JP2014054601A - Agitator and agitation method - Google Patents

Agitator and agitation method Download PDF

Info

Publication number
JP2014054601A
JP2014054601A JP2012201110A JP2012201110A JP2014054601A JP 2014054601 A JP2014054601 A JP 2014054601A JP 2012201110 A JP2012201110 A JP 2012201110A JP 2012201110 A JP2012201110 A JP 2012201110A JP 2014054601 A JP2014054601 A JP 2014054601A
Authority
JP
Japan
Prior art keywords
liquid
waveform
electrode
vibration
vibration waveform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012201110A
Other languages
Japanese (ja)
Other versions
JP5870430B2 (en
Inventor
Taro Aoki
太朗 青木
Kohei Shimoyama
耕平 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Epson Corp
Original Assignee
Akita Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Epson Corp filed Critical Akita Epson Corp
Priority to JP2012201110A priority Critical patent/JP5870430B2/en
Publication of JP2014054601A publication Critical patent/JP2014054601A/en
Application granted granted Critical
Publication of JP5870430B2 publication Critical patent/JP5870430B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an agitator and an agitation method in which optimum agitation of liquid can be performed in short time.SOLUTION: An agitator 100 comprises: a data storage section 13 recording a reference vibration waveform of optimum vibration for agitation of liquid L; a computing section 14 which computes corrected drive voltage and corrected distance between electrodes for allowing vibration waveform of the liquid L to be close to the reference vibration waveform captured by an optical receiver 60; and an upper electrode control section 15 which applies the corrected drive voltage to control into the corrected distance between electrodes. Therefore, vibration of the liquid becomes optimum vibration in a short time comparing to a case of adjusting voltage and distance between electrodes while watching the movement of the liquid L, and the agitator 100 in which time to the end of agitation is shortened can be obtained.

Description

本発明は、溶質を含む少量の液体の撹拌装置、および撹拌方法に関する。   The present invention relates to a stirring device and a stirring method for a small amount of liquid containing a solute.

生体成分の分析および定量において、デオキシリボ核酸とインターカレーターとの相互作用を利用した反応、抗原定着反応、抗原抗体反応等が利用されている。これらの反応は、撹拌によって反応が進むが、生体成分の量が少量であったり、抗体が高価であったりするので、1mL以下、特にμL単位の微少量の液体での撹拌が必要となる。
液体の撹拌装置および撹拌方法として、変化する電界中に液体を置き、液体を振動させて撹拌する撹拌装置および撹拌方法が知られている(例えば、特許文献1)。
In analysis and quantification of biological components, reactions utilizing the interaction between deoxyribonucleic acid and intercalators, antigen fixing reactions, antigen-antibody reactions, and the like are used. Although these reactions proceed by stirring, the amount of biological components is small and the antibody is expensive, so stirring with a small amount of liquid of 1 mL or less, especially μL unit is required.
As a liquid stirring device and a stirring method, a stirring device and a stirring method in which a liquid is placed in a changing electric field and the liquid is vibrated and stirred are known (for example, Patent Document 1).

特開2010−119388号公報JP 2010-119388 A

電極間の変化する電界中で液体の撹拌を行う場合、液体の種類(特に粘度)、量等が異なると、液体が撹拌に最適な振動をするための駆動電圧および電極間距離も異なる。そのため、撹拌ごとに液体の動きを目視して、駆動電圧および電極間距離を調節している。したがって、調節のための時間が必要で、撹拌の終了まで時間がかかる。
また、撹拌の開始時に、液体が撹拌に最適な振動をするための駆動電圧および電極間距離を調節しても、液体の蒸発により液体の量が変化すると、液体の量に応じた最適な撹拌条件からずれた駆動電圧および電極間距離となり、同じ時間の撹拌を行っても十分な撹拌が得られなかったり、経時的な攪拌とともに液体の振動(攪拌強度)が弱くなり十分な攪拌が得られなかったりすることがある。
ここで、撹拌に最適な振動とは、撹拌によって反応の確率が増し、より速く反応が進む振動をいう。
When the liquid is stirred in an electric field that changes between the electrodes, the drive voltage and the interelectrode distance for the liquid to vibrate optimally for stirring differ depending on the type (particularly viscosity) and amount of the liquid. For this reason, the driving voltage and the distance between the electrodes are adjusted by visually observing the movement of the liquid for each stirring. Therefore, time for adjustment is required, and it takes time until the stirring is completed.
In addition, if the amount of liquid changes due to evaporation of the liquid even if the drive voltage and the distance between the electrodes are adjusted at the start of stirring, the optimal vibration according to the amount of liquid The driving voltage and the distance between the electrodes deviate from the conditions, and even if stirring is performed for the same time, sufficient stirring cannot be obtained, and with the stirring over time, the vibration of the liquid (stirring strength) becomes weak and sufficient stirring is obtained. There may be no.
Here, the vibration optimal for stirring means a vibration in which the probability of reaction increases by stirring and the reaction proceeds faster.

本発明は、上述の課題の少なくとも一つを解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least one of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]第1の電極と前記第1の電極に対向する第2の電極との間に液体を配置して、前記第1の電極と前記第2の電極との間に駆動電圧を印加して前記液体を振動させる撹拌装置であって、前記振動を検知する検知部と、前記検知部で検知した前記振動を振動波形に変換する波形変換部と、予め、前記検知部と前記波形変換部とを用いて得られた、前記液体の撹拌に最適な振動の基準振動波形を記録するデータ保存部と、前記振動波形と前記基準振動波形とを比較して、前記振動波形を前記基準振動波形に近づけるための前記第1の電極と前記第2の電極との間の補正駆動電圧、および前記第1の電極と前記第2の電極との補正電極間距離を演算する演算部と、前記補正駆動電圧および前記補正電極間距離に基づいて、前記第1の電極と前記第2の電極との間に前記補正駆動電圧を印加し、前記第1の電極と前記第2の電極との間の距離を前記補正電極間距離に制御する電極制御部とを備えたことを特徴とする撹拌装置。   Application Example 1 A liquid is disposed between a first electrode and a second electrode facing the first electrode, and a driving voltage is applied between the first electrode and the second electrode. An agitating device that applies and vibrates the liquid, wherein the detection unit detects the vibration, the waveform conversion unit converts the vibration detected by the detection unit into a vibration waveform, and the detection unit and the waveform in advance. A data storage unit that records a reference vibration waveform of vibration that is optimal for stirring of the liquid obtained by using the conversion unit, and compares the vibration waveform with the reference vibration waveform, and compares the vibration waveform with the reference vibration waveform. A calculation unit that calculates a correction driving voltage between the first electrode and the second electrode to approximate a vibration waveform and a correction interelectrode distance between the first electrode and the second electrode; Based on the correction drive voltage and the distance between the correction electrodes, the first electrode An electrode control unit configured to apply the correction driving voltage to the second electrode and control the distance between the first electrode and the second electrode to the correction interelectrode distance; A stirrer characterized by.

この適用例によれば、撹拌装置が、液体の撹拌に最適な振動の基準振動波形を記録したデータ保存部と、検知部で捉えた液体の振動波形を基準振動波形に近づける補正駆動電圧および補正電極間距離を演算する演算部と、補正駆動電圧を印加し、補正電極間距離に制御する電極制御部とを備えている。したがって、液体の動きを目視して駆動電圧および電極間距離を調節する場合と比較して、短時間で液体の振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌装置が得られる。
また、撹拌中に液体の蒸発により液体の量が変化しても、検知部によって液体の振動波形を捉え、液体の量に応じた補正駆動電圧を印加し、補正電極間距離に制御する電極制御部を備えているので、最適な振動が維持される撹拌装置が得られる。
According to this application example, the stirring device has a data storage unit that records a reference vibration waveform of vibration that is optimal for liquid stirring, and a correction drive voltage and correction that brings the vibration waveform of the liquid captured by the detection unit closer to the reference vibration waveform. A calculation unit that calculates the distance between the electrodes and an electrode control unit that applies a correction drive voltage and controls the distance between the correction electrodes are provided. Therefore, as compared with the case where the driving voltage and the distance between the electrodes are adjusted by visually observing the movement of the liquid, the liquid vibration becomes the optimum vibration in a short time, and the stirring device in which the time until the stirring is completed is shortened. can get.
In addition, even if the amount of liquid changes due to evaporation of the liquid during stirring, the detection unit captures the vibration waveform of the liquid, applies a correction driving voltage according to the amount of liquid, and controls the distance between the correction electrodes. Since the part is provided, an agitation device in which optimum vibration is maintained can be obtained.

[適用例2]上記撹拌装置であって、前記検知部は、振動する前記液体から反射した光を受光する受光器を備えていることを特徴とする撹拌装置。
この適用例では、検知部が液体から反射した光を受光する受光器を備えているので、液体に非接触で液体の振動を検知できる。したがって、振動の検知による液体の撹拌への影響が少なくなり、撹拌の終了までの時間が短縮された撹拌装置が得られる。
Application Example 2 In the stirring device, the detection unit includes a light receiver that receives light reflected from the vibrating liquid.
In this application example, since the detection unit includes a light receiver that receives light reflected from the liquid, the vibration of the liquid can be detected without contact with the liquid. Therefore, the influence of the vibration detection on the stirring of the liquid is reduced, and a stirring device in which the time until the stirring is completed is shortened can be obtained.

[適用例3]上記撹拌装置であって、前記液体に光を照射する光源を備えていることを特徴とする撹拌装置。
この適用例では、液体に光を照射する光源を備えているので、液体に外光が入射する場合と比較して、液体に入射する光の変動量がより安定し、液体の振動に伴う液体から反射する光の量への、液体に入射する光の量の変動による影響が抑えられる。したがって、振動波形および基準振動波形がより正確に検知でき、液体の振動がより最適の振動になり、撹拌の終了までの時間がより短縮された撹拌装置が得られる。
[Application Example 3] A stirring device, characterized in that the stirring device includes a light source for irradiating the liquid with light.
In this application example, since the light source for irradiating the liquid with the light is provided, the amount of fluctuation of the light incident on the liquid is more stable and the liquid accompanying the vibration of the liquid compared to the case where the external light is incident on the liquid. The effect of fluctuations in the amount of light incident on the liquid on the amount of light reflected from the surface is suppressed. Therefore, the vibration waveform and the reference vibration waveform can be detected more accurately, the vibration of the liquid becomes a more optimal vibration, and a stirring device in which the time until the end of stirring is further shortened can be obtained.

[適用例4]上記撹拌装置であって、前記光源は、レーザー光源であることを特徴とする撹拌装置。
この適用例では、液体に照射する光が、より指向性のあるレーザー光であるので、液体に入射する光の変動量がより安定し、液体の振動に伴う液体から反射する光の量への、液体に入射する光の量の変動による影響がより抑えられる。したがって、振動波形および基準振動波形がより正確に検知でき、液体の振動がより最適の振動になり、撹拌の終了までの時間がより短縮された撹拌装置が得られる。
Application Example 4 In the stirring device described above, the light source is a laser light source.
In this application example, since the light applied to the liquid is a more directional laser beam, the fluctuation amount of the light incident on the liquid is more stable, and the amount of light reflected from the liquid due to the vibration of the liquid is reduced. In addition, the influence of fluctuations in the amount of light incident on the liquid is further suppressed. Therefore, the vibration waveform and the reference vibration waveform can be detected more accurately, the vibration of the liquid becomes a more optimal vibration, and a stirring device in which the time until the end of stirring is further shortened can be obtained.

[適用例5]上記撹拌装置であって、前記光源から射出された光が前記液体で反射されて前記受光器に入射する光路を含む領域を外部の光から遮蔽する部材を備えていることを特徴とする撹拌装置。
この適用例では、光源から射出された光が液体で反射されて受光器に入射する光路を含む領域を外部の光から遮蔽する部材によって、液体の振動に伴う液体から反射する光の量への外光の変動による影響がより抑えられる。したがって、振動波形および基準振動波形がより正確に検知でき、液体の振動がより最適の振動になり、撹拌の終了までの時間がより短縮された撹拌装置が得られる。
Application Example 5 The stirring apparatus includes a member that shields a region including an optical path from which light emitted from the light source is reflected by the liquid and incident on the light receiver from external light. Stirring device characterized.
In this application example, the amount of light reflected from the liquid accompanying the vibration of the liquid is reduced by a member that shields the region including the optical path where the light emitted from the light source is reflected by the liquid and enters the light receiver from the external light. The influence of fluctuations in external light is further suppressed. Therefore, the vibration waveform and the reference vibration waveform can be detected more accurately, the vibration of the liquid becomes a more optimal vibration, and a stirring device in which the time until the end of stirring is further shortened can be obtained.

[適用例6]上記撹拌装置であって、前記検知部は、振動する前記液体による前記第1の電極と前記第2の電極との間の電圧変動を検知することを特徴とする撹拌装置。
この適用例では、振動する液体によって第1の電極と第2の電極との間の誘電率が変化し、それに伴う電圧変動を検知するので、液体に非接触で液体の振動を検知できる。したがって、液体の撹拌への振動の検知による影響が少なくなり、撹拌の終了までの時間が短縮された撹拌装置が得られる。
Application Example 6 In the stirring device, the detection unit detects a voltage fluctuation between the first electrode and the second electrode due to the vibrating liquid.
In this application example, the dielectric constant between the first electrode and the second electrode is changed by the vibrating liquid, and the voltage fluctuation associated therewith is detected. Therefore, the vibration of the liquid can be detected without contact with the liquid. Therefore, the influence of detection of vibration on the liquid stirring is reduced, and a stirring device in which the time until the end of stirring is shortened can be obtained.

[適用例7]第1の電極と前記第1の電極に対向する第2の電極との間に液体を配置して、前記第1の電極と前記第2の電極との間に駆動電圧を印加して前記液体を振動させる撹拌方法であって、前記液体の撹拌に最適な振動の基準振動波形および撹拌時間を予め記録する基準振動波形記録工程と、前記基準振動波形が得られる前記第1の電極と前記第2の電極との間の電極間距離に、前記第1の電極または前記第2の電極の少なくとも一方を移動する電極セッティング工程と、前記液体に前記駆動電圧を印加して前記液体の振動を開始する振動開始工程と、前記液体の振動の振動波形を検知する振動波形検知工程と、前記基準振動波形の周期と検知された前記振動波形の周期とが近いか否かを判断する周期判断工程と、前記基準振動波形の周期と前記振動波形の周期とがと近づくように、前記電極間距離と前記駆動電圧とを変化させる周期制御工程と、前記基準振動波形の振幅と前記振動波形の振幅とが近いか否かを判断する振幅判断工程と、前記基準振動波形の振幅と検知された前記振動波形の振幅とが近づくように、前記電極間距離と前記駆動電圧とを変化させる振幅制御工程とを含んでいることを特徴とする撹拌方法。   Application Example 7 A liquid is disposed between the first electrode and the second electrode facing the first electrode, and a driving voltage is applied between the first electrode and the second electrode. A stirring method for applying and vibrating the liquid, wherein a reference vibration waveform recording step for pre-recording a reference vibration waveform and a stirring time optimal for stirring the liquid, and the first vibration waveform is obtained. An electrode setting step of moving at least one of the first electrode and the second electrode to an inter-electrode distance between the electrode and the second electrode; and applying the driving voltage to the liquid to It is determined whether a vibration start step for starting liquid vibration, a vibration waveform detection step for detecting a vibration waveform of the liquid vibration, and a cycle of the reference vibration waveform and a cycle of the detected vibration waveform are close to each other. A period determining step for performing the reference vibration waveform A period control step of changing the inter-electrode distance and the drive voltage so that the period and the period of the vibration waveform approach each other, and whether the amplitude of the reference vibration waveform and the amplitude of the vibration waveform are close An amplitude determination step of determining, and an amplitude control step of changing the inter-electrode distance and the drive voltage so that the amplitude of the reference vibration waveform and the amplitude of the detected vibration waveform approach each other. A characteristic stirring method.

この適用例によれば、液体の撹拌に最適な振動の基準振動波形を記録して、液体の振動波形を検知し、振動波形の周期および振幅を基準振動波形に近づくように、電極間距離と駆動電圧とを変化させる。したがって、液体の動きを目視して駆動電圧および電極間距離を調節する場合と比較して、短時間で液体の振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌方法が得られる。   According to this application example, the reference vibration waveform of the vibration most suitable for stirring of the liquid is recorded, the vibration waveform of the liquid is detected, and the distance between the electrodes is set so that the period and amplitude of the vibration waveform approach the reference vibration waveform. The drive voltage is changed. Therefore, compared with the case where the drive voltage and the distance between the electrodes are adjusted by visually observing the movement of the liquid, the liquid vibration becomes the optimum vibration in a short time, and the stirring method in which the time until the stirring is completed is shortened. can get.

[適用例8]上記撹拌方法であって、前記基準振動波形の半周期分の基準波形積分値から許容できる波形積分値差を予め記録しておく振動許容範囲記録工程と、前記振動波形の経時変化を測定する経時変化監視工程と、前記基準波形積分値の絶対値と、前記振動波形の半周期分の波形積分値の絶対値と、を比較し、これらの波形積分値差が前記許容できる波形積分値差未満か否かを判断する波形積分値差判断工程と、前記波形積分値差が前記許容できる波形積分値差以上の場合、前記波形積分値差を前記許容できる波形積分値差未満となるように、前記電極間距離と前記駆動電圧とを変化させる波形積分値差制御工程とを含むことを特徴とする撹拌方法。
この適用例では、振動波形の経時変化を測定し、波形積分値と基準波形積分値とを比較して、波形積分値差を許容できる波形積分値差未満となるように、電極間距離と駆動電圧とを変化させる。したがって、撹拌中に液体の蒸発により液体の量が変化して、液体の振動波形の周期および振幅が変化しても、振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌方法が得られる。
Application Example 8 In the agitation method described above, a vibration allowable range recording step in which an allowable waveform integral value difference is recorded in advance from a reference waveform integral value corresponding to a half cycle of the reference vibration waveform; The time-dependent change monitoring step for measuring the change, the absolute value of the reference waveform integral value, and the absolute value of the waveform integral value for a half period of the vibration waveform are compared, and the difference between these waveform integral values is acceptable. A waveform integrated value difference determining step for determining whether or not the waveform integrated value difference is less than, and if the waveform integrated value difference is greater than or equal to the allowable waveform integrated value difference, the waveform integrated value difference is less than the allowable waveform integrated value difference A stirring method characterized by including a waveform integral value difference control step of changing the inter-electrode distance and the drive voltage.
In this application example, the change over time of the vibration waveform is measured, the waveform integral value is compared with the reference waveform integral value, and the inter-electrode distance and driving are performed so that the waveform integral value difference is less than the allowable waveform integral value difference. Change the voltage. Therefore, even if the amount of liquid changes due to evaporation of the liquid during stirring and the period and amplitude of the vibration waveform of the liquid change, the vibration becomes the optimal vibration and the stirring time is shortened. A method is obtained.

第1実施形態における撹拌装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the stirring apparatus in 1st Embodiment. 撹拌装置を表すブロック図。The block diagram showing a stirring apparatus. 下部電極と上部電極とに印加する電圧を示す図。The figure which shows the voltage applied to a lower electrode and an upper electrode. 液体での光の反射の様子を表す図。The figure showing the mode of reflection of the light in a liquid. 変換された振動波形を表す図。The figure showing the converted vibration waveform. 経時変化した場合の変換された振動波形を表す図。The figure showing the converted vibration waveform at the time of a time-dependent change. 撹拌方法を示すフローチャート図。The flowchart figure which shows the stirring method. 第2実施形態における撹拌装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the stirring apparatus in 2nd Embodiment. 第3実施形態における撹拌装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the stirring apparatus in 3rd Embodiment. 第4実施形態における撹拌装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the stirring apparatus in 4th Embodiment.

以下、実施形態を図面に基づいて詳しく説明する。
なお、以下に述べる実施形態では、本発明の好適な具体例として種々の限定がされているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
また、以下の各図においては、各部材を認識可能な程度の大きさにするため、各部材の尺度は実際とは異なっている。
Hereinafter, embodiments will be described in detail with reference to the drawings.
Note that, in the embodiments described below, various limitations are made as preferred specific examples of the present invention. However, the scope of the present invention is not limited to the following description unless otherwise specified. However, the present invention is not limited to this embodiment.
In the following drawings, the scale of each member is different from the actual scale in order to make each member recognizable.

(第1実施形態)
図1は、本実施形態に係る撹拌装置100の概略構成を示す斜視図である。また、図2は、撹拌装置100を表すブロック図である。撹拌装置100は、液体Lを変化する電界中に置き、液体Lを振動させて撹拌する装置である。
図1において、撹拌装置100は、基台10と、支柱20と、第1の電極としての平板の下部電極30と、第2の電極としての平板の上部電極40と、光源50と、検知部としての受光器60と、光を遮蔽する部材として遮光箱70と、を備えている。遮光箱70については、遮光箱70で覆われた内部を見やすくするために破線で示した。
以下、下とは、重力の向かう方向を示し、上とは、重力の向かう方向とは反対方向を示す。
(First embodiment)
FIG. 1 is a perspective view illustrating a schematic configuration of a stirring device 100 according to the present embodiment. FIG. 2 is a block diagram showing the stirring device 100. The stirring device 100 is a device that places the liquid L in a changing electric field and vibrates the liquid L to stir.
In FIG. 1, the stirring device 100 includes a base 10, a support column 20, a flat plate lower electrode 30 as a first electrode, a flat plate upper electrode 40 as a second electrode, a light source 50, and a detection unit. And a light shielding box 70 as a member for shielding light. The light shielding box 70 is indicated by a broken line in order to make the inside covered with the light shielding box 70 easier to see.
Hereinafter, “lower” indicates a direction in which gravity is directed, and “upper” indicates a direction opposite to the direction in which gravity is directed.

基台10は、例えば、金属からなる略直方体の筐体で、その上面が水平になるように設置されている。ここで、上面は、基台10の設置状況により、調整可能な範囲内で水平から多少ずれていてもよい。
基台10の前面には、操作表示部11が設けられている。操作表示部11では、例えば、下部電極30および上部電極40の位置操作や位置表示、下部電極30と上部電極40との間に印加される駆動電圧の操作や駆動電圧の表示、遮光箱70内の温度や湿度、撹拌装置100を取り巻く雰囲気の温度や湿度の表示等が行われる。
また、図2において、基台10の中には、波形変換部12、データ保存部13、演算部14、電極制御部としての上部電極制御部15が設けられている。
The base 10 is a substantially rectangular parallelepiped casing made of metal, for example, and is installed so that the upper surface thereof is horizontal. Here, the upper surface may be slightly deviated from the horizontal within an adjustable range depending on the installation state of the base 10.
An operation display unit 11 is provided on the front surface of the base 10. In the operation display unit 11, for example, position operation and position display of the lower electrode 30 and the upper electrode 40, operation of a drive voltage applied between the lower electrode 30 and the upper electrode 40, display of the drive voltage, and the inside of the light shielding box 70 Temperature and humidity, and the temperature and humidity of the atmosphere surrounding the stirring device 100 are displayed.
In FIG. 2, the base 10 is provided with a waveform conversion unit 12, a data storage unit 13, a calculation unit 14, and an upper electrode control unit 15 as an electrode control unit.

支柱20は、例えば、金属からなり、基台10の上面に垂直に取り付けられている。ここで、垂直とは、製造上のばらつきによる垂直からの多少のずれをも含む。
支柱20には、下部電極30と上部電極40とが、互いの面が対向して平行となるように取り付けられている。上部電極40は下部電極30より上側に取り付けられている。ここで、平行とは、製造上のばらつきによる平行からの多少のずれをも含む。
上部電極40は、支柱20に沿って移動可能に取り付けられ、上部電極40の垂直方向の位置は、支柱20に取り付けられた、例えば、リニアエンコーダー21によって検知される。上部電極40の移動は、ラックアンドピニオンやリニアモーターによって行うことができる。
なお、下部電極30も支柱20に沿って移動可能に取り付けられていてもよい。
The support | pillar 20 consists of metal, for example, and is attached to the upper surface of the base 10 perpendicularly | vertically. Here, the vertical includes a slight deviation from the vertical due to manufacturing variations.
A lower electrode 30 and an upper electrode 40 are attached to the support column 20 so that their faces are parallel to each other. The upper electrode 40 is attached above the lower electrode 30. Here, the parallel includes a slight deviation from the parallel due to manufacturing variations.
The upper electrode 40 is movably attached along the support column 20, and the vertical position of the upper electrode 40 is detected by, for example, the linear encoder 21 attached to the support column 20. The upper electrode 40 can be moved by a rack and pinion or a linear motor.
The lower electrode 30 may also be attached to be movable along the support column 20.

下部電極30および上部電極40の材質は、透明なガラスに透明導電膜である、例えば、ITO(Indium Tin Oxide)を形成した透明電極、金属製の電極、黒鉛電極、合成樹脂板に導電性のメッシュを張り付けた電極等を用いることができる。合成樹脂板に導電性のメッシュを張り付けた電極は、安価なうえ、液体Lの状態を観察できる点で好ましい。   The material of the lower electrode 30 and the upper electrode 40 is a transparent conductive film on transparent glass, for example, a transparent electrode formed of ITO (Indium Tin Oxide), a metal electrode, a graphite electrode, a conductive resin plate, An electrode attached with a mesh or the like can be used. An electrode in which a conductive mesh is attached to a synthetic resin plate is preferable because it is inexpensive and allows the state of the liquid L to be observed.

上部電極制御部15は、上部電極40の位置を変えて下部電極30と上部電極40との電極間距離を制御したり、下部電極30と上部電極40とに印加する駆動電圧を制御したりする。
ここで、下部電極30を制御する場合は、電極制御部として下部電極制御部を設けてもよいし、下部電極30と上部電極40とを制御する場合は、下部電極制御部と上部電極制御部15とを設けてもよい。
The upper electrode control unit 15 controls the distance between the lower electrode 30 and the upper electrode 40 by changing the position of the upper electrode 40, or controls the drive voltage applied to the lower electrode 30 and the upper electrode 40. .
Here, when the lower electrode 30 is controlled, a lower electrode control unit may be provided as the electrode control unit. When the lower electrode 30 and the upper electrode 40 are controlled, the lower electrode control unit and the upper electrode control unit are provided. 15 may be provided.

図3に下部電極30と上部電極40とに印加する駆動電圧の一例を示した。
図3において、駆動電圧は、周期Tの矩形のパルス波からなり、下部電極30と上部電極40とに印加される最高電圧はVdである。例えば、振動数v(v=1/T)は、数Hzから数十Hzで、Vdが数kVの駆動電圧を用いることができる。
なお、駆動電圧は、矩形のパルス波からなる駆動電圧に限らず、例えば、正弦波、三角波等からなる駆動電圧であってもよい。
FIG. 3 shows an example of the driving voltage applied to the lower electrode 30 and the upper electrode 40.
In FIG. 3, the drive voltage is a rectangular pulse wave with a period T, and the maximum voltage applied to the lower electrode 30 and the upper electrode 40 is Vd. For example, a driving voltage having a frequency v (v = 1 / T) of several Hz to several tens Hz and Vd of several kV can be used.
The drive voltage is not limited to a drive voltage composed of a rectangular pulse wave, and may be a drive voltage composed of, for example, a sine wave or a triangular wave.

図1において、撹拌装置100の下部電極30上には、同じ種類の液体Lが載せられた複数のスライドガラスSが置かれる。図1では、5つのスライドガラスSが置かれているが、一つであってもよいし、電極を大きくして5つ以上置いてもよい。
ここで、同じ種類の液体Lとは、液体Lの溶媒、粘度等が同じ液体Lをいう。
また、液体Lの量は、例えば、数十〜数百μLである。複数の液体Lを同じ条件で振動させ撹拌するには、各液体Lの量をできるだけ同量に近づける。
スライドガラスSの材質は、ソーダ石灰ガラス、ホウケイ酸ガラス、石英等のガラス、ポリスチレン等の樹脂を用いることができる。
In FIG. 1, a plurality of slide glasses S on which the same type of liquid L is placed are placed on the lower electrode 30 of the stirring device 100. In FIG. 1, five glass slides S are placed, but one may be used, or five or more electrodes may be placed with a larger electrode.
Here, the same type of liquid L refers to the liquid L having the same solvent, viscosity, and the like.
The amount of the liquid L is, for example, several tens to several hundreds μL. In order to vibrate and stir a plurality of liquids L under the same conditions, the amount of each liquid L is brought as close to the same amount as possible.
As the material of the slide glass S, glass such as soda lime glass, borosilicate glass and quartz, and resin such as polystyrene can be used.

複数の液体Lを同じ条件で振動させ撹拌するには、液体Lの形状も同じ形状に近づける必要がある。スライドガラスSに載せられた液体Lの形状を同じにするために、スライドガラスSを予め同じ条件で洗浄する。洗浄によって、スライドガラスSの表面状態が安定し、液体LのスライドガラスSに対する接触角が安定する。
また、液体Lの溶媒が水を主成分とする場合、液体LのスライドガラスS上での広がりを制限して液体Lの高さを揃えるために、決められた直径の円の円周を撥水性の材料で描き、円の中に液体Lを載せる。液体Lは、撥水性の円の中に収まり、スライドガラスS上での広がりが抑えられる。例えば、水が主成分の200μLの液体Lを直径12mmの円に収めると、静置した液体Lの高さは、2〜3mmとなる。また、水が主成分の600μLの液体Lを直径20mmの円に収めると、静置した液体Lの高さは、2〜3mmとなる。
同じ種類の各液体Lの量、形状を同じにすることで、各液体Lを略同条件で振動、撹拌できる。
In order to vibrate and stir a plurality of liquids L under the same conditions, the shape of the liquid L needs to be close to the same shape. In order to make the shape of the liquid L placed on the slide glass S the same, the slide glass S is washed in advance under the same conditions. By cleaning, the surface state of the slide glass S is stabilized, and the contact angle of the liquid L with respect to the slide glass S is stabilized.
In addition, when the solvent of the liquid L contains water as a main component, the circumference of a circle having a predetermined diameter is repelled in order to limit the spread of the liquid L on the slide glass S and to align the height of the liquid L. Draw with a water-based material and place liquid L in a circle. The liquid L is contained in a water-repellent circle, and spread on the slide glass S is suppressed. For example, when 200 μL of the liquid L, the main component of which is water, is contained in a circle having a diameter of 12 mm, the height of the liquid L that is allowed to stand is 2 to 3 mm. Further, when 600 μL of the liquid L containing water as a main component is contained in a circle having a diameter of 20 mm, the height of the liquid L that is allowed to stand is 2 to 3 mm.
By making the amount and shape of each liquid L of the same type the same, each liquid L can be vibrated and stirred under substantially the same conditions.

一方、上部電極40の表面に撥水処理を行っておくと、液体Lが振動して撹拌される際に上部電極40に接触しても、上部電極40に液体Lの一部が付着して分離するのを防げ、液体Lの量の急激な変化が抑えられる。   On the other hand, if the surface of the upper electrode 40 is subjected to water repellent treatment, even if the liquid L is vibrated and stirred, even if it contacts the upper electrode 40, a part of the liquid L adheres to the upper electrode 40. Separation is prevented, and a sudden change in the amount of the liquid L is suppressed.

光源50は、射出した光が液体Lを照らす角度で基台10に取り付けられている。光が照らされる液体Lはどの液体でもよいし、ダミー用の液体Lを用意して、ダミー用の液体Lを照らしてもよい。
光源50としては、ナトリウムランプ、白熱電球、蛍光灯、レーザー光源等を用いることができる。
The light source 50 is attached to the base 10 at an angle at which the emitted light illuminates the liquid L. The liquid L to be illuminated with light may be any liquid, or a dummy liquid L may be prepared to illuminate the dummy liquid L.
As the light source 50, a sodium lamp, an incandescent bulb, a fluorescent lamp, a laser light source, or the like can be used.

図4に、液体Lでの光の反射の様子を表す図を示した。液体Lは、図示しない下部電極30と上部電極40との間に印加される駆動電圧によって、例えば、スライドガラスS上に静置した形状の実線で示した液体L1から盛り上がった状態の破線で示した液体L2へと形状が変化する。駆動電圧が周期的に変化すれば、液体Lは振動し、その形状は、液体L1→液体L2→液体L1→液体L2…と振動する。この振動に伴い液体Lは撹拌される。
ここで、振動する液体Lの形状は、図示した形状に限らず、スライドガラスS上に静置した形状より盛り上がった形状からさらに盛り上がった形状の間で振動してもよいし、振動の勢いで中心が凹んだ形状から盛り上がった形状の間で振動してもよい。
FIG. 4 shows a diagram illustrating how light is reflected by the liquid L. FIG. The liquid L is indicated by a broken line in a state of rising from the liquid L1 indicated by a solid line in a shape stationary on the slide glass S, for example, by a driving voltage applied between the lower electrode 30 and the upper electrode 40 (not shown). The shape changes to the liquid L2. If the drive voltage changes periodically, the liquid L vibrates and its shape vibrates in the order of liquid L1 → liquid L2 → liquid L1 → liquid L2. The liquid L is agitated with this vibration.
Here, the shape of the vibrating liquid L is not limited to the shape shown in the figure, and may vibrate between a raised shape and a raised shape from the shape placed on the slide glass S. You may vibrate between the shape where the center was dented and the shape which rose.

液体Lに入射する光は、液体Lの振動により、反射する方向も変化する。
図4において、光路を実線と破線の矢印で示した。例えば、光源50から入射角θで液体Lに入射した光は、液体L1の形状の時は直進し、実線矢印の方向に進み、受光器60には到達しない。一方、液体L2の形状の時は反射し、破線矢印の方向に進み、受光器60に到達する。したがって、振動に伴う光の強弱が、受光器60で検知できる。
光源50から射出される光が、液体Lの溶質または溶媒に悪影響を及ぼす場合、例えば、溶質や溶媒を分解したり、溶媒の蒸発を促進したりするときは、入射角θを小さくして光の反射率を高めるとよい。
The direction of reflection of the light incident on the liquid L also changes due to the vibration of the liquid L.
In FIG. 4, the optical path is indicated by solid and broken arrows. For example, light incident on the liquid L at the incident angle θ from the light source 50 travels straight in the shape of the liquid L1, proceeds in the direction of the solid arrow, and does not reach the light receiver 60. On the other hand, when the shape is the liquid L2, the light is reflected, proceeds in the direction of the broken arrow, and reaches the light receiver 60. Therefore, the light intensity associated with the vibration can be detected by the light receiver 60.
When the light emitted from the light source 50 adversely affects the solute or solvent of the liquid L, for example, when the solute or solvent is decomposed or the evaporation of the solvent is promoted, the incident angle θ is reduced to reduce the light. It is better to increase the reflectance.

図2において、受光器60で受けた光の強弱は、電気信号に変換され、波形変換部12において振動波形に変換される。変換された振動波形は、データ保存部13に保存される。データ保存部13は、データを記憶する素子であり、ROM、RAM、NVRAM(不揮発性記憶素子)を含む。   In FIG. 2, the intensity of light received by the light receiver 60 is converted into an electric signal, and converted into a vibration waveform by the waveform converter 12. The converted vibration waveform is stored in the data storage unit 13. The data storage unit 13 is an element for storing data, and includes ROM, RAM, and NVRAM (nonvolatile storage element).

図5に、短時間の撹拌で、液体Lの蒸発が進まない場合の変換された振動波形を表す図を示した。横軸が時間(t)を表し、縦軸が振幅を表している。両軸ともに任意スケールであり、振動する液体Lの実際の振幅とは限らない。
図5において、破線で示した曲線は、ある種類の液体Lが効率よく最適な振動で撹拌ができている振動波形を示している。実線で示した曲線は、撹拌に最適な振動からずれた場合の振動波形を示している。ここで、撹拌に最適な振動ができているとは、例えば、振幅が大きな振動波形が得られるときであるが、振幅が大きな振動波形に限らず、撹拌後のデオキシリボ核酸とインターカレーターの相互作用を利用した反応、抗原定着反応、抗原抗体反応等の反応がよく進む振動波形である。
FIG. 5 shows a diagram showing a converted vibration waveform when the evaporation of the liquid L does not proceed with short-time stirring. The horizontal axis represents time (t), and the vertical axis represents amplitude. Both axes are arbitrary scales and are not necessarily the actual amplitude of the vibrating liquid L.
In FIG. 5, a curve indicated by a broken line indicates a vibration waveform in which a certain type of liquid L is efficiently stirred with optimal vibration. A curve indicated by a solid line shows a vibration waveform when the vibration deviates from the optimum vibration for stirring. Here, the optimal vibration for stirring is, for example, when a vibration waveform with a large amplitude is obtained, but is not limited to a vibration waveform with a large amplitude, and the interaction between deoxyribonucleic acid and the intercalator after stirring. This is a vibration waveform in which reactions such as reaction using an antigen, antigen fixing reaction, antigen-antibody reaction, etc. proceed well.

種類、量の異なる液体Lは、同じ駆動電圧によってもその振動は異なるため、データ保存部13には、各種類の液体Lを量に応じて、下部電極30と上部電極40との電極間距離およびこれらの電極に印加する駆動電圧を変化させて、その種類ごとに撹拌に最適な振動の基準振動波形を予め記録しておく。   Since the vibrations of the liquids L of different types and amounts are different depending on the same driving voltage, the data storage unit 13 stores the distance between the electrodes of the lower electrode 30 and the upper electrode 40 according to the amount of each type of liquid L. In addition, the drive voltage applied to these electrodes is changed, and a reference vibration waveform of vibration optimal for stirring is recorded in advance for each type.

図6には、液体Lの蒸発が進み、経時変化した場合の変換された振動波形を表す図を示した。液体Lの蒸発が進むと、液体Lの量の減少とともに、振幅も小さくなり、周期も短くなる。   FIG. 6 shows a diagram showing the converted vibration waveform when the liquid L evaporates and changes over time. As the evaporation of the liquid L progresses, the amplitude becomes smaller and the cycle becomes shorter as the amount of the liquid L decreases.

演算部14では基準振動波形と実際に振動している駆動波形とを比較して、基準振動波形に近づける補正駆動電圧および補正極板間距離を計算する。上部電極制御部15は、計算された補正駆動電圧および補正極板間距離に基づいて上部電極40を制御する。   The calculation unit 14 compares the reference vibration waveform with the actually oscillating drive waveform, and calculates a corrected drive voltage and a corrected interelectrode distance that are close to the reference vibration waveform. The upper electrode control unit 15 controls the upper electrode 40 based on the calculated corrected driving voltage and corrected electrode plate distance.

遮光箱70には、受光器60が検知する外からの光を遮蔽する材料を用いる。例えば、金属や、受光器60が検知する光を吸収、反射する物質を含んだ材料等を用いることができる。遮光箱70は手動で被せてもよいし、遮光箱70に、自動で開閉する扉を設けて作業性をよくしてもよい。また、遮光箱70の内部で温湿度調整等を行ってもよい。
遮光箱70に代えてカバーを設けることも可能である。カバーを設けることにより、外部からの埃等を防いだり、液体Lの蒸発の進行を抑えたりすることができる。カバーの場合であっても、自動で開閉する扉を設けて作業性をよくしてもよいし、カバーの内部で温湿度調整等を行ってもよい。カバーに外からの光を遮蔽する材料を用いると遮光箱70とすることができる。
The light shielding box 70 is made of a material that shields external light detected by the light receiver 60. For example, a metal or a material containing a substance that absorbs and reflects light detected by the light receiver 60 can be used. The shading box 70 may be manually covered, or the shading box 70 may be provided with a door that automatically opens and closes to improve workability. Further, the temperature and humidity may be adjusted inside the light shielding box 70.
A cover may be provided in place of the light shielding box 70. By providing the cover, it is possible to prevent dust and the like from the outside, and to suppress the evaporation of the liquid L. Even in the case of a cover, a door that automatically opens and closes may be provided to improve workability, and temperature and humidity adjustment may be performed inside the cover. When a material that shields light from the outside is used for the cover, the light shielding box 70 can be obtained.

図7に、撹拌装置100を用いて液体Lを撹拌する、本実施形態における撹拌方法を示すフローチャート図を示した。
図7において、本実施形態における撹拌方法は、基準振動波形記録工程としてのステップS1と、振動許容範囲記録工程としてのステップS2と、サンプルセット工程としてのステップS3と、電極セッティング工程としてのステップS4と、振動開始工程としてのステップS5と、振動波形検知工程としてのステップS6と、周期判断工程としてのステップS7と、周期制御工程としてのステップS8と、振幅判断工程としてのステップS9と、振幅制御工程としてのステップS10と、経時変化監視工程としてのステップS11と、波形積分値差判断工程としてのステップS12と、波形積分値差制御工程としてのステップS13と、撹拌時間判断工程としてのステップS14とを含む。
FIG. 7 is a flowchart showing the stirring method in the present embodiment in which the liquid L is stirred using the stirring device 100.
In FIG. 7, the stirring method in this embodiment includes step S1 as a reference vibration waveform recording step, step S2 as a vibration allowable range recording step, step S3 as a sample setting step, and step S4 as an electrode setting step. Step S5 as a vibration start step, Step S6 as a vibration waveform detection step, Step S7 as a cycle determination step, Step S8 as a cycle control step, Step S9 as an amplitude determination step, and amplitude control Step S10 as a process, Step S11 as a temporal change monitoring process, Step S12 as a waveform integral value difference determination process, Step S13 as a waveform integral value difference control process, and Step S14 as a stirring time determination process including.

ここで、ステップS2、およびステップS11からステップS13までは、必要に応じて加えることができる。これらのステップは、液体Lにおいて溶媒中の溶質の濃度が低く、長時間の撹拌を要する場合に加えることができる。例えば、抗原抗体反応において、抗体が高価でその濃度を抑えたい場合、長時間の撹拌を行って抗原抗体反応を進める必要がある。   Here, step S2 and steps S11 to S13 can be added as necessary. These steps can be added when the concentration of the solute in the solvent in the liquid L is low and long stirring is required. For example, in an antigen-antibody reaction, when an antibody is expensive and it is desired to suppress its concentration, it is necessary to advance the antigen-antibody reaction by stirring for a long time.

基準振動波形記録工程(ステップS1)では、液体Lの撹拌に最適な振動の基準振動波形を予めデータ保存部13に記録する。
液体Lの種類によって粘度等が異なる場合は、液体Lの種類ごとに基準振動波形を記録する。また、基準振動波形で撹拌した時に要する撹拌時間も記憶させておく。
例えば、駆動波形は、図3に示した矩形のパルス波を印加しながら電極間距離を調節し、液体Lの振幅が最大値となる基準振動波形を求める。または、反応がよく進む基準振動波形を求めて記録する。
In the reference vibration waveform recording step (step S <b> 1), a reference vibration waveform of vibration optimal for stirring the liquid L is recorded in the data storage unit 13 in advance.
When the viscosity or the like varies depending on the type of the liquid L, a reference vibration waveform is recorded for each type of the liquid L. Also, the stirring time required when stirring is performed with the reference vibration waveform is stored.
For example, the drive waveform is obtained by adjusting the distance between the electrodes while applying the rectangular pulse wave shown in FIG. 3 to obtain the reference vibration waveform in which the amplitude of the liquid L becomes the maximum value. Alternatively, a reference vibration waveform in which the reaction proceeds well is obtained and recorded.

振動許容範囲記録工程(ステップS2)では、基準振動波形の半周期分の基準波形積分値から許容できる波形積分値差を予めデータ保存部13に記録する。この場合も、液体Lの種類ごと許容できる波形積分値差を記録する。   In the vibration permissible range recording step (step S2), a waveform integral value difference that is permissible from a reference waveform integral value corresponding to a half cycle of the reference vibration waveform is recorded in the data storage unit 13 in advance. Also in this case, an allowable waveform integral value difference for each type of liquid L is recorded.

サンプルセット工程(ステップS3)では、液体Lを載せたスライドガラスSを下部電極30にセットする。この時、操作表示部11において、データ保存部13に記録した液体Lの種類の中から実際に測定する液体Lの種類、量を選んでもよい。
下部電極30と上部電極40との電極間距離は、サンプルのセットが行いやすいように調整して行うことができる。この場合、例えば、上部電極40の移動可能な距離を長くすると、下部電極30と上部電極40との電極間を広げることができ、手やロボットのアームを電極間に入れやすく、サンプルのセットが行いやすい電極間距離にできる。
In the sample setting step (step S3), the slide glass S on which the liquid L is placed is set on the lower electrode 30. At this time, the operation display unit 11 may select the type and amount of the liquid L actually measured from the types of the liquid L recorded in the data storage unit 13.
The inter-electrode distance between the lower electrode 30 and the upper electrode 40 can be adjusted and adjusted so that the sample can be easily set. In this case, for example, when the movable distance of the upper electrode 40 is increased, the space between the lower electrode 30 and the upper electrode 40 can be widened, and a hand or a robot arm can be easily placed between the electrodes. The distance between the electrodes can be made easily.

電極セッティング工程(ステップS4)では、基準振動波形が得られる下部電極30と上部電極40との間の電極間距離に、上部電極40を移動する。
例えば、数mmの液体Lの高さに応じ、液体Lと上部電極40とが接触しないように、下部電極30と上部電極40との電極間距離は、数〜十数mmとすることができる。
上部電極40の移動は、操作表示部11によって手動で上部電極40を移動させてもよいし、予めエンコーダーによって、基準振動波形が得られた位置に自動で移動させてもよい。
In the electrode setting step (step S4), the upper electrode 40 is moved to the interelectrode distance between the lower electrode 30 and the upper electrode 40 at which the reference vibration waveform is obtained.
For example, according to the height of the liquid L of several mm, the interelectrode distance between the lower electrode 30 and the upper electrode 40 can be several to several tens of millimeters so that the liquid L and the upper electrode 40 do not contact each other. .
The upper electrode 40 may be moved manually by the operation display unit 11 or may be automatically moved to a position where a reference vibration waveform is obtained in advance by an encoder.

振動開始工程(ステップS5)では、ステップS1で記録された、液体Lに印加すると基準振動波形が得られる駆動電圧を下部電極30と上部電極40との間に印加して、液体Lの振動を開始する。
同じ種類の液体Lに対して基準振動波形が得られる駆動電圧が、液体Lの調整ごとに液体Lの粘度等の特性は多少異なるので、実際に振動させる液体Lの振動が最適な振動となる駆動電圧とは限らない。
In the vibration start step (step S5), the drive voltage recorded in step S1 and obtained as a reference vibration waveform when applied to the liquid L is applied between the lower electrode 30 and the upper electrode 40, and the vibration of the liquid L is applied. Start.
Since the drive voltage for obtaining the reference vibration waveform for the same type of liquid L has a slightly different characteristic such as the viscosity of the liquid L for each adjustment of the liquid L, the vibration of the liquid L that is actually vibrated is the optimum vibration. It is not necessarily the drive voltage.

振動波形検知工程(ステップS6)では、光源50から射出された光が液体Lに入射し、反射した光を受光器60で検知し、波形変換部12において振動波形に変換する。   In the vibration waveform detection step (step S6), the light emitted from the light source 50 enters the liquid L, the reflected light is detected by the light receiver 60, and is converted into a vibration waveform by the waveform converter 12.

周期判断工程(ステップS7)では、基準振動波形の周期と、振動波形の周期と、が近いか否かを判断する。
基準振動波形の周期と振動波形の周期とが近いか否かは、基準振動波形の周期と振動波形の周期との差が、予めデータ保存部13に保存しておいた、基準振動波形の周期と振動波形の周期との許容できる差以上か否かで行う。基準振動波形の周期と振動波形の周期との差が、許容できる差以上の場合(ステップS7:NO)は、周期制御工程(ステップS8)に進む。基準振動波形の周期と振動波形の周期との差が、許容できる差以上ではない場合、言い換えると基準振動波形の周期と振動波形の周期との差が、許容できる差未満の場合(ステップS7:YES)は、振幅判断工程(ステップS9)に進む。
In the period determining step (step S7), it is determined whether or not the period of the reference vibration waveform is close to the period of the vibration waveform.
Whether or not the period of the reference vibration waveform is close to the period of the vibration waveform is based on the difference between the period of the reference vibration waveform and the period of the vibration waveform stored in the data storage unit 13 in advance. And whether or not the difference is greater than the allowable difference between the period of the vibration waveform. If the difference between the period of the reference vibration waveform and the period of the vibration waveform is greater than or equal to the allowable difference (step S7: NO), the process proceeds to the period control step (step S8). When the difference between the period of the reference vibration waveform and the period of the vibration waveform is not greater than or equal to the allowable difference, in other words, when the difference between the period of the reference vibration waveform and the period of the vibration waveform is less than the allowable difference (step S7: (YES) proceeds to the amplitude determination step (step S9).

周期制御工程(ステップS8)では、基準振動波形の周期と振動波形の周期とがと近づくように、電極間距離と駆動電圧とを計算し変化させる。
演算部14で、基準振動波形の周期と振動波形の周期とが近づく補正駆動電圧と補正電極間距離を計算し、上部電極制御部15によって基準振動波形の周期と振動波形の周期とが近づく補正駆動電圧と補正電極間距離に上部電極40を制御する。制御後、振幅判断工程(ステップS9)に進む。
In the cycle control step (step S8), the inter-electrode distance and the drive voltage are calculated and changed so that the cycle of the reference vibration waveform and the cycle of the vibration waveform approach each other.
The calculation unit 14 calculates the correction drive voltage and the distance between the correction electrodes that approach the period of the reference vibration waveform and the period of the vibration waveform, and the upper electrode control unit 15 corrects the period of the reference vibration waveform and the period of the vibration waveform to approach each other. The upper electrode 40 is controlled to the driving voltage and the distance between the correction electrodes. After the control, the process proceeds to the amplitude determination step (step S9).

振幅判断工程(ステップS9)では、基準振動波形の振幅と振動波形の振幅とが近づいたか否かを判断する。
基準振動波形の振幅と振動波形の振幅とが近いか否かは、基準振動波形の振幅と振動波形の振幅との差が、予めデータ保存部13に保存しておいた基準振動波形の振幅と振動波形の振幅との許容できる差以上か否かで行う。基準振動波形の振幅と振動波形の振幅との差が、許容できる差以上の場合(ステップS9:NO)は、振幅制御工程(ステップS10)に進む。基準振動波形の周期と振動波形の周期との差が、許容できる差以上ではない場合、言い換えると基準振動波形の振幅と振動波形の振幅との差が、許容できる差未満の場合(ステップS9:YES)は、経時変化監視工程(ステップS11)に進む。
In the amplitude determining step (step S9), it is determined whether or not the amplitude of the reference vibration waveform is close to the amplitude of the vibration waveform.
Whether or not the amplitude of the reference vibration waveform is close to the amplitude of the vibration waveform is determined by the difference between the amplitude of the reference vibration waveform and the amplitude of the vibration waveform being the amplitude of the reference vibration waveform stored in the data storage unit 13 in advance. This is done based on whether or not the difference from the amplitude of the vibration waveform is acceptable. When the difference between the amplitude of the reference vibration waveform and the amplitude of the vibration waveform is greater than or equal to the allowable difference (step S9: NO), the process proceeds to the amplitude control step (step S10). When the difference between the period of the reference vibration waveform and the period of the vibration waveform is not greater than or equal to the allowable difference, in other words, when the difference between the amplitude of the reference vibration waveform and the amplitude of the vibration waveform is less than the allowable difference (step S9: (YES) proceeds to the temporal change monitoring step (step S11).

振幅制御工程(ステップS10)では、基準振動波形の振幅と検知された振動波形の振幅とが近づくように、電極間距離と駆動電圧とを変化させる。
演算部14で、基準振動波形の振幅と振動波形の振幅とが近づく補正駆動電圧と補正電極間距離を計算し、上部電極制御部15によって基準振動波形の振幅と振動波形の振幅とが近づく補正駆動電圧と補正電極間距離に上部電極40を制御する。制御後、経時変化監視工程(ステップS11)に進む。
たとえば、周期を一致させた後、電極間距離/電圧を調整すると周期がずれる。周期を一致させた時に、振幅が基準振動波形と一致しない場合は、組織に光が吸収されている、もしくは外光の影響とみなし、基準振動波形の振幅と振動波形の振幅の差を演算し、差の分だけ振幅を増やし(減らして)、基準振動波形と一致させる。(例…基準波形:周期2、振幅5。振動波形:周期2、振幅3。このようになった場合、振幅3を振幅5と見なす。)
In the amplitude control step (step S10), the inter-electrode distance and the drive voltage are changed so that the amplitude of the reference vibration waveform and the amplitude of the detected vibration waveform approach each other.
The calculation unit 14 calculates the correction drive voltage and the distance between the correction electrodes that approach the amplitude of the reference vibration waveform and the amplitude of the vibration waveform, and the upper electrode control unit 15 corrects the amplitude of the reference vibration waveform and the amplitude of the vibration waveform to approach each other. The upper electrode 40 is controlled to the driving voltage and the distance between the correction electrodes. After the control, the process proceeds to the temporal change monitoring step (step S11).
For example, if the distance / voltage between the electrodes is adjusted after matching the periods, the periods are shifted. If the amplitude does not match the reference vibration waveform when the period is matched, it is assumed that light is absorbed by the tissue or the influence of external light, and the difference between the amplitude of the reference vibration waveform and the amplitude of the vibration waveform is calculated. The amplitude is increased (decreased) by the difference and matched with the reference vibration waveform. (Example: Reference waveform: cycle 2, amplitude 5. Vibration waveform: cycle 2, amplitude 3. In this case, amplitude 3 is regarded as amplitude 5.)

経時変化監視工程(ステップS11)では、振動波形の経時変化を測定する。
経時変化の測定は、振動波形検知工程(ステップS6)と同様に、光源50から射出された光が液体Lに入射し、反射した光を受光器60で検知し、波形変換部12において振動波形に変換することで行う。
In the temporal change monitoring step (step S11), the temporal change of the vibration waveform is measured.
As with the vibration waveform detection step (step S6), the change with time is measured by the light emitted from the light source 50 entering the liquid L, the reflected light being detected by the light receiver 60, and the waveform converter 12 performing the vibration waveform. This is done by converting to

波形積分値差判断工程(ステップS12)では、基準波形積分値の半周期分の絶対値と振動波形の半周期分の波形積分値の絶対値とを比較し、これらの波形積分値差が許容できる波形積分値差未満か否かを判断する。
例えば、基準波形積分値の絶対値は、図5に示したSaに相当し、振動波形の半周期分の波形積分値の絶対値は、Sbに相当する。
波形積分値差が許容できる波形積分値差未満の場合(ステップS12:YES)は、撹拌時間判断工程(ステップS14)に進む。波形積分値差が許容できる波形積分値差未満ではない場合、言い換えると波形積分値差が許容できる波形積分値差以上の場合(ステップS12:NO)は、波形積分値差制御工程(ステップS13)に進む。
In the waveform integrated value difference determining step (step S12), the absolute value of the reference waveform integrated value for the half cycle is compared with the absolute value of the waveform integrated value for the half cycle of the vibration waveform, and these waveform integrated value differences are allowed. Judge whether or not it is less than the possible waveform integral difference.
For example, the absolute value of the reference waveform integral value corresponds to Sa shown in FIG. 5, and the absolute value of the waveform integral value for a half cycle of the vibration waveform corresponds to Sb.
If the waveform integral value difference is less than the allowable waveform integral value difference (step S12: YES), the process proceeds to the stirring time determination step (step S14). When the waveform integral value difference is not less than the allowable waveform integral value difference, in other words, when the waveform integral value difference is greater than or equal to the allowable waveform integral value difference (step S12: NO), the waveform integral value difference control step (step S13). Proceed to

波形積分値差制御工程(ステップS13)では、波形積分値差を許容できる波形積分値差未満となるように、電極間距離と駆動電圧とを変化させる。
演算部14で、基準振動波形の基準波形積分値の絶対値と、振動波形の波形積分値の絶対値と、が近づく補正駆動電圧と補正電極間距離を計算し、上部電極制御部15によって基準波形積分値の絶対値と振動波形の波形積分値の絶対値とが近づく補正駆動電圧と補正電極間距離に上部電極40を制御する。制御後、撹拌時間判断工程(ステップS14)に進む。
In the waveform integral value difference control step (step S13), the inter-electrode distance and the drive voltage are changed so that the waveform integral value difference is less than the allowable waveform integral value difference.
The calculation unit 14 calculates the correction drive voltage and the distance between the correction electrodes that approach the absolute value of the reference waveform integral value of the reference vibration waveform and the absolute value of the waveform integration value of the vibration waveform, and the upper electrode control unit 15 calculates the reference value. The upper electrode 40 is controlled so that the absolute value of the waveform integrated value and the absolute value of the waveform integrated value of the vibration waveform approach each other and the correction drive voltage and the distance between the correction electrodes. After the control, the process proceeds to the stirring time determination step (step S14).

撹拌時間判断工程(ステップS14)では、撹拌開始からの経過時間を基準振動波形記録工程(ステップS1)で記録した撹拌時間と比較し、経過時間が撹拌時間を経過した場合(ステップS14:YES)は、撹拌を終了する。経過時間が撹拌時間を経過しない場合(ステップS14:NO)は、経時変化監視工程(ステップS11)に戻る。
以上示したフローによって本実施形態の撹拌方法は終了する。
In the stirring time determination step (step S14), the elapsed time from the start of stirring is compared with the stirring time recorded in the reference vibration waveform recording step (step S1), and the elapsed time has passed the stirring time (step S14: YES). Ends the stirring. When the elapsed time does not pass the stirring time (step S14: NO), the process returns to the temporal change monitoring step (step S11).
The stirring method of this embodiment is completed by the flow shown above.

以上示したフローにおいて、基準振動波形記録工程(ステップS1)と振動許容範囲記録工程(ステップS2)とは、どちらを先に行ってもよい。また、上述のように積分値差を求めることで蒸発による攪拌強度の変化を調べることができるが、基準振動波形と攪拌波形の半周期の差を求めることでも攪拌強度の変化を調べることもできうる。さらに、ステップS4からステップS5の工程間に、攪拌時間を入力する工程を追加してもよく、また、ステップS12およびステップS13のステップでは積分値を用いる代わりに周期差を用いてもよい。   In the flow shown above, either the reference vibration waveform recording step (step S1) or the vibration allowable range recording step (step S2) may be performed first. In addition, as described above, the change in the stirring intensity due to evaporation can be examined by obtaining the integral value difference, but the change in the stirring intensity can also be examined by obtaining the difference between the half cycle of the reference vibration waveform and the stirring waveform. sell. Further, a step of inputting the stirring time may be added between the steps S4 to S5, and a period difference may be used instead of the integral value in the steps S12 and S13.

また、基準振動波形記録工程(ステップS1)と振動許容範囲記録工程(ステップS2)とで、データ保存部13にデータを保存し、新たな溶媒をもつ液体Lの基準振動波形を予め記録する必要がないときは、基準振動波形記録工程(ステップS1)および振動許容範囲記録工程(ステップS2)を省略して、サンプルセット工程(ステップS3)から始めことができるが、本実施形態の撹拌方法に、基準振動波形記録工程(ステップS1)および振動許容範囲記録工程(ステップS2)は必須である。   Further, in the reference vibration waveform recording step (step S1) and the vibration permissible range recording step (step S2), it is necessary to store data in the data storage unit 13 and record the reference vibration waveform of the liquid L having a new solvent in advance. When there is not, the reference vibration waveform recording step (step S1) and the vibration allowable range recording step (step S2) can be omitted and the sample setting step (step S3) can be started. The reference vibration waveform recording step (Step S1) and the vibration allowable range recording step (Step S2) are essential.

このような実施形態によれば、以下の効果がある。
(1)撹拌装置100が、液体Lの撹拌に最適な振動の基準振動波形を記録したデータ保存部13と、受光器60で捉えた液体Lの振動波形を基準振動波形に近づける補正駆動電圧および補正電極間距離を演算する演算部14と、補正駆動電圧を印加し、補正電極間距離に制御する上部電極制御部15とを備えている。したがって、液体Lの動きを目視して電圧および電極間距離を調節する場合と比較して、短時間で液体の振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌装置100を得ることができる。
また、撹拌中に液体Lの蒸発により液体Lの量が変化しても、受光器60によって液体Lの振動波形を捉え、液体Lの量に応じた補正駆動電圧を印加し、補正電極間距離に制御する上部電極制御部15を備えているので、最適な振動が維持される撹拌装置100を得ることができる。
According to such an embodiment, there are the following effects.
(1) The data storage unit 13 in which the stirrer 100 records the reference vibration waveform of the vibration most suitable for stirring the liquid L, the correction drive voltage that brings the vibration waveform of the liquid L captured by the light receiver 60 close to the reference vibration waveform, and A calculation unit 14 that calculates the distance between the correction electrodes and an upper electrode control unit 15 that applies a correction drive voltage and controls the distance between the correction electrodes are provided. Therefore, compared with the case where the voltage and the distance between the electrodes are adjusted by visually observing the movement of the liquid L, the vibration of the liquid becomes the optimum vibration in a short time, and the stirring device 100 in which the time until the end of the stirring is shortened. Can be obtained.
Even if the amount of the liquid L changes due to the evaporation of the liquid L during stirring, the light receiving device 60 captures the vibration waveform of the liquid L, applies a correction driving voltage corresponding to the amount of the liquid L, and corrects the distance between the correction electrodes. Since the upper electrode control unit 15 is controlled, it is possible to obtain the stirring device 100 in which the optimum vibration is maintained.

(2)検知部が液体Lから反射した光を受光する受光器60を備えているので、液体Lに非接触で液体Lの振動を検知できる。したがって、振動の検知による液体Lの撹拌への影響を少なくでき、撹拌の終了までの時間が短縮された撹拌装置100を得ることができる。   (2) Since the detection unit includes the light receiver 60 that receives the light reflected from the liquid L, the vibration of the liquid L can be detected without contact with the liquid L. Therefore, the influence of the vibration detection on the stirring of the liquid L can be reduced, and the stirring device 100 in which the time until the stirring is completed can be obtained.

(3)液体Lに光を照射する光源50を備えているので、液体Lに外光が入射する場合と比較して、液体Lに入射する変動量がより安定し、液体Lの振動に伴う液体Lから反射する光の量への液体Lに入射する光の量の変動による影響を抑えることができる。したがって、振動波形および基準振動波形がより正確に検知でき、液体Lの振動がより最適の振動になり、撹拌の終了までの時間がより短縮された撹拌装置100を得ることができる。   (3) Since the light source 50 that irradiates the liquid L with the light is provided, the amount of fluctuation incident on the liquid L is more stable than that in the case where external light is incident on the liquid L. The influence of fluctuations in the amount of light incident on the liquid L on the amount of light reflected from the liquid L can be suppressed. Accordingly, the vibration waveform and the reference vibration waveform can be detected more accurately, the vibration of the liquid L becomes a more optimal vibration, and the stirring device 100 in which the time until the end of stirring is further shortened can be obtained.

(4)光源50から射出された光が液体Lで反射されて受光器60に入射する光路を含む領域を外部の光から遮蔽する遮光箱70によって、液体Lの振動に伴う液体Lから反射する光の量への、外光の変動による影響をより抑えることができる。したがって、振動波形および基準振動波形がより正確に検知でき、液体Lの振動がより最適の振動になり、撹拌の終了までの時間がより短縮された撹拌装置100を得ることができる。   (4) The light emitted from the light source 50 is reflected by the liquid L and reflected from the liquid L accompanying the vibration of the liquid L by the light shielding box 70 that shields the region including the optical path incident on the light receiver 60 from the external light. It is possible to further suppress the influence of fluctuation of external light on the amount of light. Accordingly, the vibration waveform and the reference vibration waveform can be detected more accurately, the vibration of the liquid L becomes a more optimal vibration, and the stirring device 100 in which the time until the end of stirring is further shortened can be obtained.

(5)液体Lの撹拌に最適な振動の基準振動波形を記録して、液体Lの振動波形を検知し、振動波形の周期および振幅を基準振動波形に近づくように、電極間距離と駆動電圧とを変化させる。したがって、液体Lの動きを目視して駆動電圧および電極間距離を調節する場合と比較して、短時間で液体Lの振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌方法が得られる。   (5) Record the reference vibration waveform of the vibration optimal for the stirring of the liquid L, detect the vibration waveform of the liquid L, and move the period and amplitude of the vibration waveform closer to the reference vibration waveform and the drive voltage And change. Therefore, as compared with the case where the movement of the liquid L is visually observed to adjust the driving voltage and the distance between the electrodes, the vibration of the liquid L becomes the optimum vibration in a short time, and the stirring time is shortened. A method is obtained.

(6)振動波形の経時変化を測定し、波形積分値と基準波形積分値とを比較して、波形積分値差を許容できる波形積分値差未満となるように、電極間距離と駆動電圧とを変化させる。したがって、撹拌中に液体Lの蒸発により液体Lの量が変化して、液体Lの振動波形の周期および振幅が変化しても、振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌方法が得られる。   (6) The time-dependent change of the vibration waveform is measured, the waveform integral value is compared with the reference waveform integral value, and the inter-electrode distance and the drive voltage are set so that the waveform integral value difference is less than the allowable waveform integral value difference. To change. Therefore, even if the amount of the liquid L changes due to the evaporation of the liquid L during the stirring, and the period and amplitude of the vibration waveform of the liquid L change, the vibration becomes the optimal vibration and the time until the stirring is completed is shortened. The resulting stirring method is obtained.

(第2実施形態)
図8に、本実施形態の撹拌装置200の概略構成を示す斜視図を示した。図では遮光箱70が省略してあるが、遮光箱70はあってもなくてもよい。
本実施形態の撹拌装置200は、第1実施形態の撹拌装置100の光源50と受光器60をレーザードップラー振動計80に変えた以外は、第1実施形態と同様の構成である。レーザードップラー振動計80は、上部電極40の上で、液体Lに向かってレーザー光を照射し、液体Lの表面で反射したレーザー光を受けるように配置する。
ただし、少なくとも上部電極40には、光を透過する透明電極を使用する必要がある。
また、波形変換部12はレーザードップラー振動計80に含まれていてもよい。レーザードップラー振動計80は、市場で流通しているよく知られた装置を用いることができる。
(Second Embodiment)
In FIG. 8, the perspective view which shows schematic structure of the stirring apparatus 200 of this embodiment was shown. Although the light shielding box 70 is omitted in the figure, the light shielding box 70 may or may not be provided.
The stirring device 200 of this embodiment has the same configuration as that of the first embodiment, except that the light source 50 and the light receiver 60 of the stirring device 100 of the first embodiment are changed to a laser Doppler vibrometer 80. The laser Doppler vibrometer 80 is disposed on the upper electrode 40 so as to irradiate the laser beam toward the liquid L and receive the laser beam reflected on the surface of the liquid L.
However, at least the upper electrode 40 needs to use a transparent electrode that transmits light.
In addition, the waveform conversion unit 12 may be included in the laser Doppler vibrometer 80. For the laser Doppler vibrometer 80, a well-known device distributed in the market can be used.

このような実施形態によれば、以下の効果がある。
(7)液体Lに照射する光が、より指向性のあるレーザー光であるので、液体Lに入射する光の量がより安定し、液体Lの振動に伴う液体Lから反射する光の量への、液体Lに入射する光の量の変動による影響をより抑えることができる。したがって、振動波形および基準振動波形がより正確に検知でき、液体Lの振動がより最適の振動になり、撹拌の終了までの時間がより短縮された撹拌装置200を得ることができる。
According to such an embodiment, there are the following effects.
(7) Since the light applied to the liquid L is more directional laser light, the amount of light incident on the liquid L is more stable, and the amount of light reflected from the liquid L accompanying the vibration of the liquid L is increased. The influence of the fluctuation of the amount of light incident on the liquid L can be further suppressed. Therefore, the vibration waveform and the reference vibration waveform can be detected more accurately, the vibration of the liquid L becomes a more optimal vibration, and the stirring device 200 with a shorter time until the end of stirring can be obtained.

(第3実施形態)
図9に、本実施形態の撹拌装置300の概略構成を示す斜視図を示した。図では遮光箱70が省略してあるが、本実施形態では遮光箱70あったほうが好ましい。
本実施形態の撹拌装置300は、第1実施形態の撹拌装置100の光源50がない以外は、第1実施形態と同様の構成である。受光器60の位置は特に限定されず、破線で示した上部電極40の上の位置にあってもよい。その場合、少なくとも上部電極40には、光を透過する透明電極を使用する必要がある。
(Third embodiment)
In FIG. 9, the perspective view which shows schematic structure of the stirring apparatus 300 of this embodiment was shown. In the drawing, the light shielding box 70 is omitted, but in the present embodiment, the light shielding box 70 is preferable.
The stirring device 300 of the present embodiment has the same configuration as that of the first embodiment except that the light source 50 of the stirring device 100 of the first embodiment is not provided. The position of the light receiver 60 is not particularly limited, and may be located on the upper electrode 40 indicated by a broken line. In that case, at least the upper electrode 40 needs to use a transparent electrode that transmits light.

このような実施形態によれば、以下の効果がある。
(8)上述の(1)の効果と同様に、液体Lの動きを目視して電圧および電極間距離を調節する場合と比較して、短時間で液体の振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌装置300を得ることができる。
また、撹拌中に液体Lの蒸発により液体Lの量が変化しても、受光器60によって液体Lの振動波形を捉え、液体Lの量に応じた補正駆動電圧を印加し、補正電極間距離に制御する上部電極制御部15を備えているので、最適な振動が維持される撹拌装置300を得ることができる。
According to such an embodiment, there are the following effects.
(8) Similar to the effect of (1) described above, the liquid vibration becomes the optimum vibration in a short time compared with the case where the voltage and the distance between the electrodes are adjusted by visually observing the movement of the liquid L. It is possible to obtain the stirring device 300 in which the time until the end of is shortened.
Even if the amount of the liquid L changes due to the evaporation of the liquid L during stirring, the light receiving device 60 captures the vibration waveform of the liquid L, applies a correction driving voltage corresponding to the amount of the liquid L, and corrects the distance between the correction electrodes. Since the upper electrode control unit 15 is controlled, the stirring device 300 that can maintain the optimum vibration can be obtained.

(第4実施形態)
図10に、本実施形態の撹拌装置400の概略構成を示す斜視図を示した。
本実施形態の撹拌装置400は、第3実施形態の撹拌装置300の受光器60の代わりに、下部電極30と上部電極40とから電極間の電圧を検知するリード線90が引き出され、図示しない検知部としての電圧モニター部を基台10に備えている。
電極間の電圧の検知は、印加する電圧変動の影響を少なくするために、例えば、図3に示した矩形波の一定電圧が印加されている間と電圧が印加されていない間に検知するのが好ましい。
(Fourth embodiment)
In FIG. 10, the perspective view which shows schematic structure of the stirring apparatus 400 of this embodiment was shown.
In the stirring device 400 of this embodiment, a lead wire 90 for detecting the voltage between the electrodes is drawn from the lower electrode 30 and the upper electrode 40 instead of the light receiver 60 of the stirring device 300 of the third embodiment, and is not shown. The base 10 is provided with a voltage monitor unit as a detection unit.
The detection of the voltage between the electrodes is performed, for example, while the constant voltage of the rectangular wave shown in FIG. 3 is applied and when the voltage is not applied in order to reduce the influence of the applied voltage fluctuation. Is preferred.

このような実施形態によれば、以下の効果がある。
(9)上述の(1)の効果と同様に、液体Lの動きを目視して電圧および電極間距離を調節する場合と比較して、短時間で液体の振動が最適の振動になり、撹拌の終了までの時間が短縮された撹拌装置400を得ることができる。
また、撹拌中に液体Lの蒸発により液体Lの量が変化しても、電極間の電圧を検知するリード線90によって液体Lの振動波形を捉え、液体Lの量に応じた補正駆動電圧を印加し、補正電極間距離に制御する上部電極制御部15を備えているので、最適な振動が維持される撹拌装置400を得ることができる。
According to such an embodiment, there are the following effects.
(9) Similar to the effect of (1) above, the liquid vibration becomes the optimum vibration in a short time compared with the case where the voltage and the distance between the electrodes are adjusted by visually observing the movement of the liquid L. It is possible to obtain the stirring device 400 in which the time until the end of is shortened.
Further, even if the amount of the liquid L changes due to the evaporation of the liquid L during stirring, the vibration waveform of the liquid L is captured by the lead wire 90 that detects the voltage between the electrodes, and a correction drive voltage corresponding to the amount of the liquid L is set. Since the upper electrode control unit 15 for applying and controlling the distance between the correction electrodes is provided, it is possible to obtain the stirring device 400 in which the optimum vibration is maintained.

(10)振動する液体Lによって下部電極30と上部電極40との間の誘電率が変化し、それに伴う電圧変動を検知するので、液体Lに非接触で液体Lの振動を検知できる。したがって、液体Lの撹拌への振動の検知による影響を少なくでき、撹拌の終了までの時間が短縮された撹拌装置400を得ることができる。   (10) Since the dielectric constant between the lower electrode 30 and the upper electrode 40 is changed by the vibrating liquid L and the voltage fluctuation associated therewith is detected, the vibration of the liquid L can be detected without contact with the liquid L. Therefore, it is possible to reduce the influence of the vibration on the stirring of the liquid L and to obtain the stirring device 400 in which the time until the stirring is completed is shortened.

上述の実施形態以外にも、種々の変更を行うことが可能である。
例えば、上述した実施形態では、振動を検知する検知部として受光器60、電圧モニター部を挙げて説明したが、本発明の検知部はこれらに限らず、例えば、超音波を液体Lに照射し、液体Lからの反射を検知する検知部、液体Lにプローブを接触させて振動を検知する検知部であってもよい。
また、検知部として、液体Lの動きを画像で検知し、波形変換部としての画像処理部によって振動波形を得てもよい。
In addition to the above-described embodiment, various changes can be made.
For example, in the above-described embodiment, the light receiver 60 and the voltage monitor unit are described as the detection unit that detects vibration. However, the detection unit of the present invention is not limited to these, and for example, the liquid L is irradiated with ultrasonic waves. A detection unit that detects reflection from the liquid L and a detection unit that detects vibration by bringing the probe into contact with the liquid L may be used.
Further, as the detection unit, the movement of the liquid L may be detected by an image, and the vibration waveform may be obtained by an image processing unit as a waveform conversion unit.

さらに、本発明の撹拌装置は、生体成分の分析、および定量への適用のみならず、液体の微小試料の撹拌に適用できる。例えば、工業製品における試験研究用の微小試料の撹拌、化学分析、物理分析における微小試料の作製や調製等にも適用することができる。   Furthermore, the stirring device of the present invention can be applied not only to analysis and quantification of biological components but also to stirring of a liquid micro sample. For example, the present invention can be applied to agitation of a micro sample for test research in an industrial product, chemical analysis, production and preparation of a micro sample in physical analysis, and the like.

10…基台、11…操作表示部、12…波形変換部、13…データ保存部、14…演算部、15…上部電極制御部、20…支柱、21…リニアエンコーダー、30…下部電極、40…上部電極、50…光源、60…受光器、70…遮光箱、80…レーザードップラー振動計、90…リード線、100,200,300,400…撹拌装置、L…液体。   DESCRIPTION OF SYMBOLS 10 ... Base, 11 ... Operation display part, 12 ... Waveform conversion part, 13 ... Data storage part, 14 ... Calculation part, 15 ... Upper electrode control part, 20 ... Support | pillar, 21 ... Linear encoder, 30 ... Lower electrode, 40 ... upper electrode, 50 ... light source, 60 ... light receiver, 70 ... light shielding box, 80 ... laser Doppler vibrometer, 90 ... lead wire, 100, 200, 300, 400 ... stirrer, L ... liquid.

Claims (8)

第1の電極と前記第1の電極に対向する第2の電極との間に液体を配置して、前記第1の電極と前記第2の電極との間に駆動電圧を印加して前記液体を振動させる撹拌装置であって、
前記振動を検知する検知部と、
前記検知部で検知した前記振動を振動波形に変換する波形変換部と、
予め、前記検知部と前記波形変換部とを用いて得られた、前記液体の撹拌に最適な振動の基準振動波形を記録するデータ保存部と、
前記振動波形と前記基準振動波形とを比較して、前記振動波形を前記基準振動波形に近づけるための前記第1の電極と前記第2の電極との間の補正駆動電圧、および前記第1の電極と前記第2の電極との補正電極間距離を演算する演算部と、
前記補正駆動電圧および前記補正電極間距離に基づいて、前記第1の電極と前記第2の電極との間に前記補正駆動電圧を印加し、前記第1の電極と前記第2の電極との間の距離を前記補正電極間距離に制御する電極制御部とを備えた
ことを特徴とする撹拌装置。
A liquid is disposed between the first electrode and the second electrode facing the first electrode, and a driving voltage is applied between the first electrode and the second electrode to apply the liquid. A stirring device that vibrates,
A detection unit for detecting the vibration;
A waveform converter that converts the vibration detected by the detector into a vibration waveform;
A data storage unit that records a reference vibration waveform of vibration optimally used for stirring the liquid, obtained in advance using the detection unit and the waveform conversion unit,
A correction drive voltage between the first electrode and the second electrode for comparing the vibration waveform with the reference vibration waveform to bring the vibration waveform close to the reference vibration waveform, and the first A calculation unit for calculating a correction interelectrode distance between the electrode and the second electrode;
Based on the correction drive voltage and the distance between the correction electrodes, the correction drive voltage is applied between the first electrode and the second electrode, and the first electrode and the second electrode An agitation device comprising: an electrode control unit that controls the distance between the correction electrodes to the distance between the correction electrodes.
請求項1に記載の撹拌装置であって、
前記検知部は、振動する前記液体から反射した光を受光する受光器を備えている
ことを特徴とする撹拌装置。
The stirring device according to claim 1,
The detection unit includes a light receiver that receives light reflected from the vibrating liquid. The stirring device.
請求項2に記載の撹拌装置であって、
前記液体に光を照射する光源を備えている
ことを特徴とする撹拌装置。
The stirring device according to claim 2,
A stirring device comprising a light source for irradiating the liquid with light.
請求項3に記載の撹拌装置であって、
前記光源は、レーザー光源である
ことを特徴とする撹拌装置。
The stirring device according to claim 3,
The stirrer characterized in that the light source is a laser light source.
請求項3または請求項4に記載の撹拌装置であって、
前記光源から射出された光が前記液体で反射されて前記受光器に入射する光路を含む領域を外部の光から遮蔽する部材を備えている
ことを特徴とする撹拌装置。
The stirring device according to claim 3 or 4, wherein
A stirrer, comprising: a member that shields an area including an optical path in which light emitted from the light source is reflected by the liquid and is incident on the light receiver from external light.
請求項1に記載の撹拌装置であって、
前記検知部は、振動する前記液体による前記第1の電極と前記第2の電極との間の電圧変動を検知する
ことを特徴とする撹拌装置。
The stirring device according to claim 1,
The said detection part detects the voltage fluctuation between the said 1st electrode and the said 2nd electrode by the said liquid which vibrates. The stirring apparatus characterized by the above-mentioned.
第1の電極と前記第1の電極に対向する第2の電極との間に液体を配置して、前記第1の電極と前記第2の電極との間に駆動電圧を印加して前記液体を振動させる撹拌方法であって、
前記液体の撹拌に最適な振動の基準振動波形および撹拌時間を予め記録する基準振動波形記録工程と、
前記基準振動波形が得られる前記第1の電極と前記第2の電極との間の電極間距離に、前記第1の電極または前記第2の電極の少なくとも一方を移動する電極セッティング工程と、
前記液体に前記駆動電圧を印加して前記液体の振動を開始する振動開始工程と、
前記液体の振動の振動波形を検知する振動波形検知工程と、
前記基準振動波形の周期と検知された前記振動波形の周期とが近いか否かを判断する周期判断工程と、
前記基準振動波形の周期と前記振動波形の周期とがと近づくように、前記電極間距離と前記駆動電圧とを変化させる周期制御工程と、
前記基準振動波形の振幅と前記振動波形の振幅とが近いか否かを判断する振幅判断工程と、
前記基準振動波形の振幅と検知された前記振動波形の振幅とが近づくように、前記電極間距離と前記駆動電圧とを変化させる振幅制御工程とを含んでいる
ことを特徴とする撹拌方法。
A liquid is disposed between the first electrode and the second electrode facing the first electrode, and a driving voltage is applied between the first electrode and the second electrode to apply the liquid. A stirring method for vibrating
A reference vibration waveform recording step for pre-recording a reference vibration waveform and a stirring time of vibration optimal for stirring the liquid;
An electrode setting step of moving at least one of the first electrode or the second electrode to an interelectrode distance between the first electrode and the second electrode from which the reference vibration waveform is obtained;
A vibration starting step of applying the driving voltage to the liquid to start the vibration of the liquid;
A vibration waveform detection step of detecting a vibration waveform of the liquid vibration;
A period determining step for determining whether or not the period of the reference vibration waveform is close to the period of the detected vibration waveform;
A cycle control step of changing the inter-electrode distance and the drive voltage so that the cycle of the reference vibration waveform and the cycle of the vibration waveform approach each other;
An amplitude determination step for determining whether or not the amplitude of the reference vibration waveform is close to the amplitude of the vibration waveform;
An agitation method comprising: an amplitude control step of changing the distance between the electrodes and the drive voltage so that the amplitude of the reference vibration waveform and the amplitude of the detected vibration waveform approach each other.
請求項7に記載の撹拌方法において、
前記基準振動波形の半周期分の基準波形積分値から許容できる波形積分値差を予め記録しておく振動許容範囲記録工程と、
前記振動波形の経時変化を測定する経時変化監視工程と、
前記基準波形積分値の絶対値と、前記振動波形の半周期分の波形積分値の絶対値と、を比較し、これらの波形積分値差が前記許容できる波形積分値差未満か否かを判断する波形積分値差判断工程と、
前記波形積分値差が前記許容できる波形積分値差以上の場合、前記波形積分値差を前記許容できる波形積分値差未満となるように、前記電極間距離と前記駆動電圧とを変化させる波形積分値差制御工程とを含む
ことを特徴とする撹拌方法。
The stirring method according to claim 7,
A vibration tolerance range recording step for preliminarily recording an allowable waveform integral value difference from a reference waveform integral value corresponding to a half cycle of the reference vibration waveform;
A temporal change monitoring step of measuring the temporal change of the vibration waveform;
The absolute value of the reference waveform integral value is compared with the absolute value of the waveform integral value for a half period of the vibration waveform, and it is determined whether or not the difference between these waveform integral values is less than the allowable waveform integral value difference. Waveform integral value difference judgment step to perform,
When the waveform integral value difference is greater than or equal to the allowable waveform integral value difference, the waveform integral that changes the interelectrode distance and the drive voltage so that the waveform integral value difference is less than the allowable waveform integral value difference. A stirring method characterized by comprising a value difference control step.
JP2012201110A 2012-09-13 2012-09-13 Stirring apparatus and stirring method Active JP5870430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012201110A JP5870430B2 (en) 2012-09-13 2012-09-13 Stirring apparatus and stirring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012201110A JP5870430B2 (en) 2012-09-13 2012-09-13 Stirring apparatus and stirring method

Publications (2)

Publication Number Publication Date
JP2014054601A true JP2014054601A (en) 2014-03-27
JP5870430B2 JP5870430B2 (en) 2016-03-01

Family

ID=50612414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012201110A Active JP5870430B2 (en) 2012-09-13 2012-09-13 Stirring apparatus and stirring method

Country Status (1)

Country Link
JP (1) JP5870430B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160060A (en) * 2013-01-22 2014-09-04 Akita Prefecture Water repellent frame for electric field agitation
JP2016070770A (en) * 2014-09-30 2016-05-09 シスメックス株式会社 Analyser and agitation unit
JP2016109636A (en) * 2014-12-10 2016-06-20 秋田エプソン株式会社 Electric field agitation device, antigen antibody reaction device, and antigen antibody reaction method
CN109806799A (en) * 2019-02-22 2019-05-28 重庆航天工业有限公司 A kind of automatic mixing machine
JP2020056709A (en) * 2018-10-03 2020-04-09 セイコーエプソン株式会社 Electric field stirring device, electric field stirring method, and pathological specimen manufacturing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510656A (en) * 1994-06-16 1997-10-28 ベーリングヴェルケ・アクチエンゲゼルシャフト Method and apparatus for mixing liquids
JP2011122919A (en) * 2009-12-10 2011-06-23 Nippon Koden Corp Sample stirring device
JP2012013598A (en) * 2010-07-02 2012-01-19 Akita Univ Immunity organization dyeing method and immunity organization dyeing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09510656A (en) * 1994-06-16 1997-10-28 ベーリングヴェルケ・アクチエンゲゼルシャフト Method and apparatus for mixing liquids
JP2011122919A (en) * 2009-12-10 2011-06-23 Nippon Koden Corp Sample stirring device
JP2012013598A (en) * 2010-07-02 2012-01-19 Akita Univ Immunity organization dyeing method and immunity organization dyeing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160060A (en) * 2013-01-22 2014-09-04 Akita Prefecture Water repellent frame for electric field agitation
JP2016070770A (en) * 2014-09-30 2016-05-09 シスメックス株式会社 Analyser and agitation unit
JP2016109636A (en) * 2014-12-10 2016-06-20 秋田エプソン株式会社 Electric field agitation device, antigen antibody reaction device, and antigen antibody reaction method
JP2020056709A (en) * 2018-10-03 2020-04-09 セイコーエプソン株式会社 Electric field stirring device, electric field stirring method, and pathological specimen manufacturing device
JP7210988B2 (en) 2018-10-03 2023-01-24 セイコーエプソン株式会社 Electric field stirring device, electric field stirring method, pathological specimen preparation device
US11680943B2 (en) 2018-10-03 2023-06-20 Seiko Epson Corporation Electric field stirring apparatus, electric field stirring method, and pathological sample manufacturing apparatus
CN109806799A (en) * 2019-02-22 2019-05-28 重庆航天工业有限公司 A kind of automatic mixing machine

Also Published As

Publication number Publication date
JP5870430B2 (en) 2016-03-01

Similar Documents

Publication Publication Date Title
JP5870430B2 (en) Stirring apparatus and stirring method
Yoshinobu et al. Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor
JP4727064B2 (en) Mobility and effects due to surface charge
US20120208283A1 (en) Systems and Methods for Detection and Quantitation of Analytes Using an Oscillating Stimulus
EP3239691B1 (en) Cell imaging device, cell imaging method, and sample cell
US20190219490A1 (en) Blood coagulation test device and blood coagulation test method
Werner et al. High speed and high resolution chemical imaging based on a new type of OLED-LAPS set-up
CN103837472B (en) Micro-cantilever deflection and scanning system and the scan method of the micro-cantilever array sensor based on multi-angle plane transmission mirror
JP5557772B2 (en) Liquid level detector
JP5583337B2 (en) Automatic analyzer and its dispensing method
CN103822651A (en) Plane mirror reflection based micro-cantilever deflection detecting system of micro-cantilever array sensor and detecting method
JP2007316013A (en) Autoanalyzer and specimen-dispensing method therefor
US20170307532A1 (en) Fixed position controller and method
WO2004086010A1 (en) Absorbance reader, absorbance reader control method, and absorbance calculation program
EP3232182A1 (en) Detection chip and detection method
CN112041685A (en) Chemical analysis apparatus
CN216050164U (en) Vibration wave layered interface measuring device
CN203745360U (en) Micro-cantilever deflection scanning system of micro-cantilever array sensor based on multi-angle planar transmission mirrors
CN203758529U (en) Plane mirror reflection-based micro-cantilever deflection detection system of micro-cantilever array sensor
JP7379264B2 (en) automatic analyzer
Jensen et al. A multi-mode platform for cantilever arrays operated in liquid
RU2187797C2 (en) Facility determining time of blood coagulation
CN104458837B (en) A kind of examination of glucose concentration device and detection method
CN215179569U (en) Device for continuous detection of optical instrument
JP2002071697A (en) Automatic analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5870430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350