JP2014053355A - Wafer processing method - Google Patents

Wafer processing method Download PDF

Info

Publication number
JP2014053355A
JP2014053355A JP2012194887A JP2012194887A JP2014053355A JP 2014053355 A JP2014053355 A JP 2014053355A JP 2012194887 A JP2012194887 A JP 2012194887A JP 2012194887 A JP2012194887 A JP 2012194887A JP 2014053355 A JP2014053355 A JP 2014053355A
Authority
JP
Japan
Prior art keywords
wafer
back surface
electrode
embedded
polishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012194887A
Other languages
Japanese (ja)
Inventor
Yuki Inoue
雄貴 井上
Susumu Hayakawa
晋 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2012194887A priority Critical patent/JP2014053355A/en
Publication of JP2014053355A publication Critical patent/JP2014053355A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Dicing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wafer processing method capable of processing a rear surface of a wafer to a highly-accurate flat surface.SOLUTION: A wafer processing method for dividing a wafer which includes a chamfering part in an outer peripheral edge and in which each device is formed in each of the regions partitioned by a plurality of division schedule lines formed in a lattice shape on a surface of the wafer and a plurality of embedded electrodes reaching a depth not less than a finishing thickness of the wafer are buried from each device into individual devices includes the steps of: arranging a carrier plate on the surface of the wafer via a resin (carrier plate arranging step); detecting depths of tips of the plurality of embedded electrodes from a rear surface of the wafer (embedded electrode detection step); thinning the wafer by grinding the rear surface of the wafer to such an extent that the embedded electrodes are not exposed to the rear surface (rear surface grinding step); and bringing a polishing pad arranged with a plurality of independent ring-shaped air bags into contact with the rear surface of the wafer, supplying slurry while properly controlling a pressure of each air bag, and polishing the rear surface of the wafer to such an extent that the embedded electrodes are not exposed to the rear surface (grinding step).

Description

本発明は、半導体ウエーハ等のウエーハの加工方法に関する。   The present invention relates to a method for processing a wafer such as a semiconductor wafer.

近年、半導体デバイスの高集積化、高密化、小型化、薄型化を達成するために、MCP(マルチ・チップ・パッケージ)やSIP(システム・イン・パッケージ)といった複数の半導体チップを積層した積層型半導体パッケージが提案されている。   In recent years, in order to achieve high integration, high density, miniaturization, and thinning of semiconductor devices, a stacked type in which a plurality of semiconductor chips such as MCP (multi-chip package) and SIP (system in package) are stacked. Semiconductor packages have been proposed.

このような積層型半導体パッケージは、インターポーザと呼ばれるパッケージ基板上に複数の半導体チップを積層することで形成される。一般的には、インターポーザと半導体チップの電極同士、或いは複数積層した半導体チップの電極同士を、金線ワイヤで電気的に結線した後、半導体チップをインターポーザに樹脂でモールド封止することで積層型半導体パッケージが製造される。   Such a stacked semiconductor package is formed by stacking a plurality of semiconductor chips on a package substrate called an interposer. In general, the interposer and the semiconductor chip electrodes, or the electrodes of the stacked semiconductor chips are electrically connected with a gold wire, and then the semiconductor chip is molded and sealed with resin to the interposer. A semiconductor package is manufactured.

ところがこの方法では、半導体チップの電極にボンディングされた金線ワイヤは、半導体チップの外周余剰領域に張り出す形となるために、パッケージサイズは半導体チップよりも大きくなってしまうという問題があった。   However, in this method, since the gold wire bonded to the electrode of the semiconductor chip protrudes to the outer peripheral surplus region of the semiconductor chip, there is a problem that the package size becomes larger than the semiconductor chip.

また、樹脂でモールド封止する際に金線ワイヤが変形して断線や短絡が生じたり、モールド樹脂中に残存した空気が加熱時に膨張して半導体パッケージの破損を招いたりするという問題があった。   In addition, when the mold is sealed with the resin, the wire wire is deformed to cause a disconnection or a short circuit, or the air remaining in the mold resin expands upon heating and causes damage to the semiconductor package. .

そこで、半導体チップ内に、半導体チップを厚み方向に貫通して半導体チップの電極に接続する貫通電極(Via電極)を設け、半導体チップを積層するとともに貫通電極を接合させて電気的に結線する技術が提案されている(例えば、特開2004−207606号公報及び特開2004−241479号公報参照)。   Therefore, a technique of providing a through electrode (via electrode) that penetrates the semiconductor chip in the thickness direction and connects to the electrode of the semiconductor chip in the semiconductor chip, stacking the semiconductor chips and joining the through electrodes and electrically connecting the electrodes. Have been proposed (see, for example, Japanese Patent Application Laid-Open Nos. 2004-207606 and 2004-241479).

この方法では、シリコンウエーハの表面に複数の半導体デバイスが形成され、各半導体デバイスからは半導体デバイスの電極に接続されてシリコンウエーハの裏面側に伸長する複数の埋め込み銅電極(銅ポスト)が形成された所謂TSV(Through Silicon Via)ウエーハを利用する。   In this method, a plurality of semiconductor devices are formed on the surface of the silicon wafer, and from each semiconductor device, a plurality of embedded copper electrodes (copper posts) that are connected to the electrodes of the semiconductor device and extend to the back side of the silicon wafer are formed. A so-called TSV (Through Silicon Via) wafer is used.

埋め込み銅電極は半導体チップの仕上がり厚さ以上の高さを有し、研削装置でウエーハの裏面を研削及び研磨して埋め込み銅電極が裏面から露出する寸前の厚さまでウエーハを薄化する。その後、シリコンウエーハだけを選択的にエッチングすることでウエーハの裏面から埋め込み銅電極の先端を突出させ貫通電極とする。   The embedded copper electrode has a height equal to or higher than the finished thickness of the semiconductor chip, and the back surface of the wafer is ground and polished by a grinding device to thin the wafer to a thickness just before the embedded copper electrode is exposed from the back surface. Thereafter, by selectively etching only the silicon wafer, the tip of the buried copper electrode protrudes from the back surface of the wafer to form a through electrode.

特開2004−207606号公報JP 2004-207606 A 特開2004−241479号公報JP 2004-241479 A

上述したようなウエーハの加工方法においては、多くの工程を含んでいるが、中でも貫通電極が裏面に露出しない程度にウエーハの裏面を研削することは非常に難しい。もし貫通電極が裏面に露出してしまうと、電極を形成する銅等の金属イオンが溶出し、ウエーハのデバイスに付着してデバイスの機能に悪影響を与える恐れがあるため、高精度な研削量の制御及び均一な平坦さが求められる。   The wafer processing method as described above includes many steps, but it is extremely difficult to grind the back surface of the wafer to such an extent that the through electrode is not exposed on the back surface. If the through electrode is exposed on the back side, metal ions such as copper forming the electrode may elute and adhere to the wafer device, adversely affecting the function of the device. Control and uniform flatness are required.

また、貫通電極の形成されたウエーハの裏面からの深さにはばらつきが発生するため、個々のウエーハによって研削量が厳密には異なるので、それに対応しなければならないという難しさもある。   In addition, since the depth from the back surface of the wafer on which the through electrode is formed varies, there is a difficulty in that the amount of grinding is strictly different depending on the individual wafer, and it must be dealt with.

本発明はこのような点に鑑みてなされたものであり、その目的とするところは、ウエーハの裏面を高精度な平坦面に加工可能なウエーハの加工方法を提供することである。   The present invention has been made in view of these points, and an object of the present invention is to provide a wafer processing method capable of processing the back surface of a wafer into a highly accurate flat surface.

本発明によると、表面に格子状に形成された複数の分割予定ラインによって区画された各領域にそれぞれデバイスが形成され、該各デバイスからウエーハの仕上がり厚さ以上の深さに至る複数の埋め込み電極が埋設されるとともに、外周縁に面取り部を有するウエーハを個々のデバイスに分割するウエーハの加工方法であって、ウエーハの外周縁に切削ブレードを位置づけてウエーハを表面側から仕上げ厚さを越えて円形に切削し、又はウエーハを裏面側から円形に完全切断して面取り部を除去する面取り部除去工程と、該面取り部除去工程を実施する前又は後に、ウエーハの表面に樹脂を介してキャリアプレートを配設するキャリアプレート配設工程と、該キャリアプレート配設工程を実施した後、ウエーハの裏面から該複数の埋め込み電極の先端の深さを検出する埋め込み電極検出工程と、該埋め込み電極検出工程を実施した後、該埋め込み電極が裏面に露出しない程度にウエーハの裏面を研削して薄化する裏面研削工程と、該裏面研削工程を実施した後、リング状に独立した複数のエアバッグが配設された研磨パッドをウエーハの裏面に接触させ、各エアバッグの圧力を適宜制御しながらスラリーを供給して該埋め込み電極が裏面に露出しない程度にウエーハの裏面を研磨する研磨工程と、該研磨工程を実施した後、ウエーハの裏面からウエーハをエッチングして該埋め込み電極をウエーハの裏面から突出させて貫通電極とするエッチング工程と、該エッチング工程を実施した後、ウエーハの裏面に絶縁膜を被覆する絶縁膜被覆工程と、該絶縁膜被覆工程を実施した後、ウエーハの裏面から突出した該貫通電極を除去して該絶縁膜から露出させるとともに該貫通電極の頭を該絶縁膜と同一面に仕上げる仕上げ工程と、該仕上げ工程を実施した後、該各貫通電極の頭にバンプを配設するバンプ配設工程と、該バンプ配設工程を実施した後、ウエーハの裏面にダイシングテープを貼着するとともにウエーハの表面から該キャリアプレートを取り外し、ウエーハを該ダイシングテープに移し替える移し替え工程と、該移し替え工程を実施した後、ウエーハを個々のデバイスに分割する分割工程と、を含むことを特徴とするウエーハの加工方法が提供される。   According to the present invention, a plurality of embedded electrodes each having a device formed in each region partitioned by a plurality of scheduled division lines formed in a lattice pattern on the surface and reaching a depth equal to or greater than the finished thickness of the wafer. Is a wafer processing method in which a wafer having a chamfered portion on the outer peripheral edge is divided into individual devices, and a cutting blade is positioned on the outer peripheral edge of the wafer so that the wafer exceeds the finished thickness from the surface side. A chamfered portion removing step of cutting the wafer into a circular shape or completely cutting the wafer into a circular shape from the back side to remove the chamfered portion, and a carrier plate via a resin on the wafer surface before or after the chamfered portion removing step is performed And a carrier plate disposing step for disposing the plurality of embedded electrodes from the back surface of the wafer after the carrier plate disposing step. Embedded electrode detection step for detecting the depth of the tip of the wafer, and after performing the embedded electrode detection step, a back surface grinding step for grinding and thinning the back surface of the wafer to such an extent that the embedded electrode is not exposed on the back surface, After carrying out the back surface grinding step, a polishing pad in which a plurality of independent air bags are arranged in a ring shape is brought into contact with the back surface of the wafer, and slurry is supplied while appropriately controlling the pressure of each air bag, thereby the embedded electrode A polishing step for polishing the back surface of the wafer to such an extent that the back surface is not exposed to the back surface, and after performing the polishing step, etching the wafer from the back surface of the wafer so that the embedded electrode protrudes from the back surface of the wafer to form a through electrode And after performing the etching step, the insulating film coating step of covering the back surface of the wafer with the insulating film, and the insulating film coating step. C) removing the through electrode protruding from the back surface of the insulating film to expose the insulating film and finishing the head of the through electrode on the same surface as the insulating film; and after performing the finishing step, the through electrodes A bump disposing step of disposing a bump on the head of the wafer, and after performing the bump disposing step, a dicing tape is attached to the back surface of the wafer, the carrier plate is removed from the front surface of the wafer, and the wafer is removed from the dicing tape. There is provided a wafer processing method characterized by including a transfer step of transferring to a wafer and a dividing step of dividing the wafer into individual devices after the transfer step is performed.

本発明のウエーハの加工方法によると、ウエーハ毎の裏面研磨時に用いる研磨パッドの所定の部位に所定の圧力をかけることのできるエアバック構造の研磨パッドを採用したので、中凸型や中凹型になってしまい易い装置状態でも、所定の位置に所定の圧力をかけることで研磨量の微調整が可能になるため、平坦な研磨面を得られるという効果を奏する。   According to the wafer processing method of the present invention, the air bag structure polishing pad capable of applying a predetermined pressure to a predetermined portion of the polishing pad used when polishing the back surface of each wafer is employed. Even in an apparatus state that is likely to become small, it is possible to finely adjust the polishing amount by applying a predetermined pressure to a predetermined position, so that a flat polishing surface can be obtained.

図1(A)はバンプ付き埋め込み銅電極を有する半導体ウエーハの表面側斜視図、図1(B)はその断面図である。FIG. 1A is a front perspective view of a semiconductor wafer having a buried copper electrode with bumps, and FIG. 1B is a cross-sectional view thereof. 面取り部除去工程を示す一部断面側面図である。It is a partial cross section side view which shows a chamfer part removal process. 面取り部除去工程実施後の半導体ウエーハの断面図である。It is sectional drawing of the semiconductor wafer after a chamfer part removal process implementation. キャリアプレート配設工程を説明する断面図である。It is sectional drawing explaining a carrier plate arrangement | positioning process. 埋め込み銅電極検出工程を示す断面図である。It is sectional drawing which shows an embedded copper electrode detection process. 裏面研削工程を示す一部断面側面図である。It is a partial cross section side view which shows a back surface grinding process. 研磨工程を示す一部断面側面図である。It is a partial cross section side view which shows a grinding | polishing process. 研磨パッドを取り外した状態の研磨ホイールの平面図である。It is a top view of the grinding wheel of a state where the polishing pad was removed. 研磨工程実施後のウエーハの断面図である。It is sectional drawing of the wafer after grinding | polishing process implementation. エッチング工程実施後のウエーハの断面図である。It is sectional drawing of the wafer after an etching process implementation. 絶縁膜被覆工程実施後のウエーハの断面図である。It is sectional drawing of the wafer after insulating film coating process implementation. 仕上げ工程実施後のウエーハの断面図である。It is sectional drawing of the wafer after finishing process implementation. バンプ配設工程実施後のウエーハの断面図である。It is sectional drawing of the wafer after bump provision process implementation. 移し替え工程を説明する断面図である。It is sectional drawing explaining a transfer process.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1(A)を参照すると、本発明加工方法の加工対象となるバンプ付き埋め込み銅電極を有する半導体ウエーハ11の斜視図が示されている。図1(B)はその縦断面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Referring to FIG. 1A, a perspective view of a semiconductor wafer 11 having embedded copper electrodes with bumps to be processed by the processing method of the present invention is shown. FIG. 1B is a longitudinal sectional view thereof.

図1に示す半導体ウエーハ11は、例えば厚さが700μmのシリコンウエーハからなっており、表面11aに複数の分割予定ライン(ストリート)13が格子状に形成されているとともに、複数の分割予定ライン13によって区画された各領域にIC、LSI等のデバイス15が形成されている。   A semiconductor wafer 11 shown in FIG. 1 is made of, for example, a silicon wafer having a thickness of 700 μm, and a plurality of division lines (streets) 13 are formed in a lattice shape on the surface 11a, and a plurality of division lines 13 are formed. A device 15 such as an IC or an LSI is formed in each of the areas partitioned by.

図1(B)に示すように、半導体ウエーハ11に形成された各半導体デバイス15からはデバイスの仕上がり厚さt1以上の深さに埋め込まれた複数の埋め込み銅電極21が裏面11b側に伸長している。各埋め込み電極21の上端にはバンプ23が接合されている。電極21を他の導体材料から形成しても良い。   As shown in FIG. 1B, from each semiconductor device 15 formed on the semiconductor wafer 11, a plurality of embedded copper electrodes 21 embedded at a depth equal to or larger than the finished thickness t1 of the device extend toward the back surface 11b. ing. A bump 23 is bonded to the upper end of each embedded electrode 21. The electrode 21 may be formed from other conductor materials.

このように構成された半導体ウエーハ(以下単にウエーハと略称することがある)11は、図1(A)に示されているように、複数の半導体デバイス15が形成されているデバイス領域17と、デバイス領域17を囲繞する外周余剰領域19をその表面11aに備えている。また、図1(B)に示すように、ウエーハ11の外周部には円弧状の面取り部11eが形成されている。   As shown in FIG. 1 (A), the semiconductor wafer 11 thus configured (hereinafter sometimes simply referred to as a wafer) 11 includes a device region 17 in which a plurality of semiconductor devices 15 are formed, An outer peripheral surplus area 19 surrounding the device area 17 is provided on the surface 11a. Further, as shown in FIG. 1B, an arc-shaped chamfered portion 11 e is formed on the outer peripheral portion of the wafer 11.

本発明のウエーハの加工方法では、まず、ウエーハ11の面取り部11eを除去する面取り部除去工程を実施する。この面取り部除去工程では、図2に示すように、切削装置のチャックテーブル10でウエーハ11を吸引保持する。   In the wafer processing method of the present invention, first, a chamfered portion removing step for removing the chamfered portion 11e of the wafer 11 is performed. In this chamfered portion removing step, as shown in FIG. 2, the wafer 11 is sucked and held by the chuck table 10 of the cutting apparatus.

図2において、12は切削装置の切削ユニットであり、スピンドルハウジング14中にスピンドル16が回転可能に支持されており、スピンドル16の先端部には切削ブレード18が装着されている。   In FIG. 2, reference numeral 12 denotes a cutting unit of a cutting apparatus. A spindle 16 is rotatably supported in a spindle housing 14, and a cutting blade 18 is attached to the tip of the spindle 16.

この面取り部除去工程では、高速回転する切削ユニット12の切削ブレード18をウエーハ11の面取り部11eに表面11a側から所定深さ切り込ませ、チャックテーブル10を低速で回転させて、図3に示すように、ウエーハ11の外周部に円形の段差部11fを形成する。   In this chamfered portion removing step, the cutting blade 18 of the cutting unit 12 rotating at high speed is cut into the chamfered portion 11e of the wafer 11 by a predetermined depth from the surface 11a side, and the chuck table 10 is rotated at a low speed, as shown in FIG. As described above, a circular step portion 11 f is formed on the outer peripheral portion of the wafer 11.

この面取り部除去工程での切削ブレード18の切り込み深さは、少なくともウエーハ11の表面11aからウエーハ11の仕上げ厚みを越える深さであり、例えば深さ100μm程度の円形の段差部11fを形成する。切削ブレード18としては、例えば厚さが1〜2mm程度のワッシャーブレードを使用するのが好ましい。   The cutting depth of the cutting blade 18 in this chamfered portion removing step is at least a depth exceeding the finished thickness of the wafer 11 from the surface 11a of the wafer 11, and forms a circular step portion 11f having a depth of about 100 μm, for example. As the cutting blade 18, for example, a washer blade having a thickness of about 1 to 2 mm is preferably used.

図2に示した面取り部除去工程は、切削ブレード18をウエーハ11の面取り部11eに切り込ませて実施しているが、研削ホイールの研削砥石をウエーハ11の面取り部11eに当接させて研削により面取り部11eの一部又は全てを除去するようにしてもよい。   The chamfered portion removing step shown in FIG. 2 is performed by cutting the cutting blade 18 into the chamfered portion 11e of the wafer 11, and grinding is performed by bringing the grinding wheel of the grinding wheel into contact with the chamfered portion 11e of the wafer 11. Thus, part or all of the chamfered portion 11e may be removed.

完全切断(フルカット)によって面取り部を全て除去しても良い。その場合、キャリアプレート配設工程の後に面取り部除去工程を実施する。フルカットはウエーハ11の裏面11b側から実施しても良い。   All of the chamfered portions may be removed by complete cutting (full cutting). In that case, the chamfered portion removing step is performed after the carrier plate arranging step. The full cut may be performed from the back surface 11 b side of the wafer 11.

面取り部除去工程実施後のウエーハ11の断面図が図3に示されている。円形の段差部11fは少なくともウエーハ11の表面11aからウエーハ11の仕上げ厚みを越える深さであり、例えばウエーハ11の表面11aから100μm程度の深さを有している。   A cross-sectional view of the wafer 11 after the chamfered portion removing step is shown in FIG. The circular step portion 11f is at least a depth exceeding the finished thickness of the wafer 11 from the surface 11a of the wafer 11, and has a depth of about 100 μm from the surface 11a of the wafer 11, for example.

面取り部除去工程を実施した後、図4に示すように、ウエーハ11の表面11aに接着性を有する樹脂27を介してキャリアプレート25を配設するキャリアプレート配設工程を実施する。樹脂27は接着剤として作用し、キャリアプレート25はウエーハ11の表面11aに樹脂27により貼着される。   After performing the chamfered portion removing step, as shown in FIG. 4, a carrier plate disposing step of disposing the carrier plate 25 on the surface 11a of the wafer 11 via the resin 27 having adhesiveness is performed. The resin 27 acts as an adhesive, and the carrier plate 25 is adhered to the surface 11 a of the wafer 11 with the resin 27.

キャリアプレート25は、例えば一様な厚みを有するシリコンウエーハ、又はガラス等から形成されている。本実施形態ではキャリアプレート25はガラスから形成されているものとして図示している。樹脂27の厚みは例えば20μm程度が好ましい。   The carrier plate 25 is made of, for example, a silicon wafer having a uniform thickness or glass. In the present embodiment, the carrier plate 25 is illustrated as being formed of glass. The thickness of the resin 27 is preferably about 20 μm, for example.

キャリアプレート配設工程実施後、ウエーハ11の裏面11bから埋め込み銅電極21の先端の深さを検出する埋め込み銅電極検出工程を実施する。この埋め込み銅電極検出工程は、例えば図5に示すように、研削装置のチャックテーブル20でキャリアプレート25を吸引保持し、赤外線カメラ(IRカメラ)22でウエーハ11をその裏面11b側から撮像することにより実施する。   After the carrier plate placement step, a buried copper electrode detection step for detecting the depth of the tip of the buried copper electrode 21 from the back surface 11b of the wafer 11 is performed. In this embedded copper electrode detection step, for example, as shown in FIG. 5, the carrier plate 25 is sucked and held by the chuck table 20 of the grinding apparatus, and the wafer 11 is imaged from the back surface 11b side by the infrared camera (IR camera) 22. To implement.

赤外線はシリコンウエーハ11を透過するため、IRカメラ22の焦点を変化させてそれぞれウエーハ11の表面11a、埋め込み銅電極21の先端及びウエーハ11の裏面11bに焦点を結ばせてその焦点距離を検出することにより、ウエーハ11の表面11a、埋め込み銅電極21の先端及びウエーハ11の裏面11bの高さを検出することができ、埋め込み銅電極21先端のウエーハの裏面11bからの深さを検出することができる。   Since infrared rays pass through the silicon wafer 11, the focal point of the IR camera 22 is changed to focus on the front surface 11a of the wafer 11, the tip of the embedded copper electrode 21, and the back surface 11b of the wafer 11 to detect the focal length. Thus, the height of the front surface 11a of the wafer 11, the front end of the embedded copper electrode 21 and the back surface 11b of the wafer 11 can be detected, and the depth of the front end of the embedded copper electrode 21 from the back surface 11b of the wafer can be detected. it can.

IRカメラ21を矢印A方向に移動させながらウエーハ11を撮像して、全て又は複数の埋め込み銅電極21の深さを検出し、この検出した値を研削装置のコントローラに配設されたメモリに格納する。   The wafer 11 is imaged while moving the IR camera 21 in the direction of arrow A, the depth of all or a plurality of embedded copper electrodes 21 is detected, and the detected values are stored in a memory provided in the controller of the grinding apparatus. To do.

埋め込み銅電極検出工程実施後、埋め込み銅電極21がウエーハ11の裏面11bに露出しない程度にウエーハ11の裏面11bを研削して薄化する裏面研削工程を実施する。この裏面研削工程では、研削装置のチャックテーブル20でキャリアプレート25を吸引保持し、ウエーハ11の裏面11bを露出させる。   After performing the embedded copper electrode detection process, a back surface grinding process is performed in which the back surface 11b of the wafer 11 is ground and thinned so that the embedded copper electrode 21 is not exposed on the back surface 11b of the wafer 11. In this back surface grinding step, the carrier plate 25 is sucked and held by the chuck table 20 of the grinding device, and the back surface 11b of the wafer 11 is exposed.

図6において、研削装置の研削ユニット24は、図示しないモータにより回転駆動されるスピンドル26と、スピンドル26の先端に固定されたホイールマウント28と、ホイールマウント28に着脱可能に装着された研削ホイール30とを含んでいる。研削ホイール30は、環状のホイール基台32と、ホイール基台32の下端部外周に固着された複数の研削砥石34とから構成される。   In FIG. 6, the grinding unit 24 of the grinding apparatus includes a spindle 26 that is rotationally driven by a motor (not shown), a wheel mount 28 that is fixed to the tip of the spindle 26, and a grinding wheel 30 that is detachably attached to the wheel mount 28. Including. The grinding wheel 30 includes an annular wheel base 32 and a plurality of grinding wheels 34 fixed to the outer periphery of the lower end of the wheel base 32.

この裏面研削工程では、チャックテーブル20を矢印aで示す方向に例えば300rpmで回転しつつ、研削ホイール30を矢印bで示す方向に例えば6000rpmで回転させるとともに、図示しない研削ユニット送り機構を駆動して研削ホイール30の研削砥石34をウエーハ11の裏面11bに接触させる。   In this back grinding process, while rotating the chuck table 20 in the direction indicated by the arrow a at 300 rpm, for example, the grinding wheel 30 is rotated in the direction indicated by the arrow b at, for example, 6000 rpm, and a grinding unit feed mechanism (not shown) is driven. The grinding wheel 34 of the grinding wheel 30 is brought into contact with the back surface 11 b of the wafer 11.

そして、研削ホイール30を所定の研削送り速度で下方に所定量研削送りする。接触式又は非接触式の厚み測定ゲージでウエーハ11の厚みを測定しながら、図9に示すように、埋め込み銅電極21の先端がウエーハ11の裏面11bに露出する寸前の厚さまでウエーハ11を研削する。   Then, the grinding wheel 30 is ground and fed downward by a predetermined amount at a predetermined grinding feed speed. While measuring the thickness of the wafer 11 with a contact-type or non-contact-type thickness measurement gauge, the wafer 11 is ground to a thickness just before the tip of the embedded copper electrode 21 is exposed on the back surface 11b of the wafer 11, as shown in FIG. To do.

裏面研削工程実施後、ウエーハ11の研削面を研磨して研削歪を除去する研磨工程を実施する。本実施形態では、この研磨工程を図7に示すような研磨パッド42を有する研磨ホイール40を用いて実施する。   After performing the back surface grinding process, a polishing process is performed to polish the ground surface of the wafer 11 and remove grinding distortion. In the present embodiment, this polishing step is performed using a polishing wheel 40 having a polishing pad 42 as shown in FIG.

研磨ホイール40は、大径の円筒状側面と上面とを有する第1フレーム44と、第1フレーム44内に収容された中程度の直径の円筒状側面と上面とを有する第2フレーム46と、第2フレーム46内に収容された小径の円筒状側面と上面とを有する第3フレーム48を含んでいる。   The grinding wheel 40 includes a first frame 44 having a large cylindrical side and upper surface, a second frame 46 having a medium diameter cylindrical side and upper surface housed in the first frame 44, and A third frame 48 having a small cylindrical side surface and an upper surface housed in the second frame 46 is included.

第1乃至第3フレーム44,46,48の下面に研磨パッド42が貼着されている。研磨パッド42は例えば不織布から形成されている。スピンドル38に形成されたスラリー供給路39は、例えばシリカ等の浮遊砥粒を含んだスラリー供給源に接続されている。   A polishing pad 42 is adhered to the lower surfaces of the first to third frames 44, 46, 48. The polishing pad 42 is made of, for example, a nonwoven fabric. The slurry supply path 39 formed in the spindle 38 is connected to a slurry supply source including floating abrasive grains such as silica.

第1乃至第3フレーム44,46,48及び研磨パッド42を貫通してスピンドル38のスラリー供給路39に接続するスラリー供給路49が形成されている。第1フレーム44と第2フレーム46との間にリング状の第1エアバッグ50が収容され、第2フレーム46と第3フレーム48との間にリング状の第2エアバッグ52が収容され、第3フレーム48内にリング状の第3エアバッグ54が収容されている。   A slurry supply path 49 that passes through the first to third frames 44, 46, 48 and the polishing pad 42 and is connected to the slurry supply path 39 of the spindle 38 is formed. A ring-shaped first airbag 50 is accommodated between the first frame 44 and the second frame 46, and a ring-shaped second airbag 52 is accommodated between the second frame 46 and the third frame 48, A ring-shaped third airbag 54 is accommodated in the third frame 48.

本実施形態の研磨工程では、スラリー供給路39,49を介してスラリーを供給しながら研磨パッド42をウエーハ11の研削面に当接させて、チャックテーブル20を矢印a方向に研磨パッド42を矢印b方向に異なる速度で回転させて、ウエーハ11と研磨パッド42とを相対的に摺動することで、ウエーハ11の研削面を研削して研削歪を除去する。   In the polishing process of the present embodiment, the polishing pad 42 is brought into contact with the grinding surface of the wafer 11 while supplying the slurry via the slurry supply paths 39 and 49, and the chuck table 20 is moved in the direction of arrow a. By rotating the wafer 11 and the polishing pad 42 relatively at different speeds in the b direction, the grinding surface of the wafer 11 is ground to remove grinding distortion.

この研磨時には、それぞれリング状に独立した第1乃至第3エアバッグ50,52,54が研磨パッド42の背面に配設されているため、各エアバッグ50,52,54により研磨パッド42の当接圧を適宜制御しながら研磨を遂行できるため、平坦な研磨面を得ることができる。   At the time of this polishing, the first to third airbags 50, 52, 54, which are independent of each other in a ring shape, are disposed on the back surface of the polishing pad 42. Since polishing can be performed while appropriately controlling the contact pressure, a flat polished surface can be obtained.

即ち、各エアバッグ50,52,54がそれぞれ独立して配設されているため、研磨パッド42の所定の位置に所定の圧力をかけることができ、研磨量の微調整が可能となる。本実施形態では、研磨量として2〜3μm研磨する。   That is, since the airbags 50, 52, and 54 are independently provided, a predetermined pressure can be applied to a predetermined position of the polishing pad 42, and the polishing amount can be finely adjusted. In this embodiment, the polishing amount is 2 to 3 μm.

裏面研磨工程実施後、ウエーハ11の裏面11bからウエーハ11を選択的にエッチングして、図10に示すように、埋め込み銅電極21をウエーハ11の裏面11bから突出させて貫通電極とするエッチング工程を実施する。このエッチング工程は、例えばプラズマエッチングにより実施するのが好ましい。   After performing the back surface polishing process, the wafer 11 is selectively etched from the back surface 11b of the wafer 11, and as shown in FIG. 10, an embedded copper electrode 21 is projected from the back surface 11b of the wafer 11 to form a through electrode. carry out. This etching step is preferably performed by plasma etching, for example.

エッチング工程実施後、図11に示すように、ウエーハ11の裏面11bに絶縁膜29を被覆する絶縁膜被覆工程を実施する。この絶縁膜被覆工程により、ウエーハ11の裏面11bのみならず貫通電極21の先端面にも絶縁膜29が被覆される。   After performing the etching process, as shown in FIG. 11, an insulating film coating process for coating the back surface 11b of the wafer 11 with the insulating film 29 is performed. By this insulating film coating step, the insulating film 29 is coated not only on the back surface 11 b of the wafer 11 but also on the tip surface of the through electrode 21.

絶縁膜被覆工程実施後、ウエーハ11の裏面11bから突出した部分の貫通電極21を除去して絶縁膜29から貫通電極21を露出させるとともに貫通電極21の頭を絶縁膜29と同一面に仕上げる仕上げ工程を実施する。   After performing the insulating film coating step, the portion of the through electrode 21 protruding from the back surface 11 b of the wafer 11 is removed to expose the through electrode 21 from the insulating film 29 and finish the head of the through electrode 21 on the same surface as the insulating film 29. Perform the process.

本実施形態では、この仕上げ工程を化学的機械研磨法、所謂CMP(Chemical Mechanical Polishing)で実施する。CMPは研磨パッドと被研磨物との間に研磨液(スラリー)を供給しつつ、研磨パッドと被研磨物とをそれぞれ回転させながら相対的に摺動することで遂行される。研磨パッドとしては一般的に不織布が使用され、例えばシリカ等の浮遊砥粒を含んだ研磨液(スラリー)を供給しながら研磨パッドで被研磨物の表面を研磨する。   In the present embodiment, this finishing step is performed by a chemical mechanical polishing method, so-called CMP (Chemical Mechanical Polishing). CMP is performed by supplying a polishing liquid (slurry) between the polishing pad and the object to be polished and sliding the polishing pad and the object to be rotated while rotating each other. A non-woven fabric is generally used as the polishing pad, and the surface of the object to be polished is polished with the polishing pad while supplying a polishing liquid (slurry) containing floating abrasive grains such as silica.

本実施形態では、研磨液(スラリー)を供給しながら研磨パッドを絶縁膜29に当接させてウエーハ11と研磨パッドとを相対的に摺動することで、貫通電極21に被覆された絶縁膜29と貫通電極21の突出部とを選択的に研磨し、図12に示すように、貫通電極21を絶縁膜29から露出させるとともに貫通電極21の頭を絶縁膜29と同一面に仕上げる。   In the present embodiment, the polishing film (slurry) is supplied while the polishing pad is brought into contact with the insulating film 29 and the wafer 11 and the polishing pad are slid relative to each other so that the insulating film covered with the through electrode 21 is provided. 29 and the protruding portion of the through electrode 21 are selectively polished to expose the through electrode 21 from the insulating film 29 and finish the head of the through electrode 21 on the same plane as the insulating film 29 as shown in FIG.

CMPによる仕上げ工程実施後、図13に示すように、貫通電極21の頭にバンプ21を配設するバンプ配設工程を実施する。バンプ31は例えば半田等から構成され、半田からなるバンプ31を貫通電極21の頭に接合する。   After performing the finishing process by CMP, as shown in FIG. 13, a bump disposing process for disposing the bump 21 on the head of the through electrode 21 is performed. The bump 31 is made of, for example, solder, and the bump 31 made of solder is joined to the head of the through electrode 21.

バンプ配設工程実施後、図14に示すように、ウエーハ11の裏面11bにダイシングテープTを貼着するとともに、ウエーハ11の表面11aからキャリアプレート25を取り外し、ウエーハ11をダイシングテープTに移し替える移し替え工程を実施する。ダイシングテープTの外周部は環状フレームFに貼着されている。これにより、ウエーハ11はダイシングテープTを介して環状フレームFに支持された形態となる。   After the bump placement step, as shown in FIG. 14, the dicing tape T is adhered to the back surface 11b of the wafer 11, the carrier plate 25 is removed from the front surface 11a of the wafer 11, and the wafer 11 is transferred to the dicing tape T. Perform the transfer process. The outer peripheral portion of the dicing tape T is attached to the annular frame F. As a result, the wafer 11 is supported by the annular frame F via the dicing tape T.

この形態でウエーハ11を図示を省略した切削装置のチャックテーブルにダイシングテープTを介して吸引保持し、切削ブレードでウエーハ11を分割予定ライン13に沿ってダイシングテープTに至るまで切削し、ウエーハ11を個々のデバイス15に分割する。各デバイス15は、両端にバンプ23,31が接合された複数の貫通電極21を有している。   In this form, the wafer 11 is sucked and held via a dicing tape T on a chuck table of a cutting apparatus (not shown), and the wafer 11 is cut by the cutting blade along the planned dividing line 13 until reaching the dicing tape T. Are divided into individual devices 15. Each device 15 includes a plurality of through electrodes 21 having bumps 23 and 31 bonded to both ends.

上述した実施形態のウエーハの加工方法によると、ウエーハの裏面研磨時に用いる研磨パッドとして所定の部位に所定の圧力をかけることができるエアバッグ構造を採用したため、研磨量の微調整が可能となり平坦な研磨面を得ることができる。   According to the wafer processing method of the above-described embodiment, since the airbag structure that can apply a predetermined pressure to a predetermined portion as a polishing pad used when polishing the back surface of the wafer is adopted, the amount of polishing can be finely adjusted and flattened. A polished surface can be obtained.

11 半導体ウエーハ
11e 面取り部
13 分割予定ライン
15 デバイス
18 切削ブレード
21 埋め込み銅電極(貫通電極)
22 IRカメラ
23,31 バンプ
25 キャリアプレート
29 絶縁膜
30 研削ホイール
34 研削砥石
36 研磨ユニット
40 研磨ホイール
42 研磨パッド
50 第1エアバッグ
52 第2エアバッグ
54 第3エアバッグ
T ダイシングテープ
F 環状フレーム
11 Semiconductor Wafer 11e Chamfer 13 Divided Line 15 Device 18 Cutting Blade 21 Embedded Copper Electrode (Penetration Electrode)
22 IR camera 23, 31 Bump 25 Carrier plate 29 Insulating film 30 Grinding wheel 34 Grinding wheel 36 Polishing unit 40 Polishing wheel 42 Polishing pad 50 First airbag 52 Second airbag 54 Third airbag T Dicing tape F Annular frame

Claims (1)

表面に格子状に形成された複数の分割予定ラインによって区画された各領域にそれぞれデバイスが形成され、該各デバイスからウエーハの仕上がり厚さ以上の深さに至る複数の埋め込み電極が埋設されるとともに、外周縁に面取り部を有するウエーハを個々のデバイスに分割するウエーハの加工方法であって、
ウエーハの外周縁に切削ブレードを位置づけてウエーハを表面側から仕上げ厚さを越えて円形に切削し、又はウエーハを裏面側から円形に完全切断して面取り部を除去する面取り部除去工程と、
該面取り部除去工程を実施する前又は後に、ウエーハの表面に樹脂を介してキャリアプレートを配設するキャリアプレート配設工程と、
該キャリアプレート配設工程を実施した後、ウエーハの裏面から該複数の埋め込み電極の先端の深さを検出する埋め込み電極検出工程と、
該埋め込み電極検出工程を実施した後、該埋め込み電極が裏面に露出しない程度にウエーハの裏面を研削して薄化する裏面研削工程と、
該裏面研削工程を実施した後、リング状に独立した複数のエアバッグが配設された研磨パッドをウエーハの裏面に接触させ、各エアバッグの圧力を適宜制御しながらスラリーを供給して該埋め込み電極が裏面に露出しない程度にウエーハの裏面を研磨する研磨工程と、
該研磨工程を実施した後、ウエーハの裏面からウエーハをエッチングして該埋め込み電極をウエーハの裏面から突出させて貫通電極とするエッチング工程と、
該エッチング工程を実施した後、ウエーハの裏面に絶縁膜を被覆する絶縁膜被覆工程と、
該絶縁膜被覆工程を実施した後、ウエーハの裏面から突出した該貫通電極を除去して該絶縁膜から露出させるとともに該貫通電極の頭を該絶縁膜と同一面に仕上げる仕上げ工程と、
該仕上げ工程を実施した後、該各貫通電極の頭にバンプを配設するバンプ配設工程と、
該バンプ配設工程を実施した後、ウエーハの裏面にダイシングテープを貼着するとともにウエーハの表面から該キャリアプレートを取り外し、ウエーハを該ダイシングテープに移し替える移し替え工程と、
該移し替え工程を実施した後、ウエーハを個々のデバイスに分割する分割工程と、
を含むことを特徴とするウエーハの加工方法。
A device is formed in each region partitioned by a plurality of division lines formed in a lattice pattern on the surface, and a plurality of embedded electrodes extending from each device to a depth greater than the finished thickness of the wafer are embedded. A wafer processing method for dividing a wafer having a chamfered portion on the outer peripheral edge into individual devices,
A chamfered portion removing step in which a cutting blade is positioned on the outer peripheral edge of the wafer and the wafer is cut into a circle beyond the finish thickness from the surface side, or the wafer is completely cut into a circle from the back side to remove the chamfered portion;
Before or after performing the chamfered portion removing step, a carrier plate disposing step of disposing a carrier plate via a resin on the surface of the wafer;
After performing the carrier plate placement step, embedded electrode detection step of detecting the depth of the tip of the plurality of embedded electrodes from the back surface of the wafer;
After performing the embedded electrode detection step, a back surface grinding step of grinding and thinning the back surface of the wafer to such an extent that the embedded electrode is not exposed on the back surface;
After carrying out the back surface grinding step, a polishing pad in which a plurality of independent airbags are arranged in a ring shape is brought into contact with the back surface of the wafer, and slurry is supplied while appropriately controlling the pressure of each air bag to embed it. A polishing step of polishing the back surface of the wafer to such an extent that the electrode is not exposed on the back surface;
After performing the polishing step, etching the wafer from the back surface of the wafer, the etching step to project the embedded electrode from the back surface of the wafer to a through electrode, and
After performing the etching step, an insulating film coating step of coating an insulating film on the back surface of the wafer;
After performing the insulating film coating step, the through electrode protruding from the back surface of the wafer is removed and exposed from the insulating film, and the finishing step of finishing the head of the through electrode on the same surface as the insulating film;
After performing the finishing step, a bump disposing step of disposing a bump on the head of each through electrode;
After carrying out the bump arranging step, a dicing tape is attached to the back surface of the wafer and the carrier plate is removed from the front surface of the wafer, and a transferring step for transferring the wafer to the dicing tape;
A division step of dividing the wafer into individual devices after performing the transfer step;
A method for processing a wafer, comprising:
JP2012194887A 2012-09-05 2012-09-05 Wafer processing method Pending JP2014053355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194887A JP2014053355A (en) 2012-09-05 2012-09-05 Wafer processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194887A JP2014053355A (en) 2012-09-05 2012-09-05 Wafer processing method

Publications (1)

Publication Number Publication Date
JP2014053355A true JP2014053355A (en) 2014-03-20

Family

ID=50611597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194887A Pending JP2014053355A (en) 2012-09-05 2012-09-05 Wafer processing method

Country Status (1)

Country Link
JP (1) JP2014053355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160059376A1 (en) * 2014-08-26 2016-03-03 Ebara Corporation Buffing apparatus, and substrate processing apparatus
JP7484437B2 (en) 2020-06-02 2024-05-16 株式会社レゾナック Metal particle film, method for producing metal particle film, and method for producing substrate having through electrode

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521488A (en) * 2000-12-21 2004-07-15 ラム リサーチ コーポレーション Polishing platen with pressurized film
JP2005019435A (en) * 2003-06-23 2005-01-20 Sharp Corp Method of polishing wafer
JP2006024631A (en) * 2004-07-06 2006-01-26 Fujikura Ltd Method and apparatus for evaluating blind via depth, and substrate grinder
JP2006210758A (en) * 2005-01-31 2006-08-10 Kyushu Institute Of Technology Semiconductor device having through electrode and its fabrication process
JP2007311385A (en) * 2006-05-16 2007-11-29 Sony Corp Process for fabricating semiconductor device, and semiconductor device
JP2008137103A (en) * 2006-11-30 2008-06-19 Ebara Corp Substrate holding device, substrate polishing device, and substrate polishing method
JP2009302231A (en) * 2008-06-12 2009-12-24 Oki Semiconductor Co Ltd Method for manufacturing semiconductor device
JP2010165802A (en) * 2009-01-14 2010-07-29 Disco Abrasive Syst Ltd Method of processing wafer with substrate
JP2011124266A (en) * 2009-12-08 2011-06-23 Disco Abrasive Syst Ltd Method of processing wafer
JP2012129551A (en) * 2004-08-20 2012-07-05 Zycube:Kk Method of manufacturing semiconductor device with three-dimensional lamination structure
JP2012515432A (en) * 2009-01-13 2012-07-05 インターナショナル・ビジネス・マシーンズ・コーポレーション High yield method for exposing and contacting through silicon vias (TSV)

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004521488A (en) * 2000-12-21 2004-07-15 ラム リサーチ コーポレーション Polishing platen with pressurized film
JP2005019435A (en) * 2003-06-23 2005-01-20 Sharp Corp Method of polishing wafer
JP2006024631A (en) * 2004-07-06 2006-01-26 Fujikura Ltd Method and apparatus for evaluating blind via depth, and substrate grinder
JP2012129551A (en) * 2004-08-20 2012-07-05 Zycube:Kk Method of manufacturing semiconductor device with three-dimensional lamination structure
JP2006210758A (en) * 2005-01-31 2006-08-10 Kyushu Institute Of Technology Semiconductor device having through electrode and its fabrication process
JP2007311385A (en) * 2006-05-16 2007-11-29 Sony Corp Process for fabricating semiconductor device, and semiconductor device
JP2008137103A (en) * 2006-11-30 2008-06-19 Ebara Corp Substrate holding device, substrate polishing device, and substrate polishing method
JP2009302231A (en) * 2008-06-12 2009-12-24 Oki Semiconductor Co Ltd Method for manufacturing semiconductor device
JP2012515432A (en) * 2009-01-13 2012-07-05 インターナショナル・ビジネス・マシーンズ・コーポレーション High yield method for exposing and contacting through silicon vias (TSV)
JP2010165802A (en) * 2009-01-14 2010-07-29 Disco Abrasive Syst Ltd Method of processing wafer with substrate
JP2011124266A (en) * 2009-12-08 2011-06-23 Disco Abrasive Syst Ltd Method of processing wafer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160059376A1 (en) * 2014-08-26 2016-03-03 Ebara Corporation Buffing apparatus, and substrate processing apparatus
KR20160024797A (en) * 2014-08-26 2016-03-07 가부시키가이샤 에바라 세이사꾸쇼 Buffing apparatus, and substrate processing apparatus
CN105390417A (en) * 2014-08-26 2016-03-09 株式会社荏原制作所 Buffing apparatus, and substrate processing apparatus
US10183374B2 (en) * 2014-08-26 2019-01-22 Ebara Corporation Buffing apparatus, and substrate processing apparatus
CN105390417B (en) * 2014-08-26 2020-04-07 株式会社荏原制作所 Polishing assembly and substrate processing device
KR102213468B1 (en) * 2014-08-26 2021-02-08 가부시키가이샤 에바라 세이사꾸쇼 Buffing apparatus, and substrate processing apparatus
JP7484437B2 (en) 2020-06-02 2024-05-16 株式会社レゾナック Metal particle film, method for producing metal particle film, and method for producing substrate having through electrode

Similar Documents

Publication Publication Date Title
JP2009010178A (en) Method of processing wafer
JP2009021462A (en) Method for processing wafer
JP6557081B2 (en) Wafer processing method
KR20170030035A (en) Wafer machining method
US20170133269A1 (en) Wafer processing method
JP2017028160A (en) Machining method for wafer
JP2019220632A (en) Processing method for work piece
TW201310517A (en) Method of processing wafer
JP2013012654A (en) Method of grinding workpiece
JP5995616B2 (en) Wafer processing method
JP2014053351A (en) Wafer processing method
US20120080138A1 (en) Method of processing plate-shaped body having rugged surface
JP2014053352A (en) Wafer processing method
JP2014053355A (en) Wafer processing method
JP2014053357A (en) Wafer processing method
US9929052B2 (en) Wafer processing method
JP2014053350A (en) Wafer processing method
JP2014053354A (en) Wafer processing method
JP2014053353A (en) Wafer processing method
JP2014165339A (en) Method of processing laminated wafer
JP2014053348A (en) Wafer processing method
TWI805872B (en) Wafer processing method
JP7313775B2 (en) Wafer processing method
JP2014053356A (en) Wafer processing method
JP6057592B2 (en) Wafer processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170425