JP2014057028A - Solar battery and manufacturing method therefor - Google Patents

Solar battery and manufacturing method therefor Download PDF

Info

Publication number
JP2014057028A
JP2014057028A JP2012202496A JP2012202496A JP2014057028A JP 2014057028 A JP2014057028 A JP 2014057028A JP 2012202496 A JP2012202496 A JP 2012202496A JP 2012202496 A JP2012202496 A JP 2012202496A JP 2014057028 A JP2014057028 A JP 2014057028A
Authority
JP
Japan
Prior art keywords
electrode
solar cell
bus bar
manufacturing
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012202496A
Other languages
Japanese (ja)
Other versions
JP6186683B2 (en
Inventor
Yoko Endo
陽子 遠洞
Takenori Watabe
武紀 渡部
Hiroyuki Otsuka
寛之 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2012202496A priority Critical patent/JP6186683B2/en
Publication of JP2014057028A publication Critical patent/JP2014057028A/en
Application granted granted Critical
Publication of JP6186683B2 publication Critical patent/JP6186683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for reducing manufacturing cost, and solar battery and solar battery module manufactured according to the method, while maintaining conversion efficiency.SOLUTION: A solar battery including a first electrode using Ag as main constituent and a second electrode using Cu as main constituent on a light-receiving surface thereof is burned with superheated steam. Thus, an inexpensive solar battery can be manufactured with high yield without oxidizing the electrode or degrading an output of the solar battery.

Description

本発明は、長期信頼性の高い太陽電池又は太陽電池モジュールを、歩留り良く作製する方法に関し、更に詳しくは、電極構成材料に安価なCu金属を用いることにより、コストを低減し、高い変換効率を維持した太陽電池の電極を有効に作製することができる太陽電池の製造方法、及びその方法で製造された太陽電池に関する。   The present invention relates to a method for producing a long-term highly reliable solar cell or solar cell module with high yield, and more specifically, by using an inexpensive Cu metal as an electrode constituent material, cost is reduced and high conversion efficiency is achieved. The present invention relates to a solar cell manufacturing method capable of effectively producing an electrode of a maintained solar cell, and a solar cell manufactured by the method.

従来の技術を用いて作製された、太陽電池の断面図(図1)と、表面(図2)、裏面の構造(図3)を説明する。一般的な太陽電池セルは、シリコン等のP型半導体基板100に、N型となるドーパントを拡散して、N型拡散層101を形成することによりPN接合が形成されている。N型拡散層101の上には、SiNx膜のような反射防止膜102が形成されている。P型半導体基板100の裏面側には、ほぼ全面にアルミニウムペーストが塗布され、焼結することによりBSF層103とアルミニウム電極104が形成される。また、裏面には集電用としてバスバー電極とよばれる太い電極106が、銀等を含む導電性ペーストを塗布し、焼成することで形成される。一方、受光面側には集電用のフィンガー電極107と、フィンガー電極から電流を集めるためのバスバー電極105とよばれる太い電極が、略直角に交わるように櫛形状に配置される。 A cross-sectional view (FIG. 1), a front surface (FIG. 2), and a back surface structure (FIG. 3) of a solar cell manufactured using a conventional technique will be described. In general solar cells, a PN junction is formed by diffusing an N-type dopant into a P-type semiconductor substrate 100 such as silicon to form an N-type diffusion layer 101. On the N-type diffusion layer 101, an antireflection film 102 such as a SiN x film is formed. On the back surface side of the P-type semiconductor substrate 100, an aluminum paste is applied to almost the entire surface, and the BSF layer 103 and the aluminum electrode 104 are formed by sintering. On the back surface, a thick electrode 106 called a bus bar electrode for current collection is formed by applying and baking a conductive paste containing silver or the like. On the other hand, a thick electrode called a current collecting finger electrode 107 and a bus bar electrode 105 for collecting current from the finger electrodes are arranged in a comb shape so as to intersect at a substantially right angle.

そして、この種の太陽電池を製造する際、電極形成の方法としては、蒸着法、メッキ法、印刷法等が挙げられるが、表面フィンガー電極107は、形成が容易で低コストであるなどの理由のため、一般的には、以下に示すような印刷・焼成法で形成される。すなわち、表面電極材料には、一般に銀粉末と、ガラスフリットと、有機ビヒクルと、有機溶媒とを主成分を配合した導電性ペーストが用いられ、スクリーン印刷法等によりこの導電性ペーストを塗布した後、焼成炉中で高温焼結して表面電極を形成するものである。なお、この高温焼結工程は、〔1〕反射防止膜の除去、〔2〕Siと電極材料のオーミックコンタクトの形成、〔3〕導電性ペースト中の有機物燃焼を一度に行っており、太陽電池プロセスの低減及びコスト削減の手法として、一般的に用いられるものである。   And when manufacturing this kind of solar cell, as a method of electrode formation, there are a vapor deposition method, a plating method, a printing method, etc., but the reason is that the surface finger electrode 107 is easy to form and low in cost. Therefore, it is generally formed by a printing / firing method as shown below. That is, as the surface electrode material, a conductive paste containing silver powder, glass frit, organic vehicle, and organic solvent as main components is generally used, and after applying this conductive paste by a screen printing method or the like. The surface electrode is formed by high-temperature sintering in a firing furnace. The high-temperature sintering step includes [1] removal of the antireflection film, [2] formation of ohmic contact between Si and the electrode material, and [3] combustion of organic substances in the conductive paste at one time. Generally used as a process reduction and cost reduction technique.

このような方法により形成された表面フィンガー電極107とSi基板100とのコンタクト抵抗(接触抵抗)と電極の配線抵抗は、太陽電池の変換効率に大きな影響を及ぼし、高効率(低セル直列抵抗、高フィルファクターFF(曲線因子))を得るためには、コンタクト抵抗と表面フィンガー電極107の配線抵抗の値が十分に低いことが要求される。   The contact resistance (contact resistance) between the surface finger electrode 107 and the Si substrate 100 formed by such a method and the wiring resistance of the electrode have a great influence on the conversion efficiency of the solar cell, and high efficiency (low cell series resistance, In order to obtain a high fill factor FF (curve factor)), the contact resistance and the wiring resistance value of the surface finger electrode 107 are required to be sufficiently low.

また、受光面においてはできるだけ多くの光を取り込めるように電極面積を小さくしなければならない。前記FFを維持したまま短絡電流(Jsc)を向上させるために、フィンガー電極は細く、断面積は大きく、つまり高アスペクト比のフィンガー電極を形成しなくてはならない。上記のような高効率の太陽電池を作製するためには、金属材料の中で最も抵抗率の小さいAg(1.59×10-8Ωm)が広く用いられている。 In addition, the electrode area must be reduced so that as much light as possible can be captured on the light receiving surface. In order to improve the short circuit current (Jsc) while maintaining the FF, the finger electrode must be thin and have a large cross-sectional area, that is, a high aspect ratio finger electrode must be formed. In order to fabricate such a high-efficiency solar cell, Ag (1.59 × 10 −8 Ωm) having the lowest resistivity among metal materials is widely used.

しかしながら、Agは大変高価であり、太陽電池製造コストに占める割合も大きい。コストを低減しようとしてAg使用量を減少させると、配線抵抗が増加して太陽電池の変換効率が減少してしまう。低コスト化を実現するためには、比較的抵抗率が低く、安価な金属を用いることが望ましい。たとえば、Cu(1.68×10-8Ωm)、Al(2.65×10-8Ωm)、Mg(4.42×10-8Ωm)、Co(5.81×10-8Ωm)Zn(6.02×10-8Ωm)、Ni(6.99×10-8Ωm)等はAgと同じ10-8Ωmオーダーの比較的低い抵抗率を有し、Agより安価な金属である。例えばCu単価はAgのおよそ50分の1であり、従来の製法による太陽電池セル製造の際の全材料費に占める銀ペーストの割合は12%程度であるが、本発明により、受光面の電極ペーストの占める割合は6%程度まで半減することができる。 However, Ag is very expensive and accounts for a large proportion of solar cell manufacturing costs. If the amount of Ag used is decreased in order to reduce the cost, the wiring resistance increases and the conversion efficiency of the solar cell decreases. In order to realize cost reduction, it is desirable to use an inexpensive metal having a relatively low resistivity. For example, Cu (1.68 × 10 −8 Ωm), Al (2.65 × 10 −8 Ωm), Mg (4.42 × 10 −8 Ωm), Co (5.81 × 10 −8 Ωm) Zn (6.02 × 10 −8 Ωm), Ni (6.99 × 10 −8 Ωm), and the like have relatively low resistivity on the order of 10 −8 Ωm, which is the same as Ag, and are less expensive than Ag. For example, the unit price of Cu is about 1/50 of Ag, and the ratio of silver paste in the total material cost when manufacturing solar cells by a conventional manufacturing method is about 12%. The proportion of paste can be halved to about 6%.

これまでにAgの代替材料が検討されてきたが、Agに比べて他の金属は酸化されやすく、安価な空気中での焼成法では酸化による配線抵抗の増加が問題となっていた。酸化を防ぐ方法としては、不活性ガス雰囲気等の無酸素下で焼成する必要があるが、窒素やアルゴン等を使用するため、結果としてコストが増加してしまうという問題があった。   So far, alternative materials for Ag have been studied, but other metals are more easily oxidized than Ag, and an increase in wiring resistance due to oxidation has been a problem in inexpensive firing methods in air. As a method for preventing oxidation, it is necessary to perform firing under an oxygen-free atmosphere such as an inert gas atmosphere. However, since nitrogen, argon, or the like is used, there is a problem that costs increase as a result.

また、酸化を抑制させるためにCu−Alの合金表面をアルミナ膜で被覆した配線材料が特開2011−034894号公報(特許文献1)により開示されている。この手法による問題点は、CuとAlの合金に対して表面にアルミナ膜を形成することが難しく、コスト高になってしまうということであった。   Japanese Laid-Open Patent Publication No. 2011-034894 (Patent Document 1) discloses a wiring material in which an Cu-Al alloy surface is coated with an alumina film in order to suppress oxidation. The problem with this method is that it is difficult to form an alumina film on the surface of the alloy of Cu and Al, which increases the cost.

更に、特許第4853590号公報(特許文献2)では、過熱水蒸気で金属微粒子を加熱することにより、金属表面が酸化被膜にならず、低抵抗の金属薄膜が得られることが開示されている。
しかしながら、この手法を太陽電池に利用しようとすると、処理温度がシリコン結晶太陽電池の焼成温度に比べて低温であり、導電性ペースト中にガラスフリットを混入させても反射防止膜を除去することができず、高い接触抵抗になってしまうことが問題であった。
更には熱処理によってCuがSi中に拡散すると、光起電力効果により発生した電子とホールの再結合中心となって、太陽電池の出力が低下してしまうという問題があった。
Furthermore, Japanese Patent No. 485590 (Patent Document 2) discloses that by heating metal fine particles with superheated steam, the metal surface does not become an oxide film, and a low-resistance metal thin film can be obtained.
However, if this method is used for solar cells, the treatment temperature is lower than the firing temperature of silicon crystal solar cells, and the antireflection film can be removed even if glass frit is mixed in the conductive paste. The problem was that it could not be achieved, resulting in high contact resistance.
Further, when Cu diffuses into Si by heat treatment, there is a problem that the output of the solar cell is reduced due to the recombination center of electrons and holes generated by the photovoltaic effect.

一方で、焼成を不要とする電極形成の方法としては、特開2012−004531号公報(特許文献3)のように、シード層にAgを用い、上層電極は他の金属をメッキにより形成することで、配線抵抗が低く、低コストの電極を形成できるとの提案がなされている。しかしながら、メッキ法では、金属の析出方向を一方向に制御することが難しく、膜厚が大きくなるにつれて幅が大きくなり、太陽電池受光面積を減少させてしまい、結果として変換効率が低下してしまうという問題があった。また、メッキ液中にシード層であるAgが溶け出して、Si−Agの接着力が低下するという問題があった。   On the other hand, as a method of forming an electrode that does not require firing, Ag is used for the seed layer and another metal is formed on the upper layer by plating as disclosed in JP 2012-004531 A (Patent Document 3). Thus, it has been proposed that a low-cost electrode can be formed with low wiring resistance. However, in the plating method, it is difficult to control the metal deposition direction in one direction, and the width increases as the film thickness increases, reducing the light receiving area of the solar cell, resulting in a decrease in conversion efficiency. There was a problem. Further, there is a problem that Ag as a seed layer is dissolved in the plating solution, and the adhesion force of Si—Ag is lowered.

特開2011−034894号公報JP 2011-034894 A 特許第4853590号公報Japanese Patent No. 485590 特開2012−004531号公報JP 2012-004531 A

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、低コストで変換効率が高い太陽電池を歩留り良く製造する方法、及びその方法で製造された太陽電池、太陽電池モジュールを提供することである。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a method for manufacturing a low-cost and high-conversion solar cell with high yield, and a solar cell and a solar cell module manufactured by the method. Is to provide.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、PN接合が形成された半導体基板と、該半導体基板の少なくとも片面上に櫛歯状に形成されたフィンガー電極と、該フィンガー電極に接続するバスバー電極とを具備する太陽電池に対して、少なくとも該フィンガー電極をAgを主成分とする第1電極と、Cuを主成分とする第2電極からなる積層体の構成とし、この場合、第1電極を500℃以上の空気雰囲気下で焼成し、形成して半導体基板と接続すること、更にこの場合、好ましくは第2電極の焼成を過熱水蒸気雰囲気により行うこと、更に好ましくはバスバー電極も同様にAgを主成分とする第1電極と、Cuを主成分とする第2電極とからなる積層体構成とし、同様に形成することで、、電極を酸化させることなく、また、太陽電池の出力を損なうことなく、低コストの太陽電池を歩留り良く製造することができることを知見し、本発明をなすに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a semiconductor substrate in which a PN junction is formed, a finger electrode formed in a comb shape on at least one surface of the semiconductor substrate, and the finger For a solar cell having a bus bar electrode connected to an electrode, at least the finger electrode has a laminate structure composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component. In this case, the first electrode is fired in an air atmosphere of 500 ° C. or higher, formed, and connected to the semiconductor substrate. In this case, the second electrode is preferably fired in a superheated steam atmosphere, more preferably a bus bar. Similarly, the electrode has a laminated structure composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component, and is formed in a similar manner without oxidizing the electrode. It was, without compromising the output of the solar cell, a low-cost solar cells and found that it is possible to high yield, the present invention has been accomplished.

従って、本発明は、PN接合が形成された半導体基板と、該半導体基板の少なくとも片面上に櫛歯状に形成されたフィンガー電極と、該フィンガー電極に接続するバスバー電極とを具備する太陽電池の製造方法であって、少なくとも該フィンガー電極は、Agを主成分とする第1電極と、Cuを主成分とする第2電極からなる積層体を成し、上記第1電極を500℃以上の空気雰囲気下で焼成して形成することを特徴とする太陽電池の製造方法を提供する。この場合、バスバー電極もAgを主成分とする第1電極と、Cuを主成分とする第2電極からなる積層体を成し、この第1電極も500℃以上の空気雰囲気下で焼成して形成することが好ましい。   Accordingly, the present invention provides a solar cell comprising a semiconductor substrate on which a PN junction is formed, a finger electrode formed in a comb shape on at least one surface of the semiconductor substrate, and a bus bar electrode connected to the finger electrode. In the manufacturing method, at least the finger electrode is a laminate composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component. Provided is a method for manufacturing a solar cell, which is formed by firing in an atmosphere. In this case, the bus bar electrode also comprises a laminate composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component, and the first electrode is also fired in an air atmosphere of 500 ° C. or higher. It is preferable to form.

この場合、前記太陽電池のフィンガー電極及びバスバー電極の第1電極をそれぞれ焼成したのち、フィンガー電極及びバスバー電極の第2電極を印刷又は塗布によりそれぞれ形成し、これを過熱水蒸気によりそれぞれ焼成することが好ましく、過熱水蒸気によって焼成する雰囲気が酸素量5体積%以下であることが好ましい。
また、フィンガー電極及びバスバー電極において、それぞれ第1電極の厚さが3〜30μmであり、第2電極の厚さが3〜30μmであり、第1電極と第2電極との合計厚さが6〜60μmであることが好ましく、更に、前記第1及び第2電極が、スクリーン印刷、オフセット印刷、インクジェット印刷のいずれかの印刷方法により櫛歯状に形成されることが好ましい。
また、本発明は、上記方法で製造された太陽電池、更に太陽電池モジュールを提供する。
In this case, after firing the finger electrode of the solar cell and the first electrode of the bus bar electrode, respectively, the finger electrode and the second electrode of the bus bar electrode are formed by printing or coating, respectively, and this is fired by superheated steam, respectively. Preferably, the atmosphere for baking with superheated steam is preferably 5% by volume or less of oxygen.
Further, in the finger electrode and the bus bar electrode, the thickness of the first electrode is 3 to 30 μm, the thickness of the second electrode is 3 to 30 μm, and the total thickness of the first electrode and the second electrode is 6 The first and second electrodes are preferably formed in a comb-like shape by any one of screen printing, offset printing, and inkjet printing.
Moreover, this invention provides the solar cell manufactured by the said method, and also a solar cell module.

第1電極をAg、第2電極をCuとすることにより電極材料費が安価となり、また、Cuが直接シリコン基板と接していないため、Cuがシリコン基板に拡散して光起電力効果により発生した電子とホールの再結合中心となって発電量が減少することがない太陽電池を製造することができる。
更には、イオンマイグレーションが起きにくいCu材料でAg材料を覆うことにより、イオンマイグレーションが抑制され、材料費を上昇させることなく、長期信頼性の高い電極及び太陽電池モジュールを歩留りよく作製することができる。
本発明によれば、焼成炉以外の設備を変更することなく、太陽電池製造工程に導入することができ、更に材料費の低減分太陽電池の製造コストが低減され、非常に有効である。
Since the first electrode is Ag and the second electrode is Cu, the electrode material cost is low, and since Cu is not in direct contact with the silicon substrate, Cu diffuses into the silicon substrate and is generated by the photovoltaic effect. A solar cell can be manufactured in which the amount of power generation does not decrease due to the recombination center of electrons and holes.
Furthermore, by covering the Ag material with a Cu material that is less likely to cause ion migration, ion migration is suppressed, and high-reliability electrodes and solar cell modules can be manufactured with high yield without increasing material costs. .
According to the present invention, it can be introduced into the solar cell manufacturing process without changing equipment other than the firing furnace, and the manufacturing cost of the solar cell is further reduced by the reduction in material cost, which is very effective.

一般的な太陽電池の電極の断面図である。It is sectional drawing of the electrode of a common solar cell. 一般的な太陽電池の表面形状を示す平面図である。It is a top view which shows the surface shape of a common solar cell. 一般的な太陽電池の裏面形状を示す裏面図である。It is a back view which shows the back surface shape of a common solar cell. 本発明に係る受光面電極の断面図である。It is sectional drawing of the light-receiving surface electrode which concerns on this invention. インターコネクタ接続された太陽電池を示す一部省略平面図である。It is a partially omitted plan view showing a solar cell connected to an interconnector. 実施例に記載の太陽電池モジュールの断面図である。It is sectional drawing of the solar cell module as described in an Example.

本発明の太陽電池の作製方法の一例を以下に述べる。ただし、本発明はこの方法で作製された太陽電池に限られるものではない。   An example of a method for manufacturing the solar cell of the present invention will be described below. However, the present invention is not limited to the solar cell manufactured by this method.

高純度シリコンにホウ素あるいはガリウムのようなIII族元素をドープし、比抵抗0.1〜5Ω・cmとしたアズカット単結晶{100}p型シリコン基板表面のスライスダメージを、濃度5〜60質量%の水酸化ナトリウムや水酸化カリウムのような高濃度のアルカリ、もしくは、フッ酸と硝酸の混酸等を用いてエッチングする。単結晶シリコン基板は、CZ法、FZ法のいずれの方法によって作製されてもよい。   Slice damage on the surface of an as-cut single crystal {100} p-type silicon substrate doped with a high purity silicon group III element such as boron or gallium and having a specific resistance of 0.1 to 5 Ω · cm, concentration of 5 to 60% by mass Etching is performed using a high concentration alkali such as sodium hydroxide or potassium hydroxide, or a mixed acid of hydrofluoric acid and nitric acid. The single crystal silicon substrate may be manufactured by either the CZ method or the FZ method.

引き続き、基板表面にテクスチャとよばれる微小な凹凸形成を行う。テクスチャは太陽電池の反射率を低下させるための有効な方法である。テクスチャは、加熱した水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム等のアルカリ溶液(濃度1〜10質量%、温度60〜100℃)中に10〜30分程度浸漬することで容易に作製される。上記溶液中に、所定量の2−プロパノールを溶解させ、反応を促進させることが多い。   Subsequently, minute unevenness called texture is formed on the substrate surface. Texture is an effective way to reduce solar cell reflectivity. The texture should be immersed for about 10 to 30 minutes in an alkali solution (concentration 1 to 10% by mass, temperature 60 to 100 ° C.) such as heated sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate, and sodium bicarbonate. Easy to make. In many cases, a predetermined amount of 2-propanol is dissolved in the solution to promote the reaction.

テクスチャ形成後、塩酸、硫酸、硝酸、フッ酸等、もしくはこれらの混合液の酸性水溶液中で洗浄する。経済的及び効率的見地から、塩酸中での洗浄が好ましい。清浄度を向上するため、塩酸溶液中に、0.5〜5質量%の過酸化水素を混合させ、60〜90℃に加温して洗浄してもよい。   After texture formation, washing is performed in an acidic aqueous solution of hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or the like or a mixture thereof. From an economic and efficient standpoint, washing in hydrochloric acid is preferred. In order to improve the cleanliness, 0.5 to 5% by mass of hydrogen peroxide may be mixed in a hydrochloric acid solution and heated to 60 to 90 ° C. for washing.

この基板上に、オキシ塩化リンを用いた気相拡散法によりエミッタ層を形成する。一般的なシリコン太陽電池は、PN接合を受光面にのみ形成する必要があり、これを達成するために基板同士を2枚重ね合わせた状態で拡散したり、拡散前に裏面にSiO2膜やSiNx膜などを拡散マスクとして形成して、裏面にPN接合ができないような工夫を施す必要がある。拡散後、表面にできたガラスをフッ酸等で除去する。 On this substrate, an emitter layer is formed by vapor phase diffusion using phosphorus oxychloride. Common silicon solar cell, it is necessary to form only on the light receiving surface of the PN junction, or diffused in a state superimposed two substrates to each other in order to achieve this, SiO 2 film Ya on the back surface before spreading A SiN x film or the like is formed as a diffusion mask, and it is necessary to devise such that a PN junction cannot be formed on the back surface. After diffusion, the glass formed on the surface is removed with hydrofluoric acid or the like.

次に、受光面の反射防止膜形成を行う。製膜にはプラズマCVD装置を用いSiNx膜を約100nm製膜する。反応ガスとして、モノシラン(SiH4)及びアンモニア(NH3)を混合して用いることが多いが、NH3の代わりに窒素を用いることも可能であり、また、プロセス圧力の調整、反応ガスの希釈、更には、基板に多結晶シリコンを用いた場合には基板のバルクパッシベーション効果を促進するため、反応ガスに水素を混合することもある。 Next, an antireflection film is formed on the light receiving surface. A SiN x film is formed to a thickness of about 100 nm using a plasma CVD apparatus. As the reaction gas, monosilane (SiH 4 ) and ammonia (NH 3 ) are often mixed and used, but nitrogen can be used instead of NH 3 , and the process pressure can be adjusted and the reaction gas diluted. Furthermore, when polycrystalline silicon is used for the substrate, hydrogen may be mixed into the reaction gas in order to promote the bulk passivation effect of the substrate.

次いで、裏面電極をスクリーン印刷法で形成する。上記基板の裏面に、銀粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷したのち、アルミニウム粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷する。印刷後、5〜30分間,700〜800℃の温度で焼成して、裏面電極が形成される。裏面電極は他にもオフセット印刷やインクジェット印刷等で形成することが望ましいが、蒸着法、スパッタ法等で作製することも可能である。   Next, a back electrode is formed by a screen printing method. A paste in which silver powder and glass frit are mixed with an organic binder is screen-printed on the back surface of the substrate in a bus bar shape, and then a paste in which aluminum powder is mixed with an organic binder is screen-printed in a region other than the bus bar. After printing, the back electrode is formed by baking at a temperature of 700 to 800 ° C. for 5 to 30 minutes. The back electrode is preferably formed by offset printing, ink jet printing, or the like, but can also be produced by vapor deposition, sputtering, or the like.

次に、本発明に係る太陽電池の受光面電極の形成方法について説明する。
まず、図4に示したように、シリコン基板に拡散層、反射防止膜を形成した太陽電池基板(108)上に、フィンガー電極幅が30〜80μm、フィンガー電極間隔0.5〜4.0mmの櫛歯状パターン及びバスバー電極幅500〜3000μm、バスバー電極間隔30〜80mmのパターンを有するスクリーン製版を用いて、Ag粉末とガラスフリットと有機物バインダを混合したペーストを用いてフィンガー電極の第1電極(109)及びバスバー電極(106)の第1電極を印刷する。
スクリーン印刷法は厚膜形成に優れた方法であり、1回の印刷により20μm程度の厚みが得られる。第1電極は他にもオフセット印刷やインクジェット印刷等で形成することもできるが、蒸着法、スパッタ法等で作製することも可能である。
Next, the formation method of the light-receiving surface electrode of the solar cell which concerns on this invention is demonstrated.
First, as shown in FIG. 4, a finger electrode width of 30 to 80 μm and a finger electrode interval of 0.5 to 4.0 mm are formed on a solar cell substrate (108) in which a diffusion layer and an antireflection film are formed on a silicon substrate. A first electrode of a finger electrode using a paste made of a mixture of Ag powder, glass frit and an organic binder using a screen plate having a comb-like pattern, a bus bar electrode width of 500 to 3000 μm, and a bus bar electrode interval of 30 to 80 mm. 109) and the first electrode of the bus bar electrode (106).
The screen printing method is an excellent method for forming a thick film, and a thickness of about 20 μm can be obtained by one printing. The first electrode can also be formed by offset printing, ink jet printing, or the like, but can also be produced by vapor deposition, sputtering, or the like.

なお、上記フィンガー電極、バスバー電極は、スクリーン印刷法により同時に形成することが望ましい。このようにすると、印刷工程を1回とすることができ、コストを削減できるとともに、シリコン基板に対して力をかける工程数を少なくすることができるため、割れ等が発生しにくく、歩留りが向上するという利点がある。また、受光面側の電極パターンの応用として、隣り合うフィンガー電極の端部同士を接続したパターンでフィンガー電極を形成してもよい。このような補助フィンガー電極を設けると、フィンガー電極の一部にたとえ断線が生じても、他のフィンガー電極から電流を取り出すことが可能である。   The finger electrodes and bus bar electrodes are preferably formed simultaneously by screen printing. In this way, the printing process can be performed once, the cost can be reduced, and the number of processes applied to the silicon substrate can be reduced, so that cracks are not easily generated and the yield is improved. There is an advantage of doing. Further, as an application of the electrode pattern on the light receiving surface side, the finger electrodes may be formed in a pattern in which the ends of adjacent finger electrodes are connected to each other. When such an auxiliary finger electrode is provided, even if a disconnection occurs in a part of the finger electrode, a current can be taken out from the other finger electrode.

上記のように電極ペーストを印刷したのち、120℃のホットプレートで5分間乾燥し、空気雰囲気下において、500℃以上、特に700〜800℃で5〜30分間焼成する。第1電極は裏面電極と同時に焼成することも可能である。   After the electrode paste is printed as described above, it is dried on a hot plate at 120 ° C. for 5 minutes, and is baked at 500 ° C. or higher, particularly 700 to 800 ° C. for 5 to 30 minutes in an air atmosphere. The first electrode can be fired simultaneously with the back electrode.

続いて、フィンガー電極の第2電極(110)及びバスバー電極(106)の第2電極の形成方法について説明する。第1電極と同形状の櫛歯状パターン及びバスバーパターンとなるように、Cu粉末とガラスフリットと、有機溶剤を混合したペーストをスクリーン印刷、オフセット印刷、インクジェット印刷法等で印刷する。中でも、スクリーン印刷法は厚膜形成に優れた方法であり好ましい。なお、フィンガー電極及びバスバー電極において、それぞれ第1電極の厚さは3〜30μm、特に5〜20μm、第2電極の厚さは3〜30μm、特に15〜30μmとすることが好ましく、また第1電極と第2電極との合計厚さが6〜60μmの厚膜とすることが好ましい。   Next, a method for forming the second electrode (110) of the finger electrode and the second electrode of the bus bar electrode (106) will be described. A paste in which Cu powder, glass frit, and an organic solvent are mixed is printed by screen printing, offset printing, ink jet printing, or the like so as to obtain a comb-like pattern and bus bar pattern having the same shape as the first electrode. Among these, the screen printing method is preferable because it is an excellent method for forming a thick film. In the finger electrode and the bus bar electrode, the thickness of the first electrode is preferably 3 to 30 μm, particularly 5 to 20 μm, and the thickness of the second electrode is preferably 3 to 30 μm, particularly 15 to 30 μm. The total thickness of the electrode and the second electrode is preferably 6 to 60 μm.

次に、上記積層された電極を、過熱水蒸気により焼成を行う。
過熱水蒸気とは、飽和水蒸気に対し圧力を上げることなくそのまま熱を加えたものをいい、標準の大気圧であれば100℃で沸騰して蒸発して出てくる水蒸気が飽和水蒸気であり、この飽和水蒸気に更に熱を加えたものが過熱水蒸気である。
過熱水蒸気は高温空気と比べて約4倍の熱容量を持っていることから焼成炉の温度が一定し、均一な焼結が可能である。
Next, the laminated electrode is fired with superheated steam.
Superheated steam refers to saturated steam that is directly heated without increasing its pressure. If it is standard atmospheric pressure, steam that boiles at 100 ° C and evaporates is saturated steam. Superheated steam is obtained by further adding heat to saturated steam.
Superheated steam has a heat capacity about four times that of high-temperature air, so the temperature of the firing furnace is constant and uniform sintering is possible.

また、無酸素状態であることにより、酸化されることなく乾燥、焼成ができることから食品加熱、焙煎、殺菌等に用いられ、発がん性物質や過酸化脂質の発生のおそれがほとんどなく、ダイオキシンの発生を抑えることができる。
なお、過熱水蒸気は無酸素に近い状態であるので火災や爆発のおそれがない上に大気圧での常圧過熱蒸気では圧力的にも安全である。
In addition, it is used in food heating, roasting, sterilization, etc. because it can be dried and baked without being oxidized because it is in an oxygen-free state, and there is almost no risk of generating carcinogenic substances and lipid peroxides. Occurrence can be suppressed.
Note that superheated steam is almost oxygen-free, so there is no risk of fire or explosion, and atmospheric superheated steam at atmospheric pressure is safe in terms of pressure.

本発明に係る製造方法では、過熱水蒸気中の酸素濃度は5体積%以下であることが望ましく、特に、1体積%以下が好ましい。酸素濃度が5体積%を超えた場合、金属の酸化が進行するだけでなく、伝熱効果が減少して焼結が不均一になったりする。焼結が不均一の場合、発電した電流が高抵抗部に流れて発熱し、太陽電池モジュールが発火するなどして信頼性を低下させる原因となってしまう。   In the production method according to the present invention, the oxygen concentration in the superheated steam is desirably 5% by volume or less, and particularly preferably 1% by volume or less. When the oxygen concentration exceeds 5% by volume, not only the oxidation of the metal proceeds, but also the heat transfer effect is reduced and the sintering becomes uneven. If the sintering is not uniform, the generated current flows through the high resistance portion and generates heat, causing the solar cell module to ignite and the like, leading to a decrease in reliability.

なお、過熱水蒸気の温度は100〜900℃であることが好ましい。より好ましくは、300℃以上800℃以下である。100℃より低い場合は金属同士の溶融が進まず、所望の抵抗率まで低下しないためである。導電性ペーストを用いた太陽電池の電極形成法では、900℃を超えた温度にさらされると、ペースト中の金属が基板側へ拡散して、太陽電池特性を劣化させるおそれがあるためである。
上記焼成条件下で、5〜30分間処理されることにより、太陽電池が完成する。
In addition, it is preferable that the temperature of superheated steam is 100-900 degreeC. More preferably, it is 300 degreeC or more and 800 degrees C or less. This is because when the temperature is lower than 100 ° C., the metal does not melt and does not decrease to a desired resistivity. This is because, in the method for forming an electrode of a solar cell using a conductive paste, when exposed to a temperature exceeding 900 ° C., the metal in the paste may diffuse to the substrate side and deteriorate the solar cell characteristics.
The solar cell is completed by being treated for 5 to 30 minutes under the above-mentioned baking conditions.

このようにして形成される本発明に係る太陽電池の受光面電極は次に述べるような特徴を有する。
すなわち、Agを主成分とする第1電極とCuを主成分とする第2電極からなる積層体を成し、過熱水蒸気により焼成することによってCuの酸化を防ぎ、配線抵抗の低い電極が得られる。積層体にする理由は第一に、受光面積を大きくするために、細線かつ厚みの大きい、高アスペクト比の電極を形成することが必須であること、第二にシリコン基板とコンタクトする金属がCuである場合、高温の熱処理においてCuがSi基板に拡散し、光起電力効果により発生した電子とホールの再結合中心となって、発電量が減少することが懸念されるからである。また、第1電極をAgで形成すると、Cuに比べて低いコンタクト抵抗が得られ、変換効率の高い太陽電池を製造することが可能であるためである。更には、Cuの単価はAgの50分の1であるために、大幅な材料コストを低減することができる。
The light-receiving surface electrode of the solar cell according to the present invention thus formed has the following characteristics.
That is, a laminated body composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component is formed, and firing with superheated steam prevents Cu oxidation and an electrode with low wiring resistance can be obtained. . The reason for making a laminated body is that, first, in order to increase the light receiving area, it is essential to form a thin wire and a thick electrode with a high aspect ratio. Second, the metal that contacts the silicon substrate is Cu. In this case, it is feared that Cu is diffused into the Si substrate in a high-temperature heat treatment and becomes a recombination center of electrons and holes generated by the photovoltaic effect, thereby reducing the amount of power generation. Further, when the first electrode is made of Ag, a contact resistance lower than that of Cu is obtained, and a solar cell with high conversion efficiency can be manufactured. Furthermore, since the unit price of Cu is 1/50 of Ag, the material cost can be greatly reduced.

本発明は更に、下記のような効果も持ち合わせている。
すなわちイオンマイグレーションが起きにくくなるという効果である。
太陽電池そのものは、屋外環境に曝されると、温度・湿度・圧力等により、集電電極にダメージが加えられ、変換効率が低下してしまう。また、ごみなど光を透過しない異物が受光面に付着すると、太陽光を取り込むことができず、著しく変換効率が低下してしまう。また、太陽電池1枚の発電量は小さいため、普通複数枚繋げて使用される。
そこで、一般的な太陽電池モジュールは、製造コストや作業の容易性等の観点から、連結用の配線1714をバスバー電極1706にはんだ付けしたのち、白板強化ガラス等の透明な表面側カバー/エチレンビニルアセテート(EVA)等の充填剤/太陽電池/EVAなどの充填剤/ポリエチレンテレフタラート(PET)等の樹脂フィルムからなる耐候性の裏面側カバーの順に積層した状態で加熱圧着することによって、変換効率の低下をできる限り防ぐようにモジュール化される。
The present invention further has the following effects.
That is, it is an effect that ion migration becomes difficult to occur.
When the solar cell itself is exposed to an outdoor environment, the current collecting electrode is damaged due to temperature, humidity, pressure, etc., and conversion efficiency decreases. In addition, when foreign matter such as dust that does not transmit light adheres to the light receiving surface, sunlight cannot be taken in, and conversion efficiency is significantly reduced. Moreover, since the power generation amount of one solar cell is small, it is usually used by connecting a plurality of solar cells.
Therefore, in general solar cell modules, from the viewpoint of manufacturing cost, ease of work, and the like, after soldering the connection wiring 1714 to the bus bar electrode 1706, a transparent surface side cover such as white plate reinforced glass / ethylene vinyl Conversion efficiency is achieved by thermocompression bonding in the order of a laminate of a weather-resistant back side cover made of a filler such as acetate (EVA), a solar cell, a filler such as EVA, or a resin film such as polyethylene terephthalate (PET). It is modularized so as to prevent the degradation of the as much as possible.

しかしながら、上記材料で封止しても、水分の浸入を完全に抑制することはできない。一般的なAgの電極配線を有する太陽電池モジュールを太陽光の下で長期に亘って曝露し、発電させ続けると、モジュール内に侵入した水分により、イオンマイグレーションが発生し、太陽電池の出力が低下や不具合が発生することがあった。
イオンマイグレーションとは、電界の影響で金属成分が非金属媒体の上や中を横切って移動する現象である。この現象では、移動の前後で金属成分は金属状態であり導電性を示す。太陽電池モジュールにおいてイオンマイグレーションが発生した場合、太陽電池受光面側と裏面側の連結用の配線が短絡して、太陽電池モジュールの出力が低下してしまうという問題が発生する。
However, even if it is sealed with the above material, the intrusion of moisture cannot be completely suppressed. When a solar cell module having a general Ag electrode wiring is exposed to sunlight over a long period of time and continues to generate power, ion migration occurs due to moisture that has entered the module, and the output of the solar cell decreases. There was a problem that occurred.
Ion migration is a phenomenon in which a metal component moves across or inside a non-metallic medium due to the influence of an electric field. In this phenomenon, the metal component is in a metal state before and after the movement and exhibits conductivity. When ion migration occurs in the solar cell module, there is a problem that the connection wiring on the solar cell light-receiving surface side and the back surface side is short-circuited, and the output of the solar cell module is reduced.

イオンマイグレーションの発生しやすさは、Ag>Pb≧Cu>Sn>Auとなっており、Agは最もイオンマイグレーションが起きやすい金属である。本発明のように、イオンマイグレーションの起こりやすいAg材料を、より起きにくいCu材料で覆い、更に加熱焼成という工程を経ることによってAg−Cu界面には合金ができ、少なくともAgのイオンマイグレーションは抑制できるという効果が得られる。一般的な太陽電池表面はAg電極であるから、表面がCuで覆われることによって、イオンマイグレーションによる太陽電池の短絡が起きにくくなり、長期信頼性の高い太陽電池モジュールとなる。
このように、本発明に係る電極形成方法を用いれば、電極材料費が安価になるにも関わらず、長期信頼性の高い太陽電池モジュールを製造することができる。
The ease of occurrence of ion migration is Ag> Pb ≧ Cu>Sn> Au, and Ag is the metal most likely to undergo ion migration. As in the present invention, an Ag material that is likely to undergo ion migration is covered with a Cu material that is less likely to occur, and an alloy is formed at the Ag-Cu interface through a process of heating and firing, and at least the ion migration of Ag can be suppressed. The effect is obtained. Since the surface of a general solar cell is an Ag electrode, when the surface is covered with Cu, a short circuit of the solar cell due to ion migration hardly occurs, and a solar cell module with high long-term reliability is obtained.
As described above, when the electrode forming method according to the present invention is used, it is possible to manufacture a solar cell module with high long-term reliability, although the electrode material cost is low.

この場合、太陽電池モジュールは、図5,6に示したように、一の太陽電池1Aの表面バスバー電極105Aとこれに隣接する他の太陽電池1Bの裏面バスバー電極106Bを接続するという態様で複数個の太陽電池を接続すると共に、この複数の太陽電池が接続した太陽電池群を表面側透光パネルと裏面側保護パネルとの間に介在させ、これら両パネル間の空隙を公知の封止材によって封止することによって得ることができる。   In this case, as shown in FIGS. 5 and 6, a plurality of solar cell modules are connected in such a manner that the front surface bus bar electrode 105A of one solar cell 1A and the rear surface bus bar electrode 106B of another solar cell 1B adjacent thereto are connected. And connecting a plurality of solar cells, interposing a solar cell group to which the plurality of solar cells are connected between the front-side light-transmitting panel and the back-side protection panel, and a known sealing material between the two panels Can be obtained by sealing.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

[実施例1、比較例1]
本発明の有効性を確認するため、以下の工程を半導体基板10枚について行い、太陽電池を作製した。
まず、15cm角、厚さ250μm、比抵抗2.0Ω・cmの、ホウ素ドープ{100}p型アズカットシリコン基板(100)を用意し、濃水酸化カリウム水溶液によりダメージ層を除去、テクスチャを形成、オキシ塩化リン雰囲気下850℃で熱処理したエミッタ層(101)を形成し、フッ酸にてリンガラスを除去し、洗浄、乾燥させた。次にプラズマCVD装置を用い、SiNx膜(102)を製膜し、裏面に、Ag粉末とガラスフリットを有機物バインダで混合したペーストをバスバー状にスクリーン印刷したのち(106)、Al粉末を有機物バインダで混合したペーストをバスバー以外の領域にスクリーン印刷した(104)。120℃のホットプレートで有機溶媒を乾燥して裏面電極を形成した半導体基板を作製した。
次に、この半導体基板の受光面上に、Ag粉末とガラスフリットを有機物バインダーで混合したペーストを、フィンガー電極開口80μm、フィンガー間ピッチ2mm、バスバー電極幅2mmの櫛歯状パターンを有するスクリーン製版を用いて、スキージ硬度70度、スキージ角度70度、印圧0.3MPa、印刷速度100mm/secで印刷し、120℃のホットプレートで乾燥した。その後、700℃の空気雰囲気下で5分間焼成を行った。
次に、フィンガー電極及びバスバー電極の第2電極として導電性ペーストA,Bを、第1電極と同じ櫛歯状パターンを有するスクリーン製版を用いて、スキージ硬度70度、スキージ角度70度、印圧0.3MPa、印刷速度50mm/secで第1電極上に重ねるようにしてそれぞれ塗布した。第2電極を形成するための導電性ペースト中の主たる金属は、比較例1:Ag粉末、実施例1:Cu粉末とした。主たる金属はペースト総質量の85質量%であり、残り5質量%がガラスフリット、残り10質量%が有機溶媒である。120℃のクリーンオーブンで有機溶媒の乾燥を行ったのち、DHF社製蒸気加熱装置を用いて、500℃、蒸気量20kg/hの過熱水蒸気で5分間焼成した。なお、フィンガー電極、バスバー電極のそれぞれにおいて、第1電極の厚さは15μm、第2電極の厚さは20μmであった。
[Example 1, Comparative Example 1]
In order to confirm the effectiveness of the present invention, the following steps were performed on 10 semiconductor substrates to produce solar cells.
First, a boron-doped {100} p-type as-cut silicon substrate (100) with a 15 cm square, a thickness of 250 μm, and a specific resistance of 2.0 Ω · cm is prepared, and the damaged layer is removed with a concentrated potassium hydroxide aqueous solution to form a texture. An emitter layer (101) heat-treated at 850 ° C. in a phosphorus oxychloride atmosphere was formed, and the phosphorus glass was removed with hydrofluoric acid, washed and dried. Next, a SiN x film (102) is formed using a plasma CVD apparatus, and a paste obtained by mixing Ag powder and glass frit with an organic binder is screen-printed in a bus bar shape on the back surface (106), and then the Al powder is converted into an organic substance. The paste mixed with the binder was screen printed in an area other than the bus bar (104). The organic solvent was dried with a hot plate at 120 ° C. to prepare a semiconductor substrate on which the back electrode was formed.
Next, on the light-receiving surface of the semiconductor substrate, a screen plate making having a comb-like pattern having a paste of Ag powder and glass frit mixed with an organic binder and having finger electrode openings of 80 μm, a pitch between fingers of 2 mm, and a bus bar electrode width of 2 mm is formed. Used, printing was performed at a squeegee hardness of 70 degrees, a squeegee angle of 70 degrees, a printing pressure of 0.3 MPa, a printing speed of 100 mm / sec, and dried on a 120 ° C. hot plate. Thereafter, baking was performed in an air atmosphere at 700 ° C. for 5 minutes.
Next, the conductive pastes A and B are used as the second electrodes of the finger electrode and the bus bar electrode, and the screen stencil having the same comb-teeth pattern as the first electrode is used. The squeegee hardness is 70 degrees, the squeegee angle is 70 degrees, and the printing pressure. Each was applied so as to overlap the first electrode at 0.3 MPa and a printing speed of 50 mm / sec. The main metals in the conductive paste for forming the second electrode were Comparative Example 1: Ag powder and Example 1: Cu powder. The main metal is 85% by mass of the total mass of the paste, the remaining 5% by mass is glass frit, and the remaining 10% by mass is an organic solvent. After drying the organic solvent in a clean oven at 120 ° C., it was baked with superheated steam at 500 ° C. and a steam amount of 20 kg / h for 5 minutes using a steam heating device manufactured by DHF. In each of the finger electrode and the bus bar electrode, the thickness of the first electrode was 15 μm, and the thickness of the second electrode was 20 μm.

このように作製した太陽電池10枚について、次のような評価を行った。
(1)ソーラーシミュレーター(25℃の雰囲気の中、照射強度:1kW/m2、スペクトル:AM1.5グローバル)による評価を行った。
(2)電極コスト
実施例1、比較例1の平均を表1に示す。
The following evaluation was performed about ten solar cells produced in this way.
(1) Evaluation by a solar simulator (irradiation intensity: 1 kW / m 2 , spectrum: AM1.5 global in an atmosphere at 25 ° C.).
(2) Electrode cost Table 1 shows the average of Example 1 and Comparative Example 1.

Figure 2014057028
Figure 2014057028

実施例の太陽電池は、比較例とほぼ同等の変換効率が得られ、電極コストはAgの半分となった。   In the solar cell of the example, almost the same conversion efficiency as that of the comparative example was obtained, and the electrode cost was half that of Ag.

[実施例2、比較例2]
実施例1、比較例1で作製した太陽電池2枚ずつ用いて下記要領でモジュール化した。幅が2mmで厚さが0.2mmの直線状のインターコネクタを用意した。図5のように、インターコネクタ111とバスバー電極106が接続する箇所に、予めフラックスを塗布し、インターコネクタと太陽電池セルの受光面バスバー部をハンダで接続した。また、太陽電池セルの裏面側のバスバー電極も同様にハンダ付けを行い、図6に示すように2枚直列つなぎにした。
次に、白板強化ガラス/エチレンビニルアセテート(EVA)/配線材料を取り付けた太陽電池/EVA/ポリエチレンテレフタラート(PET)の順に積層し、周囲を真空にしたあと、150℃の温度で10分間加熱圧着したのち、150℃で1時間加熱することにより完全に硬化させた。
以上の工程を経て、太陽電池モジュールを製造した。
実施例及び比較例に係る太陽電池モジュールに対し、それぞれ高温高湿試験(85℃,85%RH、JIS C8917)を1,000時間行い、試験前後での太陽電池モジュールの電気特性を比較した。また、太陽電池モジュールの電気特性はAM1.5、100mW/cm2の擬似太陽光照射下で測定した。結果を表2に示す。
[Example 2, Comparative Example 2]
Using two solar cells prepared in Example 1 and Comparative Example 1, each was modularized in the following manner. A linear interconnector having a width of 2 mm and a thickness of 0.2 mm was prepared. As shown in FIG. 5, a flux was applied in advance to a place where the interconnector 111 and the bus bar electrode 106 were connected, and the interconnector and the light receiving surface bus bar portion of the solar battery cell were connected by solder. Also, the bus bar electrodes on the back surface side of the solar battery cells were similarly soldered, and two sheets were connected in series as shown in FIG.
Next, white plate tempered glass / ethylene vinyl acetate (EVA) / solar cell with wiring material attached / EVA / polyethylene terephthalate (PET) are laminated in this order, and the surroundings are evacuated and heated at a temperature of 150 ° C. for 10 minutes. After the pressure bonding, the film was completely cured by heating at 150 ° C. for 1 hour.
The solar cell module was manufactured through the above steps.
A high temperature and high humidity test (85 ° C., 85% RH, JIS C8917) was performed for 1,000 hours on the solar cell modules according to the example and the comparative example, and the electrical characteristics of the solar cell module before and after the test were compared. Moreover, the electrical characteristics of the solar cell module were measured under irradiation of simulated sunlight at AM 1.5 and 100 mW / cm 2 . The results are shown in Table 2.

Figure 2014057028
特性維持率・・・(試験後特性/試験前特性)×100
Figure 2014057028
Characteristic maintenance ratio (post-test characteristics / pre-test characteristics) x 100

高温高湿試験後、比較例では曲線因子が25%、発電量が30%低下したが、実施例ではほとんど低下が見られなかった。
比較例のモジュールを目視検査すると、Agが樹状に拡がっているのが見られ、イオンマイグレーションが確認された。これにより受光面電極と裏面電極が接続されて曲線因子が減少し、発電量が減少してしまった。
以上より、Ag代替材料を用いて電極形成を行うと、酸化して電極の配線抵抗が増加したり、無酸素下で焼成する高コスト化などの従来法での問題点を解決し、変換効率を減少させることなく、更には高い信頼性を持った太陽電池を製造することができる。
After the high-temperature and high-humidity test, the curve factor decreased by 25% and the power generation amount decreased by 30% in the comparative example, but almost no decrease was observed in the examples.
When the module of the comparative example was visually inspected, it was observed that Ag spread in a tree shape, and ion migration was confirmed. As a result, the light-receiving surface electrode and the back-surface electrode are connected, the fill factor decreases, and the power generation amount decreases.
From the above, when electrode formation is performed using an Ag alternative material, the problem of conventional methods such as increased wiring resistance of the electrode due to oxidation and higher cost of firing in the absence of oxygen is solved, and conversion efficiency is improved. In addition, a solar cell having high reliability can be manufactured without reducing.

100 P型半導体基板
101 N型拡散層
102 反射防止膜
103 BSF層
104 アルミニウム電極
105 表面バスバー電極
106 裏面バスバー電極
107 フィンガー電極
108 太陽電池基板
109 第1電極
110 第2電極
111 インターコネクタ
100 P-type semiconductor substrate 101 N-type diffusion layer 102 Antireflection film 103 BSF layer 104 Aluminum electrode 105 Front bus bar electrode 106 Back bus bar electrode 107 Finger electrode 108 Solar cell substrate 109 First electrode 110 Second electrode 111 Interconnector

Claims (8)

PN接合が形成された半導体基板と、該半導体基板の少なくとも片面上に櫛歯状に形成されたフィンガー電極と、該フィンガー電極に接続するバスバー電極とを具備する太陽電池の製造方法であって、少なくとも該フィンガー電極は、Agを主成分とする第1電極と、Cuを主成分とする第2電極からなる積層体を成し、上記第1電極を500℃以上の空気雰囲気下で焼成して形成することを特徴とする太陽電池の製造方法。   A method for manufacturing a solar cell, comprising: a semiconductor substrate on which a PN junction is formed; a finger electrode formed in a comb shape on at least one surface of the semiconductor substrate; and a bus bar electrode connected to the finger electrode, At least the finger electrode comprises a laminate composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component, and the first electrode is baked in an air atmosphere of 500 ° C. or higher. A method for producing a solar cell, comprising forming the solar cell. 前記バスバー電極が、Agを主成分とする第1電極と、Cuを主成分とする第2電極からなる積層体を成し、このバスバー電極の第1電極を500℃以上の空気雰囲気下で焼成して形成することを特徴とする請求項1記載の太陽電池の製造方法。   The bus bar electrode comprises a laminate composed of a first electrode containing Ag as a main component and a second electrode containing Cu as a main component, and the first electrode of the bus bar electrode is fired in an air atmosphere of 500 ° C. or higher. The method for manufacturing a solar cell according to claim 1, wherein: 前記太陽電池の第1電極を焼成したのち、第2電極を印刷又は塗布により形成し、これを過熱水蒸気により焼成することを特徴とする請求項1又は2記載の太陽電池の製造方法。   The method for producing a solar cell according to claim 1 or 2, wherein after the first electrode of the solar cell is fired, the second electrode is formed by printing or coating, and this is fired with superheated steam. 過熱水蒸気によって焼成する雰囲気が、酸素量5体積%以下であることを特徴とする請求項3記載の太陽電池の製造方法。   The method for producing a solar cell according to claim 3, wherein the atmosphere for firing with superheated steam is an oxygen content of 5% by volume or less. 第1電極の厚さが3〜30μmであり、第2電極の厚さが3〜30μmであり、第1電極と第2電極との合計厚さが6〜60μmである請求項1〜4のいずれか1項記載の太陽電池の製造方法。   The thickness of the first electrode is 3 to 30 µm, the thickness of the second electrode is 3 to 30 µm, and the total thickness of the first electrode and the second electrode is 6 to 60 µm. The manufacturing method of the solar cell of any one of Claims 1. 前記第1及び第2電極が、スクリーン印刷、オフセット印刷、インクジェット印刷のいずれかの印刷方法により櫛歯状に形成されることを特徴とする請求項1〜5のいずれか1項記載の太陽電池の製造方法。   The solar cell according to any one of claims 1 to 5, wherein the first and second electrodes are formed in a comb-teeth shape by any one of screen printing, offset printing, and ink jet printing. Manufacturing method. 請求項1〜6のいずれか1項記載の製造方法で製造された太陽電池。   The solar cell manufactured with the manufacturing method of any one of Claims 1-6. 請求項7記載の太陽電池を用いて製造された太陽電池モジュール。   The solar cell module manufactured using the solar cell of Claim 7.
JP2012202496A 2012-09-14 2012-09-14 Manufacturing method of solar cell Active JP6186683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012202496A JP6186683B2 (en) 2012-09-14 2012-09-14 Manufacturing method of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012202496A JP6186683B2 (en) 2012-09-14 2012-09-14 Manufacturing method of solar cell

Publications (2)

Publication Number Publication Date
JP2014057028A true JP2014057028A (en) 2014-03-27
JP6186683B2 JP6186683B2 (en) 2017-08-30

Family

ID=50614079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012202496A Active JP6186683B2 (en) 2012-09-14 2012-09-14 Manufacturing method of solar cell

Country Status (1)

Country Link
JP (1) JP6186683B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511597A (en) * 2014-03-28 2017-04-20 サンパワー コーポレイション Solar cell metallization
CN107394011A (en) * 2017-08-16 2017-11-24 张家港协鑫集成科技有限公司 Solar battery sheet and preparation method thereof
US20220158004A1 (en) * 2019-04-29 2022-05-19 Nantong T-Sun New Energy Co., Ltd. Method for metallizing front electrode of n-type solar cell
WO2023157935A1 (en) * 2022-02-16 2023-08-24 株式会社マテリアル・コンセプト Solar cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186862A (en) * 2009-02-12 2010-08-26 Shin-Etsu Chemical Co Ltd Solar cell
WO2010095672A1 (en) * 2009-02-18 2010-08-26 東洋紡績株式会社 Metal thin film production method and metal thin film
JP2011204872A (en) * 2010-03-25 2011-10-13 Kyoto Elex Kk Conductive paste for forming light-receiving surface electrode of solar cell element, solar cell element and method of manufacturing the solar cell element
WO2012005374A1 (en) * 2010-07-09 2012-01-12 阪本 順 Panel, panel production method, solar cell module, printing device and printing method
JP2012018941A (en) * 2010-07-06 2012-01-26 Sharp Corp Backside electrode type solar battery cell, backside electrode type solar battery module, and method for manufacturing backside electrode type solar battery cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186862A (en) * 2009-02-12 2010-08-26 Shin-Etsu Chemical Co Ltd Solar cell
WO2010095672A1 (en) * 2009-02-18 2010-08-26 東洋紡績株式会社 Metal thin film production method and metal thin film
JP2011204872A (en) * 2010-03-25 2011-10-13 Kyoto Elex Kk Conductive paste for forming light-receiving surface electrode of solar cell element, solar cell element and method of manufacturing the solar cell element
JP2012018941A (en) * 2010-07-06 2012-01-26 Sharp Corp Backside electrode type solar battery cell, backside electrode type solar battery module, and method for manufacturing backside electrode type solar battery cell
WO2012005374A1 (en) * 2010-07-09 2012-01-12 阪本 順 Panel, panel production method, solar cell module, printing device and printing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017511597A (en) * 2014-03-28 2017-04-20 サンパワー コーポレイション Solar cell metallization
CN107394011A (en) * 2017-08-16 2017-11-24 张家港协鑫集成科技有限公司 Solar battery sheet and preparation method thereof
US20220158004A1 (en) * 2019-04-29 2022-05-19 Nantong T-Sun New Energy Co., Ltd. Method for metallizing front electrode of n-type solar cell
US11961926B2 (en) * 2019-04-29 2024-04-16 Nantong T-Sun New Energy Co., Ltd. Method for metallizing front electrode of n-type solar cell
WO2023157935A1 (en) * 2022-02-16 2023-08-24 株式会社マテリアル・コンセプト Solar cell

Also Published As

Publication number Publication date
JP6186683B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6189971B2 (en) Solar cell and solar cell module
JP5954428B2 (en) Manufacturing method of solar cell
JP3220955U (en) Solar cell unit and method of manufacturing the same, assembly, system
JP5186192B2 (en) Solar cell module
US8748310B2 (en) Method for producing a metal contact structure of a photovoltaic solar cell
TWI725035B (en) Electric conductive paste, solar cell and method for manufacturing solar cell
JP2007134387A (en) Photoelectric conversion element and its method for forming electrode
WO2017154612A1 (en) Conductive paste and solar cell
JP2015159276A (en) Solar battery element, and solar battery module
JP6186683B2 (en) Manufacturing method of solar cell
WO2011024587A1 (en) Electrically conductive paste, electrode for semiconductor device, semiconductor device, and process for production of semiconductor device
JP2010027659A (en) Solar battery module, and manufacturing method therefor
JP4185332B2 (en) Solar cell and solar cell module using the same
WO2013031751A1 (en) Conductive paste, electrode for semiconductor devices, semiconductor device, and method for manufacturing semiconductor device
CN102468369B (en) Method for forming metal electrode on surface of solar cell
JP2008053435A (en) Solar cell module and manufacturing method thereof
JP2014146553A (en) Conductive paste for electrode of solar battery and method of producing the same
JP5920130B2 (en) Manufacturing method of solar cell
JP4144241B2 (en) Solar cell
JP5541395B2 (en) Manufacturing method of solar cell
JP5447303B2 (en) Solar cell module
JP2016178280A (en) Solar cell element and solar cell module using the same
Hsieh et al. Performance of metal wrapped through solar module
TW201822366A (en) Highly efficient rear-surface electrode type solar cell, solar cell module, and solar power generation system
JP2013149815A (en) Solar battery and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170717

R150 Certificate of patent or registration of utility model

Ref document number: 6186683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150