JP2014057492A - 風力発電システム - Google Patents

風力発電システム Download PDF

Info

Publication number
JP2014057492A
JP2014057492A JP2012202309A JP2012202309A JP2014057492A JP 2014057492 A JP2014057492 A JP 2014057492A JP 2012202309 A JP2012202309 A JP 2012202309A JP 2012202309 A JP2012202309 A JP 2012202309A JP 2014057492 A JP2014057492 A JP 2014057492A
Authority
JP
Japan
Prior art keywords
output
power generation
wind power
generator
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012202309A
Other languages
English (en)
Other versions
JP5951424B2 (ja
Inventor
Yoichi Tone
洋一 戸根
Kenichi Tanomura
顕一 田能村
Toshimasa Yamada
敏雅 山田
Kiyoshi Kusunoki
清志 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012202309A priority Critical patent/JP5951424B2/ja
Publication of JP2014057492A publication Critical patent/JP2014057492A/ja
Application granted granted Critical
Publication of JP5951424B2 publication Critical patent/JP5951424B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

【課題】電力系統の負荷と発電出力との不均衡によって生じる系統周波数の変動を継続的に補償する。
【解決手段】実施の形態の風力発電システムは、風力発電機、火力発電機応答モデル及び出力調整部を備えている。風力発電機は、風力を動力源として発電を行う。火力発電機応答モデルは、火力発電機による系統周波数の制御の動特性を模して構成され、系統周波数の変動に応じて可変する火力発電機の発電出力に相当する発電出力相当信号を出力する。出力調整部は、出力された発電出力相当信号に基づいて、風力発電機による発電出力を調整する。
【選択図】図1

Description

本発明の実施形態は、風力発電システムに関する。
従来、風力発電機は、電力系統の運用状態によらず、その時点での風力に応じた最大の発電出力が得られるように、設計され運転が行われている。近年では、この種の風力発電設備は、増加する傾向にあるため、例えば夜間、休日などの系統負荷の低い時には、電力系統の発電出力と負荷とのバランスが崩れ、電力系統の周波数維持に支障をきたすことがある。
特に、島嶼地域などに設けられる小規模な電力系統は、他の地域と比べて風力発電による比率が相対的に高いこともあり、発電出力と負荷とをバランスさせるために、風力発電機自体による発電出力の調整が必要とされる場合がある。
例えば、発電した電力を蓄電池で充放電することによる変動補償は、技術的には有効な対策ではあるものの、蓄電池設備の追加により設備コストを増大させてしまう欠点がある。そこで、風力発電の出力を制御する制御装置内に、同期発電機の制御特性を設定した慣性応答モデルを設け、これを規範として発電出力を制御する方法が知られている。
また、風力発電設備の近傍に設けた同期発電機の出力と電力系統の系統周波数とを計測し、さらに電力系統の周波数変動に対する同期発電機の応動に準じて、風力発電設備の出力を調整することによって、電力系統の安定化を図る制御方法なども提案されている。
米国特許出願公開第2007/0120369号明細書 国際公開第2010/086031号
ここで、上述した制御方法を適用することで、一時的な負荷変動に対しては、風力発電出力の周波数を変化させて、従来の例えば同期発電機相当の慣性応答を実現することは可能である。しかしながら、このような制御方法は、瞬時の発電出力と負荷との安定化(短期的な周波数変動)については寄与するものの、長期的な周波数変動の安定化については課題を残している。
本発明が解決しようとする課題は、電力系統の負荷と発電出力との不均衡によって生じる系統周波数の変動を継続的に補償できる風力発電システムを提供することである。
実施の形態の風力発電システムは、風力発電機、火力発電機応答モデル及び出力調整部を備えている。風力発電機は、風力を動力源として発電を行う。火力発電機応答モデルは、火力発電機による系統周波数の制御の動特性を模して構成され、系統周波数の変動に応じて可変する火力発電機の発電出力に相当する発電出力相当信号を出力する。出力調整部は、出力された発電出力相当信号に基づいて、風力発電機による発電出力を調整する。
第1の実施形態に係る風力発電システムの構成を示すブロック図。 図1の風力発電システムが備えた火力プラントガバナモデルを示すブロック図。 図2の火力プラントガバナモデル内で得られる加減弁流量相当信号と系統周波数との関係を示す図。 図2の火力プラントガバナモデルから出力される火力発電機出力相当信号の時間の経過に伴う変化を示すグラフ。 第2の実施形態に係る風力発電システムが備えた火力プラントガバナモデルを示すブロック図。 図5の火力プラントガバナモデルから出力される火力発電機出力相当信号の時間の経過に伴う変化を示すグラフ。 第3の実施形態に係る風力発電システムの構成を示すブロック図。
以下、実施の形態を図面に基づき説明する。
[第1の実施の形態]
図1に示すように、本実施形態の風力発電システム10は、自身の風力発電出力Aと火力発電機による火力発電出力Bと、例えば太陽熱発電や地熱発電などによる再生可能エネルギ発電出力Cとからなる発電システムを実現している。
風力発電システム10は、図1に示すように、風力発電機3、風車制御装置2、周波数変換器8、風力発電出力制御装置7を主に備えている。風力発電機3は、風力を動力源として発電を行う。風力発電機3は、複数の翼からなる風車翼、増速器、発電機(発電機本体)9などを備えている。発電機9としては、例えば可変速同期発電機などの同期発電機を例示することができる。
風力を受けて回転する風車翼の回転力は、例えばナセル内に収容された回転軸や上記した増速器などを介して発電機9に伝達される。発電機9は、伝達されたこの回転力により駆動されて発電を行う。
風車制御装置2は、風車翼のピッチ制御、ヨー制御を行う。ピッチ制御は、風車翼を構成する各翼の角度を例えば風速に応じて変更させる制御である。ヨー制御は、風向きに応じて風車翼全体の向きを変更させる制御である。また、風車制御装置2は、風力を受けて回転する風車翼のトルクを制御するための風車制御信号を出力する。
図1に示すように、出力調整部12は、風力発電機3(発電機9)による発電出力を調整するパワーコンディショナ(PCS:Power Conditioning System)である。出力調整部12の出力は、風力発電出力Aとなる。
具体的には、発電出力のうちの電圧は、仕様上例えば6.6kVなどで固定されるため、出力調整部12は、出力される電流値を調節することによって発電出力を調整する。また、出力調整部12は、周波数変換器8を備えている。周波数変換器8は、風力発電機3により発電された電力を例えば60Hzや50Hzなどの定格周波数に変換して交流の電力を出力する。
図1に示すように、加減算器14は、風力発電出力Aと火力発電出力Bと再生可能エネルギ発電出力Cとを加算した加算結果から電力系統における系統負荷Dを減算し、この演算結果(各発電出力の加算結果と系統負荷Dと偏差)を、発電システム全体の発電出力として電力系統に出力する。この場合、各発電出力の合計値と系統負荷Dとの偏差に対応する電力系統の負荷/周波数特性Eに応じて、系統周波数Fsが変化する。
ここで、風力発電出力制御装置7は、図1に示すように、火力プラントガバナモデル5及び加算器15を備えている。火力プラントガバナモデル5は、(例えば火力発電出力Bを出す)火力発電機による系統周波数の制御の動特性を模して構成された火力発電機応答モデルである。火力発電機は、例えば蒸気タービン発電機などの火力タービン発電機である。火力プラントガバナモデル5は、系統周波数Fsの変動に応じて可変する前記火力発電機の発電出力に相当する発電出力相当信号として、火力発電機出力相当信号Pg1を出力する。
出力調整部12は、上述した火力発電機出力相当信号Pg1に基づいて、風力発電機3(発電機9)による発電出力を調整する。本実施形態では、出力調整部12は、この火力発電機出力相当信号Pg1と風車制御装置2が出力する上記した風車制御信号とに基づいて、風力発電機3による発電出力を調整する例を示している。具体的には、本実施形態の加算器15は、風車制御装置2からの出力指令(風車制御信号)と、火力プラントガバナモデル5から出力される火力発電機出力相当信号Pg1と、を加算し、これを風力発電出力指令として出力調整部12に入力する。
火力プラントガバナモデル5は、図2、図3に示すように、系統周波数Fsの変化に応じて、自動的に加減弁流量相当信号Cvを調整する機能、及び火力発電機出力相当信号Pg1を調整する機能を有している。加減弁流量相当信号Cvは、例えば火力タービン発電機において、タービンへ導入する作動流体の流量制御用の加減弁の開度を、調整するための開度調整信号に相当する信号である。火力発電機出力相当信号Pg1は、例えば火力タービン発電機からの発電出力に相当する信号である。
図2に示すように、火力プラントガバナモデル5には、タービンガバナモデル5a及び火力タービンモデル5bが設けられている。タービンガバナモデル5aは、例えば火力タービンを一定の回転速度(定格の回転周波数)に調速するためのガバナ制御系の動特性を予め取得しておき、これを摸擬的に実現した動特性モデルである。
つまり、タービンガバナモデル5aは、図2に示すように、速度設定器20、減算器21、調定率演算器22、負荷設定器23、加算器24を備えている。減算器21は、系統周波数Fsを取得する。また一方で、減算器21は、上記火力タービンにおける仕様上の定格回転周波数を速度設定器20から取得する。さらに、減算器21は、定格回転周波数数から系統周波数Fsを減算して得た偏差を調定率演算器22に出力する。
調定率演算器22は、入力したこの偏差を、速度調定率の逆数を乗算することによって増倍する。負荷設定器23は、電力の需要に対応する系統負荷を設定するための信号を加算器24に出力する。加算器24は、調定率演算器22の出力と負荷設定器23の出力とを加算し、この加算結果を加減弁流量相当信号Cvとして出力する。
一方、火力タービンモデル5bは、例えば火力タービン発電機において、加減弁流量相当信号Cvに対応する流量の作動流体でタービン本体を駆動するときの動特性を予め取得しておき、これを摸擬的に実現した動特性モデルである。図2に示すように、火力タービンモデル5bは、高圧タービン特性付与部25、再熱器及び中圧タービン特性付与部26、低圧タービン特性付与部27、高圧出力比率設定部28、中圧出力比率設定部29、低圧出力比率設定部30、加算器31を備えている。
高圧タービン特性付与部25、再熱器及び中圧タービン特性付与部26、低圧タービン特性付与部27は、加減弁流量相当信号Cvに応じて加減弁の開度が制御されたタイミングから、高圧タービン、中圧タービン、低圧タービンにそれぞれ作動導入されこれに伴い各タービンの駆動制御が開始されるタイミングまで、の時間遅れなどの特性を、加減弁流量相当信号Cvに順次に付与する。
高圧出力比率設定部28、中圧出力比率設定部29、低圧出力比率設定部30は、系統負荷に対する、高圧タービン、中圧タービン、低圧タービンでの負担を配分した割合を出力比率として設定したものである。例えば、高圧出力比率設定部28、中圧出力比率設定部29、低圧出力比率設定部30は、例えば、30%、30%、40%といった出力比率が設定されており、高圧タービン特性付与部25、中圧タービン特性付与部26、低圧タービン特性付与部27から入力を、これの出力比率にて加算器31に出力する。
加算器31は、それぞれ入力した高圧タービン、中圧タービン、低圧タービンの各出力成分を合算することにより、火力発電機出力相当信号Pg1を得る。この結果、火力プラントガバナモデル5は、図2に示すように、系統周波数Fsを入力として、図3に示すように、火力タービン発電機からの発電出力に相当する火力発電機出力相当信号Pg1を求めることができる。
ここで、図3中の横軸は、系統周波数Fsを示しており、一方、縦軸は、加減弁流量相当信号Cv(又は火力発電機出力相当信号Pg1など)を示している。図3中のポイントR[Hz]は、加減弁流量相当信号Cv(加減弁の開度)が0[%]であり、このR[Hz]は、系統周波数Fsが例えば定格周波数の50[Hz]や60[Hz]であることなどを示している。また、図3中のポイントF[%]は、系統周波数Fsが定格周波数に近い周波数帯であることから、加減弁流量相当信号Cv(加減弁の開度)を変更させない不感帯として設定されていることを表している。
次にこのように構成された風力発電システム10の動作について説明する。図1に示すように、例えば夜間や休日などにおいて系統負荷Dが急減し、系統全体の発電出力が、系統負荷を大きく上回った場合、系統負荷/周波数特性Eに応じて系統周波数Fsが増加する。増加したこの系統周波数Fsは、風力発電出力制御装置7に入力され、火力プラントガバナモデル5により演算制御が行われ、その出力である火力発電機出力相当信号Pg1は、図3に示すように、系統周波数Fsの増加に伴い、調定率に従って減少する。
この減少分は、加算器15を通じて、出力調整部12に伝達され、風力発電出力Aを減少させる。一方、このような状況とは相反して、系統負荷Dが急増した場合であっても、火力プラントガバナモデル5を備える風力発電システム10は、系統負荷Dの急増分を補うように風力発電出力Aを増大させる。
さらに、本実施形態の風力発電システム10の効果を図4に基づき説明する。図4は、系統全体の発電出力に対し系統負荷が急減した場合において、本実施形態の風力発電システム10の応答特性H1、動特性モデルなどを有していない従来の風力発電機の応答特性J、特許文献1又は2の技術による応答特性Kを例示している。
ここで、前述したように系統負荷が急減した場合、系統周波数Fsが増加するが、従来の風力発電機では、図4中の応答特性Jとして示されるように、全く応答せずに一定した出力となり、発電出力と系統負荷とのバランスの変動補償に寄与することができない。また、上記した特許文献1又は2の技術は、図4中の応答特性Kのようになることが想定され、瞬間的には系統周波数の変動抑制効果があるものの、長時間においてはゼロに収斂し、系統周波数の変動補償効果は限定的である。
これに対して、本実施形態の風力発電システム10は、図4中の応答特性H1として示されるように、長時間の継続的な変動抑制応答効果を示しており、従来の火力発電機と同様に、継続して系統周波数の安定化に寄与することが可能である。したがって、風力発電システム10によれば、電力系統の負荷と発電出力との不均衡によって生じる系統周波数の変動を継続的に補償することができる。
[第2の実施の形態]
次に、第2の実施形態を図5、図6に基づき説明する。なお、図5において、図2に示した第1の実施形態中の構成要素と同一の構成要素については、同一の符号を付与し重複する説明を省略する。
本実施形態の風力発電システムは、第1の実施形態に係る風力発電システム10の風力発電出力制御装置7が備えていた火力プラントガバナモデル5に代えて、図5に示すように、火力プラントガバナモデル55を備えている。火力プラントガバナモデル55は、系統周波数Fsを入力して火力発電機出力相当信号Pg2を出力する。
火力プラントガバナモデル55は、火力プラントガバナモデル5の構成に加え、同期発電機応答モデル55aをさらに備えている。火力プラントガバナモデル55は、火力プラントガバナモデル5の火力タービンモデル5bの後段に前記の同期発電機応答モデル55aが設けられている。
ここで、本実施形態の風力発電システムは、図1に示した風力発電機3の発電機9が、例えば可変速同期発電機で構成されている。図5に示すように、同期発電機応答モデル55aは、系統周波数Fsの変動に対して同期発電機が行う制御の動特性を模して構成されており、第1の実施形態の火力プラントガバナモデル5から出力される火力発電機出力相当信号Pg1(図5中の火力タービン出力相当信号Pt)に補正を加えた火力発電機出力相当信号Pg2を出力する。
出力調整部12は、上記の補正を加えた火力発電機出力相当信号Pg2に基づいて、図1に示した風力発電機3(発電機9)による発電出力を調整する。本実施形態では、出力調整部12は、この火力発電機出力相当信号Pg2と風車制御装置2が出力する風車制御信号とに基づいて、風力発電機3による発電出力を調整する例を示している。具体的には、本実施形態では、加算器15は、風車制御装置2からの出力指令(風車制御信号)と、火力プラントガバナモデル55から出力される火力発電機出力相当信号Pg2と、を加算し、これを風力発電出力指令として出力調整部12に入力する。
同期発電機応答モデル55aは、図5に示すように、減算器59、積分器56、比例ゲイン設定部57、加算器58、加減算器52、タービン発電機慣性力設定部53、タービン損失設定部54を備えている。
減算器59は、後述するタービン速度相当信号Ntから系統周波数Fsを減算して得た偏差を積分器56及び比例ゲイン設定部57に出力する。積分器56は、可変速同期発電機の動特性に従い、入力した前記の偏差を積分して位相角に変換し、これを同期化トルク成分として加算器58に出力する。一方、比例ゲイン設定部57は、入力した前記の偏差に比例ゲインを与えた制動トルク成分を加算器58に出力する。
加算器58は、積分器56から入力した同期化トルク成分と比例ゲイン設定部57から入力した制動トルク成分とを加算して、火力発電機出力相当信号Pg2を求める。加算器58は、この火力発電機出力相当信号Pg2を図1に示した加算器15及び図5に示す加減算器52に出力する。
また、図5に示すように、火力プラントガバナモデル55は、系統周波数Fs及び火力発電機出力相当信号Pg2の変化に応じて、自動的に火力タービン出力相当信号Ptを火力発電機出力相当信号Pg2に合致させ、さらにタービン速度相当信号Ntを系統周波数Fsに合致させる機能を有している。減算器21は、速度設定器20から出力される定格のタービン速度信号からタービン速度相当信号Ntを減算して得た偏差を調定率演算器22に出力する。
この一方で、加減算器52は、加算器31から出力される火力タービン出力相当信号Ptを入力する。ここで、タービン発電機慣性力設定部53は、タービン本体の慣性力を設定し、タービン損失設定部54は、タービン本体の運動エネルギの損失を設定する。加減算器52は、入力した火力タービン出力相当信号Ptから、火力発電機出力相当信号Pg2及びタービン損失設定部54の出力を減算し、この演算結果を、タービン発電機慣性力設定部53に出力する。入力した前記の演算結果を、タービン発電機慣性力設定部33は、加減速し、タービン速度相当信号Ntを得る。
以上のように構成された火力プラントガバナモデル55は、図5に示すように、系統周波数Fsを入力として、その変動に応じた火力タービン発電機の発電出力に相当する火力発電機出力相当信号Pg2を演算することができる。
さらに、本実施形態の風力発電システムの効果を図6に基づき説明する。図6は、系統全体の発電出力に対し系統負荷が急減した場合において、本実施形態の風力発電システムの応答特性H2、動特性モデルなどを有していない従来の風力発電機の応答特性J、特許文献1又は2の技術による応答特性Kを例示している。
ここで、前述したように系統負荷Dが急減した場合、系統周波数Fsが増加するが、従来の風力発電機では、図6中の応答特性Jとして示されるに、全く応答せずに一定した出力となり、発電出力と系統負荷とのバランスの変動補償に寄与することができない。また、上記した特許文献1又は2の技術は、図6中の応答特性Kのようになることが想定され、短期的に系統周波数の変動抑制効果が得られるものの、長時間においてはゼロに収斂し、系統周波数の変動補償効果は限定的である。
詳述すると、特許文献2の技術では、風力発電設備に加え、同規模の同期発電機を並列させて設置する必要があり、余分な設備費を要し、設備コストの上昇を招く。さらに、当該同期発電機の応答は、原動機の速度/出力を制御するガバナの特性によって異なり、ガバナ特性や原動機の運転状態によっては必ずしも系統に最適な応答とはならない場合もある。
これに対して、本実施形態の風力発電システムは、図6中の応答特性H2として示されるように、瞬間的な変動抑制応答効果と長時間の継続的な変動抑制応答効果との双方が得られており、従来の火力発電機と同様に初期応答から継続して系統周波数の安定化に寄与することが可能である。したがって、本実施形態の風力発電システムによれば、電力系統の負荷と発電出力との不均衡によって生じる系統周波数の変動を短期的及び長期的に補償することができる。
[第3の実施の形態]
次に、第3の実施形態を図7に基づき説明する。なお、図7において、図2、図5に示した第1、第2の実施形態中の構成要素と同一の構成要素については、同一の符号を付与し重複する説明を省略する。
図7に示すように、本実施形態の風力発電システム80は、複数の風力発電機を備えたウィンドファーム(集合型風力発電所)を構成する。風力発電システム80は、第1の実施形態に係る風力発電システム10が備えていた風力発電出力制御装置7に代えて、図7に示すように、ウィンドファーム出力制御装置87を備えている。
また、風力発電システム80は、図7に示すように、風力発電機3、3a、3b、出力調整部12、12a、12b、風車制御装置2、2a、2b、加算器15、15a、15bを備えている。風力発電機3a、3b、出力調整部12a、12b、風車制御装置2a、2b、加算器15a、15bは、それぞれ、第1の実施形態の風力発電機3、出力調整部12、風車制御装置2、加算器15と同様の構成を有している。これらは、もちろん、4組以上設けられていてもよい。
ウィンドファーム出力制御装置87は、図7に示すように、第1の実施形態の火力プラントガバナモデル5、又は第2の実施形態の火力プラントガバナモデル55を備えている。ウィンドファーム出力制御装置87は、さらに、出力分配部88を備えている。出力分配部88は、火力発電機出力相当信号Pg1(又は火力発電機出力相当信号Pg2に補正を加えた第2の実施形態の火力発電機出力相当信号Pg2)の値を、複数の風力発電機側に対して分配する。
出力分配部88は、火力発電機出力相当信号Pg1(又はPg2)の値を、風力発電機3、3a、3b側それぞれに対して、例えば均等に分配する。出力調整部12、12a、12bは、分配された火力発電機出力相当信号Pg1(又はPg2)の値に基づいて、風力発電機3、3a、3b毎に発電出力を調整する。
以上のように、本実施形態の風力発電システム80によれば、電力系統の発電出力と系統負荷Dとのバランスが乱れ、系統周波数が変動した場合でも、風力発電機3、3a、3b毎に発電出力を調整することで、従来の火力発電機と同様に、系統周波数の安定化を図ることができると共に、再生可能エネルギの導入比率の増大にも寄与することができる。
以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
2,2a,2b…風車制御装置、3,3a,3b…風力発電機、5,55…火力プラントガバナモデル、5a…タービンガバナモデル、5b…火力タービンモデル、7…風力発電出力制御装置、9…発電機、10,80…風力発電システム、12,12a,12b…出力調整部、55a…同期発電機応答モデル、87…ウィンドファーム出力制御装置、88…出力分配部。

Claims (6)

  1. 風力を動力源として発電を行う風力発電機と、
    火力発電機による系統周波数の制御の動特性を模して構成され、前記系統周波数の変動に応じて可変する前記火力発電機の発電出力に相当する発電出力相当信号を出力する火力発電機応答モデルと、
    前記出力された発電出力相当信号に基づいて、前記風力発電機による発電出力を調整する出力調整部と、
    を備える風力発電システム。
  2. 前記系統周波数の変動に対して同期発電機が行う制御の動特性を模して構成され、前記出力された発電出力相当信号に補正を加える同期発電機応答モデル、
    をさらに備える請求項1記載の風力発電システム。
  3. 前記風力を受けて回転する風車翼のトルクを制御するための風車制御信号を出力する風車制御装置をさらに備え、
    前記出力調整部は、前記出力された発電出力相当信号及び前記風車制御信号に基づいて、前記風力発電機による発電出力を調整する、
    請求項1記載の風力発電システム。
  4. 前記風力を受けて回転する風車翼のトルクを制御するための風車制御信号を出力する風車制御装置をさらに備え、
    前記出力調整部は、前記発電出力相当信号に前記補正を加えた信号及び前記風車制御信号に基づいて、前記風力発電機による発電出力を調整する、
    請求項2記載の風力発電システム。
  5. 少なくとも前記風力発電機は、複数設けられており、
    前記出力された発電出力相当信号の値を前記複数の風力発電機側に対して分配する出力分配部をさらに備え、
    前記出力調整部は、前記分配された発電出力相当信号の値に基づいて、前記風力発電機毎に発電出力を調整する、
    請求項1記載の風力発電システム。
  6. 少なくとも前記風力発電機は、複数設けられており、
    前記出力された発電出力相当信号に補正を加えた信号の値を前記複数の風力発電機側に対して分配する出力分配部をさらに備え、
    前記出力調整部は、前記分配された前記補正を加えた信号の値に基づいて、前記風力発電機毎に発電出力を調整する、
    請求項2記載の風力発電システム。
JP2012202309A 2012-09-14 2012-09-14 風力発電システム Active JP5951424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202309A JP5951424B2 (ja) 2012-09-14 2012-09-14 風力発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202309A JP5951424B2 (ja) 2012-09-14 2012-09-14 風力発電システム

Publications (2)

Publication Number Publication Date
JP2014057492A true JP2014057492A (ja) 2014-03-27
JP5951424B2 JP5951424B2 (ja) 2016-07-13

Family

ID=50614333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202309A Active JP5951424B2 (ja) 2012-09-14 2012-09-14 風力発電システム

Country Status (1)

Country Link
JP (1) JP5951424B2 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201900A (ja) * 2014-04-03 2015-11-12 株式会社東芝 ウィンドファームの出力制御装置、方法、及びプログラム
JP2016127755A (ja) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 発電電力の平滑化システム
JP2019528667A (ja) * 2016-08-19 2019-10-10 ヴォッベン プロパティーズ ゲーエムベーハー 風力タービンの制御方法
JP2020523964A (ja) * 2017-06-13 2020-08-06 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 変換器制御発電機ユニットによって、特にウインドタービンによって電力を供給する方法
JP7450504B2 (ja) 2020-09-16 2024-03-15 三菱電機株式会社 系統安定化システムおよび系統安定化方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114900A (ja) * 1988-10-25 1990-04-26 Mitsubishi Electric Corp 発電機模擬装置
JP2006042458A (ja) * 2004-07-26 2006-02-09 Tokyo Electric Power Co Inc:The 周波数制御装置及び系統周波数制御方法
JP2009174329A (ja) * 2008-01-21 2009-08-06 Univ Of Ryukyus 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2009222332A (ja) * 2008-03-18 2009-10-01 Hitachi Ltd ボイラを備えたプラントの制御装置、及びボイラを備えたプラントの制御方法
JP2011038498A (ja) * 2009-08-18 2011-02-24 Hitachi Ltd ウィンドファーム制御システム、ウィンドファーム制御装置および制御方法
JP2011132899A (ja) * 2009-12-25 2011-07-07 Hitachi Ltd 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム
JP2011193551A (ja) * 2010-03-11 2011-09-29 Toshiba Corp 太陽光発電システム
JP2012165622A (ja) * 2011-02-09 2012-08-30 Toshiba Corp 給電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114900A (ja) * 1988-10-25 1990-04-26 Mitsubishi Electric Corp 発電機模擬装置
JP2006042458A (ja) * 2004-07-26 2006-02-09 Tokyo Electric Power Co Inc:The 周波数制御装置及び系統周波数制御方法
JP2009174329A (ja) * 2008-01-21 2009-08-06 Univ Of Ryukyus 自然エネルギー発電設備を用いた電力系統周波数制御装置
JP2009222332A (ja) * 2008-03-18 2009-10-01 Hitachi Ltd ボイラを備えたプラントの制御装置、及びボイラを備えたプラントの制御方法
JP2011038498A (ja) * 2009-08-18 2011-02-24 Hitachi Ltd ウィンドファーム制御システム、ウィンドファーム制御装置および制御方法
JP2011132899A (ja) * 2009-12-25 2011-07-07 Hitachi Ltd 二酸化炭素分離回収装置を備えた化石燃料焚き火力発電システム
JP2011193551A (ja) * 2010-03-11 2011-09-29 Toshiba Corp 太陽光発電システム
JP2012165622A (ja) * 2011-02-09 2012-08-30 Toshiba Corp 給電システム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015201900A (ja) * 2014-04-03 2015-11-12 株式会社東芝 ウィンドファームの出力制御装置、方法、及びプログラム
JP2016127755A (ja) * 2015-01-07 2016-07-11 株式会社神戸製鋼所 発電電力の平滑化システム
JP2019528667A (ja) * 2016-08-19 2019-10-10 ヴォッベン プロパティーズ ゲーエムベーハー 風力タービンの制御方法
JP2020523964A (ja) * 2017-06-13 2020-08-06 ヴォッベン プロパティーズ ゲーエムベーハーWobben Properties Gmbh 変換器制御発電機ユニットによって、特にウインドタービンによって電力を供給する方法
US11196370B2 (en) 2017-06-13 2021-12-07 Wobben Properties Gmbh Method for supplying electric power by means of a converter-controlled generator unit, in particular a wind turbine
JP7450504B2 (ja) 2020-09-16 2024-03-15 三菱電機株式会社 系統安定化システムおよび系統安定化方法

Also Published As

Publication number Publication date
JP5951424B2 (ja) 2016-07-13

Similar Documents

Publication Publication Date Title
Yingcheng et al. Review of contribution to frequency control through variable speed wind turbine
US9341163B2 (en) Wind-turbine-generator control apparatus, wind turbine generator system, and wind-turbine-generator control method
EP2085611B1 (en) Power generation stabilization control systems and methods
JP5951424B2 (ja) 風力発電システム
Ebrahimi et al. A novel optimizing power control strategy for centralized wind farm control system
CN109861251B (zh) 一种用于微网暂稳态频率优化的双馈风机综合控制方法
CN108518307B (zh) 风力发电机组的功率控制方法、控制装置、控制器和系统
CN109586319A (zh) 一种风电机组参与系统调频方法及系统
CN110190609B (zh) 一种变速风电机组参与电力系统调频的方法
JP2012516667A (ja) 発電システムのための電力システム周波数慣性
JP2009174329A (ja) 自然エネルギー発電設備を用いた電力系統周波数制御装置
CA3054327A1 (en) Wind park inertial response to grid stability
EP2660464B1 (en) Control device for wind power generation device, wind power generation system, and control method for wind power generation device
Muljadi et al. Fixed-speed and variable-slip wind turbines providing spinning reserves to the grid
CN109630354B (zh) 惯性控制下基于转换器控制的风机和同步机协同调频方法及系统
JPWO2013073017A1 (ja) 風力発電システム及びその制御方法
Yoo et al. Frequency stability support of a DFIG to improve the settling frequency
Abbes et al. Participation of PMSG-based wind farms to the grid ancillary services
TWI543491B (zh) 藉由風力發電設備或風力發電廠將電能饋送至供電網中之方法及將電能饋送至供電網中之風力發電設備及風力發電廠
Viveiros et al. Fuzzy, integer and fractional-order control: Application on a wind turbine benchmark model
Bao et al. Active rotor speed protection for DFIG synthetic inertia control
JP2015090145A (ja) 風力発電装置、風力発電装置の変動抑制方法および風力発電装置の変動抑制プログラム
EP2656499A2 (en) Control of water current turbines
Lak et al. Speed control for direct drive permanent magnet wind turbine
TW201908596A (zh) 風力發電裝置、風力發電裝置的控制方法、及風力發電系統

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160608

R151 Written notification of patent or utility model registration

Ref document number: 5951424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151