is disclosed (Patent Document 2).

本発明者も水素化カルシウムなどの水素化金属化合物をポリエチレングリコールや糖などの固体状の水溶性化合物中に包埋した水素発生剤を調整して、それを水中で溶解させることにより簡便に水素水を調整する方法を先に提案した(特許文献3)。
特許文献1:特開2002−336877号公報
特許文献2:特開2005−052811号公報
特許文献3:WO/2007/055146公報
The present inventor has also prepared a hydrogen generator by embedding a metal hydride compound such as calcium hydride in a solid water-soluble compound such as polyethylene glycol or sugar, and dissolving it in water for easy hydrogenation. A method for adjusting water was proposed previously (Patent Document 3).
Patent Document 1: Japanese Patent Laid-Open No. 2002-336877 Patent Document 2: Japanese Patent Laid-Open No. 2005-052811 Patent Document 3: WO / 2007/055146

水素水が活性ラジカルなど酸化剤と反応してそれを無害化するいわゆる抗酸化機能は水中に溶存している溶存水素濃度(以下DHと省略する)が大きいほど優れているといわれている。特許文献1や2に開示されているMgを用いる方法はMgと水の反応が遅く、多量のMgを用いても得られる水素水中のDHを0.2ppm以上にするためには数時間以上水と接触させて反応させる必要がある。飲料水に水素発生剤を添加して高濃度の水素を含む水素水を調整するために数時間も待つことは非常に不便である。   It is said that the so-called antioxidant function in which hydrogen water reacts with an oxidizing agent such as an active radical and renders it harmless is more excellent as the concentration of dissolved hydrogen dissolved in water (hereinafter abbreviated as DH) increases. In the method using Mg disclosed in Patent Documents 1 and 2, the reaction between Mg and water is slow, and in order to make DH in hydrogen water obtained by using a large amount of Mg 0.2 ppm or more, water is used for several hours or more. It is necessary to react with it. It is very inconvenient to wait for several hours to add hydrogen generator to drinking water to prepare hydrogen water containing high concentration hydrogen.

本発明者はこの欠点を解決すべく特許文献3で水との反応が瞬時に進行する水素化カルシウム(CaH2)などの水素化金属化合物の利用を提案した。しかしながら特許文献3に開示された技術は水溶性の化合物でCaH2などを包埋して水素発生剤とするため、それを飲料水などの水に溶解した場合、DHの高い水素水が短時間で調整できるが、包埋時に使用した水溶性化合物も水に溶解してしまうために得られた水素水は蒸発残留物の多い水となってしまう。   In order to solve this drawback, the present inventor proposed the use of a metal hydride compound such as calcium hydride (CaH2) in which the reaction with water instantaneously proceeds in Patent Document 3. However, since the technique disclosed in Patent Document 3 is a water-soluble compound that embeds CaH2 or the like to form a hydrogen generator, when dissolved in water such as drinking water, hydrogen water having a high DH can be quickly obtained. Although it can be adjusted, since the water-soluble compound used at the time of embedding is also dissolved in water, the obtained hydrogen water becomes water with much evaporation residue.

一方、水道法によるとその水質基準値として蒸発残留物が500ppm以下であることが規定されている。したがって水素発生剤を用いて調整された水素水を安全に飲料水として利用するには少なくとも蒸発残留物が500ppm以下の水素水を調整することが望ましい。したがって本発明の課題は数十分以内の水との接触でDHの高い且つ飲料水として安全な水素水を与える水素発生剤の開発である。   On the other hand, the water supply law stipulates that the evaporation residue is 500 ppm or less as the water quality standard value. Therefore, in order to safely use hydrogen water prepared using a hydrogen generator as drinking water, it is desirable to adjust hydrogen water having an evaporation residue of 500 ppm or less. Therefore, the subject of this invention is development of the hydrogen generating agent which gives hydrogen water with high DH and safe as drinking water by contact with the water within several tens of minutes.

本発明者は特許文献3で使用した水溶性化合物に替えて水不溶性の高分子化合物を用いれば、その中に水素化金属化合物を分散・包埋することで、水素化金属化合物と水の反応を適度に遅延させて発生する水素を有効に水に溶解させ、DHの高い且つ蒸発残渣の少ない水素水が得られないかと考えた。この場合、水素化金属化合物と高分子化合物の粉末を単に固体状態で混合して加圧成型する方法を試みたが、高分子の可塑剤などを使用することなく錠剤状に成型することは不可能であった。一方、高分子化合物を溶融して水素化金属化合物をその溶融体に分散して冷却・固化すれば、水素化金属化合物を安定に包埋した成型物を得ることが出来た。   When the present inventor uses a water-insoluble polymer compound instead of the water-soluble compound used in Patent Document 3, the metal hydride compound is dispersed and embedded in the polymer compound, thereby reacting the metal hydride compound with water. It was thought that hydrogen generated with a moderate delay can be effectively dissolved in water to obtain hydrogen water with high DH and little evaporation residue. In this case, an attempt was made to press-mold by simply mixing the metal hydride compound and the polymer compound powder in a solid state, but it is not possible to mold into a tablet without using a polymer plasticizer. It was possible. On the other hand, if the polymer compound was melted and the metal hydride compound was dispersed in the melt and cooled and solidified, a molded product in which the metal hydride compound was stably embedded could be obtained.

しかしながら、この方法は水素化金属化合物の量が少ない場合、それが高分子化合物の海の中に浮かんだ島のような存在であるために水との接触が起こらず水素が発生するには長時間を要することが解った。一方、水素化金属化合物と水の反応で生成するアルカリ金属塩を中和するために水溶性の固体酸を同時に高分子化合物に分散・包埋させると、水と接触させた場合に比較的短時間で水素が発生することを見出して本発明を完成することが出来た。   However, in this method, when the amount of the metal hydride compound is small, since it is like an island floating in the sea of the polymer compound, it does not come into contact with water and is long to generate hydrogen. It turns out that it takes time. On the other hand, when a water-soluble solid acid is simultaneously dispersed and embedded in a polymer compound in order to neutralize the alkali metal salt generated by the reaction between the metal hydride compound and water, it is relatively short when contacted with water. The present invention was completed by finding that hydrogen was generated in time.

即ち、本発明の課題は粉末状の水素化アルカリ金属又は水素化アルカリ土類金属と水溶性の固体酸が溶融状態の水不溶性高分子中に混合され冷却固化されてなる水素発生剤を用いることによって解決される。この水素化金属化合物の中で水素化カルシウム又は水素化マグネシウムの少なくとも1種を用いるのが好ましい。また、これらの水素発生剤に用いる固体酸としては無水クエン酸を用いるのが好ましい。さらに、これらの水素発生剤に用いる水不溶性高分子としてはポリエチレンが好ましい。そしてこれらの水素発生剤の形態としては粉末状のものが好ましい。   That is, an object of the present invention is to use a hydrogen generator in which powdered alkali metal hydride or alkaline earth metal hydride and a water-soluble solid acid are mixed in a molten water-insoluble polymer and cooled and solidified. Solved by. Among the metal hydride compounds, it is preferable to use at least one of calcium hydride or magnesium hydride. Moreover, it is preferable to use anhydrous citric acid as the solid acid used in these hydrogen generators. Furthermore, polyethylene is preferable as the water-insoluble polymer used in these hydrogen generators. The form of these hydrogen generators is preferably a powder.

水素水を調整するためには上記の水素発生剤を水と接触させて水素発生剤から発生する水素を水中に溶解させることで達成される。この場合、水素発生剤を粉末状の形態として、それを水透過性であり且つ粉末粒子が不透過性の容器に充填して水と接触させるのが好ましい。さらに、粉末状の水素発生剤を充填した容器が水中に沈降して水との接触が容易になるように、容器内に比重が1より大きい水不溶性物質を共存させることが好ましい。   In order to adjust the hydrogen water, the hydrogen generator is brought into contact with water to dissolve the hydrogen generated from the hydrogen generator in water. In this case, it is preferable to form the hydrogen generating agent in a powder form and fill it in a water permeable container and impregnated with powder particles and contact with water. Furthermore, it is preferable that a water-insoluble substance having a specific gravity greater than 1 coexists in the container so that the container filled with the powdered hydrogen generating agent settles in water and can easily come into contact with water.

CaH2などの水と激しく反応する水素化金属化合物と水溶性の固体酸をポリエチレンなどの水不溶性高分子化合物を溶融させて混合・分散させることで、水素化金属化合物と水の反応を遅延させた水素発生剤を得ることが出来た。本発明の水素発生剤を水道水と数十分接触させることでDHが0.2ppm以上、且つ蒸発残渣が500ppm以下の水素水を調整することが出来た。従って、この水素水は蒸発残渣の観点からは水道法に規定された水質基準値を満たしており、人体の健康を促進する安全な飲料水として有益な利用が期待できる。   The reaction between the metal hydride compound and water was delayed by melting and mixing the water-insoluble polymer compound such as polyethylene with a metal hydride compound that reacts violently with water such as CaH2 and water-soluble solid acid. A hydrogen generator was obtained. By bringing the hydrogen generator of the present invention into contact with tap water for several tens of minutes, hydrogen water having a DH of 0.2 ppm or more and an evaporation residue of 500 ppm or less could be prepared. Therefore, this hydrogen water satisfies the water quality standard value stipulated in the Water Supply Law from the viewpoint of evaporation residue, and can be expected to be beneficially used as a safe drinking water that promotes human health.

本発明で用いる水素化アルカリ金属としては水素化リチウム(LiH)、水素化ナトリウム(NaH)、水素化カリウム(KH)などが例示される。また、水素化アルカリ土類金属としては水素化マグネシウム(MgH2)、水素化カルシウム(CaH2)、水素化バリウム(BaH2)、水素化ベリリウム(BeH2)などが例示される。これらの水素化金属化合物の中でMgH2、CaH2が比較的に取り扱いが容易であり、また水中に溶解した場合、Mgイオン、Caイオンとなるため安全で好ましい化合物である。これらの水素化金属化合物は混合して使用することも出来る。代表的な例であるCaH2の場合、水と下記の反応式に従って反応して水素を発生する。   Examples of the alkali metal hydride used in the present invention include lithium hydride (LiH), sodium hydride (NaH), and potassium hydride (KH). Examples of the alkaline earth metal hydride include magnesium hydride (MgH2), calcium hydride (CaH2), barium hydride (BaH2), beryllium hydride (BeH2), and the like. Among these metal hydride compounds, MgH2 and CaH2 are relatively easy to handle, and when dissolved in water, MgH2 and Ca ions become safe and preferred compounds. These metal hydride compounds can also be used as a mixture. In the case of CaH2, which is a typical example, hydrogen is generated by reacting with water according to the following reaction formula.

Figure 2009126736
Figure 2009126736

CaH2やMgH2はこの反応式から明らかなように1モルのCaH2から2モルのH2を生成するが、Mgは1モルから1モルのH2しか生成しない。本発明ではこれらの水素化金属化合物を含む水素発生剤を水と接触させて、発生するH2をそのまま溶解して水素水を調整するのでH2の発生量が多い水素化金属化合物を用いるのが効率的である。   As is apparent from this reaction formula, CaH2 and MgH2 generate 2 mol of H2 from 1 mol of CaH2, but Mg generates only 1 to 1 mol of H2. In the present invention, a hydrogen generator containing these metal hydride compounds is brought into contact with water, and the generated H2 is dissolved as it is to prepare hydrogen water. Therefore, it is efficient to use a metal hydride compound with a large amount of H2 generated. Is.

その場合、CaH2などの水素化金属化合物は水と瞬時に反応するために発生するH2は空気中に気散してしまい水に溶解し難い。高濃度のH2を水に溶解させるためには、水との反応を遅延させる必要があり、そのために本発明では後述する水に溶解しない高分子化合物中に水素化金属化合物と水溶性の固体酸を包埋することでこの課題を解決した。また、高分子化合物で包埋することで反応性の高い水素化金属化合物を直接空気と接触することがないため安定に保つことが可能となり取り扱いも容易なものとすることが出来た。高分子化合物中に均一に包埋するためにこれらの水素化金属化合物は粉末状のものを用いることが必要である。   In that case, since the metal hydride compound such as CaH2 reacts instantaneously with water, the generated H2 is scattered in the air and hardly dissolved in water. In order to dissolve a high concentration of H2 in water, it is necessary to delay the reaction with water. Therefore, in the present invention, a metal hydride compound and a water-soluble solid acid are contained in a polymer compound that does not dissolve in water, which will be described later. This problem was solved by embedding. Further, by embedding with a polymer compound, a highly reactive metal hydride compound does not come into direct contact with air, so that it can be kept stable and easy to handle. In order to embed them uniformly in the polymer compound, it is necessary to use these metal hydride compounds in powder form.

一方、化学式1から分かるようにこの反応でCa(OH)2等のアルカリ金属塩が生成するために得られた水素水はアルカリ性を示すので飲料には不適である。したがって、金属塩を中和するために水溶性の固体酸を水素発生剤に添加する。これらの固体酸としてはクエン酸、アジピン酸、コハク酸、無水コハク酸、フマル酸、マレイン酸、リンゴ酸、酒石酸、シュウ酸、マロン酸などの有機酸が好ましい。特にアジピン酸、クエン酸は食品添加物として認定されているので本発明の主用途である飲料用の水素水調整に用いる水素発生剤には好ましい固体酸である。これらの固体酸は高分子化合物中に均一に混合させるために粉末状のものを使用するのが好ましい。また、無水の酸を使用するのが好ましい。さらに、高分子化合物の溶融温度以下で分解しない酸を用いるのが好ましい。   On the other hand, as can be seen from Chemical Formula 1, hydrogen water obtained because an alkali metal salt such as Ca (OH) 2 is produced by this reaction is alkaline and is therefore unsuitable for beverages. Therefore, a water-soluble solid acid is added to the hydrogen generator to neutralize the metal salt. These solid acids are preferably organic acids such as citric acid, adipic acid, succinic acid, succinic anhydride, fumaric acid, maleic acid, malic acid, tartaric acid, oxalic acid and malonic acid. In particular, adipic acid and citric acid are recognized as food additives, and thus are preferred solid acids for the hydrogen generator used for preparing hydrogen water for beverages, which is the main use of the present invention. These solid acids are preferably used in a powder form so as to be uniformly mixed in the polymer compound. It is also preferable to use an anhydrous acid. Furthermore, it is preferable to use an acid that does not decompose below the melting temperature of the polymer compound.

本発明で用いる水不溶性高分子化合物としてはポリエチレン、ポリプロピレン、ポリー1−ブテンなどのポリオレフィン、ポリエチレンテレフタレート、ポリエチレンセバケート、ポリデカメチレンアジペートなどのポリエステル、ポリメチルメタクリレート、ポリエチルメタクリレートなどのメタクリル樹脂、ポリスチレン、ポリ塩化ビニル、などが例示される。   Examples of water-insoluble polymer compounds used in the present invention include polyolefins such as polyethylene, polypropylene, and poly-1-butene, polyesters such as polyethylene terephthalate, polyethylene sebacate, and polydecamethylene adipate, and methacrylic resins such as polymethyl methacrylate and polyethyl methacrylate. Examples include polystyrene and polyvinyl chloride.

これらの高分子を溶融状態にして上述の水素化金属化合物と固体酸をその溶融体中に均一に分散させる。この場合、溶融体の粘度が低い方が水素化金属化合物や固体酸との撹拌混合が容易となるため分子量の比較的小さい高分子を用いるのが好ましい。しかしながらあまりにも小さいと賦形性が悪くなるので好ましくない。また、固体酸の熱分解などが起こらない温度で溶融するために、溶融温度は低い方が好ましい。これらの観点から粘度が融点で急激に低下する結晶性高分子を用いるのが好ましく、ポリエチレン(PEと略す)が好ましい例である。     These polymers are melted and the above-described metal hydride compound and solid acid are uniformly dispersed in the melt. In this case, it is preferable to use a polymer having a relatively low molecular weight because the lower the viscosity of the melt, the easier the stirring and mixing with the metal hydride compound and the solid acid. However, if it is too small, the formability deteriorates, which is not preferable. Further, in order to melt at a temperature at which thermal decomposition of the solid acid does not occur, the melting temperature is preferably low. From these viewpoints, it is preferable to use a crystalline polymer whose viscosity rapidly decreases at the melting point, and polyethylene (abbreviated as PE) is a preferred example.

次にこれらの材料を用いて本発明の水素発生剤の製造方法について説明する。高分子化合物を加熱して溶融させその溶融体に固体酸と水素化金属化合物の粉末を加えて均一に撹拌して混合する。この混合物を乾燥した雰囲気中で冷却することで溶融混合物は固化して水素発生剤が得られる。その際、原料の高分子化合物と固体酸は事前に脱水乾燥しておくことが好ましい。原料中に水分があると混合時に水素化金属化合物と反応して水素を発生するので得られた水素発生剤中の水素化金属化合物の有効成分が低下するので好ましくない。   Next, the manufacturing method of the hydrogen generating agent of this invention using these materials is demonstrated. The polymer compound is heated and melted, and the solid acid and metal hydride compound powder are added to the melt, and the mixture is uniformly stirred and mixed. By cooling the mixture in a dry atmosphere, the molten mixture is solidified to obtain a hydrogen generator. At that time, it is preferable that the raw material polymer compound and the solid acid be dehydrated and dried in advance. If there is moisture in the raw material, it reacts with the metal hydride compound during mixing to generate hydrogen, which is not preferable because the active component of the metal hydride compound in the resulting hydrogen generator is reduced.

工業的には溶融押出機を利用すれば容易に本発明の水素発生剤を製造することが出来る。即ち、1軸ないしは2軸のスクリューと温度制御機能のあるバレルを装備した押出機により、原料投入口から高分子化合物と固体酸、水素化金属化合物を混合して投入し、押出機先端のダイスより溶融体混合物を押出して冷却すればよい。その際、ダイスの形状を選択することでストランド状、フイルム状などの任意の形態を有する水素発生剤を製造することが出来る。   Industrially, the hydrogen generator of the present invention can be easily produced by using a melt extruder. That is, a high-molecular compound, a solid acid, and a metal hydride compound are mixed and fed from a raw material inlet through an extruder equipped with a single or twin screw and a temperature-controllable barrel. The melt mixture may be extruded and cooled. At that time, by selecting the shape of the die, it is possible to produce a hydrogen generating agent having an arbitrary form such as a strand form or a film form.

本発明の水素発生剤を水と接触させて数十分という比較的に短時間で中性付近のpHを有する水素水を調整するためには、水不溶性の高分子化合物に包埋されている固体酸が容易に水に溶出すると同時に水素化金属化合物が水と反応することが必要である。この課題は水と水素発生剤の接触面積を大きくすること及び水素発生剤中の組成を適切に選択することで解決することが出来た。前者の解決手段の一つは冷却・固化した水素発生剤を粉末化することである。即ち、上述の方法で製造した水素発生剤を適切な粉砕機で粉砕することで達成される。   In order to adjust hydrogen water having a pH near neutral in a relatively short time of several tens of minutes by bringing the hydrogen generator of the present invention into contact with water, it is embedded in a water-insoluble polymer compound. It is necessary that the metal hydride compound reacts with water at the same time that the solid acid elutes easily into water. This problem could be solved by increasing the contact area between water and the hydrogen generating agent and appropriately selecting the composition in the hydrogen generating agent. One of the former solutions is to powder the cooled and solidified hydrogen generator. That is, it is achieved by pulverizing the hydrogen generating agent produced by the above-described method with an appropriate pulverizer.

次に組成の選択について説明する。水素発生剤中の高分子化合物の量は20〜50質量%の範囲が好ましい。20%以下の少量になると水素発生剤の賦形性が悪くなるので好ましくない。50%以上では包埋された固体酸の水への溶出速度や水素化金属合物と水の反応が遅くなりすぎて好ましくない。水素化金属化合物の量は化合物の種類にもよるが5〜30%の範囲が好ましい。5%以下ではDHの高い水素水が調整しにくく、また、30%以上では賦形性が悪くなると共に、中和に必要な固体酸の添加量を多く必要とするため下記に述べる理由で好ましくない。なお、ここで言う賦形性とは水素化金属化合物や固体酸が高分子化合物中に均一に分散・包埋される状態を意味し、そのためには溶融混合体が撹拌や混練り可能な状態を保持していることが好ましい。   Next, selection of the composition will be described. The amount of the polymer compound in the hydrogen generator is preferably in the range of 20 to 50% by mass. A small amount of 20% or less is not preferable because the formability of the hydrogen generating agent deteriorates. If it is 50% or more, the elution rate of the embedded solid acid into water or the reaction between the metal hydride compound and water becomes too slow, which is not preferable. The amount of the metal hydride compound is preferably in the range of 5 to 30% although it depends on the kind of the compound. If it is 5% or less, it is difficult to adjust hydrogen water having a high DH, and if it is 30% or more, the shapeability is deteriorated and a large amount of solid acid necessary for neutralization is required, which is preferable for the reasons described below. Absent. The formability mentioned here means a state in which the metal hydride compound or solid acid is uniformly dispersed and embedded in the polymer compound, and for this purpose, the molten mixture can be stirred or kneaded. Is preferably maintained.

水素化金属化合物と水の反応で生成するアルカリ金属塩は固体酸で中和されるので中性の水素水を調整するためには理論的には化学反応式に従って中和に必要な固体酸を水素発生剤に分散混合すればよい。一方、水素水の水素発生剤の添加にもとづく蒸発残渣の増加分は理論的にはこれら水溶性の固体酸と水素化金属化合物の金属イオンの和となるため、この観点から水素発生剤中の固体酸と水素化金属化合物の量は少ない量にすることが好ましい。   The alkali metal salt produced by the reaction between the metal hydride compound and water is neutralized with a solid acid, so in order to adjust the neutral hydrogen water, theoretically, the solid acid necessary for neutralization must be determined according to the chemical reaction equation. What is necessary is just to disperse-mix with a hydrogen generating agent. On the other hand, the increase in the evaporation residue due to the addition of the hydrogen generator in hydrogen water is theoretically the sum of these water-soluble solid acids and metal ions of the metal hydride compound. The amount of solid acid and metal hydride compound is preferably small.

例えば水素化金属化合物としてCaH2を60mg使用した場合、CaH2のモル数は1.43x10−3となる。これと同じモル数の水酸化カルシウムが水との反応で生成するのでこれを中和する固体酸の量は例えば3塩基酸であるクエン酸を用いた場合、(2/3)x1.43x10−3モルとなる。従ってクエン酸を183mg添加すれば中和量となる。一方、これらの化合物がすべて水に溶出した場合、60x0.95+183=240mgの溶出量となるため1Lの水に対しては240ppmの量となり、これらは蒸発残渣として残ることが想定される。しかしながら、後述の実施例で示すように本発明の水素発生剤を水と接触させた場合、数十分の接触ではすべての固体酸が溶出しないため蒸発残渣は上述の計算値より少ないことが分かった。   For example, when 60 mg of CaH2 is used as the metal hydride compound, the number of moles of CaH2 is 1.43 × 10 −3. Since the same number of moles of calcium hydroxide is produced by reaction with water, the amount of solid acid to neutralize this is, for example, when citric acid, which is a tribasic acid, is used (2/3) × 1.43 × 10 − 3 moles. Therefore, if 183 mg of citric acid is added, a neutralization amount is obtained. On the other hand, when all of these compounds are eluted in water, the amount of elution is 60 × 0.95 + 183 = 240 mg. Therefore, the amount is 240 ppm with respect to 1 L of water, and it is assumed that these remain as evaporation residues. However, as shown in the examples below, when the hydrogen generator of the present invention is brought into contact with water, it is found that the evaporation residue is less than the above calculated value because not all solid acids are eluted in several tens of contacts. It was.

本発明者の検討では固体有機酸の種類によって中和量を添加しても水素水のpHは弱酸性になったり、逆にアルカリ性なることが判明した。これは有機酸とPEの混合状態が有機酸の種類によって異なるためと推定される。クエン酸の場合、中和量に等しい量を添加しても水素水は弱酸性を示す傾向があるが、アジピン酸の場合はアルカリ性を示した。即ち、クエン酸の場合はPEとの親和性が良くないため、水と接触させた場合、酸が初期段階では比較的速やかに溶出してくるためと想定される。   According to the study of the present inventor, it has been found that even if the neutralization amount is added depending on the kind of the solid organic acid, the pH of the hydrogen water becomes weakly acidic or conversely alkaline. This is presumably because the mixed state of the organic acid and PE differs depending on the type of the organic acid. In the case of citric acid, hydrogen water tends to be weakly acidic even when an amount equal to the neutralization amount is added, but in the case of adipic acid, it shows alkalinity. That is, in the case of citric acid, since the affinity with PE is not good, it is assumed that the acid is eluted relatively quickly in the initial stage when it is brought into contact with water.

従って、DHの高い水素水を得るには水素発生剤へ添加する水素化金属化合物の量を大きくする必要があるが、それを中和する固体酸の添加も増加するため水素水の蒸発残渣が増加することになる。この相反する現象並びに固体酸の溶出速度を考慮して水素発生剤の組成を決めることが必要である。   Therefore, in order to obtain hydrogen water having a high DH, it is necessary to increase the amount of the metal hydride compound added to the hydrogen generating agent. Will increase. It is necessary to determine the composition of the hydrogen generating agent in consideration of this contradictory phenomenon and the elution rate of the solid acid.

次に本発明の水素発生剤を用いて水素水を調整する方法について説明する。今まで述べてきたことから明らかなように、水素発生剤を水と接触させることで水素水を調整することが出来る。その場合、発生する水素が空気中に気散しないように密閉した容器中で水と接触させるのが望ましい。例えばPETボトルに水と水素発生剤を入れてボトルの蓋を密閉する方法などが好ましい。さらに、水素発生剤から発生する水素の気泡が水と良く接触するように水素発生剤がボトルの底に沈降している状態が好ましい。   Next, a method for adjusting hydrogen water using the hydrogen generator of the present invention will be described. As is clear from what has been described so far, the hydrogen water can be adjusted by bringing the hydrogen generator into contact with water. In that case, it is desirable to make it contact with water in a sealed container so that generated hydrogen is not diffused into the air. For example, a method of sealing a bottle lid by adding water and a hydrogen generator into a PET bottle is preferable. Furthermore, it is preferable that the hydrogen generating agent settles on the bottom of the bottle so that hydrogen bubbles generated from the hydrogen generating agent are in good contact with water.

水素発生剤が粉体の場合、粉体をそのまま使用すると水中に微粉が分散するので水素水を飲む場合それを分離する必要がある。この不便を除くために粉体を水は透過するが粉体粒子を透過しない容器内に充填して水と接触させる方法が好ましい。このような容器としては不織布からなる袋状容器、セラミックやプラスチックからなる微多孔質体で形成された容器などが例示される。また、水素発生剤は水と接触して水素の気泡を発生するために、またポリエチレンなどの密度が1より低い高分子化合物を包埋材として使用した場合、水面に浮上する傾向がある。従って、水底に沈めるために比重が1より大きく且つ水に溶けない物質を水素発生剤と共に容器内に入れておくことが好ましい。このような物質としては麦飯石、トルマリン石、サンゴなどの天然石、ガラスやセラミックなどが例示される。   When the hydrogen generating agent is powder, if the powder is used as it is, fine powder will be dispersed in the water, so it is necessary to separate it when drinking hydrogen water. In order to eliminate this inconvenience, a method of filling the powder in a container that allows water to permeate but does not permeate the powder particles and bringing it into contact with water is preferable. Examples of such a container include a bag-shaped container made of non-woven fabric and a container formed of a microporous material made of ceramic or plastic. In addition, the hydrogen generating agent tends to float on the water surface when it comes into contact with water to generate hydrogen bubbles, and when a polymer compound having a density lower than 1 such as polyethylene is used as an embedding material. Therefore, it is preferable that a substance having a specific gravity greater than 1 and not soluble in water is placed in the container together with the hydrogen generating agent in order to sink to the bottom of the water. Examples of such substances include natural stones such as barley stone, tourmaline stone and coral, glass and ceramics.

以下に実施例を援用して本発明をさらに詳しく説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。なお、実施例で使用したORPの測定はORPメーター(Toko Chemical Laboratories)を用いて測定し標準電極基準に補正した値である。また、DHの測定は溶存水素電極を用いてポータブル溶存水素計(東亜ディーケーケー株式会社)で測定した。また、実施例で使用したポリエチレン(PE)は商品名サンワックス131−P(三洋化成工業製)である。また、%は断りの無い限り質量%である。   The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited to these examples. In addition, the measurement of ORP used in the examples is a value measured using an ORP meter (Toko Chemical Laboratories) and corrected to a standard electrode standard. DH was measured with a portable dissolved hydrogen meter (Toa DKK Corporation) using a dissolved hydrogen electrode. Further, polyethylene (PE) used in the examples is trade name Sun Wax 131-P (manufactured by Sanyo Chemical Industries). Moreover,% is the mass% unless there is a notice.

粉末状のPEと粉末状の固体酸をアルミ皿に所定量秤量して表面温度を150℃に調整したホットプレート上でPEを溶融して匙で撹拌して固体酸を分散・混合した。次いで水素化金属化合物として所定量の粉末状のCaH2を添加して撹拌混合した。均一に混合した後、アルミ皿をホットプレートから下ろしてデシケータ中で冷却し溶融混合物を固化させた。ブロック状に固化した水素発生剤を卓上ミキサーで粉砕して目開き0.74mmの篩を通過した粉体状の水素発生剤を調整した(A〜E)。   A predetermined amount of powdered PE and powdered solid acid was weighed in an aluminum dish, and the PE was melted on a hot plate whose surface temperature was adjusted to 150 ° C. and stirred with boiling to disperse and mix the solid acid. Then, a predetermined amount of powdered CaH2 was added as a metal hydride compound and mixed with stirring. After mixing uniformly, the aluminum dish was lowered from the hot plate and cooled in a desiccator to solidify the molten mixture. The hydrogen generator solidified in a block shape was pulverized with a desktop mixer to prepare a powdered hydrogen generator that passed through a sieve having an aperture of 0.74 mm (A to E).

この水素発生剤をA,BについてはCaH2が45mgになるように、C,D,Eについては50mgになるように所定量秤量して薄い不織布の3辺を熱融着して作成した袋に入れ、同時に直径1cmの麦飯石を2個入れて袋の開口部を熱融着して密閉した。500mlPETボトルに上記の袋を入れて、水道水500mlを注入して蓋で密閉し20分間水と接触させた。袋は水底に沈降して水素と想定される気泡が袋から発生するのが観察された。20分経過後にこの水素水中のDH、ORP、pHを測定した。水素発生剤の組成を表1に、特性の評価結果を表2に纏めて示した。   This hydrogen generator is weighed in a predetermined amount so that CaH2 is 45 mg for A and B, and 50 mg for C, D, and E, and heat-sealed on the three sides of the thin nonwoven fabric. At the same time, two barley stones having a diameter of 1 cm were put, and the opening of the bag was heat-sealed and sealed. The above bag was put in a 500 ml PET bottle, 500 ml of tap water was injected, sealed with a lid, and contacted with water for 20 minutes. It was observed that the bag settled to the bottom of the water and bubbles assumed to be hydrogen were generated from the bag. After 20 minutes, DH, ORP and pH in the hydrogen water were measured. The composition of the hydrogen generator is summarized in Table 1, and the evaluation results of the characteristics are summarized in Table 2.

Figure 2009126736
Figure 2009126736

Figure 2009126736
Figure 2009126736


実施例1と同様にしてPE30%、固体酸として無水クエン酸50%、CaH2を20%を溶融混合して冷却固化した後、粉末化して水素発生剤Fを調整した。実施例1と同様にしてFを300mg(CaH2:60mg)(F−1)、350mg(CaH2:70mg)(F−2)含むように水素発生剤を秤量して麦飯石と共に袋に充填した試料を調整した。実施例1と同様にして500mlの水道水をいれたPETボトル中で所定時間水と接触させた。所定時間(10〜30分)経過後、同様にしてDH、ORP,pHを測定した。また、2.5時間及び4日間水と接触させた水素水を約30gアルミ皿に採取して蒸発残渣を測定した。結果を表3に纏めて示した。表3にはブランクとして袋に麦飯石(2個)のみを入れて調整した試料をPETボトルで水道水と接触させた水(水道水)について、同様に測定した結果も示した。

In the same manner as in Example 1, 30% PE, 50% citric acid anhydride as a solid acid, and 20% CaH2 were melt-mixed and cooled and solidified, and then powdered to prepare hydrogen generator F. Sample in which a hydrogen generator was weighed so as to contain 300 mg (CaH2: 60 mg) (F-1) and 350 mg (CaH2: 70 mg) (F-2) in the same manner as in Example 1 and filled in a bag together with barley stone Adjusted. In the same manner as in Example 1, it was brought into contact with water for a predetermined time in a PET bottle containing 500 ml of tap water. After a predetermined time (10 to 30 minutes), DH, ORP, and pH were measured in the same manner. Further, about 30 g of hydrogen water brought into contact with water for 2.5 hours and 4 days was collected in an aluminum dish, and the evaporation residue was measured. The results are summarized in Table 3. Table 3 also shows the results of measurement in the same manner for water (tap water) in which a sample prepared by putting only barley stone (2 pieces) in a bag as a blank was brought into contact with tap water with a PET bottle.

Figure 2009126736
Figure 2009126736

水素化金属化合物としてMgH2、LiHを用いて水素発生剤G,Hを実施例1と同様に製造した。所定量の粉末状水素発生剤と麦飯石を同様の袋に充填した試料を調整した。この場合、実施例2の試料(F−1)の特性と比較するために、水素発生剤の量は水との反応で生成する水素のモル数がCaH2の60mgから発生する水素量に等しくなるように調整した。一方、先行技術と比較するために金属Mg粉末(試薬、40メッシュ)350mgを石と共に袋に充填した試料(J)、及びMg粉末70mgと無水クエン酸370mgを石と共に袋に充填した試料(K)を調整した。   Hydrogen generators G and H were produced in the same manner as in Example 1 using MgH 2 and LiH as the metal hydride compound. A sample was prepared by filling a similar bag with a predetermined amount of a powdered hydrogen generator and barleystone. In this case, in order to compare with the characteristics of the sample (F-1) of Example 2, the amount of the hydrogen generating agent is equal to the amount of hydrogen generated from 60 mg of CaH2 in the number of moles of hydrogen generated by the reaction with water. Adjusted as follows. On the other hand, for comparison with the prior art, a sample (J) in which 350 mg of metal Mg powder (reagent, 40 mesh) was filled in a bag together with stones, and a sample (K) in which 70 mg of Mg powder and 370 mg of anhydrous citric acid were filled together with stones (K) ) Was adjusted.

試料KのMgの量70mgは水と反応して生成する水素のモル数がCaH2の60mgから同様に発生する水素のモル数に等しい量であり、水との反応を促進するためにあるいはアルカリ塩を中和するためにクエン酸を添加した試料である。また、試料JのMg量はすべて反応したとすればCaH2の60mgから発生する水素の5倍量の水素が発生する量に相当する。   The amount of Mg 70 mg in sample K is the amount of hydrogen generated by reacting with water equal to the number of moles of hydrogen similarly generated from 60 mg of CaH2, and is used to promote the reaction with water or an alkali salt. A sample to which citric acid has been added to neutralize Further, if the amount of Mg in sample J is completely reacted, it corresponds to the amount of hydrogen that is five times the amount of hydrogen generated from 60 mg of CaH2.

これらの水素発生剤を充填した袋を実施例1と同様にPETボトル中の水道水に30分浸漬して、水素水を調整してその特性を実施例2と同様に測定した。表4に水素発生剤G,Hの組成を、表5に得られた水素水の特性をまとめて示した。なお、表5に示した蒸発残渣は2.5時間浸漬後の水素水についての値である。これらの結果からMg金属粉末は水との反応が遅くて数十分以内でDHの高い水素水を得るのは困難であること、また、クエン酸を添加して酸性の水と接触させると反応は促進されるが、本発明の水素発生剤から得られる水素水に比べてDHが低いことなどが明らかになった。
The bag filled with these hydrogen generators was immersed in tap water in a PET bottle for 30 minutes in the same manner as in Example 1, hydrogen water was adjusted, and its characteristics were measured in the same manner as in Example 2. Table 4 shows the compositions of the hydrogen generators G and H, and Table 5 summarizes the characteristics of the obtained hydrogen water. In addition, the evaporation residue shown in Table 5 is a value for hydrogen water after immersion for 2.5 hours. From these results, Mg metal powder reacts slowly with water, and it is difficult to obtain hydrogen water with high DH within several tens of minutes. In addition, when citric acid is added and contacted with acidic water, it reacts. However, it has been clarified that DH is lower than hydrogen water obtained from the hydrogen generator of the present invention.

Figure 2009126736
Figure 2009126736

Figure 2009126736
Figure 2009126736

本発明の水素発生剤並びにそれを用いた水素水の調整方法によれば、DHが0.2ppm以上含有し水道法で規定している蒸発残渣の少ない飲料用の水素水が数十分以内で調整できる。DHの高い水素水は活性酸素を消去するので人体の健康を促進する健康飲料水としての用途が期待される。   According to the hydrogen generator of the present invention and the method for adjusting hydrogen water using the same, the hydrogen water for beverages containing DH of 0.2 ppm or more and having little evaporation residue as defined by the Waterworks Law is within tens of minutes. Can be adjusted. Since hydrogen water with high DH eliminates active oxygen, it is expected to be used as a health drink that promotes human health.

Claims (8)

粉末状の水素化アルカリ金属又は水素化アルカリ土類金属と水溶性の固体酸が溶融状態の水不溶性高分子中に均一に混合されて冷却固化されてなる水素発生剤。   A hydrogen generating agent obtained by uniformly mixing a powdered alkali metal hydride or alkaline earth metal hydride and a water-soluble solid acid into a molten water-insoluble polymer and solidifying by cooling. 水素化アルカリ土類金属が水素化カルシウム又は水素化マグネシウムから選ばれた1種以上である請求項1の水素発生剤。   2. The hydrogen generator according to claim 1, wherein the alkaline earth metal hydride is one or more selected from calcium hydride or magnesium hydride. 固体酸が無水クエン酸である請求項1又は2の水素発生剤。   The hydrogen generator according to claim 1 or 2, wherein the solid acid is anhydrous citric acid. 水不溶性高分子がポリエチレンである請求項1又は2又は3の水素発生剤。   4. The hydrogen generator according to claim 1, wherein the water-insoluble polymer is polyethylene. 水素発生剤が粉末状の形態である請求項1から5に記載の水素発生剤。   6. The hydrogen generating agent according to claim 1, wherein the hydrogen generating agent is in a powder form. 請求項1から5に記載のいずれかの水素発生剤を水と接触させて水中に水素を溶解させる水素溶解水の調整方法。   A method for preparing hydrogen-dissolved water, wherein the hydrogen generating agent according to claim 1 is brought into contact with water to dissolve hydrogen in water. 粉末状の水素発生剤が水透過性であり且つ粉末粒子不透過性の容器内に充填されている請求項6の水素溶解水の調整方法。   The method for adjusting hydrogen-dissolved water according to claim 6, wherein the powdered hydrogen generator is filled in a water-permeable and powder particle-impermeable container. 容器内に比重が1より大きい水不溶性の物質を共存させて容器が水中に沈降するようにした請求項7の水素溶解水の調整方法。   The method for adjusting hydrogen-dissolved water according to claim 7, wherein a water-insoluble substance having a specific gravity greater than 1 is allowed to coexist in the container so that the container settles in water.
JP2007302344A 2007-11-22 2007-11-22 Hydrogen-generating agent and its usage Pending JP2009126736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302344A JP2009126736A (en) 2007-11-22 2007-11-22 Hydrogen-generating agent and its usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302344A JP2009126736A (en) 2007-11-22 2007-11-22 Hydrogen-generating agent and its usage

Publications (1)

Publication Number Publication Date
JP2009126736A true JP2009126736A (en) 2009-06-11

Family

ID=40818028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302344A Pending JP2009126736A (en) 2007-11-22 2007-11-22 Hydrogen-generating agent and its usage

Country Status (1)

Country Link
JP (1) JP2009126736A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001263A (en) * 2009-06-22 2011-01-06 Toyota Motor Engineering & Manufacturing North America Inc Bronsted acid destabilization of metal hydride
JP4621874B1 (en) * 2010-03-23 2011-01-26 広島県 Method and apparatus for avoiding plant photooxidation damage
JP4769903B1 (en) * 2010-06-14 2011-09-07 ミズ株式会社 Non-destructive high concentration hydrogen solution manufacturing equipment
WO2011158832A1 (en) * 2010-06-14 2011-12-22 ミズ株式会社 Apparatus for nondestructively producing high-concentration hydrogen solution
JP2012176395A (en) * 2011-02-01 2012-09-13 Hiromaito Co Ltd Method of regulating hydrogen water, and unpurified water container
JP2013184833A (en) * 2012-03-06 2013-09-19 Kracie Home Products Ltd Molding
JP2013189379A (en) * 2012-03-12 2013-09-26 Kracie Home Products Ltd Hydrogen generation material
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
JP2013253036A (en) * 2012-06-07 2013-12-19 Kracie Home Products Ltd Blood circulation promoter, perspiration promoter, and bathing composition
JP2014104455A (en) * 2012-11-30 2014-06-09 Hiroshi Ota Vessel having hydrogen generating function, and hydrogen addition method
JP2015205791A (en) * 2014-04-18 2015-11-19 ニッコ−化成株式会社 Hydrogen generation agent, hydrogen generator, and method of producing hydrogen containing liquid
JP5857139B1 (en) * 2015-01-16 2016-02-10 株式会社パル・コーポレーション Skeleton type hydrogen gas generator
JP2016037428A (en) * 2014-08-09 2016-03-22 株式会社 キナン Hydrogen generating agent, method for producing hydrogen generating agent, method for producing high-concentration hydrogen water, and high-concentration hydrogen water using these
WO2016047680A1 (en) * 2014-09-25 2016-03-31 瑛子 木下 Reduction treatment agent, reductive cosmetic, reductive food, and method for producing reduction treatment agent
KR101764769B1 (en) 2013-08-26 2017-08-03 히로아키 미나카와 Portable hydrogen water generating pot
JP2017197435A (en) * 2016-04-25 2017-11-02 株式会社バスクリン Hydrogen generating bath agent
JP2018176155A (en) * 2017-04-14 2018-11-15 有限会社 アクアサイエンス Hydrogen generating shower
CN110155942A (en) * 2019-05-17 2019-08-23 上海镁源动力科技有限公司 A kind of sustained release hydrogen release preparation and preparation method thereof based on magnesium hydride

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001263A (en) * 2009-06-22 2011-01-06 Toyota Motor Engineering & Manufacturing North America Inc Bronsted acid destabilization of metal hydride
JP2011193851A (en) * 2010-03-23 2011-10-06 Hiroshima Prefecture Method and apparatus for avoiding photooxidation trouble of vegetable
JP4621874B1 (en) * 2010-03-23 2011-01-26 広島県 Method and apparatus for avoiding plant photooxidation damage
EP2583937A1 (en) * 2010-06-14 2013-04-24 MIZ Co., Ltd. Apparatus for nondestructively producing high-concentration hydrogen solution
WO2011158832A1 (en) * 2010-06-14 2011-12-22 ミズ株式会社 Apparatus for nondestructively producing high-concentration hydrogen solution
JP5038546B2 (en) * 2010-06-14 2012-10-03 ミズ株式会社 Non-destructive high concentration hydrogen solution manufacturing equipment
CN103068722A (en) * 2010-06-14 2013-04-24 水株式会社 Apparatus for nondestructively producing high-concentration hydrogen solution
CN103068722B (en) * 2010-06-14 2014-10-08 水株式会社 Apparatus for nondestructively producing high-concentration hydrogen solution
KR101292859B1 (en) 2010-06-14 2013-08-02 미즈 가부시키가이샤 Apparatus for nondestructively producing high-concentration hydrogen solution
US8574503B2 (en) 2010-06-14 2013-11-05 Miz Co., Ltd. Instrument for nondestructively producing high-concentration hydrogen solution
JP4769903B1 (en) * 2010-06-14 2011-09-07 ミズ株式会社 Non-destructive high concentration hydrogen solution manufacturing equipment
EP2583937A4 (en) * 2010-06-14 2014-06-04 Miz Co Ltd Apparatus for nondestructively producing high-concentration hydrogen solution
JP2012176395A (en) * 2011-02-01 2012-09-13 Hiromaito Co Ltd Method of regulating hydrogen water, and unpurified water container
JP2013184833A (en) * 2012-03-06 2013-09-19 Kracie Home Products Ltd Molding
JP2013212498A (en) * 2012-03-07 2013-10-17 Tatehiko Ogawa Reduction powder, and method of producing the same
JP2013189379A (en) * 2012-03-12 2013-09-26 Kracie Home Products Ltd Hydrogen generation material
JP2013253036A (en) * 2012-06-07 2013-12-19 Kracie Home Products Ltd Blood circulation promoter, perspiration promoter, and bathing composition
JP2014104455A (en) * 2012-11-30 2014-06-09 Hiroshi Ota Vessel having hydrogen generating function, and hydrogen addition method
KR101764769B1 (en) 2013-08-26 2017-08-03 히로아키 미나카와 Portable hydrogen water generating pot
JP2015205791A (en) * 2014-04-18 2015-11-19 ニッコ−化成株式会社 Hydrogen generation agent, hydrogen generator, and method of producing hydrogen containing liquid
JP2016037428A (en) * 2014-08-09 2016-03-22 株式会社 キナン Hydrogen generating agent, method for producing hydrogen generating agent, method for producing high-concentration hydrogen water, and high-concentration hydrogen water using these
WO2016047680A1 (en) * 2014-09-25 2016-03-31 瑛子 木下 Reduction treatment agent, reductive cosmetic, reductive food, and method for producing reduction treatment agent
JPWO2016047680A1 (en) * 2014-09-25 2017-08-31 瑛子 木下 Reduction treatment agent, reduction cosmetic, reduced food, and method for producing reduction treatment agent
US10639249B2 (en) 2014-09-25 2020-05-05 Eiko Kinoshita Reduction treatment agent, reduction cosmetic, reduction food and method for producing reduction treatment agent
JP5857139B1 (en) * 2015-01-16 2016-02-10 株式会社パル・コーポレーション Skeleton type hydrogen gas generator
JP2017197435A (en) * 2016-04-25 2017-11-02 株式会社バスクリン Hydrogen generating bath agent
JP2018176155A (en) * 2017-04-14 2018-11-15 有限会社 アクアサイエンス Hydrogen generating shower
JP7016073B2 (en) 2017-04-14 2022-02-04 有限会社 アクアサイエンス Hydrogen generation shower
CN110155942A (en) * 2019-05-17 2019-08-23 上海镁源动力科技有限公司 A kind of sustained release hydrogen release preparation and preparation method thereof based on magnesium hydride

Similar Documents

Publication Publication Date Title
JP2009126736A (en) Hydrogen-generating agent and its usage
WO2007055146A1 (en) Hydrogen-generating agent and use thereof
CN103785348B (en) Harmful-substance processing material, its manufacturing method and harmful-substance processing method
JP3164934U (en) Hydrogen gas generator
US20050229478A1 (en) Electrochemically reacting composition and a process for the preparation thereof
WO2006098405A1 (en) Process and kit for formation of active hydrogen water, gypsum feeder for the formation, active hydrogen forming materials and process for the production of the materials
JP6279784B1 (en) Latent heat storage material composition and latent heat storage tank
WO2014050796A1 (en) Hydrolytic exothermic agent
JP4549962B2 (en) Foamable solid flocculant for water treatment
US20180271776A1 (en) Hydrogen-Generating Effervescent Tablet and Methods Thereof
KR101559705B1 (en) a decomposable resin pellet and the product using thereof
JP3467729B2 (en) Exothermic agent and method of using exothermic agent
CN102869605A (en) Hydrogen production method
CN103097293A (en) Method for refining aluminum-containing silicon
JP2015007174A (en) Hydrolytic exothermic agent and exothermic method
JP5201394B2 (en) Porous material for hydrogen generation, method for producing the same, and method for generating hydrogen
JP4846075B2 (en) HYDROGEN GENERATOR, HYDROGEN GENERATION METHOD AND HYDROGEN GENERATOR USING THE GENERATOR
CN101254897B (en) Method for preparing titanium hydride
JP2009214090A (en) Method for producing solid buffer
JP5614750B2 (en) Laundry tub cleaner composition and method for producing the same
JP2008013739A (en) Exothermic agent
JP2007217275A (en) Boron hydride fuel formulation
JP6935301B2 (en) Coated particles for monohalogenoamine production
JP2643199B2 (en) Chloroisocyanurate composition
JP2711983B2 (en) Disinfection tablets