JP2014051839A - Propulsive force transmission mechanism and conduit construction method - Google Patents

Propulsive force transmission mechanism and conduit construction method Download PDF

Info

Publication number
JP2014051839A
JP2014051839A JP2012197872A JP2012197872A JP2014051839A JP 2014051839 A JP2014051839 A JP 2014051839A JP 2012197872 A JP2012197872 A JP 2012197872A JP 2012197872 A JP2012197872 A JP 2012197872A JP 2014051839 A JP2014051839 A JP 2014051839A
Authority
JP
Japan
Prior art keywords
pipe
propulsion
tube
segment
rear side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012197872A
Other languages
Japanese (ja)
Other versions
JP5806186B2 (en
Inventor
Tatsuhiko Kadoguchi
達彦 門口
Hidenori Yoshida
英典 吉田
Tomohisa Hoshi
智久 星
Shigeki Kinoshita
茂樹 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2012197872A priority Critical patent/JP5806186B2/en
Publication of JP2014051839A publication Critical patent/JP2014051839A/en
Application granted granted Critical
Publication of JP5806186B2 publication Critical patent/JP5806186B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a propulsive force transmission mechanism appropriately used for a conduit construction method with which, when a propulsion method is shifted to a shield method, segment pipes can be assembled in a perfect circle.SOLUTION: During a propulsion method, a propulsive force transmission mechanism 10 transmits a propulsive force of a base-pushing jack 62 installed in a departure pit A to a shield jack 41 within an excavator 40. The propulsive force transmission mechanism 10 is formed from: an adapter pipe 11 of which the outer diameter of a rear side face is substantially matched with an outer diameter of a propulsion pipe 20 and the outer diameter of a front side face is substantially matched with an outer diameter of a segment pipe 30 and which is connected with the propulsion pipe positioned at the head; an adjuster pipe 12 which is connected to the adapter pipe 11 and can be divided into a plurality of parts; a ruler ring 13 which is formed from a ring-shaped plate comprised of one member and is connected to the adjuster pipe; and a connection pipe 14 which is connected to the ruler ring 13, of which the front side face is abutted with a rear end portion of the shield jack 41 and which can be divided into a plurality of parts. The outer diameters of the adjuster pipe 12, the ruler ring 13 and the connection pipe 14 are substantially matched with the outer diameter of the segment pipe 30.

Description

本発明は、推進力伝達機構、詳しくは、推進工法とシールド工法とを併用したハイブリッド推進工法に適した推進力伝達機構に関する。また、本発明は、この推進力伝達機構を用いた管路構築方法に関する。   The present invention relates to a propulsion force transmission mechanism, and more particularly to a propulsion force transmission mechanism suitable for a hybrid propulsion method using both a propulsion method and a shield method. The present invention also relates to a pipeline construction method using this propulsive force transmission mechanism.

現在、トンネルを形成するために、土砂を掘削し地中に管路をする構築方法として、推進工法とシールド工法とが知られている。   Currently, in order to form a tunnel, a propulsion method and a shield method are known as construction methods for excavating earth and sand to form a conduit in the ground.

推進工法は、発進立坑に推進ジャッキ(元押しジャッキ)を設置し、推進ジャッキで管体(推進管)を前進させ、管体の後端に新たな管体を設置する工法である。   The propulsion construction method is a construction method in which a propulsion jack (protruding jack) is installed in a start shaft, a pipe (propulsion pipe) is advanced by the propulsion jack, and a new pipe is installed at the rear end of the pipe.

シールド工法は、掘削機本体に推進ジャッキ(シールドジャッキ)を設置し、推進ジャッキで掘削機本体を前進させ、シールドジャッキの後方と管体(セグメント管)先端の間に新たな管体を設置する工法である。掘削機内に管体を複数のセグメントに分解して搬入し、掘削機内部の組み立て装置(エレクタ)で管体を組み立てる。   In the shield method, a propulsion jack (shield jack) is installed in the main body of the excavator, the main body of the excavator is advanced by the propulsion jack, and a new pipe is installed between the rear of the shield jack and the tip of the pipe (segment pipe). It is a construction method. The pipe body is disassembled into a plurality of segments and carried into the excavator, and the pipe body is assembled by an assembly device (elector) inside the excavator.

シールド工法においては、推進ジャッキは掘削機本体だけを前進させる。一方、推進工法においては、推進ジャッキは、掘削機本体、及び推進ジャッキから掘削機本体にまで至る全ての推進管を前進させる必要がある。よって、推進工法は、シールド工法と比較して、大口径や長距離の管路を構築するには不適である。そして、推進工法は、シールド工法と比較して、急曲線の管路を構築することが困難である。   In the shield method, the propulsion jack advances only the excavator body. On the other hand, in the propulsion method, the propulsion jack needs to advance the excavator body and all the propulsion pipes from the propulsion jack to the excavator body. Therefore, the propulsion method is not suitable for constructing a large-diameter or long-distance pipe line as compared with the shield method. And it is difficult for the propulsion method to construct a sharply curved pipe compared to the shield method.

しかし、推進工法は、推進管が最初から筒状であり、推進管同士の接続も容易である。シールド工法は、掘削機本体の内部でセグメントからセグメント管を組み立てる必要がある。また、セグメント管は推進管に比較して短いので、セグメント管は推進管よりも多くの個数を必要とする。よって、シールド工法は、推進工法と比較して、工期が長く、コストが高くなる。   However, in the propulsion method, the propulsion pipe is cylindrical from the beginning, and the propulsion pipes can be easily connected. In the shield method, it is necessary to assemble the segment pipe from the segment inside the excavator body. In addition, since the segment pipe is shorter than the propulsion pipe, the segment pipe requires a larger number than the propulsion pipe. Therefore, the shield method has a longer construction period and higher costs than the propulsion method.

このように、推進工法は、シールド工法と比較して工期及び費用の点で優れている。そのため、大口径、長距離、急曲線など、もともとシールド工法によって管路を構築することが適当である考えられる施行案件においても、推進工法の適用が検討されることがある。推進工法の改良によって推進工法にとって不利とされたきた条件はある程度まで解消できるようになったが、それでも、推進工法では掘進不能に陥るおそれがある。   Thus, the propulsion method is superior in terms of construction period and cost compared to the shield method. For this reason, the application of the propulsion method may be considered even in implementation projects where it is appropriate to construct a pipeline by the shield method, such as large diameters, long distances, and sharp curves. Although the conditions that have been detrimental to the propulsion method can be solved to some extent by the improvement of the propulsion method, there is still a possibility that the propulsion method cannot be excavated.

そのため、発進立坑から推進工法で所定の距離までは掘削し、その後の掘削はシールド工法に変更する「ハイブリッド推進工法」が考案されている。   Therefore, a “hybrid propulsion method” has been devised in which excavation is performed from the starting shaft to a predetermined distance by a propulsion method, and the excavation thereafter is changed to a shield method.

ハイブリッド推進工法では、発進立坑内の反力設備と推進ジャッキは推進工法のものを使用し、掘削機本体はシールド工法で使用する掘削機を使用する。推進工法中の推進力は掘削機内部の推進ジャッキ(シールドジャッキ)で受け、シールド工法に移行した後は通常のシールド工法と同様にして施工する。   In the hybrid propulsion method, the reaction force equipment and the propulsion jack in the start shaft use the propulsion method, and the excavator body uses the excavator used in the shield method. The propulsive force during the propulsion method is received by the propulsion jack (shield jack) inside the excavator, and after shifting to the shield method, construction is performed in the same way as the normal shield method.

推進管は、掘削機の後方に位置し、その外径は掘削機本体と略同一である。これに対し、セグメント管は、掘削機本体の内部で組み立てるため、その外径は掘削機本体および推進管の外径よりも小さい。また、推進工法とシールド工法とでは、掘削機の推進時に管体にかかる反力とその制御方法に大きな違いがある。ハイブリッド推進工法ではこれら後方による差異を解消する必要がある。   The propulsion pipe is located behind the excavator and has an outer diameter substantially the same as that of the excavator body. On the other hand, since the segment pipe is assembled inside the excavator body, the outer diameter thereof is smaller than the outer diameters of the excavator body and the propulsion pipe. Further, the propulsion method and the shield method differ greatly in the reaction force applied to the pipe body during the excavator propulsion and the control method. In the hybrid propulsion method, it is necessary to eliminate these differences.

そこで、例えば、特許文献1に記載の技術では、推進管の先端部を補強リングで補強し、補強リングとセグメント管(内リング)の後端との間に接続リングを設けている。また、セグメント管は、掘削機の内部で組み立てられ、推進ジャッキ(シールドジャッキ)に当接させている。   Therefore, for example, in the technique described in Patent Document 1, the tip of the propulsion pipe is reinforced with a reinforcing ring, and a connection ring is provided between the reinforcing ring and the rear end of the segment pipe (inner ring). The segment pipe is assembled inside the excavator and is brought into contact with a propulsion jack (shield jack).

特許文献2に記載の技術では、推進管とセグメント管の外径差を解消するためにアダプタリングを設置し、これとシールドジャッキとの間にセグメント管と推力伝達リングを設置している。また、推力伝達リングは推進管のスキンプレートとの間にスペーサを設置している。   In the technique described in Patent Document 2, an adapter ring is installed to eliminate a difference in outer diameter between the propulsion pipe and the segment pipe, and a segment pipe and a thrust transmission ring are installed between the adapter ring and the shield jack. Further, a spacer is provided between the thrust transmission ring and the skin plate of the propulsion pipe.

特許第2693904号公報Japanese Patent No. 2693904 特開2008−057128号公報JP 2008-057128 A

推進工法における推進力は、推進管とその周囲の地盤との摩擦状態によって変化するので、微細な制御が不可能である。よって、設計値に比較して大きな推進力が推進管にかかることがある。そのため、特許文献1に記載の内リングや特許文献2に記載のアダプタリング及び推力伝達リングに、推進工法における推進力によって、それら自体又はそれらの接合部に歪み、撓み、割れ、欠けなどが生じるおそれがある。   Since the propulsive force in the propulsion method changes depending on the frictional state between the propulsion pipe and the surrounding ground, fine control is impossible. Therefore, a large propulsive force may be applied to the propulsion pipe compared to the design value. Therefore, the inner ring described in Patent Document 1 and the adapter ring and the thrust transmission ring described in Patent Document 2 are distorted, bent, cracked, chipped or the like in themselves or their joints by the propulsive force in the propulsion method. There is a fear.

これらのリングに歪みなどが生じた場合、シールド工法に移行した後、これらの前側に接続されるセグメント管を真円に組み立てることができない。特にRCセグメント管の場合は、真円に組み立てられ拘束が十分な状態で本来の性能を発揮するため、歪みや撓みが生じたリングに接続した状態で大きな力が作用すると、割れや欠けが生じるおそれがある。   When these rings are distorted, the segment pipes connected to these front sides cannot be assembled into a perfect circle after the transition to the shield method. In particular, in the case of RC segment pipes, they are assembled in a perfect circle and exhibit their original performance in a sufficiently restrained state. Therefore, if a large force is applied while connected to a ring that is distorted or bent, cracks and chips will occur. There is a fear.

本発明は、以上の点に鑑み、推進工法からシールド工法に移行したときに、セグメント管を真円に組み立てることが可能な既存建物と耐震用の補強フレームとを確実且つ安定的に連結することが可能な管路構築方法、及びこの方法に好適に用いられる推進力伝達機構を提供することを目的とする。   In view of the above points, the present invention reliably and stably connects an existing building capable of assembling a segment pipe into a perfect circle and a seismic reinforcing frame when the propulsion method is shifted to the shield method. It is an object of the present invention to provide a method for constructing a pipeline and a propulsive force transmission mechanism suitably used in this method.

本発明の推進力伝達機構は、発進立坑から始まる推進工法区間では推進工法によって推進管を用いて管路を構築し、前記推進工法区間から到達立坑までのシールド工法区間ではシールド工法によってセグメント管を用いて管路を構築する管路構築方法において、前記発進立坑に設置した元押しジャッキの推進力を掘削機内部のシールドジャッキに伝達するための推進力伝達機構であって、後側面の外形が前記推進管の前後側面外形と略一致し、前側面の外形が前記セグメント管の前後側面の外形と略一致し、先頭に位置する前記推進管の前側面と後側面が当接して当該推進管と接続されるアダプタ管と、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、前記アダプタ管の前側面と後側面が当接して当該アダプタ管に接続され、複数に分割可能な調整管と、一部材からなるリング状の平板から形成され、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、後側面が前記調整管の前側面に当接して当該調整管に接続される定規リングと、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、前記定規リングの前側面と後側面が当接して当該定規リングに接続され、前記シールドジャッキの後端部と前側面が当接して、複数に分割可能な接続管とから構成されることを特徴とする。   The propulsive force transmission mechanism of the present invention constructs a pipeline using a propulsion pipe in the propulsion method section starting from the starting shaft, and uses a shield pipe method in the shield method section from the propulsion method section to the reaching shaft. In the pipeline construction method for constructing a pipeline using a propulsion force transmission mechanism for transmitting the propulsion force of the main jack installed in the start shaft to the shield jack inside the excavator, the outer shape of the rear side is The front and rear side contours of the propulsion tube substantially coincide with each other, the front side contour substantially coincides with the front and rear side contours of the segment tube, and the front and rear side surfaces of the propulsion tube positioned at the head come into contact with each other. And the adapter pipe connected to the front and rear side faces of the segment pipe are substantially the same as the front and rear side faces of the segment pipe, and the adapter pipe is connected to the adapter pipe by contacting the front side face and the rear side face. An adjustment pipe that can be divided into a plurality of parts, and a ring-shaped flat plate made of a single member, the outer shapes of the front and rear side faces substantially coincide with the outer shapes of the front and rear side faces of the segment pipe, and the rear side face is the front side face of the adjustment pipe The ruler ring that is in contact with the adjustment tube and the outer shape of both the front and rear side surfaces substantially match the outer shape of the front and rear side surfaces of the segment tube, and the front side surface and the rear side surface of the ruler ring are in contact with each other. It is comprised from the connection pipe which can be divided | segmented into plurality, and the rear-end part and front side surface of the said shield jack contact | abutted.

本発明の推進力伝達機構によれば、定規リングは一部材からなるので推進工法時に歪みや変形がほぼ生じない。そのため、接続管を除去して定規リングの前側面に接続させてセグメント管を組み立てたとき、歪みなどの無い正規の形状にセグメント管に組み立てることが可能となる。また、接続管は、一部材からなる定規リングの前側面に後側面が当接して当該定規リングに接続されるので、推進工法時に生じる歪みや変形が抑制される。そのため、接続管の前側面に接続させてセグメント管を組み立てたとき、歪みなどの無い正規の形状にセグメント管に組み立てることが可能となる。   According to the propulsive force transmission mechanism of the present invention, the ruler ring is composed of a single member, so that almost no distortion or deformation occurs during the propulsion method. Therefore, when the segment tube is assembled by removing the connection tube and connecting it to the front side surface of the ruler ring, it becomes possible to assemble the segment tube into a regular shape without any distortion. Further, since the connection pipe is connected to the ruler ring with the rear side abutting against the front side of the ruler ring made of one member, distortion and deformation that occur during the propulsion method are suppressed. Therefore, when the segment tube is assembled by connecting to the front side surface of the connection tube, it becomes possible to assemble the segment tube into a regular shape without any distortion.

なお、本発明において、外形が略一致するとは、外形が完全に一致する他に、機能面を考慮して近似しているとみなせる場合を含む。具体的には、推進管の前後側面の外形とセグメント管の前後側面の外形との段差、即ち、これら推進管及びセグメント管の外形が円形である場合の外径段差の半分以下、好ましくは3分の1以下の範囲で近似する場合、本発明では略一致しているとみなす。   In the present invention, the case where the outlines are substantially the same includes the case where the outlines are considered to be approximated in consideration of the functional aspect in addition to being completely matched. Specifically, the step between the outer shape of the front and rear side surfaces of the propulsion tube and the outer shape of the front and rear side surfaces of the segment tube, that is, less than half of the outer diameter step when the outer shape of the propulsion tube and segment tube is circular, preferably 3 In the case of approximating within a range of 1 / min or less, it is regarded as substantially coincident in the present invention.

本発明の推進力伝達機構において、前記調整管を構成する各ピースに、当該各ピースと前記掘削機のスキンプレートとの間隔を調整可能な間隔調整手段が設けられることが好ましい。この場合、間隔調整手段で前記間隔を調整することによって、複数のピースで構成される調整管を正規の形状に保持することが容易になる。   In the propulsive force transmission mechanism of the present invention, it is preferable that each piece constituting the adjusting pipe is provided with a distance adjusting means capable of adjusting a distance between the piece and the skin plate of the excavator. In this case, by adjusting the interval by the interval adjusting means, it becomes easy to hold the adjusting tube formed of a plurality of pieces in a regular shape.

本発明の第1の管路構築方法は、発進立坑から始まる推進工法区間では推進工法によって推進管を用いて管路を構築し、前記推進工法区間から到達立坑までのシールド工法区間ではシールド工法によってセグメント管を用いて管路を構築する管路構築方法であって、前記推進工法区間では、後側面の外形が推進管の前後側面外形と略一致し、前側面の外形が前記セグメント管の前後側面の外形と略一致するアダプタ管の後側面を先頭に位置する前記推進管の前側面と当接させて、前記アダプタ管と当該推進管とを接続し、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な調整管の後側面を前記アダプタ管の前側面と当接させて、前記調整管と前記アダプタ管とを接続し、一部材からなるリング状の平板から形成され、前後両側面の外形が前記セグメント管の前後側面の外形と略一致する定規リングの後側面を前記調整管の前側面に当接させて、前記定規リングと前記調整管とを接続し、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な接続管の後側面を前記定規リングの前側面とが当接させて、前記接続管と前記定規リングとを接続し、且つ、前記掘削機内部のシールドジャッキの後端部と前記接続管の前側面とを当接させた状態で、前記アダプタ管、前記調整管、前記定規リング及び前記接続管からなる推進力伝達機構を介して、前記発進立坑に設置した元押しジャッキの推進力を前記シールドジャッキに伝達し、前記推進工法を完了した後、前記接続管を除去し、前記定規リングの前側面に複数のセグメントを接続して、前記セグメント管を構築し、前記シールド工法区間では、前記シールドジャッキの推進反力を先頭の前記セグメント管で受けながら、前記シールドジャッキを伸長させて前記掘削機を前進させ、その後、前記シールドジャッキを短縮させて、前記先頭のセグメント管の前側面に複数のセグメントを接続して、新たなセグメント管を構築することを特徴とする。   The first pipeline construction method of the present invention is to construct a pipeline using a propulsion pipe by a propulsion method in a propulsion method section starting from a starting vertical shaft, and by a shield method in a shield construction method section from the propulsion method section to a reaching shaft. A pipe construction method for constructing a pipe using a segment pipe, wherein in the propulsion method section, the outer shape of the rear side is substantially the same as the front and rear side outlines of the propulsion pipe, and the outer shape of the front side is the front and rear of the segment pipe. The adapter tube and the propelling tube are connected by bringing the rear side surface of the adapter tube substantially coincident with the outer shape of the side surface into contact with the front side surface of the propelling tube located at the head, and the outer shapes of both front and rear sides are the segment tube The adjustment pipe and the adapter pipe are connected to each other by bringing the rear side face of the adjustment pipe substantially coincident with the front and rear side shapes of the adapter pipe into contact with the front side face of the adapter pipe. Shaped flat plate The ruler ring is formed so that the outer sides of the front and rear side surfaces substantially coincide with the front and rear side surfaces of the segment tube, and the ruler ring and the adjustment tube are connected by bringing the rear side of the ruler ring into contact with the front side of the adjustment tube. The outer shapes of the front and rear side surfaces substantially coincide with the outer shapes of the front and rear side surfaces of the segment tube, and the rear side surface of the connection pipe that can be divided into a plurality is brought into contact with the front side surface of the ruler ring, The adapter pipe, the adjustment pipe, the ruler ring, and the connection pipe in a state where the ring is connected and the rear end portion of the shield jack inside the excavator is in contact with the front side surface of the connection pipe The propulsion force of the main jack installed in the starting shaft is transmitted to the shield jack via the propulsion force transmission mechanism consisting of the following, after the propulsion method is completed, the connecting pipe is removed, and the front of the ruler ring Multiple segments on the side The segment pipe is constructed, and in the shield construction method section, while the propulsion reaction force of the shield jack is received by the leading segment pipe, the shield jack is extended to advance the excavator, Thereafter, the shield jack is shortened, and a plurality of segments are connected to the front side surface of the leading segment tube to construct a new segment tube.

本発明の第1の管路構築方法によれば、定規リングは一部材からなるので推進工法時に歪みや変形がほぼ生じない。そのため、接続管を除去して定規リングの前側面に接続させてセグメント管を組み立てたとき、歪みなどの無い正規の形状にセグメント管に組み立てることが可能となる。   According to the first pipeline construction method of the present invention, the ruler ring is composed of a single member, so that almost no distortion or deformation occurs during the propulsion method. Therefore, when the segment tube is assembled by removing the connection tube and connecting it to the front side surface of the ruler ring, it becomes possible to assemble the segment tube into a regular shape without any distortion.

本発明の第1の管路構築方法においては、接続管を除去したことにより生じたスペースにセグメント管を構築している。そのため、定規リングに接続されるセグメント管の前後方向の長さは、接続管の前後方向の長さ以下となる。そこで、施工効率を考慮すると、前記接続管の前後方向の長さが、前記定規リングに接続される前記セグメント管の前後方向の長さと略同一であることが好ましい。   In the first pipeline construction method of the present invention, the segment pipe is constructed in the space generated by removing the connection pipe. Therefore, the length in the front-rear direction of the segment pipe connected to the ruler ring is equal to or shorter than the length in the front-rear direction of the connection pipe. Therefore, in consideration of construction efficiency, it is preferable that the length in the front-rear direction of the connection pipe is substantially the same as the length in the front-rear direction of the segment pipe connected to the ruler ring.

本発明の第2の管路構築方法は、発進立坑から始まる推進工法区間では推進工法によって推進管を用いて管路を構築し、前記推進工法区間から到達立坑までのシールド工法区間ではシールド工法によってセグメント管を用いて管路を構築する管路構築方法であって、前記推進工法区間では、後側面の外形が推進管の前後側面外形と略一致し、前側面の外形が前記セグメント管の前後側面の外形と略一致するアダプタ管の後側面を先頭に位置する前記推進管の前側面と当接させて、前記アダプタ管と当該推進管とを接続し、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な調整管の後側面を前記アダプタ管の前側面と当接させて、前記調整管と前記アダプタ管とを接続し、一部材からなるリング状の平板から形成され、前後両側面の外形が前記セグメント管の前後側面の外形と略一致する定規リングの後側面を前記調整管の前側面に当接させて、前記定規リングと前記調整管とを接続し、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な接続管の後側面を前記定規リングの前側面とが当接させて、前記接続管と前記定規リングとを接続し、且つ、前記掘削機内部のシールドジャッキの後端部と前記接続管の前側面とを当接させた状態で、前記アダプタ管、前記調整管、前記定規リング及び前記接続管からなる推進力伝達機構を介して、前記発進立坑に設置した元押しジャッキの推進力を前記シールドジャッキに伝達し、前記推進工法を完了した後、前記シールドジャッキの推進反力を先頭の前記接続管で受けながら、前記シールドジャッキを伸長させて前記掘削機を前進させ、その後、前記シールドジャッキを短縮させて、前記接続管の前側面に複数のセグメントを接続して、前記セグメント管を構築しシールド工法区間では、前記シールドジャッキの推進反力を前記先頭のセグメント管で受けながら、前記シールドジャッキを伸長させて前記掘削機を前進させ、その後、前記シールドジャッキを短縮させて、前記先頭のセグメント管の前側面に複数のセグメントを接続して、新たなセグメント管を構築することを特徴とする。   The second pipeline construction method of the present invention is to construct a pipeline using a propulsion pipe by a propulsion method in the propulsion method section starting from the start shaft, and by a shield method in the shield method section from the propulsion method section to the reaching shaft A pipe construction method for constructing a pipe using a segment pipe, wherein in the propulsion method section, the outer shape of the rear side is substantially the same as the front and rear side outlines of the propulsion pipe, and the outer shape of the front side is the front and rear of the segment pipe. The adapter tube and the propelling tube are connected by bringing the rear side surface of the adapter tube substantially coincident with the outer shape of the side surface into contact with the front side surface of the propelling tube located at the head, and the outer shapes of both front and rear sides are the segment tube The adjustment pipe and the adapter pipe are connected to each other by bringing the rear side face of the adjustment pipe substantially coincident with the front and rear side shapes of the adapter pipe into contact with the front side face of the adapter pipe. Shaped flat plate The ruler ring is formed so that the outer sides of the front and rear side surfaces substantially coincide with the front and rear side surfaces of the segment tube, and the ruler ring and the adjustment tube are connected by bringing the rear side of the ruler ring into contact with the front side of the adjustment tube. The outer shapes of the front and rear side surfaces substantially coincide with the outer shapes of the front and rear side surfaces of the segment tube, and the rear side surface of the connection pipe that can be divided into a plurality is brought into contact with the front side surface of the ruler ring, The adapter pipe, the adjustment pipe, the ruler ring, and the connection pipe in a state where the ring is connected and the rear end portion of the shield jack inside the excavator is in contact with the front side surface of the connection pipe The propulsion force of the main jack installed in the start shaft is transmitted to the shield jack via the propulsion force transmission mechanism, and after the propulsion method is completed, the propulsion reaction force of the shield jack is connected to the head of the connection. Received in a tube Therefore, the shield jack is extended to advance the excavator, and then the shield jack is shortened to connect a plurality of segments to the front side surface of the connection pipe, thereby constructing the segment pipe and shielding method section. Then, while receiving the propulsion reaction force of the shield jack at the head segment pipe, the shield jack is extended to advance the excavator, and then the shield jack is shortened to move the front of the head segment pipe. A new segment tube is constructed by connecting a plurality of segments to the side surface.

本発明の第1の管路構築方法によれば、定規リングは一部材からなるので推進工法時に歪みや変形がほぼ生じない。そして、接続管はこの定規リングの前側面に後側面が、調整管はこの定規リングの後側面に前側面がそれぞれ当接して当該定規リングに接続されるので、推進工法時に生じる歪みや変形が抑制される。そのため、定規リングの前側面に接続させてセグメント管を組み立てたとき、調整管の歪みや変形が少なく、さらに定規リングに接続することで歪みなどの無いセグメント管に正規の形状に組み立てることが可能となる。   According to the first pipeline construction method of the present invention, the ruler ring is composed of a single member, so that almost no distortion or deformation occurs during the propulsion method. The connecting pipe is connected to the ruler ring with its rear side abutting on the front side of this ruler ring, and the adjustment pipe is connected to the ruler ring with its front side abutting against the rear side of this ruler ring. It is suppressed. Therefore, when the segment tube is assembled by connecting to the front side of the ruler ring, there is little distortion and deformation of the adjustment tube, and it can be assembled into a regular shape into a segment tube without distortion by connecting to the ruler ring It becomes.

本発明の第2の管路構築方法においては、接続管を除去せずに、シールドジャッキを伸長させて掘削機を前進させたことにより生じたスペースにセグメント管を構築している。そこで、施工効率を考慮すると、前記調整管の前後方向の長さが、前記接続管に接続される前記セグメント管の前後方向の長さよりも長いことが好ましい。   In the second pipeline construction method of the present invention, the segment pipe is constructed in the space generated by extending the shield jack and advancing the excavator without removing the connection pipe. Therefore, in consideration of construction efficiency, it is preferable that the length in the front-rear direction of the adjustment pipe is longer than the length in the front-rear direction of the segment pipe connected to the connection pipe.

本発明の実施形態に係るハイブリッド推進工法を示す説明図。Explanatory drawing which shows the hybrid propulsion method concerning embodiment of this invention. 推進力伝達機構及び掘削機の側面図。The side view of a propulsion force transmission mechanism and an excavator. (a)は接続管を取り除く場合のハイブリッド推進工法を示す説明図であり、(b)は(a)における推進管とセグメント管との接続部の拡大図。(A) is explanatory drawing which shows the hybrid propulsion method in the case of removing a connecting pipe, (b) is an enlarged view of the connection part of the propelling pipe and segment pipe | tube in (a).

本発明の実施形態に係る推進力伝達機構10について図面を参照して説明する。   A propulsive force transmission mechanism 10 according to an embodiment of the present invention will be described with reference to the drawings.

推進力伝達機構10は、図1に示すように、推進工法とシールド工法を併用したハイブリッド推進工法で用いられ、推進工法中において推進管20から掘削機40に推進力を伝える機能を有する。ハイブリッド推進工法において使用される推進力伝達機構10は、推進管20とセグメント管30との外形段差を解消して、推進工法における推進力を掘削機40に伝達する必要がある。   As shown in FIG. 1, the propulsive force transmission mechanism 10 is used in a hybrid propulsion method that uses both the propulsion method and the shield method, and has a function of transmitting propulsive force from the propulsion pipe 20 to the excavator 40 during the propulsion method. The propulsive force transmission mechanism 10 used in the hybrid propulsion method needs to eliminate the external level difference between the propulsion tube 20 and the segment tube 30 and transmit the propulsive force in the propulsion method to the excavator 40.

図2に示すように、推進力伝達機構10は、先頭に位置する推進管20先端部と掘削機40内部のシールドジャッキ41とをつなぐ。推進力伝達機構10は、推進管20の先端から掘削機40に向って順に、アダプタ管11、調整管12、定規リング13、及び接続管14が互いに接続されて構成されている。   As shown in FIG. 2, the propulsive force transmission mechanism 10 connects the leading end portion of the propulsion pipe 20 positioned at the head and a shield jack 41 inside the excavator 40. The propulsive force transmission mechanism 10 is configured by connecting an adapter pipe 11, an adjustment pipe 12, a ruler ring 13, and a connection pipe 14 in order from the tip of the propulsion pipe 20 toward the excavator 40.

アダプタ管11は、鋼構造の短い略円管状の部材であり、後側面の外径が推進管20の外径と略一致し、前側面の外径がセグメント管30の外径と略一致するように、その外側面が前側から後側に向って外側に広がるようにテーパ状に形成されている。アダプタ管11を介在させることによって、推進管20とセグメント管30との外径段差を解消することができる。アダプタ管11は、周方向に分割されておらず、一部材で構成されており、常に掘削機40の外側に位置する。   The adapter tube 11 is a short substantially tubular member having a steel structure, the outer diameter of the rear side surface substantially matches the outer diameter of the propulsion tube 20, and the outer diameter of the front side surface substantially matches the outer diameter of the segment tube 30. Thus, the outer surface is formed in a tapered shape so as to spread outward from the front side toward the rear side. By interposing the adapter tube 11, the outer diameter step between the propulsion tube 20 and the segment tube 30 can be eliminated. The adapter pipe 11 is not divided in the circumferential direction, is constituted by one member, and is always located outside the excavator 40.

アダプタ管11には、推進工法中に掘削坑と推進管20との間に滑材を注入させるための滑材注入孔11aが設けられている。滑材を注入させることにより、推進時の摩擦が減少して、推進が容易になる。また、アダプタ管11の外側面はテーパ状に形成されているので、推進時の摩擦抵抗は少ない。なお、シールド工法時には推進管20を推進させないので、滑材を注入する必要はなく、アダプタ管11は地中に存置される。   The adapter pipe 11 is provided with a lubricant injection hole 11a for injecting a lubricant between the excavation mine and the propulsion pipe 20 during the propulsion method. By injecting the lubricant, the friction during propulsion is reduced and propulsion is facilitated. Further, since the outer surface of the adapter tube 11 is formed in a tapered shape, the frictional resistance during propulsion is small. Since the propelling pipe 20 is not propelled during the shield construction method, it is not necessary to inject a lubricant, and the adapter pipe 11 is left in the ground.

調整管12は、鋼構造の略円管状の部材であり、その外径はセグメント管30の外径と略一致する。すなわち、調整管12の外径は、アダプタ管11の前側面の外径と略一致する。調整管12は、その後側面がアダプタ管11の前側面に当接し、アダプタ管11と図示しないボルトを用いて固定されている。調整管12は、掘削機40の外部に位置するアダプタ管11と掘削機40の内部の定規リング13及び接続管14とをつなぐ機能を有し、その外周部は掘削機40の後端に位置するテールシール42に接している。   The adjusting pipe 12 is a substantially circular tubular member having a steel structure, and the outer diameter thereof substantially coincides with the outer diameter of the segment pipe 30. That is, the outer diameter of the adjustment pipe 12 substantially matches the outer diameter of the front side surface of the adapter pipe 11. The adjustment tube 12 has a rear surface abutting against the front surface of the adapter tube 11 and is fixed by using the adapter tube 11 and a bolt (not shown). The adjustment pipe 12 has a function of connecting the adapter pipe 11 located outside the excavator 40 to the ruler ring 13 and the connection pipe 14 inside the excavator 40, and the outer peripheral portion is located at the rear end of the excavator 40. In contact with the tail seal 42.

調整管12は、周方向に分割可能に構成されており、掘削機40の内部で組み立てられる。これは、テールシール42を破損させることなく、円筒状態の調整管12を外部から掘削機40の内部に搬入することができないためである。   The adjustment pipe 12 is configured to be divided in the circumferential direction and is assembled inside the excavator 40. This is because the cylindrical adjustment pipe 12 cannot be carried into the excavator 40 from the outside without damaging the tail seal 42.

定規リング13は、鋼構造のリング状(中空円盤状)の平板部材であり、その外径はセグメント管30の外径と略一致する。すなわち、定規リング13の外径は、調整管12の外径と略一致する。定規リング13は、その後側面が調整管12の前側面に当接し、調整管12に図示しないボルトを用いて固定されている。定規リング13は、平板であるため、予め掘削機40の内部に搬入しておけば分割する必要はない。なお、定規リング13を分割して搬入した場合には、掘削機40内で溶接などによって一部材にする。定規リング13には、メッキが防錆のために施されている。   The ruler ring 13 is a steel-structured ring-shaped (hollow disk-shaped) flat plate member whose outer diameter substantially matches the outer diameter of the segment tube 30. That is, the outer diameter of the ruler ring 13 substantially matches the outer diameter of the adjustment pipe 12. The ruler ring 13 has its rear side abutted against the front side of the adjustment pipe 12 and is fixed to the adjustment pipe 12 using a bolt (not shown). Since the ruler ring 13 is a flat plate, it is not necessary to divide the ruler ring 13 as long as it is brought into the excavator 40 in advance. In addition, when the ruler ring 13 is divided and carried in, it is made into one member by welding or the like in the excavator 40. The ruler ring 13 is plated for rust prevention.

接続管14は、鋼構造の略円管状の部材であり、その外径はセグメント管30の外径と略一致する。すなわち、接続管14の外径は、定規リング13の外径と略一致する。接続管14は、その後側面が定規リング13の前側面に当接し、定規リング13に図示しないボルトを用いて固定されている。そして、接続管14は、その前側面が掘削機40内部のシールドジャッキ41に接続されており、推進工法時での推進力を掘削機40に伝達する。   The connection pipe 14 is a substantially circular tubular member having a steel structure, and the outer diameter thereof substantially coincides with the outer diameter of the segment pipe 30. That is, the outer diameter of the connecting pipe 14 substantially matches the outer diameter of the ruler ring 13. The connecting pipe 14 has a rear side abutting against the front side of the ruler ring 13 and is fixed to the ruler ring 13 with a bolt (not shown). The connecting pipe 14 is connected at its front side surface to a shield jack 41 inside the excavator 40, and transmits the propulsive force during the propulsion method to the excavator 40.

接続管14は、調整管12と同様に、周方向に分割可能に構成されている。さらに、接続管14には、接続管14と掘削機40のスキンプレート43との間隔を調整可能な芯出しボルト15が設けられている。芯出しボルト15は、本発明の間隔調整手段に相当する。芯出しボルト15は、接続管14を構成する各ピースに設けられており、これら各ピースとスキンプレート43との間隔を調整することによって、推進中の接続管14の真円を維持することができる。   The connection pipe 14 is configured to be divided in the circumferential direction, like the adjustment pipe 12. Further, the connecting pipe 14 is provided with a centering bolt 15 capable of adjusting the distance between the connecting pipe 14 and the skin plate 43 of the excavator 40. The centering bolt 15 corresponds to the interval adjusting means of the present invention. The centering bolt 15 is provided in each piece constituting the connecting pipe 14, and the perfect circle of the connecting pipe 14 during propulsion can be maintained by adjusting the distance between each piece and the skin plate 43. it can.

図示しないが、アダプタ管11と調整管12、調整管12と定規リング13の間には止水シールが設置されている。なお、接続管14を除去してセグメント管30を設置する場合には、定規リング13とセグメント管30の間に、接続管14を残置する場合には、定規リング13と接続管14との間に止水シールを設置する。   Although not shown, a water stop seal is provided between the adapter pipe 11 and the adjustment pipe 12 and between the adjustment pipe 12 and the ruler ring 13. When the connecting pipe 14 is removed and the segment pipe 30 is installed, between the ruler ring 13 and the connecting pipe 14 when the connecting pipe 14 is left between the ruler ring 13 and the segment pipe 30. Install a water seal on

次に、掘削機40について説明する。この掘削機40は、泥水式のシールド掘削機であり、スキンプレート(シールド筒)43と、スキンプレート43に組付けた掘削ユニット44とを備えている。スキンプレート43は、前スキンプレート(前筒)43aと後スキンプレート(後筒)43bとから構成されている。後スキンプレート43bの前端には、前スキンプレート43aの後端部に内嵌する球面ジョイント部45が設けられており、前スキンプレート43aは後スキンプレート43bに対し任意の方向に屈曲自在になる。そして、前スキンプレート43aと後スキンプレート43bとを連結する中折れジャッキ46を周方向の間隔を存して複数設け、これら中折れジャッキ46により前スキンプレート43aの方向、即ち、掘削機40の掘進方向を調節することができる。   Next, the excavator 40 will be described. The excavator 40 is a muddy water type shield excavator, and includes a skin plate (shield cylinder) 43 and an excavation unit 44 assembled to the skin plate 43. The skin plate 43 includes a front skin plate (front cylinder) 43a and a rear skin plate (rear cylinder) 43b. At the front end of the rear skin plate 43b, there is provided a spherical joint 45 that fits inside the rear end of the front skin plate 43a. The front skin plate 43a can be bent in any direction with respect to the rear skin plate 43b. . A plurality of middle-folded jacks 46 for connecting the front skin plate 43a and the rear skin plate 43b are provided at intervals in the circumferential direction, and the direction of the front skin plate 43a, i.e., the The direction of excavation can be adjusted.

後スキンプレート43bには、掘削済みのトンネル内壁面にセグメント31をリング状に組付けるエレクタ47が内装されると共に、設置済みのセグメント31を反力受けにしてスキンプレート43を前進させる複数のシールドジャッキ41が周方向の間隔を存して取付けられている。また、後スキンプレート43bの後端には、セグメント31との間の隙間をシールするテールシール42が取付けられている。さらに、図示しないが、外周部分の地山に裏込め材を注入充填する裏込注入装置が設けられている。   The rear skin plate 43b includes an erector 47 for assembling the segment 31 in a ring shape on the inner wall surface of the excavated tunnel, and a plurality of shields for moving the skin plate 43 forward by receiving the installed segment 31 as a reaction force. Jacks 41 are attached at intervals in the circumferential direction. A tail seal 42 is attached to the rear end of the rear skin plate 43b to seal a gap between the segment 31 and the rear skin plate 43b. Further, although not shown, a back-filling device for injecting and filling a back-filling material to the ground of the outer peripheral portion is provided.

掘削ユニット44は、隔壁48と、スキンプレート43の前端より前方で切羽を掘削する、隔壁48に支持されるカッタヘッド49とを有している。   The excavation unit 44 includes a partition wall 48 and a cutter head 49 supported by the partition wall 48 that excavates the face in front of the front end of the skin plate 43.

隔壁48の背面には、カッタヘッド49を回転駆動させる駆動ユニット51が設けられている。駆動ユニット51は駆動モータ、減速機、ギヤ等から構成され、駆動ユニット51の駆動力によって、駆動軸52を介してカッタヘッド49を高トルクで回転駆動することができる。   A drive unit 51 for rotating the cutter head 49 is provided on the back surface of the partition wall 48. The drive unit 51 includes a drive motor, a speed reducer, a gear, and the like, and the cutter head 49 can be driven to rotate with high torque via the drive shaft 52 by the drive force of the drive unit 51.

カッタヘッド49は、カッタビット49aを取付けた放射状の複数のカッタスポーク49bと、各カッタスポーク49bに内蔵した図示しない伸縮ジャッキにより各カッタスポーク49bの外端部から径方向外方に出没するオーバーカッタ49cとを備えている。   The cutter head 49 includes a plurality of radial cutter spokes 49b to which cutter bits 49a are attached, and an overcutter that protrudes radially outward from an outer end portion of each cutter pork 49b by an unillustrated extension jack built in each cutter pork 49b. 49c.

カッタヘッド49と隔壁48との間の空間が隔室53となっている。隔室53は、掘削土砂を泥水と共に充填して切羽面からの土圧に対抗させるためのものである。隔壁48の後側には、隔室53と連通する土砂搬出装置54が設けられている。この土砂搬出装置54は、送泥管54a、排泥管54b、及びこれら送泥管54a、排泥管54bと接続され、後方の発進立坑にまで到る送排出泥管54cなどから構成されている。   A space between the cutter head 49 and the partition wall 48 is a compartment 53. The compartment 53 is for filling excavated earth and sand together with muddy water to counteract the earth pressure from the face. On the rear side of the partition wall 48, a sediment transport device 54 that communicates with the compartment 53 is provided. The earth and sand carry-out device 54 is configured by a mud pipe 54a, a drain mud pipe 54b, and a mud pipe 54c connected to the mud pipe 54a and the mud pipe 54b and reaching the rear start shaft. Yes.

以下、本発明の実施形態に係る管体構築方法について図1を参照して説明する。   Hereinafter, a tube construction method according to an embodiment of the present invention will be described with reference to FIG.

発進立坑Aから所定の距離までの推進工法区間Cでは、推進工法で推進管20を接続することによって管体を構築する。   In the propulsion method section C from the start shaft A to a predetermined distance, a pipe body is constructed by connecting the propulsion pipe 20 by the propulsion method.

まず、図1(a)に示すように、地盤を掘削して発進立坑Aを形成し、発進立坑Aに反力受部61、元押しジャッキ62などを設置する。そして、反力受部61に作用する元押しジャッキ62の反力によって、掘削機40を前進させる。このとき、前記裏込め注入装置によって掘削機40のテール外周部分の地山に裏込め材71を注入充填する(図3(b)参照)。   First, as shown in FIG. 1A, the start shaft A is formed by excavating the ground, and the reaction force receiving portion 61, the main push jack 62, and the like are installed in the start shaft A. Then, the excavator 40 is advanced by the reaction force of the main push jack 62 acting on the reaction force receiving portion 61. At this time, the backfill material 71 is injected and filled into the ground of the tail outer peripheral portion of the excavator 40 by the backfill injection device (see FIG. 3B).

その後、図1(b)に示すように、アダプタ管11、調整管12、定規リング13及び接続管14から構成される推進力伝達機構10を、掘削機40内部のシールドジャッキ41と元押しジャッキ62との間に設置する。そして、元押しジャッキ62の推進力をシールドジャッキ41に伝達し、掘削機40を推進力伝達機構10と一体的に推進させる。そして、発進立坑A内においてアダプタ管11の後側面に推進管20を接続させる。なお、推進管20は、周方向に分割可能に構成してもよい。また、推進管20はヒューム管であってもよい。   Thereafter, as shown in FIG. 1B, the propulsive force transmission mechanism 10 including the adapter pipe 11, the adjustment pipe 12, the ruler ring 13, and the connection pipe 14 is connected to the shield jack 41 and the main push jack inside the excavator 40. 62. Then, the propulsive force of the main push jack 62 is transmitted to the shield jack 41, and the excavator 40 is propelled integrally with the propulsive force transmission mechanism 10. Then, the propulsion pipe 20 is connected to the rear side surface of the adapter pipe 11 in the start shaft A. The propulsion pipe 20 may be configured to be divisible in the circumferential direction. Further, the propulsion tube 20 may be a fume tube.

この後、推進管20、推進力伝達機構10及び掘削機40を全体として一体的に推進させる。この推進により発進立坑A内に生じたスペースに新たな推進管20を位置させて、既設の後端の推進管20と接続させる。そして、推進管20の長さが所定の距離になるまで、このような工程を繰り返す。   Thereafter, the propulsion pipe 20, the propulsive force transmission mechanism 10, and the excavator 40 are integrally propelled as a whole. A new propulsion pipe 20 is positioned in the space generated in the start shaft A by this propulsion, and is connected to the existing propulsion pipe 20 at the rear end. Such a process is repeated until the length of the propelling tube 20 reaches a predetermined distance.

推進工法時、調整管12は、共に一部材から形成されるアダプタ管11と定規リング13によって前後を固定されており、その形状が真円に保持される。そして、接続管14は、一部材から形成される定規リング13によって後方を固定され、且つ、芯出しボルト15を用いて歪みが生じないように調整されており、その形状が真円に保持される。また、調整管12や接続管14の定規リング13との接続面に予めボルト穴を形成せずに、定規リング13のボルト穴に合わせて調整管12や接続管14にボルト穴を形成することで、さらに形状を真円にすることができる。   At the time of the propulsion method, the adjustment pipe 12 is fixed to the front and rear by an adapter pipe 11 and a ruler ring 13 both formed from one member, and the shape thereof is held in a perfect circle. The connecting pipe 14 is fixed at the rear by a ruler ring 13 formed from one member, and is adjusted so as not to be distorted by using a centering bolt 15, and the shape thereof is held in a perfect circle. The In addition, bolt holes are formed in the adjusting pipe 12 and the connecting pipe 14 in accordance with the bolt holes of the ruler ring 13 without forming bolt holes in advance on the connection surface of the adjusting pipe 12 and the connecting pipe 14 with the ruler ring 13. Thus, the shape can be made a perfect circle.

推進工法における推進力は、推進管20とその周囲地盤との摩擦状態によって変化する。そして、推進力を微細に調整することは困難であり、設計値と比較して大きな推進力がかかることがある。大きな推進力がかかっても、周方向に分割されたピースから構成される調整管12及び接続管14に歪みや変形などが生じることが抑制され、推進力伝達機構10が常に真円状態に保持されるため、偏った応力が掘削機40に作用しない。   The propulsive force in the propulsion method changes depending on the friction state between the propulsion pipe 20 and the surrounding ground. And it is difficult to finely adjust the propulsive force, and a large propulsive force may be applied as compared with the design value. Even if a large propulsive force is applied, distortion and deformation of the adjusting pipe 12 and the connecting pipe 14 composed of pieces divided in the circumferential direction are suppressed, and the propulsive force transmission mechanism 10 is always kept in a perfect circle state. Therefore, the biased stress does not act on the excavator 40.

図1(c)に示すように、所定の距離まで推進工法で管路を構築した後、シールド工法に移行する。シールド工法に移行後のシールド工法区間Dは、通常のシールド工法と同様に施工する。   As shown in FIG.1 (c), after constructing a pipe line by a propulsion method to a predetermined distance, it transfers to a shield method. The shield construction method section D after shifting to the shield construction method is constructed in the same manner as the normal shield construction method.

シールド工法に移行するとき、アダプタ管11、調整管12及び定規リング13を存置させる。接続管14は、取り除いても、存置させてもよい。   When shifting to the shield method, the adapter pipe 11, the adjustment pipe 12 and the ruler ring 13 are placed. The connecting pipe 14 may be removed or may be left.

接続管14を取り除く場合は、図3(a)及び図3(b)に示すように、定規リング13がセグメント31の位置決め部材として機能する。この場合、詳細は図示しないが、定規リング13に形成されたボルト穴を、各セグメント31に形成されたボルト穴と合わせてボルトを用いて各セグメント31を定規リング13に固定することによって、複数のセグメント31から構成させるセグメント管30を真円に組み立てることができる。接続管14を取り除く場合、接続管14の長さはセグメント管1個分の長さと同程度である。   When removing the connecting pipe 14, the ruler ring 13 functions as a positioning member for the segment 31, as shown in FIGS. 3 (a) and 3 (b). In this case, although not shown in detail, the bolt holes formed in the ruler ring 13 are combined with the bolt holes formed in each segment 31 to fix each segment 31 to the ruler ring 13 by using bolts. The segment tube 30 composed of the segments 31 can be assembled into a perfect circle. When the connecting pipe 14 is removed, the length of the connecting pipe 14 is approximately the same as the length of one segment pipe.

接続管14を存置する場合は、図1(d)に示すように、シールドジャッキ41を伸長して掘削機40を前進させた後、シールドジャッキ41を縮退させてセグメント管30を設置するためのスペースを確保する。そして、このスペースにセグメント31を配置し、各セグメント31をボルトで接続管14に固定することによってセグメント管30を組み立てる。このとき、接続管14の前側面の外形が真円であるので、セグメント管30を真円に組み立てることができる。接続管14を存置する場合、調整管12の長さはセグメント管1個の長さ以上であることが好ましい。これは、セグメント31を接続する前に調整管12がテールシール42の外側に押し出された場合、周囲から土圧を受けて変形することを防ぐためである。なお、この場合、接続管14の前側面に、前記とは別の定規リングを接続してもよい。   When the connection pipe 14 is to be placed, as shown in FIG. 1 (d), the shield jack 41 is extended to advance the excavator 40, and then the shield jack 41 is retracted to install the segment pipe 30. Reserve space. And the segment pipe | tube 30 is assembled by arrange | positioning the segment 31 in this space and fixing each segment 31 to the connection pipe | tube 14 with a volt | bolt. At this time, since the outer shape of the front side surface of the connecting tube 14 is a perfect circle, the segment tube 30 can be assembled into a perfect circle. When the connecting pipe 14 is placed, the length of the adjusting pipe 12 is preferably equal to or longer than the length of one segment pipe. This is to prevent deformation by receiving earth pressure from the surroundings when the adjusting pipe 12 is pushed out of the tail seal 42 before the segment 31 is connected. In this case, a ruler ring different from the above may be connected to the front side surface of the connecting pipe 14.

このように、シールド工法に移行する際に、セグメント31と接合される定規リング13又は接続管14はその形状が真円であるので、セグメント管30を真円に組み立てることができる。特に、RC(鉄筋コンクリート)セグメント管は、真円に組み上げられた状態で本来の構造性能を発揮するので、真円に組み立てることができ、好ましい。ただし、セグメント管30は、鋼製セグメント管、鋳鉄(ダクタイル)セグメント管、合成セグメント管などであってもよい。また、調整管12や接続管14は、RCセグメント管以外の鋼製セグメント管、鋳鉄セグメント管、合成セグメント管などで代用してもよい。   Thus, when shifting to the shield method, the shape of the ruler ring 13 or the connecting pipe 14 joined to the segment 31 is a perfect circle, so that the segment pipe 30 can be assembled into a perfect circle. In particular, the RC (steel reinforced concrete) segment pipe exhibits the original structural performance in a state of being assembled into a perfect circle, and therefore can be assembled into a perfect circle, which is preferable. However, the segment pipe 30 may be a steel segment pipe, a cast iron (ductile) segment pipe, a synthetic segment pipe, or the like. The adjusting pipe 12 and the connecting pipe 14 may be replaced with a steel segment pipe, a cast iron segment pipe, a synthetic segment pipe, or the like other than the RC segment pipe.

なお、接続管14を取り除く場合は、接続管14を構成する複数のピースをまとめて取り除くのではなく、ピース毎にセグメント31と入れ替えるほうが好ましい。具体的には、取り除くピースに当接するシールドジャッキ41を短縮させ、このピースと隣接するピース、及びこのピースと定規リング13とを結合するボルトを取外して、当該ピースを除去する。そして、ピースを除去して空いた空間にセグメント31を設置した後、対応するシールドジャッキ41を伸長させてセグメント31を押さえる。   In addition, when removing the connecting pipe 14, it is preferable not to remove a plurality of pieces constituting the connecting pipe 14 together but to replace the segment 31 for each piece. Specifically, the shield jack 41 that abuts the piece to be removed is shortened, the piece adjacent to this piece, and the bolt that joins this piece to the ruler ring 13 are removed, and the piece is removed. And after removing a piece and installing the segment 31 in the empty space, the corresponding shield jack 41 is extended and the segment 31 is pressed down.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、アダプタ管11、調整管12、定規リング13、接続管14、推進管20及びセグメント管30の前後側面の外形が円形状である場合について説明した。しかし、これら前後側面の外形は、楕円形状であってもよい。また、セグメント31の平面形状は、長方形や六角形などの多角形状であってもよい。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, the case where the outer shapes of the front and rear sides of the adapter pipe 11, the adjustment pipe 12, the ruler ring 13, the connection pipe 14, the propulsion pipe 20 and the segment pipe 30 are circular has been described. However, the outer shape of these front and rear side surfaces may be elliptical. Further, the planar shape of the segment 31 may be a polygonal shape such as a rectangle or a hexagon.

10…推進力伝達機構、 11…アダプタ管、 12…調整管、 13…定規リング、 14…接続管、 15…芯出しボルト(間隔調整手段)、 20…推進管、 30…セグメント管、 31…セグメント、 40…掘削機、 41…シールドジャッキ、 43…スキンプレート、 A…発進立坑、 B…到達立坑、 C…推進工法区間、 D…シールド工法区間。   DESCRIPTION OF SYMBOLS 10 ... Propulsion force transmission mechanism, 11 ... Adapter pipe, 12 ... Adjustment pipe, 13 ... Ruler ring, 14 ... Connection pipe, 15 ... Centering bolt (space | interval adjustment means), 20 ... Propulsion pipe, 30 ... Segment pipe, 31 ... 40, excavator, 41 ... shield jack, 43 ... skin plate, A ... start shaft, B ... reaching shaft, C ... propulsion method section, D ... shield method section.

Claims (6)

発進立坑から始まる推進工法区間では推進工法によって推進管を用いて管路を構築し、前記推進工法区間から到達立坑までのシールド工法区間ではシールド工法によってセグメント管を用いて管路を構築する管路構築方法において、前記発進立坑に設置した元押しジャッキの推進力を掘削機内部のシールドジャッキに伝達するための推進力伝達機構であって、
後側面の外形が前記推進管の前後側面外形と略一致し、前側面の外形が前記セグメント管の前後側面の外形と略一致し、先頭に位置する前記推進管の前側面と後側面が当接して当該推進管と接続されるアダプタ管と、
前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、前記アダプタ管の前側面と後側面が当接して当該アダプタ管に接続され、複数に分割可能な調整管と、
一部材からなるリング状の平板から形成され、前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、後側面が前記調整管の前側面に当接して当該調整管に接続される定規リングと、
前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、前記定規リングの前側面と後側面が当接して当該定規リングに接続され、前記シールドジャッキの後端部と前側面が当接して、複数に分割可能な接続管とから構成されることを特徴とする推進力伝達機構。
In the propulsion method section starting from the starting shaft, a pipeline is constructed using a propulsion pipe by the propulsion method. In the construction method, a propulsive force transmission mechanism for transmitting the propulsive force of the main jack installed in the start shaft to the shield jack inside the excavator,
The outer shape of the rear side substantially matches the outer shape of the front and rear sides of the propulsion tube, the outer shape of the front side substantially matches the outer shape of the front and rear sides of the segment tube, and the front side and the rear side of the propulsion tube located at the front are in contact. An adapter pipe that is in contact with and connected to the propulsion pipe;
The outer shape of the front and rear side surfaces substantially coincides with the outer shape of the front and rear side surfaces of the segment tube, the front side surface and the rear side surface of the adapter tube are in contact with each other and connected to the adapter tube, and can be divided into a plurality of adjustment tubes,
It is formed from a ring-shaped flat plate made of one member, and the outer shape of both front and rear side surfaces substantially coincides with the outer shape of the front and rear side surfaces of the segment tube, and the rear side surface is in contact with the front side surface of the adjusting tube and connected to the adjusting tube. Ruler ring and
The outer shapes of the front and rear side surfaces substantially coincide with the outer shapes of the front and rear side surfaces of the segment tube, the front side surface and the rear side surface of the ruler ring are in contact with each other and connected to the ruler ring, and the rear end portion and the front side surface of the shield jack are A propulsive force transmission mechanism comprising a connecting pipe that abuts and can be divided into a plurality of parts.
前記調整管を構成する各ピースに、当該各ピースと前記掘削機のスキンプレートとの間隔を調整可能な間隔調整手段が設けられることを特徴とする請求項1に記載の推進力伝達機構。   The propulsive force transmission mechanism according to claim 1, wherein each piece constituting the adjustment pipe is provided with a gap adjusting means capable of adjusting a gap between the piece and the skin plate of the excavator. 発進立坑から始まる推進工法区間では推進工法によって推進管を用いて管路を構築し、前記推進工法区間から到達立坑までのシールド工法区間ではシールド工法によってセグメント管を用いて管路を構築する管路構築方法であって、
前記推進工法区間では、
後側面の外形が推進管の前後側面外形と略一致し、前側面の外形が前記セグメント管の前後側面の外形と略一致するアダプタ管の後側面を先頭に位置する前記推進管の前側面と当接させて、前記アダプタ管と当該推進管とを接続し、
前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な調整管の後側面を前記アダプタ管の前側面と当接させて、前記調整管と前記アダプタ管とを接続し、
一部材からなるリング状の平板から形成され、前後両側面の外形が前記セグメント管の前後側面の外形と略一致する定規リングの後側面を前記調整管の前側面に当接させて、前記定規リングと前記調整管とを接続し、
前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な接続管の後側面を前記定規リングの前側面とが当接させて、前記接続管と前記定規リングとを接続し、
且つ、前記掘削機内部のシールドジャッキの後端部と前記接続管の前側面とを当接させた状態で、
前記アダプタ管、前記調整管、前記定規リング及び前記接続管からなる推進力伝達機構を介して、前記発進立坑に設置した元押しジャッキの推進力を前記シールドジャッキに伝達し、
前記推進工法を完了した後、前記接続管を除去し、
前記定規リングの前側面に複数のセグメントを接続して、前記セグメント管を構築し、
前記シールド工法区間では、
前記シールドジャッキの推進反力を先頭の前記セグメント管で受けながら、前記シールドジャッキを伸長させて前記掘削機を前進させ、その後、前記シールドジャッキを短縮させて、前記先頭のセグメント管の前側面に複数のセグメントを接続して、新たなセグメント管を構築することを特徴とする管路構築方法。
In the propulsion method section starting from the starting shaft, a pipeline is constructed using a propulsion pipe by the propulsion method. A construction method,
In the propulsion method section,
The front side of the propulsion tube is located at the front of the rear side of the adapter tube whose outer shape of the rear side substantially matches the outer shape of the front and rear side of the propulsion tube and whose outer shape of the front side substantially matches the outer shape of the front and rear side of the segment tube; Abut the adapter tube and the propulsion tube,
The outer shape of the front and rear side surfaces is substantially the same as the outer shape of the front and rear side surfaces of the segment tube, and the rear surface of the adjustment tube that can be divided into a plurality is brought into contact with the front side surface of the adapter tube, Connect
A ruler ring formed from a ring-shaped flat plate made of a single member and having an outer shape on both front and rear sides substantially matching the outer shape on the front and rear sides of the segment tube is brought into contact with the front side surface of the adjustment tube, thereby Connect the ring and the adjustment pipe,
The outer shape of both front and rear side surfaces substantially coincides with the outer shape of the front and rear side surfaces of the segment tube, and the rear side surface of the connection pipe that can be divided into a plurality is brought into contact with the front side surface of the ruler ring, And connect
And in a state where the rear end portion of the shield jack inside the excavator and the front side surface of the connection pipe are in contact with each other,
Through the propulsive force transmission mechanism consisting of the adapter pipe, the adjustment pipe, the ruler ring and the connection pipe, the propulsive force of the main jack installed in the start shaft is transmitted to the shield jack,
After completing the propulsion method, the connecting pipe is removed,
Connecting a plurality of segments to the front side of the ruler ring to construct the segment tube;
In the shield method section,
While receiving the propulsion reaction force of the shield jack by the leading segment pipe, the shield jack is extended to advance the excavator, and then the shield jack is shortened to the front side of the leading segment pipe. A pipe construction method characterized by connecting a plurality of segments to construct a new segment pipe.
前記接続管の前後方向の長さが、前記定規リングに接続される前記セグメント管の前後方向の長さと略同一であることを特徴とする請求項3に記載の管路構築方法。   The pipe construction method according to claim 3, wherein a length of the connecting pipe in the front-rear direction is substantially the same as a length of the segment pipe connected to the ruler ring in the front-rear direction. 発進立坑から始まる推進工法区間では推進工法によって推進管を用いて管路を構築し、前記推進工法区間から到達立坑までのシールド工法区間ではシールド工法によってセグメント管を用いて管路を構築する管路構築方法であって、
前記推進工法区間では、
後側面の外形が推進管の前後側面外形と略一致し、前側面の外形が前記セグメント管の前後側面の外形と略一致するアダプタ管の後側面を先頭に位置する前記推進管の前側面と当接させて、前記アダプタ管と当該推進管とを接続し、
前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な調整管の後側面を前記アダプタ管の前側面と当接させて、前記調整管と前記アダプタ管とを接続し、
一部材からなるリング状の平板から形成され、前後両側面の外形が前記セグメント管の前後側面の外形と略一致する定規リングの後側面を前記調整管の前側面に当接させて、前記定規リングと前記調整管とを接続し、
前後両側面の外形が前記セグメント管の前後側面の外形と略一致し、複数に分割可能な接続管の後側面を前記定規リングの前側面とが当接させて、前記接続管と前記定規リングとを接続し、
且つ、前記掘削機内部のシールドジャッキの後端部と前記接続管の前側面とを当接させた状態で、
前記アダプタ管、前記調整管、前記定規リング及び前記接続管からなる推進力伝達機構を介して、前記発進立坑に設置した元押しジャッキの推進力を前記シールドジャッキに伝達し、
前記推進工法を完了した後、前記シールドジャッキの推進反力を先頭の前記接続管で受けながら、前記シールドジャッキを伸長させて前記掘削機を前進させ、その後、前記シールドジャッキを短縮させて、前記接続管の前側面に複数のセグメントを接続して、前記セグメント管を構築し、
シールド工法区間では、
前記シールドジャッキの推進反力を前記先頭のセグメント管で受けながら、前記シールドジャッキを伸長させて前記掘削機を前進させ、その後、前記シールドジャッキを短縮させて、前記先頭のセグメント管の前側面に複数のセグメントを接続して、新たなセグメント管を構築することを特徴とする管路構築方法。
In the propulsion method section starting from the starting shaft, a pipeline is constructed using a propulsion pipe by the propulsion method. A construction method,
In the propulsion method section,
The front side of the propulsion tube is located at the front of the rear side of the adapter tube whose outer shape of the rear side substantially matches the outer shape of the front and rear side of the propulsion tube and whose outer shape of the front side substantially matches the outer shape of the front and rear side of the segment tube; Abut the adapter tube and the propulsion tube,
The outer shape of the front and rear side surfaces is substantially the same as the outer shape of the front and rear side surfaces of the segment tube, and the rear surface of the adjustment tube that can be divided into a plurality is brought into contact with the front side surface of the adapter tube, Connect
A ruler ring formed from a ring-shaped flat plate made of a single member and having an outer shape on both front and rear sides substantially matching the outer shape on the front and rear sides of the segment tube is brought into contact with the front side surface of the adjustment tube, thereby Connect the ring and the adjustment pipe,
The outer shape of both front and rear side surfaces substantially coincides with the outer shape of the front and rear side surfaces of the segment tube, and the rear side surface of the connection pipe that can be divided into a plurality is brought into contact with the front side surface of the ruler ring, And connect
And in a state where the rear end portion of the shield jack inside the excavator and the front side surface of the connection pipe are in contact with each other,
Through the propulsive force transmission mechanism consisting of the adapter pipe, the adjustment pipe, the ruler ring and the connection pipe, the propulsive force of the main jack installed in the start shaft is transmitted to the shield jack,
After completing the propulsion method, while receiving the propulsion reaction force of the shield jack at the leading connecting pipe, extend the shield jack to advance the excavator, and then shorten the shield jack, Connecting a plurality of segments to the front side of the connecting pipe to construct the segment pipe;
In the shield method section,
While receiving the propulsion reaction force of the shield jack at the head segment tube, the shield jack is extended to advance the excavator, and then the shield jack is shortened to the front side of the head segment tube. A pipe construction method characterized by connecting a plurality of segments to construct a new segment pipe.
前記調整管の前後方向の長さが、前記接続管に接続される前記セグメント管の前後方向の長さよりも長いことを特徴とする請求項5に記載の管路構築方法。   The pipe construction method according to claim 5, wherein a length of the adjustment pipe in the front-rear direction is longer than a length of the segment pipe connected to the connection pipe in the front-rear direction.
JP2012197872A 2012-09-07 2012-09-07 Propulsion transmission mechanism and pipeline construction method Active JP5806186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197872A JP5806186B2 (en) 2012-09-07 2012-09-07 Propulsion transmission mechanism and pipeline construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197872A JP5806186B2 (en) 2012-09-07 2012-09-07 Propulsion transmission mechanism and pipeline construction method

Publications (2)

Publication Number Publication Date
JP2014051839A true JP2014051839A (en) 2014-03-20
JP5806186B2 JP5806186B2 (en) 2015-11-10

Family

ID=50610546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197872A Active JP5806186B2 (en) 2012-09-07 2012-09-07 Propulsion transmission mechanism and pipeline construction method

Country Status (1)

Country Link
JP (1) JP5806186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038751A1 (en) * 2014-09-09 2016-03-17 裕司 阪本 Curved pipe line construction method that can be switched between using jacking rig and using shielding machine
CN110529129A (en) * 2019-10-09 2019-12-03 中建八局轨道交通建设有限公司 For the shield launching counter-force support device and counter-force method for supporting in narrow space

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443136A (en) * 2015-12-30 2016-03-30 中船重型装备有限公司 Segment erector device of shield tunneling machine
JP2020153175A (en) * 2019-03-22 2020-09-24 株式会社奥村組 Tunnel construction method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754577A (en) * 1993-08-19 1995-02-28 Akashi Semishiirudo Kensetsu Kk Underground drilling method
JPH08121078A (en) * 1994-10-19 1996-05-14 Okumura Corp Tunnel construction method and tunnel excavating machine
JP2001200689A (en) * 2000-01-17 2001-07-27 Tokyo Electric Power Co Inc:The Buried pipe for jacking method and jacking/shield composite method
JP2008057128A (en) * 2006-08-29 2008-03-13 Ohmoto Gumi Co Ltd Conduit construction method
JP2008101450A (en) * 2006-10-19 2008-05-01 Hiroaki Fujii Construction method of pipeline

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754577A (en) * 1993-08-19 1995-02-28 Akashi Semishiirudo Kensetsu Kk Underground drilling method
JPH08121078A (en) * 1994-10-19 1996-05-14 Okumura Corp Tunnel construction method and tunnel excavating machine
JP2001200689A (en) * 2000-01-17 2001-07-27 Tokyo Electric Power Co Inc:The Buried pipe for jacking method and jacking/shield composite method
JP2008057128A (en) * 2006-08-29 2008-03-13 Ohmoto Gumi Co Ltd Conduit construction method
JP2008101450A (en) * 2006-10-19 2008-05-01 Hiroaki Fujii Construction method of pipeline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038751A1 (en) * 2014-09-09 2016-03-17 裕司 阪本 Curved pipe line construction method that can be switched between using jacking rig and using shielding machine
CN110529129A (en) * 2019-10-09 2019-12-03 中建八局轨道交通建设有限公司 For the shield launching counter-force support device and counter-force method for supporting in narrow space

Also Published As

Publication number Publication date
JP5806186B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5806186B2 (en) Propulsion transmission mechanism and pipeline construction method
TW201738454A (en) Method of constructing very large underground space and outer shield tunnel
JP2014080865A (en) Tunnel construction method
JP2014156690A (en) Tunnel construction method
JP5744810B2 (en) Segment tube connection structure and connection method
JP2696505B2 (en) Method and apparatus for constructing shield tunnels with different diameters and shapes using a single shield machine
JP2004324256A (en) Shield machine
JP2005330667A (en) Two-stage pipe-jacking construction method and connector
JP4381995B2 (en) Pipe propulsion embedding equipment
JP4037436B2 (en) Tunnel excavator for pipe formation
JP3867924B2 (en) Diverging type propulsion machine
JP6157921B2 (en) Reconstruction propulsion device for existing buried pipes
JP4081037B2 (en) Propulsion and shield combination method
JP2009046959A (en) Construction method for underground pipe line
JP2006037595A (en) Excavator for jacking method and jacking method
JP2013096181A (en) Tunnel excavator with traction type cutter replacement mechanism for underground joint method
JP2016223110A (en) Method to prepare for starting, and start shield machine
JP2009144468A (en) Cruciform start vertical shaft structure
JP4879131B2 (en) Underground joining method of shield excavator
JP3814933B2 (en) Shield machine
JP6230284B2 (en) Existing pipe renewal method
JP2023150331A (en) Shield excavator tail seal replacement method and water sealing plate
JPH08218788A (en) Cutter-provided segment and horizontal tunnel-excavation method using the segment
JP2001241300A (en) Tunnel back-filling device and sealing method in tunnel back-filling
JPH0949586A (en) Reduction method for peripheral surface friction of underground pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250