JP2014050852A - Apparatus and method for joining metal plate - Google Patents

Apparatus and method for joining metal plate Download PDF

Info

Publication number
JP2014050852A
JP2014050852A JP2012195238A JP2012195238A JP2014050852A JP 2014050852 A JP2014050852 A JP 2014050852A JP 2012195238 A JP2012195238 A JP 2012195238A JP 2012195238 A JP2012195238 A JP 2012195238A JP 2014050852 A JP2014050852 A JP 2014050852A
Authority
JP
Japan
Prior art keywords
plate
induction heating
end portion
welding material
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012195238A
Other languages
Japanese (ja)
Other versions
JP6036031B2 (en
Inventor
Yoshimichi Hino
善道 日野
Masaru Miyake
勝 三宅
Kazuya Mori
和哉 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012195238A priority Critical patent/JP6036031B2/en
Publication of JP2014050852A publication Critical patent/JP2014050852A/en
Application granted granted Critical
Publication of JP6036031B2 publication Critical patent/JP6036031B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To reliably heat and join the fore-and-aft ends of a plurality of metal plates with each other over the all plate width without being affected by oxides containing an easily oxidizable alloying element, and as a result, to suppress a break of a joining portion between metal plates.SOLUTION: A metal plate joining apparatus 10 as an embodiment of the invention includes an electric welding unit 16, pressing units 17, 18 and a control unit 19. The electric welding unit 16 feeds welding materials to the place between the fore-and-aft ends of a preceding plate 4 and a succeeding plate 5 after induction heating. The pressing units 17, 18 sandwich and press the welding materials between the fore-and-aft ends by the pressing of this fore-and-aft ends. The electric welding unit 16 heats and melts the welding materials by passing an electric current to the welding materials sandwiched in this way. The control unit 19 controls the pressing units 17, 18 so as to press and join the fore-and-aft ends after the induction heating, while sandwiching and pressing the welding materials between the fore-and-aft ends, during a period when at least the welding materials are heated and melted.

Description

本発明は、複数の金属板を接合する金属板接合装置および金属板接合方法に関するものである。   The present invention relates to a metal plate joining apparatus and a metal plate joining method for joining a plurality of metal plates.

従来から、鋼スラブの粗圧延によって得られた板状の鋼材(以下、鋼板という)を仕上圧延して熱延鋼板を製造する熱間圧延ラインにおいて、粗圧延後の各鋼板同士は、仕上圧延前に順次、加熱接合されている。一般に、上述した各鋼板同士の加熱接合においては、熱間圧延ラインの粗圧延設備から仕上圧延設備に向かって先行する鋼板(以下、先行板という)の尾端部と、この先行板に後続する鋼板(以下、後行板という)の先端部とを加熱し、押圧する。この結果、先行板の尾端部と後行板の先端部と(以下、適宜、尾端部と先端部とを纏めて先尾端部という)が加熱接合される。このような先行板と後行板との先尾端部同士の加熱接合を、粗圧延後の複数の鋼板に対して順次行うことにより、これら複数の鋼板は、連続した一連の鋼板に加工される。この一連の鋼板は、鋼板の仕上圧延を切れ目なく連続して行う連続熱間圧延(エンドレス圧延)に有用である。   Conventionally, in a hot rolling line for producing a hot-rolled steel sheet by finish rolling a plate-like steel material (hereinafter referred to as a steel sheet) obtained by rough rolling of a steel slab, each steel sheet after rough rolling is finish-rolled. Heat bonding is sequentially performed before. In general, in the above-described heat bonding between steel plates, a tail end portion of a steel plate (hereinafter referred to as a preceding plate) that precedes from a rough rolling facility of a hot rolling line to a finishing rolling facility, and the preceding plate follow. A steel plate (hereinafter referred to as a trailing plate) is heated and pressed. As a result, the tail end portion of the preceding plate and the leading end portion of the succeeding plate (hereinafter, the tail end portion and the leading end portion are collectively referred to as the leading end portion) are heat-bonded. By sequentially performing heating joining between the leading end portions of the preceding plate and the following plate on the plurality of steel plates after rough rolling, the plurality of steel plates are processed into a continuous series of steel plates. The This series of steel plates is useful for continuous hot rolling (endless rolling) in which finish rolling of the steel plates is continuously performed without breaks.

また、上述した加熱接合における鋼板の加熱手法として、例えば、トランスバース方式の誘導加熱法が用いられる。トランスバース方式の誘導加熱法では、鋼板をその厚さ方向(以下、板厚方向という)に挟んで対向する一対のコイルに電流を供給し、これによって、鋼板をその板厚方向に貫通する交番磁界を発生させ、この板厚方向の交番磁界を鋼板に印加する。この結果、鋼板に渦電流が誘導され、この渦電流に由来するジュール熱によって、鋼板が加熱される。   Moreover, as a heating method of the steel plate in the above-described heat bonding, for example, a transverse induction heating method is used. In the transverse induction heating method, an electric current is supplied to a pair of coils facing each other with a steel plate sandwiched in the thickness direction (hereinafter referred to as the plate thickness direction), thereby alternating the steel plate through the plate thickness direction. A magnetic field is generated, and an alternating magnetic field in the thickness direction is applied to the steel plate. As a result, an eddy current is induced in the steel sheet, and the steel sheet is heated by Joule heat derived from the eddy current.

なお、熱間圧延ラインにおける各鋼板同士の加熱接合に関する従来技術として、例えば、トランスバース方式の誘導加熱法によって先行板の尾端部と後行板の先端部とを誘導加熱しながら押圧する接合技術がある(特許文献1参照)。また、先行板の尾端部と後行板の先端部との接触領域を鋼板の幅方向(以下、板幅方向という)の一部領域とし、この先尾端部同士の接触領域に対して電極を介した通電を行い、これによって、先行板の尾端部と後行板の先端部とを接合する方法もある(特許文献2参照)。或いは、先行板および後行板のうちの少なくとも一方の鋼種が、鋼より高い融点の酸化物を生成する合金元素を含む鋼種であり、トランスバース方式の誘導加熱法によって、先行板と後行板との各接合面から鋼板厚みの20%の長さ以下の領域を鋼板の液相線温度以上に加熱し、且つ、先行板と後行板との押圧量を鋼板厚みの50%以上とする接合方法もある(特許文献3参照)。   In addition, as a conventional technique related to heat joining of steel plates in a hot rolling line, for example, joining by pressing the tail end portion of the preceding plate and the tip portion of the succeeding plate by induction heating by a transverse induction heating method. There is a technology (see Patent Document 1). The contact area between the tail end of the preceding plate and the tip of the succeeding board is a partial area in the width direction of the steel sheet (hereinafter referred to as the plate width direction), and the electrode is in contact with the contact area between the leading ends. There is also a method of joining the tail end portion of the preceding plate and the leading end portion of the succeeding plate by energization through (see Patent Document 2). Alternatively, at least one steel type of the preceding plate and the following plate is a steel type containing an alloy element that generates an oxide having a melting point higher than that of the steel, and the leading plate and the following plate are obtained by a transverse induction heating method. A region having a length of 20% or less of the thickness of the steel plate is heated to a temperature higher than the liquidus temperature of the steel plate from each joint surface, and the pressing amount between the preceding plate and the subsequent plate is set to 50% or more of the thickness of the steel plate. There is also a joining method (see Patent Document 3).

特開昭62−234679号公報JP 62-234679 A 特開平7−124606号公報JP-A-7-124606 特開2000−271606号公報JP 2000-271606 A

近年、鋼板の高張力化が要望されるようになり、これに応じて、Si、Mn、Cr等の合金元素を所定量以上、鋼中に添加した鋼材、所謂、合金鋼が、熱延鋼板の鋼種として用いられている。また、鋼板の高張力化が進むに伴い、合金鋼中の合金元素の含有量は、多量化する傾向にある。このような合金鋼の鋼板同士を加熱接合する場合、易酸化性の合金元素を含む酸化物が鋼板同士の接合界面に介在してしまう。この酸化物に起因して、先行板および後行板の先尾端部同士の接合強度は著しく低下し、この結果、仕上圧延時に鋼板同士の接合部分は破断する場合が多い。なお、上述した特許文献3に記載の従来技術では、このような合金元素含有の酸化物を鋼板同士の接合界面から排出するために、この接合界面の加熱温度および加熱時間を接合対象の鋼種毎に厳格に管理する必要がある。このため、熱間圧延ライン上において順次搬送される複数の鋼板の各々について、その鋼種別に加熱接合の温度条件および時間条件を変更しなければならず、鋼板同士の加熱接合に多大な労力を要する。   In recent years, there has been a demand for higher tensile strength of steel sheets. Accordingly, steel materials obtained by adding alloy elements such as Si, Mn, Cr and the like in a predetermined amount or more to steel, so-called alloy steels, are hot-rolled steel sheets. It is used as a steel grade. In addition, as the tensile strength of steel sheets increases, the content of alloy elements in alloy steel tends to increase. When such steel plates of alloy steel are heat-joined, an oxide containing an easily oxidizable alloy element intervenes at the joining interface between the steel plates. Due to this oxide, the joining strength between the leading and trailing edges of the preceding and succeeding plates is remarkably reduced, and as a result, the joining portion between the steel plates is often broken during finish rolling. In addition, in the prior art described in Patent Document 3 described above, in order to discharge such an alloy element-containing oxide from the bonding interface between the steel plates, the heating temperature and heating time of the bonding interface are set for each steel type to be bonded. It is necessary to manage strictly. For this reason, for each of a plurality of steel plates sequentially conveyed on the hot rolling line, the temperature condition and time condition of the heat bonding must be changed for each steel type, and a great deal of labor is required for the heat bonding between the steel plates. Cost.

また、上述した特許文献1に記載の従来技術では、合金鋼等の金属板をその板厚方向に貫通する交番磁界によって、金属板の先尾端部に渦電流を誘導しても、通電経路が渦状であるという渦電流の性質上、金属板の板幅方向の両端部、特に、先尾端部の両角部に、渦電流が流れ難い。このため、渦電流に由来するジュール熱によって、先尾端部の両角部を十分に加熱することは困難である。これに起因して、たとえ先尾端部の中央側を接合に適した温度まで加熱しても、先尾端部の両角部は、殆どの場合、接合に適した温度まで上昇していない。この結果、金属板の先尾端部同士をその全板幅に亘って確実に加熱接合することが困難である。このような問題点は、特許文献2に例示されるように電極を介して通電した場合であっても、先尾端部の両角部に電流が流れ難いため、同様に生じる。   Moreover, in the prior art described in Patent Document 1 described above, even if an eddy current is induced in the leading end portion of the metal plate by an alternating magnetic field penetrating the metal plate such as alloy steel in the plate thickness direction, the energization path Due to the nature of the eddy current, the eddy current hardly flows at both ends in the plate width direction of the metal plate, particularly at both corners of the leading end. For this reason, it is difficult to sufficiently heat both corners of the leading end by Joule heat derived from eddy current. Due to this, even if the center side of the leading end is heated to a temperature suitable for joining, in most cases, both corners of the leading end do not rise to a temperature suitable for joining. As a result, it is difficult to reliably heat-join the leading end portions of the metal plates over the entire plate width. Such a problem occurs in the same manner because current does not easily flow in both corners of the leading end even when energized through electrodes as exemplified in Patent Document 2.

なお、上述したように金属板の先尾端部同士の加熱接合が不十分である場合、この加熱接合によって複数の金属板を帯状に連ねた一連の金属板の各接合部分の強度が不十分となる。このことは、エンドレス圧延等の一連の金属板の加工工程において、金属板同士の接合部分の破断を招来する可能性が高い。具体的には、上述した加熱接合に続いて行われる仕上圧延工程において、接合部分で金属板が破断して金属板の仕上圧延が不能になることが多い。すなわち、金属板の先尾端部同士を確実に加熱接合することは、エンドレス圧延等の一連の金属板の加工工程を能率よく行う上で極めて重要である。   In addition, as mentioned above, when the heat joining between the leading ends of the metal plates is insufficient, the strength of each joined portion of a series of metal plates in which a plurality of metal plates are connected in a band shape by this heat joining is insufficient. It becomes. This is highly likely to cause breakage of the joint between the metal plates in a series of metal plate processing steps such as endless rolling. Specifically, in the finish rolling step performed after the above-described heat joining, the metal plate is often broken at the joining portion, and finish rolling of the metal plate is often impossible. That is, it is extremely important to reliably heat and bond the leading ends of the metal plates in order to efficiently perform a series of metal plate processing steps such as endless rolling.

本発明は、上記の事情に鑑みてなされたものであって、易酸化性の合金元素含有の酸化物に影響されることなく、複数の金属板の先尾端部同士をその全板幅に亘って確実に加熱接合でき、この結果、たとえ易酸化性の合金元素を含有する合金鋼の金属板の場合であっても、金属板同士の接合部分の破断を抑制できる金属板接合装置および金属板接合方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and without affecting the oxide containing an easily oxidizable alloy element, the leading end portions of a plurality of metal plates are made to have the entire plate width. As a result, the metal plate joining apparatus and the metal that can suppress the breakage of the joint portion between the metal plates, even in the case of a metal plate made of an alloy steel containing an easily oxidizable alloy element. An object is to provide a plate joining method.

上述した課題を解決し、目的を達成するために、本発明にかかる金属板接合装置は、搬送経路に沿って搬送される複数の金属板のうちの先行する先行金属板の尾端部と、前記先行金属板に後続する後行金属板の先端部とを誘導加熱し、誘導加熱後の前記尾端部と前記先端部とを加熱接合する金属板接合装置において、誘導加熱後の前記尾端部の板幅方向両端部と誘導加熱後の前記先端部の板幅方向両端部との各間に溶接材を送給する溶接材送給部と、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して、双方の前記板幅方向両端部の各間に前記溶接材を挟圧する押圧部と、双方の前記板幅方向両端部の各間に挟圧された前記溶接材に電流を流して前記溶接材を加熱溶融する加熱部と、少なくとも前記加熱部が前記溶接材を加熱溶融する期間、双方の前記板幅方向両端部の各間に前記溶接材を挟圧しつつ、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して接合するように前記押圧部を制御する制御部と、を備えたことを特徴とする。   In order to solve the above-described problems and achieve the object, a metal plate joining apparatus according to the present invention includes a tail end portion of a preceding metal plate that precedes a plurality of metal plates conveyed along a conveyance path, In the metal plate joining apparatus for inductively heating the tip end portion of the succeeding metal plate following the preceding metal plate, and heating and joining the tail end portion and the tip portion after induction heating, the tail end after induction heating Welding material feeding section for feeding welding material between both ends in the plate width direction of the plate and both ends in the plate width direction of the tip after induction heating, and the tail end portion and induction heating after induction heating The pressing portion that presses the rear end portion and presses the welding material between the both end portions in the plate width direction, and the press portion that is pressed between the both end portions in the plate width direction. A heating section that heats and melts the welding material by passing an electric current through the welding material; and at least the heating section heats and melts the welding material. The pressing is performed so as to press and join the tail end portion after induction heating and the tip end portion after induction heating while sandwiching the welding material between both ends of the both sides in the plate width direction. And a control unit for controlling the unit.

また、本発明にかかる金属板接合装置は、上記の発明において、前記加熱部は、前記金属板の板厚方向に前記金属板を貫通する交番磁界を前記尾端部と前記先端部とに印加して、双方の前記板幅方向両端部の各間に挟圧された前記溶接材を誘導加熱する誘導加熱部であることを特徴とする。   In the metal plate joining apparatus according to the present invention, in the above invention, the heating unit applies an alternating magnetic field penetrating the metal plate in the thickness direction of the metal plate to the tail end portion and the tip end portion. And it is an induction heating part which induction-heats the said welding material clamped between each of both said board width direction both ends.

また、本発明にかかる金属板接合装置は、上記の発明において、前記誘導加熱部は、互いに離間した状態で対向する前記尾端部と前記先端部とを前記交番磁界の印加によって誘導加熱することを特徴とする。   Moreover, in the metal plate joining apparatus according to the present invention, in the above invention, the induction heating unit induction-heats the tail end and the front end facing each other while being separated from each other by applying the alternating magnetic field. It is characterized by.

また、本発明にかかる金属板接合装置は、上記の発明において、前記制御部は、互いに離間した状態の前記尾端部と前記先端部との誘導加熱を停止するように前記誘導加熱部を制御し、前記誘導加熱の停止期間に、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して双方の前記板幅方向両端部の各間に前記溶接材を挟圧するように前記押圧部を制御し、前記溶接材を介して互いに接続した状態の前記尾端部と前記先端部とに前記交番磁界を印加して前記溶接材を誘導加熱するように前記誘導加熱部を制御することを特徴とする。   In the metal plate joining apparatus according to the present invention, in the above invention, the control unit controls the induction heating unit so as to stop induction heating of the tail end portion and the tip end portion in a state of being separated from each other. Then, during the induction heating stop period, the tail end portion after induction heating and the tip end portion after induction heating are pressed so that the welding material is sandwiched between the both ends in the plate width direction. The induction heating unit is controlled so as to inductively heat the welding material by applying the alternating magnetic field to the tail end portion and the tip end portion that are connected to each other via the welding material. It is characterized by controlling.

また、本発明にかかる金属板接合装置は、上記の発明において、前記加熱部は、複数の電極を用い、双方の前記板幅方向両端部の各間に挟圧された前記溶接材に電流を流して、前記溶接材を通電加熱する通電加熱部であることを特徴とする。   Further, in the metal plate joining apparatus according to the present invention, in the above invention, the heating unit uses a plurality of electrodes, and a current is supplied to the welding material sandwiched between both the both ends in the plate width direction. It is an electric current heating part which carries out electric current heating of the said welding material.

また、本発明にかかる金属板接合装置は、上記の発明において、前記金属板は、0.2[mass%]以上、3.5[mass%]以下のシリコンを含有する合金鋼であり、前記溶接材は、低炭素鋼であることを特徴とする。   In the metal plate joining apparatus according to the present invention, in the above invention, the metal plate is an alloy steel containing silicon of 0.2 [mass%] or more and 3.5 [mass%] or less, The welding material is low carbon steel.

また、本発明にかかる金属板接合方法は、搬送経路に沿って搬送される複数の金属板のうちの先行する先行金属板の尾端部と、前記先行金属板に後続する後行金属板の先端部とを誘導加熱し、誘導加熱後の前記尾端部と前記先端部とを加熱接合する金属板接合方法において、誘導加熱後の前記尾端部の板幅方向両端部と誘導加熱後の前記先端部の板幅方向両端部との各間に溶接材を送給する溶接材送給ステップと、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して、双方の前記板幅方向両端部の各間に前記溶接材を挟圧する溶接材挟圧ステップと、双方の前記板幅方向両端部の各間に前記溶接材を挟圧しつつ、前記溶接材に電流を流して前記溶接材を加熱溶融する加熱溶融ステップと、を含むことを特徴とする。   Further, the metal plate joining method according to the present invention includes a tail end portion of a preceding preceding metal plate among a plurality of metal plates conveyed along a conveying path, and a succeeding metal plate following the preceding metal plate. In the metal plate joining method in which the tip end portion is induction-heated and the tail end portion after the induction heating and the tip end portion are heat-joined, both end portions in the plate width direction of the tail end portion after the induction heating and after the induction heating A welding material feeding step for feeding a welding material between each end portion in the plate width direction of the tip portion, and pressing the tail end portion after induction heating and the tip portion after induction heating, A welding material clamping step for clamping the welding material between each of the both ends in the plate width direction, and applying a current to the welding material while clamping the welding material between each of the both ends in the plate width direction. And a heating and melting step for heating and melting the welding material.

また、本発明にかかる金属板接合方法は、上記の発明において、前記加熱溶融ステップは、前記金属板の板厚方向に前記金属板を貫通する交番磁界を前記尾端部と前記先端部とに印加して、双方の前記板幅方向両端部の各間に挟圧された前記溶接材を誘導加熱することを特徴とする。   In the metal plate joining method according to the present invention, in the above invention, in the heating and melting step, an alternating magnetic field penetrating the metal plate in the thickness direction of the metal plate is applied to the tail end portion and the tip end portion. It applies, and the said welding material clamped between each of the both said board width direction both ends is induction-heated, It is characterized by the above-mentioned.

また、本発明にかかる金属板接合方法は、上記の発明において、互いに離間した状態で対向する前記尾端部と前記先端部とを前記交番磁界の印加によって誘導加熱する誘導加熱ステップをさらに含み、前記溶接材送給ステップは、前記誘導加熱ステップによる誘導加熱後の前記板幅方向両端部の各間に溶接材を送給することを特徴とする。   Further, the metal plate joining method according to the present invention further includes an induction heating step of inductively heating the tail end portion and the tip end portion facing each other in a state of being separated from each other by application of the alternating magnetic field in the above invention, In the welding material feeding step, the welding material is fed between both ends of the plate width direction after the induction heating in the induction heating step.

また、本発明にかかる金属板接合方法は、上記の発明において、互いに離間した状態の前記尾端部と前記先端部とに対する誘導加熱を停止する誘導加熱停止ステップをさらに含み、前記溶接材挟圧ステップは、前記誘導加熱の停止期間に、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して、双方の前記板幅方向両端部の各間に前記溶接材を挟圧し、前記加熱溶融ステップは、前記溶接材を介して互いに接続した状態の前記尾端部と前記先端部とに前記交番磁界を印加して前記溶接材を誘導加熱することを特徴とする。   The metal plate joining method according to the present invention further includes an induction heating stop step for stopping induction heating of the tail end portion and the tip end portion in a state of being separated from each other in the above invention, In the induction heating stop period, the tail end portion after induction heating and the tip end portion after induction heating are pressed, and the welding material is sandwiched between the both end portions in the plate width direction. The heating and melting step applies the alternating magnetic field to the tail end portion and the tip end portion connected to each other via the welding material to inductively heat the welding material.

また、本発明にかかる金属板接合方法は、上記の発明において、前記加熱溶融ステップは、複数の電極を用い、双方の前記板幅方向両端部の各間に挟圧された前記溶接材に電流を流して、前記溶接材を通電加熱することを特徴とする。   Further, in the metal plate joining method according to the present invention, in the above invention, the heating and melting step uses a plurality of electrodes, and current is applied to the welding material sandwiched between both ends in the plate width direction. And the welding material is heated by energization.

また、本発明にかかる金属板接合方法は、上記の発明において、前記金属板として、0.2[mass%]以上、3.5[mass%]以下のシリコンを含有する合金鋼を用い、前記溶接材として低炭素鋼を用いることを特徴とする。   Further, in the metal plate joining method according to the present invention, in the above invention, an alloy steel containing silicon of 0.2 [mass%] or more and 3.5 [mass%] or less is used as the metal plate, A low carbon steel is used as the welding material.

本発明によれば、易酸化性の合金元素含有の酸化物に影響されることなく、複数の金属板の先尾端部同士をその全板幅に亘って確実に加熱接合でき、この結果、たとえ易酸化性の合金元素を含有する合金鋼の金属板の場合であっても、金属板同士の接合部分の破断を抑制できるという効果を奏する。   According to the present invention, it is possible to reliably heat-join the leading end portions of a plurality of metal plates across the entire plate width without being affected by the oxide containing the easily oxidizable alloy element. Even if it is the case of the metal plate of alloy steel containing an easily oxidizable alloy element, there exists an effect that the fracture | rupture of the junction part of metal plates can be suppressed.

図1は、本発明の実施の形態1にかかる金属板接合装置の一構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a metal plate joining apparatus according to a first embodiment of the present invention. 図2は、図1に示す誘導加熱部を鋼板の搬送方向から見た図である。FIG. 2 is a view of the induction heating unit shown in FIG. 1 as viewed from the conveying direction of the steel plate. 図3は、本実施の形態1にかかる金属板接合装置の電気溶接部の一構成例を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration example of the electric welding portion of the metal plate joining apparatus according to the first embodiment. 図4は、本実施の形態1にかかる金属板接合方法の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of the metal plate joining method according to the first embodiment. 図5は、互いに離間した状態の先行板の尾端部と後行板の先端部とを誘導加熱する状態を示す模式図である。FIG. 5 is a schematic view showing a state in which the tail end portion of the preceding plate and the tip end portion of the succeeding plate that are separated from each other are induction-heated. 図6は、誘導加熱後の先行板および後行板の先尾端部間に挟圧された溶接材を通電加熱する状態を示す模式図である。FIG. 6 is a schematic diagram showing a state in which the welding material sandwiched between the leading end portions of the preceding and succeeding plates after induction heating is energized and heated. 図7は、溶接材の加熱溶融後の先行板および後行板の先尾端部同士を接合する状態を示す模式図である。FIG. 7 is a schematic diagram illustrating a state in which the leading end portions of the preceding plate and the succeeding plate after the welding material is heated and melted are joined to each other. 図8は、本発明の実施の形態2にかかる金属板接合装置の一構成例を示すブロック図である。FIG. 8 is a block diagram illustrating a configuration example of the metal plate joining apparatus according to the second embodiment of the present invention. 図9は、本実施の形態2にかかる金属板接合装置の溶接材送給部の一構成例を示す模式図である。FIG. 9 is a schematic diagram illustrating a configuration example of a welding material feeding unit of the metal plate joining apparatus according to the second embodiment. 図10は、実施の形態2における先行板および後行板の先尾端部同士の加熱接合を説明するための模式図である。FIG. 10 is a schematic diagram for explaining the heat joining between the leading end portions of the preceding and succeeding plates in the second embodiment. 図11は、溶接材の通電加熱に用いる複数の電極配置の別例を示す模式図である。FIG. 11 is a schematic diagram showing another example of the arrangement of a plurality of electrodes used for energization heating of the welding material. 図12は、溶接材の送給態様の別例を示す模式図である。FIG. 12 is a schematic diagram illustrating another example of the welding material feeding mode.

以下に、添付図面を参照して、本発明にかかる金属板接合装置および金属板接合方法の好適な実施の形態について詳細に説明する。なお、本実施の形態により、本発明が限定されるものではない。   Exemplary embodiments of a metal plate joining apparatus and a metal plate joining method according to the present invention will be explained below in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の実施の形態1にかかる金属板接合装置の一構成例を示すブロック図である。なお、図1には、本実施の形態1にかかる金属板接合装置10が設置される熱間圧延ラインの一部分が図示されている。以下では、図1を参照しつつ、まず、金属板接合装置10を適用した熱間圧延ラインの概略構成を説明し、つぎに、金属板接合装置10の構成を説明する。
(Embodiment 1)
FIG. 1 is a block diagram illustrating a configuration example of a metal plate joining apparatus according to a first embodiment of the present invention. FIG. 1 shows a part of a hot rolling line in which the metal plate joining apparatus 10 according to the first embodiment is installed. Hereinafter, with reference to FIG. 1, first, a schematic configuration of a hot rolling line to which the metal plate bonding apparatus 10 is applied will be described, and then the configuration of the metal plate bonding apparatus 10 will be described.

図1に示すように、本実施の形態1にかかる金属板接合装置10は、熱間圧延ラインの粗圧延部1と仕上圧延部2との間に設置される。具体的には、熱間圧延ラインの搬送経路3における鋼板の搬送方向(図1の破線矢印参照)に沿って、粗圧延部1と、金属板接合装置10と、仕上圧延部2とが配置される。なお、搬送経路3は、複数の搬送ロール等を用いて実現される。   As shown in FIG. 1, the metal plate joining apparatus 10 according to the first embodiment is installed between a rough rolling part 1 and a finish rolling part 2 of a hot rolling line. Specifically, the rough rolling unit 1, the metal plate joining apparatus 10, and the finish rolling unit 2 are arranged along the conveyance direction of the steel plate in the conveyance path 3 of the hot rolling line (see the broken line arrow in FIG. 1). Is done. In addition, the conveyance path | route 3 is implement | achieved using several conveyance rolls.

粗圧延部1は、加熱炉(図示せず)によって加熱された鋼スラブを板状に粗圧延して鋼板を得る。粗圧延後の鋼板は、搬送経路3に沿って粗圧延部1から金属板接合装置10へ搬送される。金属板接合装置10は、トランスバース方式の誘導加熱法によって鋼板を順次誘導加熱し、誘導加熱後の各鋼板の対向端部同士(先尾端部同士)を、溶接材を用いて加熱接合する。これによって、金属板接合装置10は、複数の鋼板を帯状に一体化した一連の鋼板を得る。このような一連の鋼板は、搬送経路3に沿って金属板接合装置10から仕上圧延部2へ搬送される。   The rough rolling section 1 obtains a steel plate by roughly rolling a steel slab heated by a heating furnace (not shown) into a plate shape. The steel sheet after the rough rolling is transported from the rough rolling unit 1 to the metal plate joining apparatus 10 along the transport path 3. The metal plate joining apparatus 10 sequentially induces and heats steel plates by a transverse induction heating method, and heat-joins the opposing ends (leading ends) of each steel plate after induction heating using welding materials. . Thereby, the metal plate joining apparatus 10 obtains a series of steel plates in which a plurality of steel plates are integrated in a strip shape. Such a series of steel plates is conveyed from the metal plate joining apparatus 10 to the finishing rolling unit 2 along the conveyance path 3.

仕上圧延部2は、上述したように金属板接合装置10によって帯状に接合された一連の鋼板を仕上圧延して、所望の厚さの熱延鋼板を得る。この場合、仕上圧延部2は、一連の鋼板を形成する複数の鋼板を連続して仕上圧延するエンドレス圧延を行う。仕上圧延部2は、このエンドレス圧延を行うことによって、複数の鋼板を切れ目なく連続して仕上圧延できるとともに、圧延稼働中の仕上圧延部2の入側に仕上圧延前の鋼板を停滞させてしまう事態を防止できる。この結果、仕上圧延部2は、複数の鋼板を能率よく仕上圧延できる。なお、仕上圧延後の熱延鋼板は、仕上圧延部2の出側から送出され、その後、熱間圧延ラインによる各種処理が適宜施される。   The finish rolling unit 2 finish-rolls a series of steel plates joined in a strip shape by the metal plate joining apparatus 10 as described above, and obtains a hot-rolled steel plate having a desired thickness. In this case, the finish rolling unit 2 performs endless rolling in which a plurality of steel plates forming a series of steel plates are continuously finish-rolled. By performing this endless rolling, the finish rolling unit 2 can finish and roll a plurality of steel plates continuously without breaks, and stagnates the steel plate before finish rolling on the entry side of the finishing rolling unit 2 during rolling operation. The situation can be prevented. As a result, the finish rolling unit 2 can efficiently finish and roll a plurality of steel plates. In addition, the hot-rolled steel sheet after finish rolling is sent out from the exit side of the finish rolling unit 2, and thereafter, various treatments by a hot rolling line are appropriately performed.

つぎに、本実施の形態1にかかる金属板接合装置10の構成を説明する。金属板接合装置10は、搬送経路3に沿って搬送される複数の鋼板を加熱接合する装置であり、図1に示すように、切断部11と、誘導加熱部12と、電気溶接部16と、押圧部17,18と、制御部19とを備える。また、図1に示す熱間圧延ラインの搬送経路3に沿って、粗圧延部1の後段に切断部11が配置され、切断部11の後段に、押圧部17と、誘導加熱部12および電気溶接部16と、押圧部18とが配置される。   Below, the structure of the metal plate joining apparatus 10 concerning this Embodiment 1 is demonstrated. The metal plate joining device 10 is a device that heat-joins a plurality of steel plates transported along the transport path 3, and as shown in FIG. 1, a cutting unit 11, an induction heating unit 12, an electric welding unit 16, , Pressing portions 17 and 18 and a control unit 19. Moreover, the cutting part 11 is arrange | positioned in the back | latter stage of the rough rolling part 1 along the conveyance path | route 3 of the hot rolling line shown in FIG. 1, and the press part 17, the induction heating part 12, and electricity are arranged in the back | latter stage of the cutting part 11. A welded portion 16 and a pressing portion 18 are disposed.

切断部11は、各鋼板の先尾端部を切断成形する。具体的には、切断部11は、複数の刃11cが設けられた切断ローラ11a,11bを備える。切断ローラ11a,11bは、図1に示すように、搬送経路3を挟んで鋼板の板厚方向に配置されて対をなす。また、切断ローラ11a,11bの各外周面には、各刃11cが、切断ローラ11a,11bの回転軸を中心にして互いに点対称に配置される。切断部11は、このような切断ローラ11a,11bをその外周方向に回転させつつ、切断ローラ11a,11bの各刃11cによって鋼板の先尾端部をその板厚方向に挟み込む。これによって、切断部11は、鋼板の先尾端部をその板厚方向に切断(剪断)する。切断部11は、順次搬送される各鋼板の先尾端部に対して、上述した切断処理を繰り返し、これによって、各鋼板の先尾端部同士の各対向面を互いに係合可能な形状に成形する。このように先尾端部が切断成形された各鋼板は、搬送経路3に沿って切断部11から誘導加熱部12側へ順次搬送される。   The cutting part 11 cuts and forms the leading end of each steel plate. Specifically, the cutting unit 11 includes cutting rollers 11a and 11b provided with a plurality of blades 11c. As shown in FIG. 1, the cutting rollers 11 a and 11 b are paired by being arranged in the plate thickness direction of the steel plate with the conveyance path 3 interposed therebetween. Further, on the outer peripheral surfaces of the cutting rollers 11a and 11b, the blades 11c are arranged point-symmetrically with respect to the rotation axis of the cutting rollers 11a and 11b. The cutting unit 11 sandwiches the leading end of the steel plate in the thickness direction by the blades 11c of the cutting rollers 11a and 11b while rotating the cutting rollers 11a and 11b in the outer circumferential direction. Thereby, the cutting part 11 cut | disconnects (shears) the tail end part of a steel plate in the plate | board thickness direction. The cutting part 11 repeats the above-described cutting process on the leading end part of each steel sheet that is sequentially conveyed, thereby forming the shapes in which the opposing surfaces of the leading end parts of each steel sheet can be engaged with each other. Mold. The steel plates whose leading end portions are cut and formed in this way are sequentially conveyed from the cutting portion 11 to the induction heating portion 12 side along the conveying path 3.

誘導加熱部12は、トランスバース方式の誘導加熱法によって加熱対象体を誘導加熱する。図2は、図1に示す誘導加熱部を鋼板の搬送方向から見た図である。図1、2に示すように、誘導加熱部12は、コイル13a,13bと、コア14と、電源15とを備える。コイル13a,13bは、搬送経路3を挟んで鋼板の板厚方向に対向し且つ各コイル軸方向を互いに略同じ方向にするように配置される。また、コイル13a,13bは、電源15に対して直列に接続される。これらのコイル13a,13bの各々には、電源15から略同じ量の交流電流が供給される。コア14は、図2に示すようにコイル13a,13bを巻回されるC型コアである。コア14は、電磁鋼板等の磁性体を用いて形成され、巻回したコイル13a,13bによる交番磁界の磁束を強化し且つ整える。なお、このようなコア14に巻回されたコイル13a,13bは、上述したように対向配置されてコイル対13をなす。電源15は、高周波または中周波の交流電流をコイル対13に供給する。   The induction heating unit 12 induction-heats the object to be heated by a transverse induction heating method. FIG. 2 is a view of the induction heating unit shown in FIG. 1 as viewed from the conveying direction of the steel plate. As shown in FIGS. 1 and 2, the induction heating unit 12 includes coils 13 a and 13 b, a core 14, and a power source 15. The coils 13a and 13b are arranged so as to face each other in the plate thickness direction of the steel sheet with the conveyance path 3 interposed therebetween, and to make the respective coil axis directions substantially the same direction. The coils 13 a and 13 b are connected in series with the power supply 15. Almost the same amount of alternating current is supplied from the power supply 15 to each of the coils 13a and 13b. The core 14 is a C-type core around which the coils 13a and 13b are wound as shown in FIG. The core 14 is formed using a magnetic material such as an electromagnetic steel plate, and reinforces and arranges the magnetic flux of an alternating magnetic field generated by the wound coils 13a and 13b. In addition, the coils 13a and 13b wound around the core 14 are arranged to face each other as described above to form the coil pair 13. The power supply 15 supplies a high frequency or medium frequency alternating current to the coil pair 13.

このような構成を有する誘導加熱部12において、コイル対13の各コイル13a,13bは、電源15から供給された交流電流に応じて、鋼板をその板厚方向に貫通する交番磁界を発生させる。誘導加熱部12は、図2の実線矢印に示されるように、先行板4および後行板5の先尾端部に対し、このコイル対13による交番磁界を印加する。なお、鋼板の板幅方向について、コイル対13のサイズ、すなわち、コイル13a,13bの各サイズは、図2に示すように、先行板4および後行板5の先尾端部の板幅に比して長く、先行板4および後行板5の先尾端部は、コイル対13の内側におさまる。このため、コイル対13による交番磁界は、先行板4および後行板5の先尾端部の全板幅に亘って印加される。誘導加熱部12は、このように先行板4および後行板5の先尾端部に交番磁界を印加することによって、先行板4および後行板5の先尾端部に渦電流を誘導し、この渦電流に由来するジュール熱によって、先行板4および後行板5の先尾端部を誘導加熱する。誘導加熱部12は、搬送経路3に沿って先行板4および後行板5の先尾端部が搬送される都度、上述したように先尾端部を誘導加熱する。   In the induction heating unit 12 having such a configuration, the coils 13 a and 13 b of the coil pair 13 generate an alternating magnetic field penetrating the steel plate in the thickness direction in accordance with the alternating current supplied from the power source 15. The induction heating unit 12 applies an alternating magnetic field generated by the coil pair 13 to the leading ends of the leading plate 4 and the trailing plate 5 as indicated by solid arrows in FIG. In addition, about the board width direction of a steel plate, as shown in FIG. 2, the size of the coil pair 13, ie, each size of the coils 13a and 13b, is set to the board width of the leading end part of the preceding board 4 and the succeeding board 5. The leading ends of the leading plate 4 and the trailing plate 5 are inside the coil pair 13. For this reason, the alternating magnetic field by the coil pair 13 is applied over the entire plate width of the leading end portions of the leading plate 4 and the trailing plate 5. The induction heating unit 12 thus induces eddy currents at the leading ends of the leading plate 4 and the trailing plate 5 by applying an alternating magnetic field to the leading ends of the leading plate 4 and the trailing plate 5 in this way. The leading ends of the leading plate 4 and the trailing plate 5 are induction-heated by Joule heat derived from this eddy current. The induction heating unit 12 induction-heats the leading end as described above each time the leading end of the leading plate 4 and the trailing plate 5 is conveyed along the conveying path 3.

ここで、上述した先行板4および後行板5は、搬送経路3に沿って搬送される複数の鋼板のうちの2つである。先行板4は、搬送経路3上において先行する鋼板であり、後行板5は、先行板4に後続する鋼板である。先行板4の尾端部および後行板5の先端部は、図1に示すように、鋼板の搬送方向に互いに対向する。一方、先行板4および後行板5の鋼種は特に問わないが、本実施の形態1において、先行板4および後行板5は、例えば、シリコン(Si)、マンガン(Mn)クロム(Cr)、チタン(Ti)、アルミニウム(Al)等の易酸化性の合金元素を所定量以上含有する合金鋼であってもよい。   Here, the preceding plate 4 and the following plate 5 described above are two of the plurality of steel plates conveyed along the conveyance path 3. The preceding plate 4 is a steel plate that precedes the transport path 3, and the trailing plate 5 is a steel plate that follows the preceding plate 4. As shown in FIG. 1, the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 face each other in the conveying direction of the steel plate. On the other hand, the steel types of the leading plate 4 and the trailing plate 5 are not particularly limited, but in the first embodiment, the leading plate 4 and the trailing plate 5 are, for example, silicon (Si), manganese (Mn) chromium (Cr). Alloy steel containing a predetermined amount or more of an easily oxidizable alloy element such as titanium (Ti) or aluminum (Al) may be used.

電気溶接部16は、先行板4および後行板5の先尾端部を電気溶接によって接合する。図3は、本実施の形態1にかかる金属板接合装置の電気溶接部の一構成例を示す模式図である。なお、図3には、鋼板の板厚方向から見た電気溶接部16の構成が図示されている。図3に示すように、電気溶接部16は、溶接材送給ローラ16a,16bと、電極P1〜P6と、溶接電源16e〜16gとを備える。   The electric welding portion 16 joins the leading end portions of the leading plate 4 and the trailing plate 5 by electric welding. FIG. 3 is a schematic diagram illustrating a configuration example of the electric welding portion of the metal plate joining apparatus according to the first embodiment. Note that FIG. 3 shows the configuration of the electric weld 16 viewed from the thickness direction of the steel plate. As shown in FIG. 3, the electric welding unit 16 includes welding material feeding rollers 16 a and 16 b, electrodes P <b> 1 to P <b> 6, and welding power sources 16 e to 16 g.

溶接材送給ローラ16a,16bは、先行板4および後行板5の先尾端部を挟んで、その板幅方向の両端部に各々配置される。図3に示すように、溶接材送給ローラ16aは、回動することによって、先行板4および後行板5の先尾端部のうちの一方の板幅端部4a,5a間に溶接材16cを送給する。溶接材送給ローラ16bは、回動することによって、先行板4および後行板5の先尾端部のうちの他方の板幅端部4b,5b間に溶接材16dを送給する。なお、溶接材送給ローラ16a,16bは、駆動機構(図示せず)等の作用によって回動する。このような溶接材送給ローラ16a,16bは、上述した誘導加熱部12による誘導加熱後の先行板4の尾端部における両板幅端部4a,4bと、同様の誘導加熱後の後行板5の先端部における両板幅端部5a,5bとの各間に溶接材16c,16dを各々送給する溶接材送給部を構成する。   The welding material feed rollers 16a and 16b are respectively disposed at both end portions in the plate width direction with the leading end portions of the leading plate 4 and the trailing plate 5 interposed therebetween. As shown in FIG. 3, the welding material feeding roller 16 a is rotated so that the welding material is interposed between the plate width end portions 4 a and 5 a of the leading end portions of the leading plate 4 and the trailing plate 5. 16c is sent. The welding material feeding roller 16b rotates to feed the welding material 16d between the other plate width end portions 4b, 5b of the leading end portions of the leading plate 4 and the trailing plate 5. The welding material feed rollers 16a and 16b are rotated by the action of a drive mechanism (not shown). Such welding material feeding rollers 16a and 16b are provided with the plate width end portions 4a and 4b at the tail end portion of the preceding plate 4 after induction heating by the induction heating unit 12 described above, and the subsequent after the same induction heating. A welding material feeding section for feeding welding materials 16c and 16d between the plate width end portions 5a and 5b at the front end of the plate 5 is configured.

複数の電極P1〜P6のうち、電極P1,P2は、溶接電源16eと電気的に接続される。電極P1は、後行板5の先端部のうちの板幅端部5a近傍に配置され、電極P2は、先行板4の尾端部のうちの板幅端部4a近傍に配置される。溶接電源16eは、これら一対の電極P1,P2を介して先行板4および後行板5の先尾端部に給電し、板幅端部4a,5a間に挟圧された状態の溶接材16cを通じて、この先尾端部間に電流を流す。電極P3,P4は、溶接電源16fと電気的に接続される。電極P3は、後行板5の先端部のうちの板幅端部5b近傍に配置され、電極P4は、先行板4の尾端部のうちの板幅端部4b近傍に配置される。溶接電源16fは、これら一対の電極P3,P4を介して先行板4および後行板5の先尾端部に給電し、板幅端部4b,5b間に挟圧された状態の溶接材16dを通じて、この先尾端部間に電流を流す。電極P5,P6は、溶接電源16gと電気的に接続される。電極P5は、後行板5の先端部のうち、その板幅方向の中間部5c近傍に配置される。電極P6は、先行板4の尾端部のうち、その板幅方向の中間部4c近傍に配置される。溶接電源16gは、これら一対の電極P5,P6を介して先行板4および後行板5の先尾端部に給電し、上述したように挟圧状態の溶接材16c,16dを通じて、この先尾端部間に電流を流す。上述したような溶接電源16e〜16gは、複数の電極P1〜P6を用い、先行板4および後行板5双方の板幅端部4a,4bと板幅端部5a,5bとの各間に挟圧された溶接材16c,16dに電流を流して溶接材16c,16dを通電加熱し、これによって、溶接材16c,16dを加熱溶融する通電加熱部を構成する。なお、このような通電加熱部によって溶接材16c,16dに流れる電流は、交流電流であってもよいし、直流電流であってもよい。   Of the plurality of electrodes P1 to P6, the electrodes P1 and P2 are electrically connected to the welding power source 16e. The electrode P1 is disposed in the vicinity of the plate width end portion 5a in the front end portion of the trailing plate 5, and the electrode P2 is disposed in the vicinity of the plate width end portion 4a in the tail end portion of the preceding plate 4. The welding power source 16e supplies power to the leading end portions of the leading plate 4 and the trailing plate 5 through the pair of electrodes P1 and P2, and is welded between the plate width end portions 4a and 5a. Through this, a current is passed between the leading ends. Electrodes P3 and P4 are electrically connected to welding power source 16f. The electrode P3 is disposed in the vicinity of the plate width end portion 5b in the distal end portion of the trailing plate 5, and the electrode P4 is disposed in the vicinity of the plate width end portion 4b in the tail end portion of the preceding plate 4. The welding power source 16f feeds power to the leading end portions of the leading plate 4 and the trailing plate 5 via the pair of electrodes P3 and P4, and the welding material 16d is sandwiched between the plate width end portions 4b and 5b. Through this, a current is passed between the leading ends. Electrodes P5 and P6 are electrically connected to welding power source 16g. The electrode P5 is disposed in the vicinity of the intermediate portion 5c in the width direction of the trailing plate 5 in the front end portion thereof. The electrode P6 is disposed in the vicinity of the intermediate portion 4c in the plate width direction of the tail end portion of the preceding plate 4. The welding power source 16g supplies power to the leading end portions of the leading plate 4 and the trailing plate 5 through the pair of electrodes P5 and P6, and through the welding materials 16c and 16d in a clamped state as described above, A current is passed between the parts. The welding power sources 16e to 16g as described above use a plurality of electrodes P1 to P6, and between the plate width end portions 4a and 4b and the plate width end portions 5a and 5b of both the leading plate 4 and the trailing plate 5. An electric current is passed through the clamped welding materials 16c and 16d to heat and heat the welding materials 16c and 16d, thereby forming an electric heating section that heats and melts the welding materials 16c and 16d. In addition, the current which flows into the welding materials 16c and 16d by such an energization heating part may be an alternating current or a direct current.

ここで、先行板4の板幅端部4a,4bは、先行板4の尾端部の板幅方向両端部であって、この尾端部の両角部およびその近傍を含む部分である。後行板5の板幅端部5a,5bは、後行板5の先端部の板幅方向両端部であって、この先端部の両角部およびその近傍を含む部分である。また、図3に示すように、先行板4の中間部4cは、先行板4の尾端部のうちの両板幅端部4a,4b間に挟まれた部分である。後行板5の中間部5cは、後行板5の先端部のうちの両板幅端部5a,5b間に挟まれた部分である。   Here, the plate width end portions 4a and 4b of the preceding plate 4 are both ends of the tail end portion of the preceding plate 4 in the plate width direction, and are portions including both corners of the tail end portion and the vicinity thereof. The plate width end portions 5a and 5b of the trailing plate 5 are both ends of the leading end portion of the trailing plate 5 in the plate width direction and include both corners of the leading end portion and the vicinity thereof. As shown in FIG. 3, the intermediate portion 4 c of the preceding plate 4 is a portion sandwiched between the two plate width end portions 4 a and 4 b of the tail end portion of the preceding plate 4. The intermediate portion 5 c of the trailing plate 5 is a portion sandwiched between both plate width end portions 5 a and 5 b of the leading end portion of the trailing plate 5.

一方、溶接材16c,16dは、その金属種が先行板4および後行板5の鋼種に対応して設定されればよいが、先行板4および後行板5と異なる金属種、例えば、先行板4および後行板5中に含有の合金元素と同じ合金元素であって炭素(C)以外のものを含有しない低合金の鋼材であることが望ましい。特に、先行板4および後行板5が、0.2[mass%]以上、3.5[mass%]以下のSiを含有する合金である場合、溶接材16c,16dは、Siを含有しない低合金鋼、例えば低炭素鋼であることが望ましい。また、溶接材16c,16dの形状および寸法は、先行板4の板幅端部4a,4bと後行板5の板幅端部5a,5bとの各間に挟み込まれた際に、先行板4および後行板5の先尾端部の対向端面と溶接材16c,16dとの接触面積が可能な限り小さくなるように設定されることが望ましい。例えば、溶接材16c,16dの厚みは、先行板4および後行板5の板厚に比して設定してもよいし、溶接材16c,16dの横断面形状は、円形、楕円形、矩形等にしてもよい。   On the other hand, the welding materials 16c and 16d may have their metal types set corresponding to the steel types of the leading plate 4 and the trailing plate 5, but are different from the leading plate 4 and the trailing plate 5, for example, the leading plate. It is desirable to use a low alloy steel material that is the same alloy element as the alloy element contained in the plate 4 and the succeeding plate 5 and does not contain anything other than carbon (C). In particular, when the leading plate 4 and the trailing plate 5 are alloys containing Si of 0.2 [mass%] or more and 3.5 [mass%] or less, the welding materials 16c and 16d do not contain Si. A low alloy steel such as low carbon steel is desirable. Further, the shape and dimensions of the welding materials 16c and 16d are determined so that the preceding plate 4 is sandwiched between the plate width end portions 4a and 4b of the preceding plate 4 and the plate width end portions 5a and 5b of the succeeding plate 5. It is desirable that the contact area between the facing end surface of the leading end portion of 4 and the trailing plate 5 and the welding materials 16c and 16d is set to be as small as possible. For example, the thicknesses of the welding materials 16c and 16d may be set as compared with the thicknesses of the preceding plate 4 and the following plate 5, and the cross-sectional shapes of the welding materials 16c and 16d are circular, elliptical, and rectangular. You may make it.

押圧部17,18は、先行板4および後行板5の先尾端部同士を押圧する。具体的には、押圧部17,18は、クランプ機構および押圧機構等を用いて各々実現される。図1に示すように、押圧部17は、誘導加熱部12の入側に配置され、押圧部18は、誘導加熱部12の出側に配置される。押圧部17は後行板5をクランプし、押圧部18は先行板4をクランプする。また、押圧部17は、図1の太線矢印に示されるように、誘導加熱部12によって誘導加熱された後行板5の先端部を先行板4の尾端部に向けて押圧する。これに並行して、押圧部18は、図1の太線矢印に示されるように、誘導加熱部12によって誘導加熱された先行板4の尾端部を後行板5の先端部に向けて押圧する。すなわち、押圧部17,18は、誘導加熱後の先行板4の尾端部と誘導加熱後の後行板5の先端部とを互いに押圧する。これによって、押圧部17,18は、誘導加熱後の先行板4の両板幅端部4a,4bと誘導加熱後の後行板の両板幅端部5a,5bとの各間に溶接材16c,16d(図3参照)を挟圧する。また、押圧部17,18は、上述した溶接材16c,16dの加熱溶融後に、誘導加熱後の先行板4および後行板5の先尾端部同士を押圧して接合する。押圧部17,18は、搬送経路3に沿って搬送される複数の鋼板に対して、上述した押圧処理を順次行う。   The pressing portions 17 and 18 press the leading end portions of the leading plate 4 and the trailing plate 5. Specifically, the pressing parts 17 and 18 are each realized using a clamp mechanism, a pressing mechanism, and the like. As shown in FIG. 1, the pressing unit 17 is disposed on the entry side of the induction heating unit 12, and the pressing unit 18 is disposed on the exit side of the induction heating unit 12. The pressing portion 17 clamps the trailing plate 5, and the pressing portion 18 clamps the preceding plate 4. Further, the pressing portion 17 presses the leading end portion of the succeeding plate 5 that is induction-heated by the induction heating portion 12 toward the tail end portion of the preceding plate 4 as indicated by a thick arrow in FIG. In parallel with this, the pressing unit 18 presses the tail end portion of the preceding plate 4 induction-heated by the induction heating unit 12 toward the tip end portion of the succeeding plate 5 as indicated by the thick arrow in FIG. To do. That is, the pressing portions 17 and 18 press the tail end portion of the preceding plate 4 after induction heating and the tip end portion of the succeeding plate 5 after induction heating. As a result, the pressing portions 17 and 18 are welded between the both plate width end portions 4a and 4b of the preceding plate 4 after induction heating and the both plate width end portions 5a and 5b of the succeeding plate after induction heating. 16c and 16d (see FIG. 3) are clamped. The pressing portions 17 and 18 press and join the leading end portions of the preceding plate 4 and the succeeding plate 5 after induction heating after the above-described welding materials 16c and 16d are heated and melted. The pressing units 17 and 18 sequentially perform the above-described pressing process on the plurality of steel plates conveyed along the conveyance path 3.

制御部19は、切断部11、誘導加熱部12、電気溶接部16、および押圧部17,18を制御する。具体的には、制御部19は、搬送経路3上の各鋼板の搬送情報(搬送速度等)をもとに、搬送経路3における各鋼板の位置を把握する。制御部19は、把握した各鋼板の位置をもとに、切断部11、誘導加熱部12、電気溶接部16、および押圧部17,18の各動作タイミングを制御する。   The control unit 19 controls the cutting unit 11, the induction heating unit 12, the electric welding unit 16, and the pressing units 17 and 18. Specifically, the control unit 19 grasps the position of each steel plate in the transport path 3 based on the transport information (transport speed or the like) of each steel plate on the transport path 3. The control unit 19 controls the operation timings of the cutting unit 11, the induction heating unit 12, the electric welding unit 16, and the pressing units 17 and 18 based on the grasped position of each steel plate.

例えば、制御部19は、先行板4等の鋼板の尾端部が切断部11へ搬送されるタイミングに、この尾端部を切断成形するように切断部11を制御し、後行板5等の鋼板の先端部が切断部11へ搬送されるタイミングに、この先端部を切断成形するように切断部11を制御する。一方、制御部19は、誘導加熱部12のコイル対13(図2参照)の内側に先行板4および後行板5の先尾端部が位置するタイミングに、先行板4をクランプするように押圧部18を制御し且つ後行板5をクランプするように押圧部17を制御する。制御部19は、このクランプ動作によって位置固定され且つ互いに離間した状態で対向する先行板4の尾端部と後行板5の先端部とを誘導加熱するように誘導加熱部12を制御する。また、制御部19は、この誘導加熱後の先行板4および後行板5双方の板幅端部4a,4bと板幅端部5a,5bとの各間に溶接材16c,16dを各々送給するように、電気溶接部16の溶接材送給部を制御する。この場合、制御部18は、電気溶接部16の駆動機構(図示せず)を制御して溶接材送給ローラ16a,16bの回動を制御し、この溶接材送給ローラ16a,16bの制御を通して、溶接材16c,16dの送給タイミングおよび送給量を制御する。   For example, the control unit 19 controls the cutting unit 11 to cut and form the tail end of the steel plate such as the preceding plate 4 to the cutting unit 11 at the timing when the tail end of the steel plate is conveyed to the cutting unit 11. At the timing when the tip of the steel plate is conveyed to the cutting part 11, the cutting part 11 is controlled so as to cut and form the tip. On the other hand, the control unit 19 clamps the leading plate 4 at the timing when the leading plate 4 and the trailing end of the trailing plate 5 are located inside the coil pair 13 (see FIG. 2) of the induction heating unit 12. The pressing portion 17 is controlled so as to control the pressing portion 18 and clamp the trailing plate 5. The control unit 19 controls the induction heating unit 12 so as to induction-heat the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 which are fixed in position by the clamping operation and are opposed to each other in a separated state. Further, the control unit 19 sends the welding materials 16c and 16d between the plate width end portions 4a and 4b and the plate width end portions 5a and 5b of both the preceding plate 4 and the succeeding plate 5 after the induction heating. The welding material feeding part of the electric welding part 16 is controlled so as to feed. In this case, the control unit 18 controls the driving mechanism (not shown) of the electric welding unit 16 to control the rotation of the welding material feeding rollers 16a and 16b, and the control of the welding material feeding rollers 16a and 16b. The feed timing and feed amount of the welding materials 16c and 16d are controlled.

また、制御部19は、時間情報をもとに誘導加熱部12、電気溶接部16、および押圧部17,18の各動作を制御する。具体的には、制御部19は、互いに離間した状態の先行板4の尾端部と後行板5の先端部との誘導加熱を所定の時間、実行したタイミングに、この誘導加熱を停止するように誘導加熱部12を制御する。ついで、制御部19は、この誘導加熱の停止期間に、誘導加熱後の先行板4の尾端部と誘導加熱後の後行板5の先端部とを押圧して板幅端部4a,4bと板幅端部5a,5bとの各間に溶接材16c,16dを挟圧するように押圧部17,18を制御する。制御部19は、押圧部17,18の押圧によって先行板4の尾端部と後行板5の先端部とが溶接材16c,16dを介して互いに接続されたタイミングに、溶接材16c,16dを通電加熱するように電気溶接部16の通電加熱部を制御する。この場合、制御部19は、溶接材16c,16dの通電加熱を所定の時間、継続するように溶接電源16e〜16gを制御する。これに並行して、制御部19は、電気溶接部16が溶接材16c,16dを加熱溶融する期間、板幅端部4a,4bと板幅端部5a,5bとの各間に溶接材16c,16dを挟圧しつつ、誘導加熱後の先行板4の尾端部と誘導加熱後の後行板5の先端部とを押圧して接合するように押圧部17,18を制御する。この場合、制御部19は、電気溶接部16による溶接材16c,16dの通電加熱の継続時間以上の時間、先行板4の尾端部と後行板5の先端部との押圧を継続するように押圧部17,18を制御する。   Moreover, the control part 19 controls each operation | movement of the induction heating part 12, the electric welding part 16, and the press parts 17 and 18 based on time information. Specifically, the control unit 19 stops the induction heating at the timing when the induction heating of the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 that are separated from each other is performed for a predetermined time. Thus, the induction heating unit 12 is controlled. Next, the control unit 19 presses the tail end portion of the preceding plate 4 after the induction heating and the tip end portion of the succeeding plate 5 after the induction heating during the induction heating stop period, and the plate width end portions 4a and 4b. The pressing portions 17 and 18 are controlled so that the welding materials 16c and 16d are sandwiched between the plate width end portions 5a and 5b. The control part 19 is the welding material 16c, 16d at the timing when the tail end part of the preceding board 4 and the front-end | tip part of the succeeding board 5 were mutually connected via welding material 16c, 16d by the press of the press parts 17 and 18. The energization heating part of the electric welding part 16 is controlled so as to be energized and heated. In this case, the control unit 19 controls the welding power sources 16e to 16g so as to continue the energization heating of the welding materials 16c and 16d for a predetermined time. In parallel with this, the control part 19 is the welding material 16c between each of the plate width end part 4a, 4b and the plate width end part 5a, 5b in the period when the electric welding part 16 heat-melts the welding material 16c, 16d. , 16d are pressed, and the pressing portions 17, 18 are controlled so as to press and join the tail end portion of the preceding plate 4 after induction heating and the tip end portion of the succeeding plate 5 after induction heating. In this case, the control unit 19 continues to press the tail end portion of the leading plate 4 and the leading end portion of the trailing plate 5 for a time longer than the duration of the energization heating of the welding materials 16c and 16d by the electric welding portion 16. The pressing parts 17 and 18 are controlled.

さらに、制御部19は、誘導加熱部12による先行板4および後行板5の先尾端部の誘導加熱強度と、電気溶接部16による溶接材16c,16dの通電加熱強度とを制御する。具体的には、制御部19は、誘導加熱部12のコイル対13(コイル13a,13b)に対する交流電流の供給量を増減するように電源15を制御し、この電源15の制御を通して、コイル対13による交番磁界の強度を制御する。これによって、制御部19は、先行板4および後行板5の先尾端部に誘導する渦電流の強度を制御し、この渦電流の制御を通して、先行板4および後行板5の先尾端部の誘導加熱強度を制御する。一方、制御部19は、電気溶接部16の電極P1〜P6に対する給電量を増減するように溶接電源16e〜16gを制御し、この溶接電源16e〜16gの制御を通して、溶接材16c,16dの通電加熱強度を制御する。   Further, the control unit 19 controls the induction heating strength of the leading end portions of the leading plate 4 and the trailing plate 5 by the induction heating unit 12 and the energization heating strength of the welding materials 16 c and 16 d by the electric welding unit 16. Specifically, the control unit 19 controls the power source 15 so as to increase or decrease the supply amount of the alternating current to the coil pair 13 (coils 13 a and 13 b) of the induction heating unit 12. 13 controls the strength of the alternating magnetic field. As a result, the control unit 19 controls the strength of the eddy currents induced at the leading ends of the leading plate 4 and the trailing plate 5, and through the control of the eddy currents, the leading end of the leading plate 4 and the trailing plate 5. Controls the induction heating intensity at the edges. On the other hand, the control unit 19 controls the welding power sources 16e to 16g so as to increase or decrease the amount of power supplied to the electrodes P1 to P6 of the electric welding unit 16, and the energization of the welding materials 16c and 16d is performed through the control of the welding power sources 16e to 16g. Control the heating intensity.

つぎに、本発明の実施の形態1にかかる金属板接合方法について説明する。図4は、本実施の形態1にかかる金属板接合方法の一例を示すフローチャートである。図5は、互いに離間した状態の先行板の尾端部と後行板の先端部とを誘導加熱する状態を示す模式図である。図6は、誘導加熱後の先行板および後行板の先尾端部間に挟圧された溶接材を通電加熱する状態を示す模式図である。図7は、溶接材の加熱溶融後の先行板および後行板の先尾端部同士を接合する状態を示す模式図である。   Below, the metal plate joining method concerning Embodiment 1 of this invention is demonstrated. FIG. 4 is a flowchart showing an example of the metal plate joining method according to the first embodiment. FIG. 5 is a schematic view showing a state in which the tail end portion of the preceding plate and the tip end portion of the succeeding plate that are separated from each other are induction-heated. FIG. 6 is a schematic diagram showing a state in which the welding material sandwiched between the leading end portions of the preceding and succeeding plates after induction heating is energized and heated. FIG. 7 is a schematic diagram illustrating a state in which the leading end portions of the preceding plate and the succeeding plate after the welding material is heated and melted are joined to each other.

図1に示した金属板接合装置10は、図4に示す各処理ステップを順次行って、先行板4の尾端部と後行板5の先端部とを加熱接合する。すなわち、本実施の形態1にかかる金属板接合方法において、金属板接合装置10は、図4に示すように、まず、先行板4と後行板5との対向端部、すなわち先尾端部を成形する(ステップS101)。ステップS101において、切断部11は、切断ローラ11a,11bを回転させつつ、各刃11cによって先行板4の尾端部を上下方向から挟み込み、これら各刃11cの作用によって、先行板4の尾端部をその板厚方向に切断する。ついで、切断部11は、先行板4の尾端部の場合と同様に、切断ローラ11a,11bの各刃11cによって後行板5の先端部をその板厚方向に切断する。この結果、先行板4の尾端部と後行板5の先端部との各対向面は、略直線状等、互いに係合可能な形状に成形される。   The metal plate joining apparatus 10 shown in FIG. 1 performs each processing step shown in FIG. 4 in sequence, and heat-joins the tail end portion of the preceding plate 4 and the tip portion of the succeeding plate 5. That is, in the metal plate joining method according to the first embodiment, as shown in FIG. 4, the metal plate joining device 10 first has an opposing end portion between the leading plate 4 and the trailing plate 5, that is, a leading end portion. Is formed (step S101). In step S101, the cutting unit 11 sandwiches the tail end portion of the leading plate 4 from the top and bottom by the blades 11c while rotating the cutting rollers 11a and 11b, and the tail end of the leading plate 4 by the action of the blades 11c. Cut the part in its thickness direction. Subsequently, the cutting part 11 cuts the front-end | tip part of the succeeding board 5 in the plate | board thickness direction with each blade 11c of the cutting rollers 11a and 11b similarly to the case of the tail end part of the preceding board 4. FIG. As a result, the opposing surfaces of the tail end portion of the leading plate 4 and the tip portion of the trailing plate 5 are formed into shapes that can be engaged with each other, such as a substantially linear shape.

つぎに、金属板接合装置10は、先行板4の尾端部と後行板5の先端部とを誘導加熱する(ステップS102)。ステップS102において、誘導加熱部12は、先行板4の尾端部と後行板5の先端部とに対し、鋼板をその板厚方向に貫通する交番磁界を印加して、互いに離間した状態で対向する先行板4の尾端部と後行板5の先端部とを誘導加熱する。   Next, the metal plate joining apparatus 10 induction-heats the tail end portion of the preceding plate 4 and the tip portion of the succeeding plate 5 (step S102). In step S102, the induction heating unit 12 applies an alternating magnetic field penetrating the steel plate in the thickness direction to the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 in a state of being separated from each other. The tail end portion of the preceding preceding plate 4 and the tip end portion of the succeeding plate 5 are heated by induction.

詳細には、図5に示したように先行板4の尾端部がコイル対13の内側に位置するタイミングに、押圧部18は、先行板4をクランプして先行板4の位置を固定する。これに並行して、押圧部17は、後行板5の先端部がコイル対13の内側に位置し且つ先行板4の尾端部と所定の距離だけ離間するタイミングに、後行板5をクランプして後行板5の位置を固定する。この状態において、コイル対13は、電源15から供給された交流電流に応じて、先行板4および後行板5の先尾端部をその板厚方向に貫通する交番磁界を発生させる。このような交番磁界は、コイル対13の内側において互いに離間し且つ対向する先行板4の尾端部と後行板5の先端部とに印加される。これによって、図5に示すように、この交番磁界に由来する渦電流8aが先行板4の尾端部に誘導されるとともに、この交番磁界に由来する渦電流8bが後行板5の先端部に誘導される。誘導加熱部12は、渦電流8aのジュール熱によって先行板4の尾端部を誘導加熱するとともに、渦電流8bのジュール熱によって後行板5の先端部を誘導加熱する。なお、このステップS102の誘導加熱は、加熱接合対象の先行板4および後行板5の先尾端部に対する第1段階の加熱処理である。   Specifically, as shown in FIG. 5, at the timing when the tail end portion of the preceding plate 4 is located inside the coil pair 13, the pressing unit 18 clamps the preceding plate 4 and fixes the position of the preceding plate 4. . In parallel with this, the pressing portion 17 moves the trailing plate 5 at a timing when the leading end of the trailing plate 5 is located inside the coil pair 13 and is separated from the tail end of the preceding plate 4 by a predetermined distance. The position of the trailing plate 5 is fixed by clamping. In this state, the coil pair 13 generates an alternating magnetic field penetrating the leading end portions of the leading plate 4 and the trailing plate 5 in the plate thickness direction in accordance with the alternating current supplied from the power supply 15. Such an alternating magnetic field is applied to the tail end portion of the leading plate 4 and the tip portion of the trailing plate 5 which are spaced apart from each other and face each other inside the coil pair 13. As a result, as shown in FIG. 5, an eddy current 8a derived from this alternating magnetic field is induced at the tail end of the preceding plate 4, and an eddy current 8b derived from this alternating magnetic field is induced at the tip of the trailing plate 5. Be guided to. The induction heating unit 12 induction-heats the tail end portion of the preceding plate 4 by Joule heat of the eddy current 8a, and induction-heats the tip portion of the trailing plate 5 by Joule heat of the eddy current 8b. The induction heating in step S102 is a first-stage heat treatment for the leading end portion of the preceding plate 4 and the succeeding plate 5 to be heat-bonded.

ここで、先行板4の尾端部および後行板5の先端部は、上述したようにコイル対13の内側において互いに離間している。このため、渦電流8a,8bは、互いに結合せず、図5に示すように、先行板4の尾端部と後行板5の先端部とに別れて各々渦状に流れる。この場合、渦電流8a,8bは、互いに同じ方向、具体的には、コイル対13に流れる交流電流の通電方向に対して反対方向に周回する。また、渦電流8a,8bは、先行板4および後行板5の先尾端部同士の対向面近傍に集中して流れる。一方、渦電流8aは、渦状に周回するため、先行板4の板幅端部4a,4bに流れない。これと同様に、渦電流8bは、後行板5の先端部の板幅端部5a,5bに流れない。このような渦電流8a,8bのジュール熱によって、誘導加熱部12は、先行板4の尾端部のうちの中間部4cと後行板5の先端部のうちの中間部5cとを、鋼板同士の加熱接合に十分な温度、例えば先行板4および後行板5の固相線を上回る温度に加熱する(図5の斜線部参照)。   Here, the tail end portion of the leading plate 4 and the tip portion of the trailing plate 5 are separated from each other inside the coil pair 13 as described above. For this reason, the eddy currents 8a and 8b are not coupled to each other and flow in a vortex shape separately from the tail end portion of the leading plate 4 and the tip portion of the trailing plate 5, as shown in FIG. In this case, the eddy currents 8a and 8b circulate in the same direction as each other, specifically, in a direction opposite to the energization direction of the alternating current flowing through the coil pair 13. Further, the eddy currents 8 a and 8 b flow in a concentrated manner in the vicinity of the opposing surfaces of the leading end portions of the leading plate 4 and the trailing plate 5. On the other hand, since the eddy current 8a circulates in a vortex shape, it does not flow to the plate width end portions 4a and 4b of the preceding plate 4. Similarly, the eddy current 8 b does not flow to the plate width end portions 5 a and 5 b at the leading end portion of the trailing plate 5. By such Joule heat of the eddy currents 8a and 8b, the induction heating unit 12 causes the intermediate part 4c in the tail end part of the preceding plate 4 and the intermediate part 5c in the tip part of the succeeding plate 5 to Heating is performed to a temperature sufficient for heat-joining, for example, to a temperature exceeding the solidus of the leading plate 4 and the trailing plate 5 (see the hatched portion in FIG. 5).

つぎに、金属板接合装置10は、上述したように互いに離間した状態の先行板4の尾端部と後行板5の先端部とに対する誘導加熱を停止する(ステップS103)。ステップS103において、制御部19は、ステップS102の誘導加熱を開始してからの経過時間が所定の時間に達したタイミングに、コイル対13に対する交流電流の供給を停止するように電源15を制御する。制御部19は、この電源15の制御を通して、コイル対13による先行板4および後行板5の先尾端部への交番磁界の印加を停止する。この制御部19の制御に基づいて、誘導加熱部12は、ステップS102の誘導加熱、すなわち、先行板4および後行板5の先尾端部に対する誘導加熱を停止する。   Next, the metal plate joining apparatus 10 stops induction heating on the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 that are separated from each other as described above (step S103). In step S103, the control unit 19 controls the power supply 15 so as to stop the supply of the alternating current to the coil pair 13 at the timing when the elapsed time from the start of the induction heating in step S102 reaches a predetermined time. . The control unit 19 stops the application of the alternating magnetic field to the leading end portions of the leading plate 4 and the trailing plate 5 by the coil pair 13 through the control of the power supply 15. Based on the control of the control unit 19, the induction heating unit 12 stops the induction heating in step S <b> 102, that is, induction heating for the leading end portions of the preceding plate 4 and the succeeding plate 5.

続いて、金属板接合装置10は、上述したステップS102による誘導加熱後の先行板4の尾端部と誘導加熱後の後行板5の先端部との板幅方向両端部間に溶接材16c,16dを送給する(ステップS104)。ステップS104において、電気溶接部16は、制御部19の制御に基づいて、誘導加熱部12による誘導加熱後の先行板4および後行板5の先尾端部間に溶接材16c,16dを送給する。具体的には、図3、6に示すように、溶接材送給ローラ16aは、誘導加熱後の先行板4の板幅端部4aと誘導加熱後の後行板5の板幅端部5aとの間に、先行板4および後行板5の側方から溶接材16cを送給する。これに並行して、溶接材送給ローラ16bは、誘導加熱後の先行板4の板幅端部4bと誘導加熱後の後行板5の板幅端部5bとの間に、先行板4および後行板5の側方から溶接材16dを送給する。   Subsequently, the metal plate joining apparatus 10 includes a welding material 16c between both end portions in the plate width direction between the tail end portion of the preceding plate 4 after induction heating in step S102 and the tip end portion of the succeeding plate 5 after induction heating. , 16d (step S104). In step S <b> 104, the electric welding unit 16 sends the welding materials 16 c and 16 d between the leading end portions of the leading plate 4 and the trailing plate 5 after the induction heating by the induction heating unit 12 based on the control of the control unit 19. To pay. Specifically, as shown in FIGS. 3 and 6, the welding material feeding roller 16 a includes a plate width end portion 4 a of the preceding plate 4 after induction heating and a plate width end portion 5 a of the succeeding plate 5 after induction heating. In between, the welding material 16c is fed from the side of the preceding board 4 and the succeeding board 5. In parallel with this, the welding material feeding roller 16b is arranged between the plate width end 4b of the preceding plate 4 after induction heating and the plate width end 5b of the succeeding plate 5 after induction heating. The welding material 16d is fed from the side of the trailing plate 5.

その後、金属板接合装置10は、誘導加熱後の先行板4および後行板5の板幅方向両端部間に溶接材16c,16dを挟圧する(ステップS105)。ステップS105において、押圧部17,18は、先行板4および後行板5の先尾端部に対する誘導加熱の停止期間に、誘導加熱後の先行板4の尾端部と誘導加熱後の後行板5の先端部とを押圧する。これによって、押圧部17,18は、図6に示すように、この先行板4の板幅端部4aと、この後行板5の板幅端部5aとの間に溶接材16cを挟圧するとともに、この先行板4の板幅端部4bと、この後行板5の板幅端部5bとの間に溶接材16dを挟圧する。なお、この状態において、先行板4および後行板5の先尾端部同士は、溶接材16c,16dを介して部分的に接続している。   Thereafter, the metal plate joining apparatus 10 clamps the welding materials 16c and 16d between both end portions in the plate width direction of the preceding plate 4 and the succeeding plate 5 after induction heating (step S105). In step S <b> 105, the pressing parts 17, 18 are connected to the trailing edge of the leading plate 4 after induction heating and the trailing edge after induction heating during the induction heating stop period for the leading edge of the leading plate 4 and the trailing plate 5. The tip of the plate 5 is pressed. As a result, as shown in FIG. 6, the pressing portions 17 and 18 sandwich the welding material 16 c between the plate width end portion 4 a of the preceding plate 4 and the plate width end portion 5 a of the subsequent plate 5. At the same time, the welding material 16d is sandwiched between the plate width end portion 4b of the preceding plate 4 and the plate width end portion 5b of the succeeding plate 5. In this state, the leading ends of the leading plate 4 and the trailing plate 5 are partially connected to each other through the welding materials 16c and 16d.

つぎに、金属板接合装置10は、ステップS105において先行板4および後行板5の板幅方向両端部間の溶接材16c,16dを挟圧しつつ加熱溶融する(ステップS106)。ステップS106において、押圧部17,18は、上述したステップS105から継続して、板幅端部4aと板幅端部5aとの間に溶接材16cを挟圧し、且つ、板幅端部4bと板幅端部5bとの間に溶接材16dを挟圧する(図6参照)。これと同時に、電気溶接部16は、挟圧状態の溶接材16c,16dを通電加熱によって加熱溶融する。すなわち、図6に示すように、溶接電源16eは、電極P1,P2を介して先行板4および後行板5の各板幅端部4a,5aの近傍に給電し、溶接電源16fは、電極P3,P4を介して先行板4および後行板5の各板幅端部4b,5bの近傍に給電する。また、溶接電源16gは、電極P5,P6を介して先行板4および後行板5の各中間部4c,5cの近傍に給電する。この結果、溶接電源16e〜16gは、溶接材16c,16dを介して先行板4および後行板5の先尾端部に電流を流す。例えば図6に示すように、溶接電源16e,16gによる電流9aは、後行板5の板幅端部5aを通って溶接材16cに集中して流れ、その後、先行板4の板幅端部4aに流れる。このように溶接材16cに集中して電流9aが流れることにより、溶接材16cはジュール発熱し、この電流9aに由来するジュール熱により、溶接材16cは加熱溶融される。これと同時に、溶接電源16f,16gによる電流9bは、後行板5の板幅端部5bを通って溶接材16dに集中して流れ、その後、先行板4の板幅端部4bに流れる。このように溶接材16dに集中して電流9bが流れることにより、溶接材16dはジュール発熱し、この電流9bに由来するジュール熱により、溶接材16dは加熱溶融される。   Next, in step S105, the metal plate joining apparatus 10 heats and melts the welding materials 16c and 16d between both ends in the plate width direction of the preceding plate 4 and the succeeding plate 5 (step S106). In step S106, the pressing portions 17 and 18 continue from step S105 described above, sandwich the welding material 16c between the plate width end portion 4a and the plate width end portion 5a, and the plate width end portion 4b. The welding material 16d is clamped between the plate width end portions 5b (see FIG. 6). At the same time, the electric welding part 16 heats and melts the sandwiched welding materials 16c and 16d by energization heating. That is, as shown in FIG. 6, the welding power source 16e supplies power to the vicinity of the plate width end portions 4a and 5a of the leading plate 4 and the trailing plate 5 via the electrodes P1 and P2, and the welding power source 16f Power is supplied to the vicinity of the plate width end portions 4b and 5b of the leading plate 4 and the trailing plate 5 through P3 and P4. Further, the welding power source 16g supplies power to the vicinity of the intermediate portions 4c and 5c of the leading plate 4 and the trailing plate 5 via the electrodes P5 and P6. As a result, the welding power sources 16e to 16g flow current to the leading end portions of the leading plate 4 and the trailing plate 5 through the welding materials 16c and 16d. For example, as shown in FIG. 6, the current 9a from the welding power sources 16e and 16g flows through the plate width end portion 5a of the succeeding plate 5 in a concentrated manner on the welding material 16c, and then the plate width end portion of the preceding plate 4 It flows to 4a. Thus, the current 9a flows concentratedly on the welding material 16c, so that the welding material 16c generates Joule heat, and the welding material 16c is heated and melted by Joule heat derived from the current 9a. At the same time, the current 9 b from the welding power sources 16 f and 16 g flows through the plate width end portion 5 b of the succeeding plate 5 to the welding material 16 d and then flows to the plate width end portion 4 b of the preceding plate 4. Thus, the current 9b flows concentratedly on the welding material 16d, so that the welding material 16d generates Joule heat, and the welding material 16d is heated and melted by Joule heat derived from the current 9b.

また、このステップS106において、溶接電源16f〜16gは、電流9a,9bに由来するジュール熱によって、溶接材16c,16dとともに、先行板4の板幅端部4a,4bと後行板5の板幅端部5a,5bとを通電加熱する。すなわち、先行板4の板幅端部4aおよび後行板5の板幅端部5aは、電流9aに由来するジュール熱によって、鋼板同士の加熱接合に十分な温度、例えば先行板4および後行板5の固相線を上回る温度に加熱される。同様に、先行板4の板幅端部4bおよび後行板5の板幅端部5bは、電流9bに由来するジュール熱によって、鋼板同士の加熱接合に十分な温度に加熱される。なお、このステップS106の通電加熱は、加熱接合対象の先行板4および後行板5の先尾端部に対する第2段階の加熱処理である。   In this step S106, the welding power sources 16f to 16g are connected to the plate width end portions 4a and 4b of the preceding plate 4 and the plate of the succeeding plate 5 together with the welding materials 16c and 16d by Joule heat derived from the currents 9a and 9b. The width end portions 5a and 5b are energized and heated. That is, the plate width end portion 4a of the preceding plate 4 and the plate width end portion 5a of the succeeding plate 5 are heated to a temperature sufficient for heating and bonding between the steel plates by Joule heat derived from the current 9a, for example, the preceding plate 4 and the following plate. Heated to a temperature above the solidus of the plate 5. Similarly, the plate width end portion 4b of the preceding plate 4 and the plate width end portion 5b of the succeeding plate 5 are heated to a temperature sufficient for heating and joining the steel plates by Joule heat derived from the current 9b. In addition, the energization heating of this step S106 is the 2nd step heat processing with respect to the leading edge part of the preceding board 4 and the succeeding board 5 of heat joining object.

続いて、金属板接合装置10は、上述したステップS106における溶接材16c,16dの加熱溶融を継続しつつ、先行板4の尾端部と後行板5の先端部とを押圧して接合する(ステップS107)。ステップS107において、押圧部17,18は、溶接電源16f〜16gが溶接材16c,16dを加熱溶融する期間、先行材4および後行材5の先尾端部同士を押圧し続ける。さらに、押圧部17,18は、溶接電源16f〜16gが先行板4および後行板5の板幅端部4a,4b,5a,5bを通電加熱する期間、この先尾端部同士の押圧を継続する。これら両期間の押圧作用によって、溶融状態の溶接材16cは、先行板4および後行板5の板幅端部4a,5a間の全領域に流れ広がるとともに、この板幅端部4a,5a同士の対向端面に存在する酸化物を、先行板4および後行板5の先尾端部同士の接合面外へ洗い流す。これと同様に、溶融状態の溶接材16dは、先行板4および後行板5の板幅端部4b,5b間の全領域に流れ広がるとともに、この板幅端部4b,5b同士の対向端面に存在する酸化物を、先行板4および後行板5の先尾端部同士の接合面外へ洗い流す。   Subsequently, the metal plate joining apparatus 10 presses and joins the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 while continuing to heat and melt the welding materials 16c and 16d in step S106 described above. (Step S107). In step S107, the pressing parts 17 and 18 continue to press the leading ends of the preceding material 4 and the succeeding material 5 during the period in which the welding power sources 16f to 16g heat and melt the welding materials 16c and 16d. Further, the pressing portions 17 and 18 continue to press the leading end portions while the welding power sources 16f to 16g energize and heat the plate width end portions 4a, 4b, 5a, and 5b of the preceding plate 4 and the succeeding plate 5. To do. Due to the pressing action during both periods, the molten welding material 16c spreads over the entire region between the plate width end portions 4a, 5a of the preceding plate 4 and the succeeding plate 5, and the plate width end portions 4a, 5a The oxides present on the opposite end surfaces of the leading plate 4 and the trailing plate 5 are washed out of the joint surface between the leading end portions. Similarly, the welded material 16d in a molten state flows and spreads over the entire region between the plate width end portions 4b and 5b of the preceding plate 4 and the succeeding plate 5, and the opposite end surfaces of the plate width end portions 4b and 5b are opposed to each other. The oxide present in the substrate is washed out of the joint surface between the leading ends of the leading plate 4 and the trailing plate 5.

また、押圧部17,18は、上述した両期間、先行板4および後行板5の先尾端部同士を押圧し続けることにより、この先尾端部同士をその全板幅に亘って接合する。すなわち、図7に示すように、押圧部17,18は、先行板4および後行板5の先尾端部同士の押圧により、溶接材16cを介して先行板4の板幅端部4aと後行板5の板幅端部5aとを接合するとともに、溶接材16dを介して先行板4の板幅端部4bと後行板5の板幅端部5bとを接合する。これに続いて、押圧部17,18は、先行板4および後行板5の先尾端部のうち、上述したステップS102の誘導加熱によって既に適温に加熱された状態の中間部4c,5c同士を押圧する。なお、中間部4c,5cは、上述した溶接材16c,16dの溶融変形後に、互いに接触可能になる。押圧部17,18は、このような中間部4c,5c同士を押圧によって接合する。この結果、金属板接合装置10は、図7に示すように、先行板4および後行板5の先尾端部同士をその板幅方向の全領域に亘って良好に加熱接合する。   Moreover, the press parts 17 and 18 join this leading edge part over the whole board width by continuing pressing the leading edge parts of the preceding board 4 and the succeeding board 5 during both the above-mentioned periods. . That is, as shown in FIG. 7, the pressing portions 17, 18 are connected to the plate width end portion 4 a of the preceding plate 4 via the welding material 16 c by pressing between the leading end portions of the leading plate 4 and the trailing plate 5. While joining the board width end part 5a of the succeeding board 5, the board width end part 4b of the preceding board 4 and the board width end part 5b of the succeeding board 5 are joined via the welding material 16d. Following this, the pressing portions 17 and 18 are intermediate portions 4c and 5c that are already heated to an appropriate temperature by the induction heating in step S102 described above, among the leading ends of the leading plate 4 and the trailing plate 5. Press. The intermediate portions 4c and 5c can come into contact with each other after the above-described welding materials 16c and 16d are melted and deformed. The pressing parts 17 and 18 join such intermediate parts 4c and 5c by pressing. As a result, as shown in FIG. 7, the metal plate joining apparatus 10 heat-joins the leading end portions of the leading plate 4 and the trailing plate 5 well over the entire region in the plate width direction.

その後、金属板接合装置10は、この先行板4および後行板5の先尾端部同士の加熱接合を完了する。具体的には、制御部19は、ステップS107の押圧から所定の時間が経過したタイミングに、先行板4および後行板5の先尾端部同士の押圧を停止して、先行板4および後行板5のクランプを解除するように押圧部17,18を制御する。また、制御部19は、ステップS106の通電加熱の開始から所定の時間が経過したタイミングに、先行板4および後行板5の先尾端部に対する給電を停止するように溶接電源16e〜16gを制御する。なお、上述したように先尾端部同士の加熱接合が完了した先行板4および後行板5は、図1に示した搬送経路3に沿って仕上圧延部2側へ搬送される。   Thereafter, the metal plate joining apparatus 10 completes the heat joining between the leading ends of the preceding plate 4 and the succeeding plate 5. Specifically, the control unit 19 stops pressing the leading end portions of the preceding plate 4 and the succeeding plate 5 at the timing when a predetermined time has elapsed from the pressing in step S107, and the leading plate 4 and the rear plate The pressing portions 17 and 18 are controlled so as to release the clamp of the row plate 5. Further, the control unit 19 turns on the welding power sources 16e to 16g so as to stop the power supply to the leading end portions of the leading plate 4 and the trailing plate 5 at a timing when a predetermined time has elapsed from the start of the energization heating in Step S106. Control. Note that, as described above, the preceding plate 4 and the succeeding plate 5 in which the heating and joining of the leading end portions are completed are transported to the finish rolling section 2 side along the transport path 3 shown in FIG.

このような金属板接合装置10は、搬送経路3(図1参照)に沿って順次搬送される複数の鋼板に対し、上述したステップS101〜S107の各処理ステップを行う。これによって、金属板接合装置10は、これら複数の鋼板の各対向端部同士をその全板幅に亘って確実に加熱接合する。この結果、金属板接合装置10は、これら複数の鋼板を帯状に一体化した一連の鋼板を得る。   Such a metal plate joining apparatus 10 performs each processing step of steps S101-S107 mentioned above with respect to the some steel plate conveyed sequentially along the conveyance path | route 3 (refer FIG. 1). Thereby, the metal plate joining apparatus 10 heat-joins each opposing edge part of these some steel plates reliably over the whole board width. As a result, the metal plate joining apparatus 10 obtains a series of steel plates obtained by integrating the plurality of steel plates into a strip shape.

ここで、上述したステップS101〜S107においては、加熱接合対象の先行板4および後行板5として、Si、Mn、Cr、Ti、Al等の易酸化性の合金元素を所定量以上含有する合金鋼を用いた場合、溶接材16c,16dとして、先行板4および後行板5に含有の合金元素と同じ合金元素であって炭素以外のものを含有しない低合金の鋼材を用いればよい。例えば、先行板4および後行板5として、0.2[mass%]以上、3.5[mass%]以下のSiを含有する合金鋼を用いた場合、溶接材16c,16dとして、Siを含有しない低炭素鋼等の低合金鋼を用いればよい。   Here, in steps S101 to S107 described above, an alloy containing a predetermined amount or more of an easily oxidizable alloy element such as Si, Mn, Cr, Ti, or Al as the preceding plate 4 and the succeeding plate 5 to be heat-bonded. When steel is used, a low alloy steel material that is the same alloy element as the alloy elements contained in the leading plate 4 and the trailing plate 5 and does not contain anything other than carbon may be used as the welding materials 16c and 16d. For example, when alloy steel containing 0.2 [mass%] or more and 3.5 [mass%] or less of Si is used as the leading plate 4 and the trailing plate 5, Si is used as the welding materials 16c and 16d. What is necessary is just to use low alloy steel, such as the low carbon steel which does not contain.

以上、説明したように、本発明の実施の形態1では、互いに離間した状態で対向する先行板の尾端部と後行板の先端部とを誘導加熱し、この誘導加熱後の尾端部の両板幅端部と先端部の両板幅端部との各間に溶接材を挟圧しつつ、複数の電極から各板幅端部間の溶接材を通じて先行板の両板幅端部と後行板の両板幅端部とに電流を流して、これら挟圧状態の各溶接材を加熱溶融し、これに並行して、先行板および後行板の先尾端部同士を押圧している。   As described above, in Embodiment 1 of the present invention, the tail end portion of the preceding plate and the tip portion of the succeeding plate that are opposed to each other in a state of being separated from each other are induction-heated, and the tail end portion after this induction heating is performed. Both plate width ends of the preceding plate through the welding material between the respective plate width ends from a plurality of electrodes while sandwiching the welding material between each of the plate width ends of the two plates A current is passed through both ends of the succeeding plate to heat and melt each of the clamped welding materials, and in parallel, the leading ends of the preceding and succeeding plates are pressed together. ing.

このため、先行板および後行板の先尾端部に対する第1段階の加熱処理、すなわち先尾端部の誘導加熱によって、この先尾端部のうちの板幅端部を除く対向部分(図7等に示す中間部4c,5c)を、先行板および後行板の固相線を上回る温度に高温化できる。また、この誘導加熱後の先尾端部の各板幅端部間に挟圧された溶接材に集中して電流を流すことができ、この溶接材の挟圧と溶融との相乗作用によって、先尾端部の各板幅端部間の全領域に溶接材を流し込めるとともに、板幅端部同士の対向端面に存在する酸化物を先尾端部同士の接合面外へ流し出すことができる。さらには、各板幅端部間の溶接材の溶融変形後に、既に第1段階の加熱処理によって高温化した先尾端部の中間部同士を押圧して接合できる。これらの結果、先尾端部同士をその板幅方向の全領域に亘って接合できるとともに、板幅端部同士の接合界面に介在する溶接材の延性等の塑性によって、先尾端部同士の接合強度を向上できる。さらには、先尾端部同士の接合界面の酸化物(例えば易酸化性の合金元素含有の酸化物)を起点として生じた割れの進行を、この溶接材の塑性によって止めることができる。以上より、易酸化性の合金元素含有の酸化物に影響されることなく、複数の鋼板の先尾端部同士をその全板幅に亘って確実に加熱接合できることから、たとえ易酸化性の合金元素を含有する合金鋼同士の加熱接合であっても、先尾端部同士の接合部分の破断を抑制することができる。   For this reason, the first stage heat treatment for the leading and trailing edges of the preceding and succeeding plates, that is, induction heating of the leading and trailing edges, the opposing portion of the leading and trailing edges excluding the plate width edge (FIG. 7). The intermediate portions 4c, 5c) shown in the above can be heated to a temperature exceeding the solidus of the preceding and succeeding plates. In addition, it is possible to flow the current concentrated on the welding material sandwiched between the plate width end portions of the leading end after this induction heating, and by the synergistic action of the welding pressure and melting of this welding material, The welding material can be poured into the entire region between the plate width end portions of the leading end portion, and the oxide present on the opposing end surfaces of the plate width end portions can be flowed out of the joining surface between the leading end portions. it can. Furthermore, after the melt deformation of the welding material between the respective plate width end portions, the intermediate portions of the leading end portions that have already been heated by the heat treatment in the first stage can be pressed and joined. As a result, the front and rear ends can be joined over the entire region in the plate width direction, and the plasticity such as ductility of the welding material intervening at the joining interface between the plate width ends can be improved. Bonding strength can be improved. Furthermore, it is possible to stop the progress of cracks that originated from an oxide (for example, an oxide containing an easily oxidizable alloy element) at the joint interface between the leading and trailing ends by the plasticity of the welding material. From the above, it is possible to reliably heat-join the leading and trailing ends of a plurality of steel plates across their entire width without being affected by oxides containing easily oxidizable alloy elements. Even in the case of heat bonding between alloy steels containing elements, it is possible to suppress the breakage of the bonded portion between the tail ends.

本発明の実施の形態1にかかる金属板接合装置および金属板接合方法を用いることによって、易酸化性の合金元素を含有する鋼板であるか否かを問わず、搬送される複数の鋼板の先尾端部同士を順次、その全板幅に亘って良好に加熱接合することができる。これによって、これら複数の鋼板を一体的に連続した一連の鋼板に能率よく加工できるとともに、この一連の鋼板における各鋼板同士の十分な接合強度を確保して、この一連の鋼板の破断を抑制できる。このような一連の鋼板は、例えば、複数の鋼板を途切れることなく連続して仕上圧延するエンドレス圧延に有用である。   By using the metal plate joining apparatus and the metal plate joining method according to the first embodiment of the present invention, the tip of a plurality of steel plates to be conveyed regardless of whether or not the steel plate contains an easily oxidizable alloy element. The tail ends can be heat-bonded in sequence over the entire plate width. As a result, the plurality of steel plates can be efficiently processed into a series of continuous steel plates, and sufficient bonding strength between the steel plates in the series of steel plates can be secured to prevent breakage of the series of steel plates. . Such a series of steel plates is useful, for example, for endless rolling in which a plurality of steel plates are continuously finish-rolled without interruption.

また、本発明の実施の形態1では、先行板および後行板の先尾端部の対向端面と溶接材との接触面積が可能な限り小さくなるように溶接材の形状および寸法を設定している。このため、先行板および後行板の各板幅端部間に溶接材を挟圧した際、各板幅端部間の対向端面に印加される溶接材からの面圧を強化することができる。これによって、各板幅端部間の対向端面上の酸化物を溶接材によって容易に押し破ることができる。この結果、溶融・挟圧状態の溶接材の流れとともに、各板幅端部同士の接合面外へ酸化物を一層容易に流し出せることから、先尾端部同士の接合強度の向上と、その接合部分の破断進行の抑止との両効果を促進できる。   Further, in Embodiment 1 of the present invention, the shape and dimensions of the welding material are set so that the contact area between the opposing end surface of the leading end portion of the leading plate and the trailing plate and the welding material is as small as possible. Yes. For this reason, when a welding material is pinched between each plate width end part of a preceding board and a succeeding board, the surface pressure from the welding material applied to the opposing end surface between each plate width end part can be strengthened. . Thereby, the oxide on the opposing end surface between each plate | board width edge part can be easily broken by a welding material. As a result, with the flow of the welding material in the molten and pinched state, the oxide can be more easily flowed out of the joint surface between the respective plate width ends, so that the joint strength between the leading ends can be improved, Both effects of suppressing the progress of fracture at the joint portion can be promoted.

特に、0.2[mass%]以上、3.5[mass%]以下のSiを含有する合金鋼を先行板および後行板として用いた場合、これら先行板および後行板の各板幅端部間に挟圧する溶接材として、低炭素鋼等の低合金鋼を用いている。これによって、溶融・挟圧状態の溶接材の流れとともに、各板幅端部同士の接合面外へSiの酸化物を容易に流し出すことができる。この結果、Siの酸化物に影響されることなく、複数の鋼板の先尾端部同士をその全板幅に亘って確実に加熱接合できるとともに、Siの酸化物を起点とする先尾端部同士の接合部分の破断進行を確実に止めることができる。   In particular, when an alloy steel containing Si of 0.2 [mass%] or more and 3.5 [mass%] or less is used as a leading plate and a trailing plate, each width end of the leading plate and the trailing plate A low alloy steel such as low carbon steel is used as a welding material sandwiched between the parts. Thereby, together with the flow of the welded material in the molten / clamping state, the Si oxide can be easily flowed out of the joint surface between the plate width ends. As a result, it is possible to reliably heat-join the leading and trailing ends of a plurality of steel plates across the entire width without affecting the Si oxide, and the leading and trailing ends starting from the Si oxide. It is possible to reliably stop the progress of breakage between the joint portions.

つぎに、本発明の実施例1について説明する。本実施例1では、加熱接合対象の先行板4および後行板5(図1、3等を参照)として、易酸化性の合金元素(C、Si、Mn)を含有する合金鋼を用いた。一方、溶接材16c,16dとして、鋼中の炭素の含有量が0.01[%C]である低炭素鋼を用いた。また、溶接材16c,16dの横断面の寸法は、5[mm]×15[mm]とした。このような条件の下、図1に示した熱間圧延ラインの搬送経路3に沿って、先行板4および後行板5を順次搬送し、この先行板4および後行板5の先尾端部に対して、図4に示したステップS101〜S107の処理ステップを行った。   Next, Example 1 of the present invention will be described. In Example 1, alloy steel containing an easily oxidizable alloy element (C, Si, Mn) was used as the leading plate 4 and the trailing plate 5 (see FIGS. 1, 3 and the like) to be heat-bonded. . On the other hand, as the welding materials 16c and 16d, low carbon steel having a carbon content of 0.01 [% C] in the steel was used. Moreover, the dimension of the cross section of the welding materials 16c and 16d was 5 [mm] × 15 [mm]. Under such conditions, the leading plate 4 and the succeeding plate 5 are sequentially conveyed along the conveying path 3 of the hot rolling line shown in FIG. The processing steps of steps S101 to S107 shown in FIG.

具体的には、上述した合金鋼のスラブを、加熱炉(図示せず)による加熱処理後に粗圧延部1によって粗圧延した。これによって、板厚が40[mm]であり、板幅が1800[mm]であり、長さが100[m]であり、温度が1060[℃]の先行板4および後行板5を得た。ついで、先行板4および後行板5の先尾端部を切断部11によって切断して、この先尾端部同士の対向端面を互いに係合可能である滑らかな形状に成形した(ステップS101参照)。   Specifically, the above-described slab of alloy steel was roughly rolled by the rough rolling section 1 after heat treatment by a heating furnace (not shown). Thus, the leading plate 4 and the trailing plate 5 having a plate thickness of 40 [mm], a plate width of 1800 [mm], a length of 100 [m], and a temperature of 1060 [° C.] are obtained. It was. Next, the leading end portions of the leading plate 4 and the trailing plate 5 are cut by the cutting portion 11, and the opposing end surfaces of the leading end portions are formed into smooth shapes that can be engaged with each other (see step S101). .

つぎに、誘導加熱部12および押圧部17,18の作用によって、先行板4の尾端部と後行板5の先端部とを互いに離間した状態で誘導加熱した(ステップS102参照)。この結果、先行板4の先端部のうちの両板幅端部4a,4bの間に挟まれた中間部4cと、後行板5の尾端部のうちの両板幅端部5a,5bの間に挟まれた中間部5cとを1440〜1490[℃](本合金鋼の固相線を上回る温度)の状態にした。この時、先行板4の板幅端部4a,4bおよび後行板5の板幅端部5a,5bの各温度は、図5に示した渦電流8a,8bの通電経路の特徴に起因して十分に上がらず、本合金鋼の固相線を下回った。例えば、先行板4の板幅端部4a,4bのうち、その角部から距離100[mm]までの部分の温度は、1400[℃]以下に留まっていた。このことは、後行板5の板幅端部5a,5bについても同様であった。   Next, by the action of the induction heating unit 12 and the pressing units 17 and 18, the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 are induction heated in a state of being separated from each other (see step S102). As a result, the intermediate portion 4c sandwiched between the two plate width end portions 4a, 4b of the leading end portion of the preceding plate 4, and the both plate width end portions 5a, 5b of the tail end portion of the trailing plate 5. The intermediate portion 5c sandwiched between the layers was in a state of 1440 to 1490 [° C.] (temperature exceeding the solidus of the alloy steel). At this time, the temperatures of the plate width end portions 4a and 4b of the preceding plate 4 and the plate width end portions 5a and 5b of the succeeding plate 5 are caused by the characteristics of the energization paths of the eddy currents 8a and 8b shown in FIG. It was below the solidus line of this alloy steel. For example, among the plate width end portions 4a and 4b of the preceding plate 4, the temperature of the portion from the corner portion to the distance of 100 [mm] remains at 1400 [° C.] or less. The same applies to the plate width end portions 5a and 5b of the succeeding plate 5.

続いて、誘導加熱後の先行板4の板幅端部4a,4bと後行板5の板幅端部5a,5bとの各間に、上述した条件の溶接材16c,16dを送給した(ステップS104参照)。ついで、押圧部17,18による先行板4および後行板5の先尾端部同士の押圧によって、板幅端部4a,5a間に溶接材16cを挟圧するとともに、板幅端部4b,5b間に溶接材16dを挟圧した(ステップS105参照)。その後、直ちに、先行板4および後行板5の先尾端部の各所定位置に複数の電極P1〜P6を押し付け、これら複数の電極P1〜P6からの電流を、溶接材16c,16dを通して先尾端部に流した(図6参照)。この場合、電極P1〜P6からの電流は、板幅端部4a,5a間の溶接材16cと板幅端部4b,5b間の溶接材16dとに集中して流れ、この電流由来のジュール熱によって、溶接材16c,16dを加熱溶融した。さらには、挟圧・溶融状態の溶接材16c,16dを介して双方の板幅端部4a,4b,5a,5bに電流が流れ、この電流由来のジュール熱によって、板幅端部4a,4b,5a,5bを通電加熱した。この結果、板幅端部4a,4b,5a,5bは、1500[℃]以上の高温状態になった(ステップS106参照)。これらを継続しつつ、押圧部17,18によって先行板4および後行板5の先尾端部同士を押圧して接合した(ステップS107参照)。   Subsequently, the welding materials 16c and 16d having the above-described conditions were fed between the plate width end portions 4a and 4b of the preceding plate 4 after induction heating and the plate width end portions 5a and 5b of the succeeding plate 5, respectively. (See step S104). Next, the welding material 16c is sandwiched between the plate width end portions 4a and 5a by pressing the leading end portions of the leading plate 4 and the trailing plate 5 by the pressing portions 17 and 18, and the plate width end portions 4b and 5b. The welding material 16d was sandwiched between them (see step S105). Immediately thereafter, the plurality of electrodes P1 to P6 are pressed against the predetermined positions of the leading end portions of the leading plate 4 and the trailing plate 5, and currents from the plurality of electrodes P1 to P6 are passed through the welding materials 16c and 16d. It flowed to the tail end (see FIG. 6). In this case, the current from the electrodes P1 to P6 flows concentratedly in the welding material 16c between the plate width end portions 4a and 5a and the welding material 16d between the plate width end portions 4b and 5b, and Joule heat derived from this current. Thus, the welding materials 16c and 16d were heated and melted. Furthermore, a current flows to both plate width end portions 4a, 4b, 5a, and 5b through the welded materials 16c and 16d in a sandwiched and molten state, and the plate width end portions 4a and 4b are caused by Joule heat derived from this current. , 5a, 5b were heated by energization. As a result, the plate width end portions 4a, 4b, 5a, 5b were in a high temperature state of 1500 [° C.] or higher (see step S106). While continuing these operations, the leading end portions of the leading plate 4 and the trailing plate 5 were pressed and joined by the pressing portions 17 and 18 (see step S107).

以上のようにして、先行板4および後行板5の先尾端部同士をその全板幅に亘って接合し、この結果、先行板4と後行板5とをその搬送方向に連結した一連の鋼板を得た。本実施例1では、このような一連の鋼板を複数製造し、含有する合金元素の組成別に4つのサンプル#1〜#4に分類した。また、サンプル#1〜#4の比較例として、一連の鋼板のサンプル#5〜#8を製造した。なお、サンプル#5〜#8の加熱接合方法では、溶接材16c,16dを用いず、ステップS102の誘導加熱のみによって先行板4および後行板5の先尾端部を加熱して押圧接合した。これ以外の方法は、サンプル#1〜#4と同様にした。   As described above, the leading end portions of the leading plate 4 and the trailing plate 5 are joined to each other over the entire plate width, and as a result, the leading plate 4 and the trailing plate 5 are connected in the conveying direction. A series of steel plates was obtained. In Example 1, a plurality of such a series of steel plates was manufactured and classified into four samples # 1 to # 4 according to the composition of the alloy elements contained. Moreover, as a comparative example of samples # 1 to # 4, a series of steel plate samples # 5 to # 8 were manufactured. In addition, in the heat joining method of samples # 5 to # 8, the leading end portions of the leading plate 4 and the trailing plate 5 are heated and press-bonded only by induction heating in step S102 without using the welding materials 16c and 16d. . Other methods were the same as those of samples # 1 to # 4.

本実施例1では、加熱接合後のサンプル#1〜#8の各々を仕上圧延部2(図1参照)によって仕上圧延し、この仕上圧延時の破断発生率を評価した。サンプル#1〜#8の破断発生率の評価結果を表1に示す。なお、この破断発生率は、発生した破断数を仕上圧延の合計回数(圧延総数)によって除して算出した。また、表1において、「低炭素溶接材使用」の記載は、上述した実施の形態1にかかる金属板接合方法に準拠した加熱方法であることを意味する。すなわち、「低炭素溶接材使用」の記載に対応するサンプルは、実施の形態1にかかる金属板接合方法に従って加熱接合されたものである。一方、「第1段階の加熱のみ」の記載は、先行板4および後行板5の先尾端部を加熱する工程がステップS102の誘導加熱のみの加熱方法であることを意味する。また、表1の「成分」は、鋼板中の合金元素(C、Si、Mn)の含有量を示している。   In Example 1, each of the samples # 1 to # 8 after heat bonding was finish-rolled by the finish rolling unit 2 (see FIG. 1), and the fracture occurrence rate during the finish rolling was evaluated. Table 1 shows the evaluation results of the fracture occurrence rate of samples # 1 to # 8. In addition, this fracture occurrence rate was calculated by dividing the number of fractures that occurred by the total number of finish rollings (total number of rollings). In Table 1, “use of low carbon welding material” means that the heating method is based on the metal plate joining method according to the first embodiment described above. That is, the sample corresponding to the description of “use of low carbon welding material” is heat-bonded according to the metal plate bonding method according to the first embodiment. On the other hand, the description of “only heating in the first stage” means that the process of heating the leading end portions of the leading plate 4 and the trailing plate 5 is the heating method using only induction heating in step S102. In addition, “component” in Table 1 indicates the content of alloy elements (C, Si, Mn) in the steel sheet.

Figure 2014050852
Figure 2014050852

表1に示すように、サンプル#1、#5のSi含有量は0.1[%Si]とし、サンプル#2、#6のSi含有量は0.2[%Si]とし、サンプル#3、#7のSi含有量は0.5[%Si]とし、サンプル#4、#8のSi含有量は1.2[%Si]とした。また、C含有量およびMn含有量は、全サンプル#1〜#8について共通にし、各々、0.12[%C]、0.8[%Mn]とした。   As shown in Table 1, the Si content of Samples # 1 and # 5 is 0.1 [% Si], the Si content of Samples # 2 and # 6 is 0.2 [% Si], and Sample # 3 , # 7 had a Si content of 0.5 [% Si], and Samples # 4 and # 8 had a Si content of 1.2 [% Si]. Moreover, C content and Mn content were made common to all the samples # 1 to # 8, and were set to 0.12 [% C] and 0.8 [% Mn], respectively.

上述したようなサンプル#1〜#8のうち、サンプル#1〜#4を比較した結果、実施の形態1にかかる金属板接合装置10および金属板接合方法によって鋼板同士を加熱接合した場合は、Si含有量が0.1[%Si]から1.2[%Si]に上昇しても、仕上圧延時の破断発生率を実用的なレベルに低く抑制できることが判った。特に、サンプル#3、#4の結果から判るように、Si含有量が多量(0.5[%Si]、1.2[%Si])であっても、実施の形態1にかかる金属板接合装置10および金属板接合方法によれば、仕上圧延時の破断発生率を3%に抑制できた。   As a result of comparing the samples # 1 to # 4 among the samples # 1 to # 8 as described above, when the steel plates are heated and joined by the metal plate joining apparatus 10 and the metal plate joining method according to the first embodiment, It has been found that even when the Si content is increased from 0.1 [% Si] to 1.2 [% Si], the fracture occurrence rate during finish rolling can be suppressed to a practical level. In particular, as can be seen from the results of samples # 3 and # 4, the metal plate according to the first embodiment even when the Si content is large (0.5 [% Si], 1.2 [% Si]). According to the joining apparatus 10 and the metal plate joining method, the fracture occurrence rate during finish rolling could be suppressed to 3%.

これに対し、サンプル#5〜#8を比較した場合、誘導加熱のみによる鋼板同士の加熱接合では、Si含有量の増加に伴って仕上圧延時の破断発生率は増大した。特に、Si含有量が0.2[%Si]以上の場合、この破断発生率は20[%]以上という高い値となった。このSi含有量が0.2[%Si]以上の場合(サンプル#6〜#8)の破断発生率は、上述したサンプル#1〜#4と比較して判るように、極めて高いものであった。   On the other hand, when samples # 5 to # 8 were compared, in the heat joining of steel plates by induction heating alone, the fracture occurrence rate during finish rolling increased with an increase in Si content. In particular, when the Si content was 0.2 [% Si] or more, the fracture occurrence rate was as high as 20 [%] or more. When this Si content is 0.2 [% Si] or more (samples # 6 to # 8), the fracture occurrence rate is extremely high as can be seen from the above-described samples # 1 to # 4. It was.

以上より、本実施例1では、実施の形態1にかかる金属板接合装置10を用い、実施の形態1にかかる金属板接合方法に従って鋼板同士を加熱接合することによって、たとえ鋼板中のSi含有量が多量(1.0[%Si]強)であっても、仕上圧延時における鋼板同士の接合部分の破断を抑止できることが判った。なお、鋼板中のSi含有量は、一連の鋼板の仕上圧延し易さの観点から、3.5[%Si]以下にすることが望ましい。何故ならば、鋼板中のSi含有量が3.5[%Si]を上回る場合、鋼板自体の延性が著しく低下し、この結果、鋼板を圧延し難くなるからである。   From the above, in Example 1, by using the metal plate joining apparatus 10 according to the first embodiment and heating and joining the steel plates according to the metal plate joining method according to the first embodiment, the Si content in the steel plate Even in a large amount (strongly 1.0 [% Si]), it was found that the fracture of the joint portion between the steel plates during finish rolling can be suppressed. The Si content in the steel sheet is preferably 3.5 [% Si] or less from the viewpoint of ease of finish rolling of a series of steel sheets. This is because when the Si content in the steel sheet exceeds 3.5 [% Si], the ductility of the steel sheet itself is significantly reduced, and as a result, it becomes difficult to roll the steel sheet.

(実施の形態2)
つぎに、本発明の実施の形態2について説明する。上述した実施の形態1では、複数の電極を用いた通電加熱によって、先行板および後行板の先尾端部間の溶接材を加熱溶融していたが、実施の形態2では、交番磁界の印加による誘導加熱によって、先行板および後行板の先尾端部間の溶接材を加熱溶融している。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the first embodiment described above, the welding material between the leading and trailing end portions of the preceding plate and the succeeding plate is heated and melted by energization heating using a plurality of electrodes. However, in the second embodiment, the alternating magnetic field The welding material between the leading end portions of the preceding plate and the succeeding plate is heated and melted by induction heating by application.

図8は、本発明の実施の形態2にかかる金属板接合装置の一構成例を示すブロック図である。図8に示すように、本実施の形態2にかかる金属板接合装置20は、上述した実施の形態1にかかる金属板接合装置10の電気溶接部16に代えて溶接材送給部26を備え、制御部19に代えて制御部29を備える。その他の構成は実施の形態1と同じであり、同一構成部分には同一符号を付している。   FIG. 8 is a block diagram illustrating a configuration example of the metal plate joining apparatus according to the second embodiment of the present invention. As shown in FIG. 8, the metal plate joining apparatus 20 according to the second embodiment includes a welding material feeding unit 26 instead of the electric welding part 16 of the metal plate joining apparatus 10 according to the first embodiment described above. A control unit 29 is provided instead of the control unit 19. Other configurations are the same as those of the first embodiment, and the same reference numerals are given to the same components.

溶接材送給部26は、誘導加熱後の先行板4の尾端部における板幅方向両端部と誘導加熱後の後行板5の先端部における板幅方向両端部との各間に溶接材を送給する。図9は、本実施の形態2にかかる金属板接合装置の溶接材送給部の一構成例を示す模式図である。溶接材送給部26は、実施の形態1における電気溶接部16と同様の溶接材16c,16dの送給機能を有する。すなわち、溶接材送給部26は、図9に示すように、実施の形態1と同様の溶接材送給ローラ16a,16bを備える。このような溶接材送給部26は、図9に示すように、溶接材送給ローラ16aの回動によって、先行板4および後行板5の板幅端部4a,5a間に溶接材16cを送給し、溶接材送給ローラ16bの回動によって、先行板4および後行板5の板幅端部4b,5b間に溶接材16dを送給する。   The welding material feeding section 26 has a welding material between each of the plate width direction both ends at the tail end portion of the preceding plate 4 after induction heating and between the plate width direction both ends at the tip portion of the succeeding plate 5 after induction heating. To send. FIG. 9 is a schematic diagram illustrating a configuration example of a welding material feeding unit of the metal plate joining apparatus according to the second embodiment. The welding material feeding unit 26 has the same feeding function of the welding materials 16c and 16d as the electric welding unit 16 in the first embodiment. That is, as shown in FIG. 9, the welding material feeding unit 26 includes welding material feeding rollers 16a and 16b similar to those in the first embodiment. As shown in FIG. 9, the welding material feeding section 26 has a welding material 16 c between the plate width end portions 4 a and 5 a of the preceding plate 4 and the following plate 5 by the rotation of the welding material feeding roller 16 a. The welding material 16d is fed between the plate width end portions 4b and 5b of the preceding plate 4 and the following plate 5 by the rotation of the welding material feeding roller 16b.

制御部29は、切断部11、誘導加熱部12、溶接材送給部26、および押圧部17,18を制御する。この場合、制御部29は、誘導加熱部12に対する制御機能のみ、実施の形態1における制御部19と一部異なる。すなわち、制御部29は、誘導加熱部12のコイル対13(図2参照)の内側において互いに離間した状態で対向する先行板4の尾端部と後行板5の先端部とを誘導加熱するように、誘導加熱部12を制御する。その後、制御部29は、互いに離間した状態の先行板4の尾端部と後行板5の先端部との誘導加熱を所定の時間、実行したタイミングに、この誘導加熱を停止するように誘導加熱部12を制御する。また、制御部29は、押圧部17,18の押圧による溶接材16c,16dの挟圧後に、溶接材16c,16dを介して互いに接続した状態の先行板4の尾端部と後行板5の先端部とに交番磁界を印加して溶接材16c,16dを誘導加熱するように誘導加熱部12を制御する。この場合、制御部29は、溶接材16c,16dの誘導加熱を所定の時間、継続するように誘導加熱部12を制御する。また、制御部29は、誘電加熱部12による溶接材16c,16dの誘導加熱の継続時間以上の時間、先行板4の尾端部と後行板5の先端部との押圧を継続するように押圧部17,18を制御する。   The control unit 29 controls the cutting unit 11, the induction heating unit 12, the welding material feeding unit 26, and the pressing units 17 and 18. In this case, the control unit 29 is partially different from the control unit 19 in the first embodiment only in the control function for the induction heating unit 12. That is, the control unit 29 induction-heats the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 that are opposed to each other inside the coil pair 13 (see FIG. 2) of the induction heating unit 12 while being separated from each other. In this way, the induction heating unit 12 is controlled. Thereafter, the control unit 29 induces the induction heating to be stopped at a timing when the induction heating of the tail end portion of the preceding plate 4 and the tip end portion of the succeeding plate 5 which are separated from each other is performed for a predetermined time. The heating unit 12 is controlled. The control unit 29 also includes the tail end portion of the leading plate 4 and the trailing plate 5 that are connected to each other via the welding materials 16c and 16d after the welding materials 16c and 16d are pressed by the pressing portions 17 and 18. The induction heating unit 12 is controlled such that an alternating magnetic field is applied to the tip of the welding member 16c and 16d to induce induction heating. In this case, the control unit 29 controls the induction heating unit 12 so that the induction heating of the welding materials 16c and 16d is continued for a predetermined time. Further, the control unit 29 continues to press the tail end portion of the leading plate 4 and the leading end portion of the succeeding plate 5 for a time longer than the duration of the induction heating of the welding materials 16c and 16d by the dielectric heating unit 12. The pressing parts 17 and 18 are controlled.

また、制御部29は、誘導加熱部12による溶接材16c,16dの誘導加熱強度を制御する。具体的には、制御部29は、実施の形態1における先行板4および後行板5の先尾端部の誘導加熱強度の制御の場合と同様に、コイル対13による交番磁界の強度を制御し、これによって、先行板4および後行板5の先尾端部に誘導する渦電流の強度を制御する。制御部29は、この渦電流の制御を通して、先行板4および後行板5の先尾端部間の溶接材16c,16dの誘導加熱強度を制御する。例えば、制御部29は、誘導加熱部12の制御により、先行板4および後行板5の先尾端部に対する第1段階の誘導加熱時に比して溶接材16c,16dに対する誘導加熱時の交番磁界を強め、これにより、第1段階の誘導加熱に比して溶接材16c,16dに対する誘導加熱を強める。なお、制御部29は、誘導加熱部12による先行板4および後行板5の先尾端部の誘導加熱強度を、実施の形態1の場合と同様に制御する。   The control unit 29 controls the induction heating strength of the welding materials 16c and 16d by the induction heating unit 12. Specifically, the control unit 29 controls the strength of the alternating magnetic field generated by the coil pair 13 in the same manner as in the case of controlling the induction heating strength of the leading end portions of the leading plate 4 and the trailing plate 5 in the first embodiment. Thus, the intensity of the eddy currents induced at the leading ends of the leading plate 4 and the trailing plate 5 is controlled. The control unit 29 controls the induction heating strength of the welding materials 16c and 16d between the leading end portions of the leading plate 4 and the trailing plate 5 through the control of the eddy current. For example, the control unit 29 controls the induction heating unit 12 to alter the alternating power at the time of induction heating of the welding materials 16c and 16d as compared to the first stage induction heating of the leading end portion of the leading plate 4 and the trailing plate 5. The magnetic field is strengthened, thereby strengthening the induction heating on the welding materials 16c and 16d as compared with the first stage induction heating. In addition, the control part 29 controls the induction heating intensity | strength of the leading edge part of the preceding board 4 and the succeeding board 5 by the induction heating part 12 similarly to the case of Embodiment 1. FIG.

上述したような制御部29の制御に基づいて、実施の形態2における誘導加熱部12は、先行板4および後行板5をその板厚方向に貫通する交番磁界を先行板4および後行板5の先尾端部に印加して、一方の板幅端部4a,5a間に挟圧された溶接材16cと他方の板幅端部4b,5b間に挟圧された溶接材16dとを誘導加熱する。   Based on the control of the control unit 29 as described above, the induction heating unit 12 according to the second embodiment generates an alternating magnetic field penetrating the leading plate 4 and the trailing plate 5 in the thickness direction thereof. 5, a welding material 16 c sandwiched between one plate width end portion 4 a and 5 a and a welding material 16 d sandwiched between the other plate width end portions 4 b and 5 b. Induction heating.

なお、制御部29は、実施の形態1における制御部19の場合と同様に、切断部11および押圧部17,18を制御する。また、制御部29は、実施の形態1における電気溶接部16に対する溶接材送給制御と同様に、溶接材送給部26を制御する。   The control unit 29 controls the cutting unit 11 and the pressing units 17 and 18 as in the case of the control unit 19 in the first embodiment. Moreover, the control part 29 controls the welding material supply part 26 similarly to the welding material supply control with respect to the electric welding part 16 in Embodiment 1. FIG.

つぎに、本発明の実施の形態2にかかる金属板接合方法について説明する。図10は、実施の形態2における先行板および後行板の先尾端部同士の加熱接合を説明するための模式図である。本実施の形態2にかかる金属板接合方法において、先行板4および後行板5の先尾端部間に挟圧された溶接材16c,16dの加熱方法が、実施の形態1にかかる金属板接合方法と異なる。すなわち、本実施の形態2にかかる金属板接合方法では、実施の形態1と同様にステップS101〜S105の各処理ステップ(図4参照)を行う。ステップS106、S107では、電気溶接部16による通電加熱に代えて、誘導加熱部12による誘導加熱を行う。   Next, a metal plate joining method according to the second embodiment of the present invention will be described. FIG. 10 is a schematic diagram for explaining the heat joining between the leading end portions of the preceding and succeeding plates in the second embodiment. In the metal plate joining method according to the second embodiment, the method for heating the welding materials 16c and 16d sandwiched between the leading ends of the preceding plate 4 and the succeeding plate 5 is the metal plate according to the first embodiment. Different from the joining method. That is, in the metal plate joining method according to the second embodiment, each processing step (see FIG. 4) of steps S101 to S105 is performed as in the first embodiment. In steps S <b> 106 and S <b> 107, induction heating by the induction heating unit 12 is performed instead of energization heating by the electric welding unit 16.

本実施の形態2のステップS106において、金属板接合装置20は、先行板4の板幅端部4aと後行板5の板幅端部5aとの間に挟圧した溶接材16cと、先行板4の板幅端部4bと後行板5の板幅端部5bとの間に挟圧した溶接材16dとを誘導加熱部12によって誘導加熱する。   In step S106 of the second embodiment, the metal plate joining apparatus 20 includes a welding material 16c sandwiched between the plate width end portion 4a of the preceding plate 4 and the plate width end portion 5a of the succeeding plate 5; The welding material 16 d sandwiched between the plate width end portion 4 b of the plate 4 and the plate width end portion 5 b of the succeeding plate 5 is induction-heated by the induction heating unit 12.

具体的には、図10に示すように、押圧部17,18は、上述したステップS105から継続して、板幅端部4aと板幅端部5aとの間に溶接材16cを挟圧し、且つ、板幅端部4bと板幅端部5bとの間に溶接材16dを挟圧する。これと同時に、誘導加熱部12は、挟圧状態の溶接材16c,16dを誘導加熱によって加熱溶融する。すなわち、誘導加熱部12のコイル対13は、板幅端部4a,5a間の溶接材16cと板幅端部4b,5b間の溶接材16dとがともに挟圧され始めてから所定の時間が経過したタイミングに、電源15(図8参照)によって給電される。これによって、コイル対13は、ステップS103以降から停止していた先行板4および後行板5の先尾端部への交番磁界の印加を再開する。この時点において、先行板4および後行板5は、溶接材16cを介して板幅端部4a,5a同士を接続させ、且つ、溶接材16dを介して板幅端部4b,5b同士を接続させている。このような接続状態の先行板4および後行板5の先尾端部には、図10に示すように、コイル対13からの交番磁界の印加によって渦電流8cが誘導される。   Specifically, as shown in FIG. 10, the pressing portions 17 and 18 continue from step S105 described above and sandwich the welding material 16c between the plate width end portion 4a and the plate width end portion 5a, In addition, the welding material 16d is sandwiched between the plate width end portion 4b and the plate width end portion 5b. At the same time, the induction heating unit 12 heats and melts the sandwiched welding materials 16c and 16d by induction heating. That is, the coil pair 13 of the induction heating unit 12 has a predetermined time after the welding material 16c between the plate width end portions 4a and 5a and the welding material 16d between the plate width end portions 4b and 5b start to be clamped together. Power is supplied from the power source 15 (see FIG. 8) at the timing. As a result, the coil pair 13 resumes application of the alternating magnetic field to the leading end portions of the preceding plate 4 and the succeeding plate 5 that have been stopped since step S103. At this time, the leading plate 4 and the trailing plate 5 connect the plate width end portions 4a and 5a to each other through the welding material 16c, and connect the plate width end portions 4b and 5b to each other through the welding material 16d. I am letting. As shown in FIG. 10, an eddy current 8 c is induced at the leading end portions of the preceding plate 4 and the trailing plate 5 in such a connected state by applying an alternating magnetic field from the coil pair 13.

渦電流8cは、例えば図10に示すように、後行板5の先端部の中央近傍から板幅端部5aに向けて弧状に流れ、続いて、板幅端部5aから挟圧状態の溶接材16cを通って先行板4の板幅端部4aに流れる。つぎに、渦電流8cは、先行板4の尾端部内において一方の板幅端部4aから他方の板幅端部4bに向けて半周し、ついで、板幅端部4bから挟圧状態の溶接材16dを通って後行板5の板幅端部5bに流れ、その後、板幅端部5bから後行板5の中央近傍に向けて弧状に流れる。このようにして、渦電流8cは、溶接材16c,16dを介して先行板4および後行板5の先尾端部間を周回する。ここで、渦電流8cは、先行板4および後行板5の一方の板幅端部4a,5a間を跨って周回する際、この板幅端部4a,5a間の溶接材16cに集中して流れる。この結果、溶接材16cはジュール発熱し、この渦電流8cに由来するジュール熱により、溶接材16cは加熱溶融される。これと同様に、渦電流8cは、先行板4および後行板5の他方の板幅端部4b,5b間を跨って周回する際、この板幅端部4b,5b間の溶接材16dに集中して流れる。この結果、溶接材16dはジュール発熱し、この渦電流8cに由来するジュール熱により、溶接材16dは加熱溶融される。   For example, as shown in FIG. 10, the eddy current 8c flows in an arc shape from the vicinity of the center of the front end portion of the trailing plate 5 toward the plate width end portion 5a, and subsequently, welding in a pinched state from the plate width end portion 5a. It flows to the plate width end portion 4a of the preceding plate 4 through the material 16c. Next, the eddy current 8c is half-circulated from one plate width end 4a to the other plate width end 4b in the tail end of the preceding plate 4, and then welded in a pinched state from the plate width end 4b. It flows to the plate width end portion 5b of the succeeding plate 5 through the material 16d, and then flows in an arc shape from the plate width end portion 5b toward the vicinity of the center of the succeeding plate 5. In this way, the eddy current 8c circulates between the leading end portions of the leading plate 4 and the trailing plate 5 via the welding materials 16c and 16d. Here, the eddy current 8c concentrates on the welding material 16c between the plate width end portions 4a and 5a when the eddy current 8c goes around between the plate width end portions 4a and 5a of the preceding plate 4 and the succeeding plate 5. Flowing. As a result, the welding material 16c generates Joule heat, and the welding material 16c is heated and melted by Joule heat derived from the eddy current 8c. Similarly, when the eddy current 8c circulates across the other plate width end portions 4b and 5b of the preceding plate 4 and the succeeding plate 5, the eddy current 8c is applied to the welding material 16d between the plate width end portions 4b and 5b. Concentrate and flow. As a result, the welding material 16d generates Joule heat, and the welding material 16d is heated and melted by Joule heat derived from the eddy current 8c.

また、このステップS106において、誘導加熱部12は、渦電流8cに由来するジュール熱によって、溶接材16c,16dとともに、先行板4の板幅端部4a,4bと後行板5の板幅端部5a,5bとを誘導加熱する。すなわち、先行板4の板幅端部4aおよび後行板5の板幅端部5aは、渦電流8cに由来するジュール熱によって、鋼板同士の加熱接合に十分な温度(先行板4および後行板5の固相線を上回る温度)に加熱される。同様に、先行板4の板幅端部4bおよび後行板5の板幅端部5bは、渦電流8cに由来するジュール熱によって、鋼板同士の加熱接合に十分な温度に加熱される。なお、本実施の形態2におけるステップS106の誘導加熱は、加熱接合対象の先行板4および後行板5の先尾端部に対する第2段階の加熱処理である。   Moreover, in this step S106, the induction heating part 12 makes the board width end parts 4a and 4b of the preceding board 4 and the board width end of the succeeding board 5 together with the welding materials 16c and 16d by Joule heat derived from the eddy current 8c. The parts 5a and 5b are induction-heated. That is, the plate width end portion 4a of the preceding plate 4 and the plate width end portion 5a of the succeeding plate 5 are heated to a temperature sufficient for heating and joining the steel plates by the Joule heat derived from the eddy current 8c (the preceding plate 4 and the following plate). To a temperature above the solidus of the plate 5). Similarly, the plate width end portion 4b of the preceding plate 4 and the plate width end portion 5b of the succeeding plate 5 are heated to a temperature sufficient for heating and joining the steel plates by Joule heat derived from the eddy current 8c. In addition, the induction heating of step S106 in this Embodiment 2 is a 2nd step heat processing with respect to the leading edge part of the preceding board 4 and the succeeding board 5 of heat joining object.

一方、本実施の形態2のステップS107において、金属板接合装置20は、上述したステップS106における溶接材16c,16dの加熱溶融を継続しつつ、先行板4の尾端部と後行板5の先端部とを押圧して接合する。具体的には、図10に示すように、押圧部17,18は、誘導加熱部12が溶接材16c,16dを加熱溶融する期間、先行材4および後行材5の先尾端部同士を押圧し続ける。さらに、押圧部17,18は、誘導加熱部12が先行板4および後行板5の板幅端部4a,4b,5a,5bを誘導加熱する期間、この先尾端部同士の押圧を継続する。これら両期間の押圧作用によって、溶融状態の溶接材16cは、先行板4および後行板5の板幅端部4a,5a間の全領域に流れ広がるとともに、この板幅端部4a,5a同士の対向端面に存在する酸化物を、先行板4および後行板5の先尾端部同士の接合面外へ洗い流す。これと同様に、溶融状態の溶接材16dは、先行板4および後行板5の板幅端部4b,5b間の全領域に流れ広がるとともに、この板幅端部4b,5b同士の対向端面に存在する酸化物を、先行板4および後行板5の先尾端部同士の接合面外へ洗い流す。また、押圧部17,18は、上述した両期間、先行板4および後行板5の先尾端部同士を押圧し続けることにより、実施の形態1の場合と同様に、この先尾端部同士をその全板幅に亘って接合する(図10参照)。   On the other hand, in step S107 of the second embodiment, the metal plate joining apparatus 20 continues the heating and melting of the welding materials 16c and 16d in step S106 described above, while the tail end portion of the leading plate 4 and the trailing plate 5 The tip part is pressed and joined. Specifically, as illustrated in FIG. 10, the pressing portions 17 and 18 are configured so that the leading end portions of the leading material 4 and the trailing material 5 are connected to each other during the period in which the induction heating unit 12 heats and melts the welding materials 16 c and 16 d. Keep pressing. Further, the pressing portions 17 and 18 continue to press the leading end portions during the period in which the induction heating portion 12 induction-heats the plate width end portions 4a, 4b, 5a, and 5b of the leading plate 4 and the trailing plate 5. . Due to the pressing action during both periods, the molten welding material 16c spreads over the entire region between the plate width end portions 4a, 5a of the preceding plate 4 and the succeeding plate 5, and the plate width end portions 4a, 5a The oxides present on the opposite end surfaces of the leading plate 4 and the trailing plate 5 are washed out of the joint surface between the leading end portions. Similarly, the welded material 16d in a molten state flows and spreads over the entire region between the plate width end portions 4b and 5b of the preceding plate 4 and the succeeding plate 5, and the opposite end surfaces of the plate width end portions 4b and 5b are opposed to each other. The oxide present in the substrate is washed out of the joint surface between the leading ends of the leading plate 4 and the trailing plate 5. Further, the pressing portions 17 and 18 continue to press the leading end portions of the leading plate 4 and the trailing plate 5 during the above-described period, so that the leading end portions are connected to each other as in the first embodiment. Are joined over the entire plate width (see FIG. 10).

その後、金属板接合装置20は、この先行板4および後行板5の先尾端部同士の加熱接合を完了する。具体的には、制御部29は、ステップS107の押圧から所定の時間が経過したタイミングに、先行板4および後行板5の先尾端部同士の押圧を停止して、先行板4および後行板5のクランプを解除するように押圧部17,18を制御する。また、制御部29は、ステップS106の誘導加熱の開始から所定の時間が経過したタイミングに、先行板4および後行板5の先尾端部に対する交番磁界の印加を停止するように誘導加熱部12を制御する。なお、上述したように先尾端部同士の加熱接合が完了した先行板4および後行板5は、図8に示した搬送経路3に沿って仕上圧延部2側へ搬送される。このような金属板接合装置20は、搬送経路3(図8参照)に沿って順次搬送される複数の鋼板に対し、上述したステップS101〜S107の各処理ステップを行う。これによって、金属板接合装置20は、これら複数の鋼板の各対向端部同士をその全板幅に亘って確実に加熱接合する。この結果、金属板接合装置20は、実施の形態1の場合と同様に一連の鋼板を得る。   Thereafter, the metal plate joining apparatus 20 completes the heat joining between the leading ends of the preceding plate 4 and the succeeding plate 5. Specifically, the control unit 29 stops the pressing of the leading end portions of the preceding plate 4 and the succeeding plate 5 at a timing when a predetermined time has elapsed since the pressing in step S107, and the leading plate 4 and the rear plate The pressing portions 17 and 18 are controlled so as to release the clamp of the row plate 5. Moreover, the control part 29 is an induction heating part so that the application of the alternating magnetic field with respect to the leading edge part of the preceding board 4 and the succeeding board 5 may be stopped at the timing which predetermined time passed from the start of the induction heating of step S106. 12 is controlled. Note that, as described above, the preceding plate 4 and the succeeding plate 5 in which the heating and joining of the leading end portions are completed are conveyed to the finish rolling unit 2 side along the conveying path 3 shown in FIG. Such a metal plate joining apparatus 20 performs each processing step of steps S101-S107 mentioned above with respect to the some steel plate conveyed sequentially along the conveyance path | route 3 (refer FIG. 8). Thereby, the metal plate joining apparatus 20 reliably heat-joins the opposing end portions of the plurality of steel plates over the entire plate width. As a result, the metal plate joining apparatus 20 obtains a series of steel plates as in the case of the first embodiment.

なお、本実施の形態2にかかる金属板接合方法においても、上述した実施の形態1の場合と同様に、加熱接合対象の先行板4および後行板5がSi、Mn、Cr、Ti、Al等の易酸化性の合金元素を所定量以上含有する合金鋼であれば、溶接材16c,16dは、先行板4および後行板5に含有の合金元素と同じ合金元素であって炭素以外のものを含有しない低合金の鋼材にすればよい。例えば、先行板4および後行板5として、0.2[mass%]以上、3.5[mass%]以下のSiを含有する合金鋼を用いた場合、溶接材16c,16dとして、Siを含有しない低炭素鋼等の低合金鋼を用いればよい。   In the metal plate joining method according to the second embodiment, as in the case of the first embodiment described above, the leading plate 4 and the trailing plate 5 to be heat-bonded are Si, Mn, Cr, Ti, Al. In the case of an alloy steel containing a predetermined amount or more of an easily oxidizable alloy element, the welding materials 16c and 16d are the same alloy elements as the alloy elements contained in the leading plate 4 and the trailing plate 5 and other than carbon. What is necessary is just to use the low alloy steel material which does not contain a thing. For example, when alloy steel containing 0.2 [mass%] or more and 3.5 [mass%] or less of Si is used as the leading plate 4 and the trailing plate 5, Si is used as the welding materials 16c and 16d. What is necessary is just to use low alloy steel, such as the low carbon steel which does not contain.

以上、説明したように、本発明の実施の形態2では、誘導加熱後の先行板および後行板の先尾端部の両板幅端部間の各々に溶接材を挟圧しつつ、この先尾端部に交番磁界を印加して渦電流を誘導し、各板幅端部間の溶接材を通じて先尾端部に渦電流を流して、これら挟圧状態の各溶接材を加熱溶融するように構成し、その他を実施の形態1と同様に構成している。   As described above, in the second embodiment of the present invention, the leading edge of the leading plate and the trailing plate of the succeeding plate after induction heating are clamped with a welding material between the leading edge portions of the leading plate and the trailing plate. An alternating magnetic field is applied to the ends to induce eddy currents, and eddy currents are passed to the leading end through the welding material between the plate width ends so that each of the sandwiched welding materials is heated and melted. The other configuration is the same as that of the first embodiment.

このため、上述した実施の形態1の場合と同様の効果を発揮しつつ、先行板および後行板の先尾端部に対する第1段階の加熱処理と、誘導加熱後の先行板および後行板の先尾端部間に挟圧された状態の溶接材の誘導加熱(第2段階の加熱処理)とに、同一の誘導加熱部を共用できる。この結果、上述した実施の形態1の場合と同様の作用効果を享受するとともに、装置規模の小型化および装置構成の簡易化を促進することができる。   For this reason, while exhibiting the same effect as the case of Embodiment 1 mentioned above, the 1st step heat processing with respect to the leading edge part of a preceding board and a succeeding board, and the preceding board and succeeding board after induction heating The same induction heating part can be shared with induction heating (second stage heat treatment) of the welding material in a state of being sandwiched between the front and rear end parts. As a result, the same operational effects as those of the first embodiment described above can be enjoyed, and the downsizing of the device scale and the simplification of the device configuration can be promoted.

一方、互いに離間した状態の先行板および後行板の先尾端部同士を誘電加熱しつつ押し付けた場合、先行板側の渦電流と後行板側の渦電流とが瞬間的に結合し、この結果、先尾端部における渦電流の通電経路が瞬間的変化する。これに起因して、誘導加熱部の電源電圧が急激に変化することから、各コイルに過大な交流電流が流れるとともに、電源に過度な負荷変動が発生する。この結果、意図せず誘導加熱部の電源遮断が発生して先尾端部の誘導加熱に支障を来たす可能性がある。また、上述したような過度な負荷に起因して各コイルまたは電源が破損する可能性もある。   On the other hand, when the leading end of the preceding plate and the trailing plate in a state of being separated from each other are pressed while being dielectrically heated, the eddy current on the leading plate side and the eddy current on the trailing plate side are instantaneously combined, As a result, the energization path of the eddy current at the leading end changes instantaneously. As a result, since the power supply voltage of the induction heating unit changes abruptly, an excessive alternating current flows through each coil and an excessive load fluctuation occurs in the power supply. As a result, the power supply of the induction heating unit may be unintentionally interrupted, which may hinder the induction heating of the leading end. In addition, each coil or power supply may be damaged due to an excessive load as described above.

これに対し、本発明の実施の形態2では、先行板の尾端部と後行板の先端部とを互いに離間させて誘導加熱した後、この離間状態の先行板および後行板の先尾端部同士を押圧する前に、この先尾端部に対する誘導加熱を停止し、この誘導加熱の停止期間に、この離間状態の先行板の尾端部と後行板の先端部とを互いに押し付けて、第1段階の誘導加熱後の先行板および後行板の先尾端部同士を、溶接材を挟んで接続させている。このため、上述した渦電流の通電経路の瞬間的変化を引き起こすことなく、第1段階の誘導加熱後の先行板および後行板の先尾端部同士を押圧によって電気的に接続できる。これによって、誘導加熱部の意図しない電源遮断を防止できるとともに、過大な負荷変動に起因する各コイルおよび電源の破損を防止できる。この結果、電源遮断や設備破損等に起因して意図せず誘導加熱を中断することなく、先行板および後行板の先尾端部同士を安全且つ能率よく加熱接合できる。   On the other hand, in Embodiment 2 of the present invention, the tail end of the preceding plate and the tip of the succeeding plate are separated from each other and induction heated, and then the leading and trailing plates of the separated plate are separated from each other. Before pressing the ends, induction heating to the leading end is stopped, and during the induction heating stop period, the tail end of the separated preceding plate and the leading end of the trailing plate are pressed against each other. The leading end and the trailing end of the succeeding plate after the first stage induction heating are connected to each other with the welding material interposed therebetween. For this reason, the leading end portions of the preceding plate and the succeeding plate after the first stage induction heating can be electrically connected by pressing without causing the instantaneous change in the energization path of the eddy current described above. As a result, unintended power interruption of the induction heating unit can be prevented, and damage to each coil and power source due to excessive load fluctuation can be prevented. As a result, the leading and trailing edges of the preceding and succeeding plates can be joined safely and efficiently without unintentionally interrupting induction heating due to power interruption or equipment damage.

つぎに、本発明の実施例2について説明する。本実施例2では、実施の形態2にかかる金属板接合装置20を用い、実施の形態2にかかる金属板接合方法に従って先行板4および後行板5の先尾端部同士を加熱接合した。すなわち、先行板4および後行板5の先尾端部間に挟圧した溶接材16c,16dを渦電流8c(図10参照)由来のジュール熱によって加熱溶融し、且つ、挟圧・溶融状態の溶接材16c,16dを介して双方の板幅端部4a,4b,5a,5bを渦電流8c由来のジュール熱によって誘導加熱した。なお、本実施例2において、その他の条件は、上述した実施例1と略同様とした。本実施例2においても、実施例1の場合と同様に、板幅端部4a,4b,5a,5bを1505[℃](先行板4および後行板5の固相線を上回る温度)に高温化でき、且つ、先行板4および後行板5の先尾端部同士を押圧して接合できた。   Next, a second embodiment of the present invention will be described. In Example 2, using the metal plate joining apparatus 20 according to the second embodiment, the leading end portions of the leading plate 4 and the trailing plate 5 were heated and joined according to the metal plate joining method according to the second embodiment. That is, the welding materials 16c and 16d sandwiched between the leading and trailing ends of the leading plate 4 and the trailing plate 5 are heated and melted by Joule heat derived from the eddy current 8c (see FIG. 10), and the sandwiched and melted state Both plate width end portions 4a, 4b, 5a and 5b were induction-heated by Joule heat derived from the eddy current 8c through the welding materials 16c and 16d. In the second embodiment, other conditions are substantially the same as those in the first embodiment. Also in the second embodiment, as in the first embodiment, the plate width end portions 4a, 4b, 5a, 5b are set to 1505 [° C.] (temperature exceeding the solidus of the leading plate 4 and the trailing plate 5). The temperature could be increased, and the leading ends of the leading plate 4 and the trailing plate 5 could be pressed and joined together.

このようにして、先行板4および後行板5の先尾端部同士をその全板幅に亘って接合し、この結果、先行板4と後行板5とをその搬送方向に連結した一連の鋼板を得た。本実施例2では、このような一連の鋼板を複数製造し、含有する合金元素の組成別に5つのサンプル#11〜#15に分類した。また、サンプル#11〜#15の比較例として、一連の鋼板のサンプル#16を製造した。なお、サンプル#16の加熱接合方法では、溶接材16c,16dとして、0.8[%Si]のSiを含有する合金鋼を用いた。これ以外の方法は、サンプル#11〜#15と同様にした。なお、Si含有量が所定値以上(例えば0.2[%Si]以上)である鋼板同士を第1段階の誘導加熱のみによって加熱接合した場合、上述した実施例1の評価結果(表1参照)から判るように、仕上圧延時の破断発生率が著しく高い。このことは、本実施例2においても同様であることは明らかであるため、本実施例2では、第1段階の誘導加熱のみのサンプルを評価対象外とした。   In this way, the leading end portions of the leading plate 4 and the trailing plate 5 are joined over the entire plate width, and as a result, the leading plate 4 and the trailing plate 5 are connected in the conveying direction. Steel plate was obtained. In this Example 2, a plurality of such a series of steel plates were manufactured and classified into five samples # 11 to # 15 according to the composition of the alloy elements contained. Further, as a comparative example of samples # 11 to # 15, a series of steel plate samples # 16 were manufactured. In the heat joining method of sample # 16, alloy steel containing 0.8 [% Si] Si was used as the welding materials 16c and 16d. Other methods were the same as those of samples # 11 to # 15. In addition, when the steel content whose Si content is more than a predetermined value (for example, 0.2 [% Si] or more) is heat-joined only by the first stage induction heating, the evaluation result of the above-described Example 1 (see Table 1). ), The rate of occurrence of breakage during finish rolling is extremely high. Since this is apparently the same in the second embodiment, in the second embodiment, the sample of only the first stage induction heating is excluded from the evaluation target.

本実施例2では、加熱接合後のサンプル#11〜#16の各々を仕上圧延部2(図8参照)によって仕上圧延し、この仕上圧延時の破断発生率を評価した。サンプル#11〜#16の破断発生率の評価結果を表2に示す。なお、本実施例2における破断発生率は、上述した実施例1と同様の方法によって算出した。また、表2において、「0.8%Si溶接材使用」の記載は、溶接材16c,16dとして、0.8[%Si]のSiを含有する合金鋼を用い、このこと以外を実施の形態2にかかる金属板接合方法に準拠した加熱方法であることを意味する。なお、表2中の「低炭素溶接材使用」および「成分」は、実施例1における表1と同様の意味をもつ。   In Example 2, each of the samples # 11 to # 16 after heat bonding was finish-rolled by the finish rolling section 2 (see FIG. 8), and the fracture occurrence rate at the finish rolling was evaluated. Table 2 shows the evaluation results of the fracture occurrence rate of samples # 11 to # 16. Note that the fracture occurrence rate in Example 2 was calculated by the same method as in Example 1 described above. In Table 2, “0.8% Si welding material used” is described as “welding material 16c, 16d” using alloy steel containing 0.8 [% Si] Si, and other than this. It means that the heating method conforms to the metal plate joining method according to Form 2. In Table 2, “use of low carbon welding material” and “component” have the same meaning as in Table 1 in Example 1.

Figure 2014050852
Figure 2014050852

表2に示すように、サンプル#11、#12、#16のC含有量は0.12[%C]とし、サンプル#13〜#15のC含有量は0.13[%Si]とした。また、サンプル#11のSi含有量は0.8[%Si]とし、サンプル#12、#16のSi含有量は1.5[%Si]とし、サンプル#13のSi含有量は2.1[%Si]とし、サンプル#14のSi含有量は3.4[%Si]とし、サンプル#15のSi含有量は3.6[%Si]とした。なお、Mn含有量は、全サンプル#11〜#16について共通にし、0.8[%Mn]とした。   As shown in Table 2, the C content of samples # 11, # 12, and # 16 was 0.12 [% C], and the C content of samples # 13 to # 15 was 0.13 [% Si]. . The Si content of sample # 11 is 0.8 [% Si], the Si content of samples # 12 and # 16 is 1.5 [% Si], and the Si content of sample # 13 is 2.1. [% Si], the Si content of Sample # 14 was 3.4 [% Si], and the Si content of Sample # 15 was 3.6 [% Si]. In addition, Mn content was made common about all the samples # 11- # 16, and was set to 0.8 [% Mn].

上述したようなサンプル#11〜#16のうち、サンプル#11〜#15を比較した結果、次のことが判った。すなわち、実施の形態2にかかる金属板接合装置20および金属板接合方法によって鋼板同士を加熱接合した場合は、Si含有量が0.8[%Si]から3.4[%Si]に上昇しても、仕上圧延時の破断発生率を実用的なレベルに低く抑制できた。しかし、サンプル#15の結果から判るように、Si含有量が3.6[%Si]まで増加した場合、たとえ実施の形態2にかかる金属板接合装置20および金属板接合方法によって鋼板同士を加熱接合した場合であっても、仕上圧延時の破断発生率は25[%]という高い値となった。   As a result of comparing the samples # 11 to # 15 among the samples # 11 to # 16 as described above, the following was found. That is, when the steel plates are heated and joined by the metal plate joining apparatus 20 and the metal plate joining method according to the second embodiment, the Si content increases from 0.8 [% Si] to 3.4 [% Si]. However, the fracture occurrence rate during finish rolling could be suppressed to a practical level. However, as can be seen from the result of sample # 15, when the Si content increases to 3.6 [% Si], the steel plates are heated by the metal plate joining apparatus 20 and the metal plate joining method according to the second embodiment. Even in the case of joining, the fracture occurrence rate during finish rolling was as high as 25 [%].

一方、サンプル#11〜#14とサンプル#16とを比較した場合、Si含有量が0.8[%Si]である合金鋼を溶接材16c,16dとして用いた鋼板同士の加熱接合では、溶接材16c,16dが低炭素鋼である場合に比して、仕上圧延時の破断発生率が極めて高くなることが判った。この破断発生率の上昇は、加熱接合対象の鋼板中に含有の易酸化性の合金元素と同じ合金元素Siが溶接材16c,16dに含有されているため、鋼板の板幅端部同士の接合界面からSi酸化物を排除し切れず、この接合界面に残存したSi酸化物に起因して、板幅端部の破断の進行を抑止できなかったから生じたと考えられる。   On the other hand, when samples # 11 to # 14 and sample # 16 are compared, in the heat joining between steel plates using alloy steels having an Si content of 0.8 [% Si] as welding materials 16c and 16d, welding is performed. It has been found that the fracture occurrence rate during finish rolling is extremely higher than when the materials 16c and 16d are low carbon steel. This increase in the fracture occurrence rate is due to the fact that the same alloy element Si as the easily oxidizable alloy element contained in the steel sheet to be heat-bonded is contained in the welding materials 16c and 16d. This is probably because the Si oxide could not be completely removed from the interface, and the progress of fracture at the end of the plate width could not be suppressed due to the Si oxide remaining at the bonding interface.

以上より、本実施例2では、実施の形態2にかかる金属板接合装置20を用い、実施の形態2にかかる金属板接合方法に従って鋼板同士を加熱接合することによって、たとえ鋼板中のSi含有量が多量(例えば3.4[%Si])であっても、仕上圧延時における鋼板同士の接合部分の破断を抑止できることが判った。また、一連の鋼板の仕上圧延し易さの観点と、仕上圧延時の破断の進行し易さの観点とから、鋼板中のSi含有量を3.5[%Si]以下にすることが望ましいことを確認できた。   From the above, in Example 2, by using the metal plate joining apparatus 20 according to the second embodiment, by heating and joining the steel plates according to the metal plate joining method according to the second embodiment, the Si content in the steel plate Even in a large amount (for example, 3.4 [% Si]), it was found that the fracture of the joint portion between the steel plates during finish rolling can be suppressed. Further, from the viewpoint of ease of finish rolling of a series of steel sheets and the viewpoint of ease of breakage during finish rolling, it is desirable that the Si content in the steel sheet is 3.5 [% Si] or less. I was able to confirm that.

なお、上述した実施の形態1では、溶接材の通電加熱に用いる複数の電極を先行板の尾端部と後行板の先端側とに分けて接触配置していたが、本発明はこれに限定されるものではない。すなわち、溶接材を通電加熱するための溶接電源に接続される一対の電極のうち、一方の電極を先行板の尾端部または後行板の先端部に接触配置すれば、他方の電極は溶接材に接触配置してもよい。例えば図11に示すように、溶接電極16eに接続される一対の電極P1,P2のうち、一方の電極P1が後行板5の先端部に接触配置された場合、他方の電極P2は、溶接材16cに接触配置すればよい。同様に、溶接電極16fに接続される一対の電極P3,P4のうち、一方の電極P3が後行板5の先端部に接触配置された場合、他方の電極P4は、溶接材16dに接触配置すればよい。   In the first embodiment described above, the plurality of electrodes used for energization heating of the welding material are arranged in contact with the tail end portion of the preceding plate and the tip end side of the succeeding plate, but the present invention is based on this. It is not limited. That is, out of a pair of electrodes connected to a welding power source for energizing and heating the welding material, if one electrode is placed in contact with the tail end of the preceding plate or the tip of the succeeding plate, the other electrode is welded. The material may be placed in contact with the material. For example, as shown in FIG. 11, when one electrode P1 is disposed in contact with the tip of the trailing plate 5 among the pair of electrodes P1 and P2 connected to the welding electrode 16e, the other electrode P2 is welded. What is necessary is just to arrange in contact with the material 16c. Similarly, when one electrode P3 of the pair of electrodes P3 and P4 connected to the welding electrode 16f is disposed in contact with the distal end portion of the trailing plate 5, the other electrode P4 is disposed in contact with the welding material 16d. do it.

また、上述した実施の形態1では、溶接材16c,16dの通電加熱のために、3つの溶接電源16e〜16gと、その各々に対して対をなす6つの電極P1〜P6とを用いていたが、本発明はこれに限定されるものではない。すなわち、溶接材16c,16dの通電加熱に用いる溶接電源の配置数は、特に3つに限定されず、1つであってもよいし、2つ以上であってもよい。また、電極の配置数は、溶接電源毎に対をなしていれば、特に6つに限定されず、2つであってもよいし、4つ以上の偶数であってもよい。   Moreover, in Embodiment 1 mentioned above, the three welding power supplies 16e-16g and the six electrodes P1-P6 which make a pair with respect to each were used for the energization heating of the welding materials 16c and 16d. However, the present invention is not limited to this. That is, the number of welding power sources used for energization heating of the welding materials 16c and 16d is not particularly limited to three, and may be one or may be two or more. Further, the number of electrodes arranged is not particularly limited to six as long as a pair is formed for each welding power source, and may be two or may be four or more even numbers.

さらに、上述した実施の形態1,2では、先行板4および後行板5の先尾端部のうち、一方の板幅端部4a,5a間の全領域に溶接材16cを送給し、他方の板幅端部4b,5b間の全領域に溶接材16dを送給していたが、本発明はこれに限定されるものではない。すなわち、一方の板幅端部4a,5a間の一部領域に溶接材16cを送給してもよいし、他方の板幅端部4b,5b間の一部領域に溶接材16dを送給してもよいし、これらの組合せであってもよい。例えば図12に示すように、先行板4および後行板5の斜め上方から、溶接材送給ローラ16aの回動作用によって、板幅端部4a,5a間の一部領域に溶接材16cを送給してもよい。また、先行板4および後行板5の斜め上方から、溶接材送給ローラ16bの回動作用によって、板幅端部4b,5b間の一部領域に溶接材16dを送給してもよい。この場合、溶接材送給ローラ16a,16bは、溶接材16c,16dの各送給経路に対応して、適切な位置に必要数、配置すればよい。   Furthermore, in Embodiment 1 and 2 mentioned above, the welding material 16c is supplied to the whole area | region between one board width | variety edge part 4a, 5a among the leading edge parts of the preceding board 4 and the succeeding board 5, Although the welding material 16d is fed to the entire region between the other plate width end portions 4b and 5b, the present invention is not limited to this. That is, the welding material 16c may be fed to a partial region between the one plate width end portions 4a and 5a, or the welding material 16d is fed to a partial region between the other plate width end portions 4b and 5b. It may be a combination thereof. For example, as shown in FIG. 12, the welding material 16c is applied to a partial region between the plate width end portions 4a and 5a from the diagonally upper side of the leading plate 4 and the trailing plate 5 by the rotating action of the welding material feeding roller 16a. May be sent. Further, the welding material 16d may be fed to a partial region between the plate width end portions 4b and 5b by the rotating action of the welding material feeding roller 16b from obliquely above the leading plate 4 and the trailing plate 5. . In this case, the necessary number of welding material feeding rollers 16a and 16b may be arranged at appropriate positions corresponding to the feeding paths of the welding materials 16c and 16d.

また、上述した実施の形態1,2では、先行板4の板幅端部4aと後行板5の板幅端部5aとの間に溶融状態の溶接材16cを流し広げ、先行板4の板幅端部4bと後行板5の板幅端部5bとの間に溶融状態の溶接材16dを流し広げていたが、これに限らず、先行板4および後行板5の先尾端部間の全領域に亘って溶融状態の溶接材16c,16dを流し広げてもよい。すなわち、先行板4および後行板5の先尾端部のうち、板幅端部4a,5a間および板幅端部4b,5b間のみならず、中間部4c,5c間にも溶接材16c,16dを溶かし広げてもよい。このような全領域に流れ広がる溶接材16c,16dによって、この先尾端部の全領域から、合金元素の酸化物を接合面外へ流し出してもよい。   In the first and second embodiments described above, the molten welding material 16 c is poured and spread between the plate width end portion 4 a of the preceding plate 4 and the plate width end portion 5 a of the succeeding plate 5. Although the welded material 16d in a molten state is poured and spread between the plate width end portion 4b and the plate width end portion 5b of the succeeding plate 5, the present invention is not limited to this, and the leading end of the preceding plate 4 and the following plate 5 The molten welding materials 16c and 16d may be spread and spread over the entire region between the parts. That is, among the leading ends of the leading plate 4 and the trailing plate 5, not only between the plate width end portions 4a and 5a and between the plate width end portions 4b and 5b but also between the intermediate portions 4c and 5c, the welding material 16c. 16d may be melted and spread. With such welding materials 16c and 16d that spread over the entire region, the oxide of the alloy element may flow out of the joint surface from the entire region of the leading end.

さらに、上述した実施の形態1,2では、Si含有の鋼板同士の加熱接合に低炭素鋼からなる溶接材を用いるという鋼板と溶接材との組み合わせを例示したが、本発明はこれに限定されるものではない。すなわち、Si、Mn、Cr、Ti、Al等の易酸化性の合金元素を含有する合金鋼である加熱接合対象の鋼板に対し、この含有合金元素と同じ合金元素であって炭素(C)以外のものを含有しない低合金の鋼材を溶接材として用いればよい。例えば、Si含有の鋼板同士の加熱接合に、Siを含有せず且つCを含有する低合金の鋼材を溶接材として用いてもよいし、SiおよびCを含有しない低合金の鋼材を溶接材として用いてもよい。   Furthermore, although Embodiment 1 and 2 mentioned above illustrated the combination of the steel plate and welding material which use the welding material which consists of low carbon steel for the heat joining of Si containing steel plates, this invention is limited to this. It is not something. That is, for a steel plate to be heat-bonded, which is an alloy steel containing an easily oxidizable alloy element such as Si, Mn, Cr, Ti, Al, etc., it is the same alloy element as this contained alloy element and other than carbon (C) What is necessary is just to use the steel material of the low alloy which does not contain the thing as a welding material. For example, a low alloy steel material that does not contain Si and contains C may be used as a welding material for heat-bonding between Si-containing steel plates, or a low alloy steel material that does not contain Si and C as a welding material. It may be used.

また、上述した実施の形態1,2では、一対のコイル13a,13bおよび単一のコア14を備えた誘導加熱部12を例示したが、これに限らず、誘導加熱部12は、鋼板をその板厚方向に貫通する交番磁界を用いて鋼板を誘導加熱するものであれば、コイルおよびコアの各保有数は問わない。例えば、誘導加熱部12は、搬送経路3を挟んで鋼板の板厚方向に対向する複数対のコイルを備えてもよいし、これら複数対のコイルに対応して、複数のコアを備えてもよい。   In the first and second embodiments described above, the induction heating unit 12 including the pair of coils 13a and 13b and the single core 14 is illustrated. However, the induction heating unit 12 is not limited to this, and the induction heating unit 12 includes a steel plate. Any number of coils and cores may be used as long as the steel plate is induction-heated using an alternating magnetic field penetrating in the plate thickness direction. For example, the induction heating unit 12 may include a plurality of pairs of coils facing each other in the plate thickness direction of the steel sheet with the conveyance path 3 interposed therebetween, or may include a plurality of cores corresponding to the plurality of pairs of coils. Good.

さらに、上述した実施の形態1,2では、本発明にかかる金属板接合装置を熱間圧延ラインに適用した場合を例示したが、これに限らず、本発明にかかる金属板接合装置は、熱間圧延ライン以外の鉄鋼材加工ラインまたは鉄鋼材処理ラインに適用してもよい。   Furthermore, in Embodiment 1 and 2 mentioned above, although the case where the metal plate joining apparatus concerning this invention was applied to the hot rolling line was illustrated, not only this but the metal plate joining apparatus concerning this invention is a heat | fever. The present invention may be applied to a steel material processing line or a steel material processing line other than the hot rolling line.

また、上述した実施の形態により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。例えば、加熱接合対象の金属板は、上述したように鋼板であってもよいし、交番磁界によって渦電流を誘起可能な金属板であれば、銅板または鉄板等の鋼板以外の金属板であってもよい。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。   Further, the present invention is not limited by the above-described embodiment, and the present invention includes a configuration in which the above-described constituent elements are appropriately combined. For example, the metal plate to be heat-bonded may be a steel plate as described above, or a metal plate other than a steel plate, such as a copper plate or an iron plate, as long as it is a metal plate that can induce eddy currents by an alternating magnetic field. Also good. In addition, all other embodiments, examples, operation techniques, and the like made by those skilled in the art based on the above-described embodiments are included in the present invention.

1 粗圧延部
2 仕上圧延部
3 搬送経路
4 先行板
4a,4b,5a,5b 板幅端部
4c,5c 中間部
5 後行板
8a,8b,8c 渦電流
9a,9b 電流
10,20 金属板接合装置
11 切断部
11a、11b 切断ローラ
11c 刃
12 誘導加熱部
13 コイル対
13a,13b コイル
14 コア
15 電源
16 電気溶接部
16a,16b 溶接材供給ローラ
16c,16d 溶接材
16e〜16g 溶接電源
17,18 押圧部
19,29 制御部
26 溶接材供給部
P1〜P6 電極
DESCRIPTION OF SYMBOLS 1 Rough rolling part 2 Finish rolling part 3 Conveyance path 4 Leading plate 4a, 4b, 5a, 5b Plate width edge part 4c, 5c Intermediate part 5 Subsequent plate 8a, 8b, 8c Eddy current 9a, 9b Current 10, 20 Metal plate Joining device 11 Cutting unit 11a, 11b Cutting roller 11c Blade 12 Induction heating unit 13 Coil pair 13a, 13b Coil 14 Core 15 Power source 16 Electric welding unit 16a, 16b Welding material supply roller 16c, 16d Welding material 16e-16g Welding power source 17, 18 Pressing part 19, 29 Control part 26 Welding material supply part P1-P6 Electrode

Claims (12)

搬送経路に沿って搬送される複数の金属板のうちの先行する先行金属板の尾端部と、前記先行金属板に後続する後行金属板の先端部とを誘導加熱し、誘導加熱後の前記尾端部と前記先端部とを加熱接合する金属板接合装置において、
誘導加熱後の前記尾端部の板幅方向両端部と誘導加熱後の前記先端部の板幅方向両端部との各間に溶接材を送給する溶接材送給部と、
誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して、双方の前記板幅方向両端部の各間に前記溶接材を挟圧する押圧部と、
双方の前記板幅方向両端部の各間に挟圧された前記溶接材に電流を流して前記溶接材を加熱溶融する加熱部と、
少なくとも前記加熱部が前記溶接材を加熱溶融する期間、双方の前記板幅方向両端部の各間に前記溶接材を挟圧しつつ、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して接合するように前記押圧部を制御する制御部と、
を備えたことを特徴とする金属板接合装置。
Inductively heating the tail end portion of the preceding preceding metal plate of the plurality of metal plates conveyed along the conveying path and the leading end portion of the succeeding metal plate following the preceding metal plate, and after induction heating In the metal plate joining apparatus for heating and joining the tail end and the tip,
A welding material feeding unit that feeds a welding material between each of both ends of the tail end in the plate width direction after induction heating and both ends in the plate width direction of the tip after induction heating;
A pressing portion that presses the tail end portion after induction heating and the tip end portion after induction heating and sandwiches the welding material between both ends in the plate width direction; and
A heating section that heats and melts the welding material by passing an electric current through the welding material sandwiched between both ends of the both plate width directions;
At least during the period when the heating unit heats and melts the welding material, the tail end portion after induction heating and the tip end portion after induction heating while sandwiching the welding material between both ends in the plate width direction A control unit that controls the pressing unit so as to press and
A metal plate joining apparatus comprising:
前記加熱部は、前記金属板の板厚方向に前記金属板を貫通する交番磁界を前記尾端部と前記先端部とに印加して、双方の前記板幅方向両端部の各間に挟圧された前記溶接材を誘導加熱する誘導加熱部であることを特徴とする請求項1に記載の金属板接合装置。   The heating unit applies an alternating magnetic field penetrating the metal plate in the plate thickness direction of the metal plate to the tail end portion and the tip end portion, and sandwiches between both ends in the plate width direction. The metal plate joining device according to claim 1, wherein the welding member is an induction heating unit that induction-heats the welded material. 前記誘導加熱部は、互いに離間した状態で対向する前記尾端部と前記先端部とを前記交番磁界の印加によって誘導加熱することを特徴とする請求項2に記載の金属板接合装置。   The metal plate bonding apparatus according to claim 2, wherein the induction heating unit performs induction heating of the tail end portion and the tip end portion facing each other in a state of being separated from each other by application of the alternating magnetic field. 前記制御部は、互いに離間した状態の前記尾端部と前記先端部との誘導加熱を停止するように前記誘導加熱部を制御し、前記誘導加熱の停止期間に、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して双方の前記板幅方向両端部の各間に前記溶接材を挟圧するように前記押圧部を制御し、前記溶接材を介して互いに接続した状態の前記尾端部と前記先端部とに前記交番磁界を印加して前記溶接材を誘導加熱するように前記誘導加熱部を制御することを特徴とする請求項3に記載の金属板接合装置。   The control unit controls the induction heating unit to stop induction heating of the tail end part and the tip end part separated from each other, and the tail end after induction heating is stopped during the induction heating stop period. The pressing portion is controlled so as to press the welding portion and the tip end portion after induction heating so that the welding material is sandwiched between each of the both ends in the plate width direction, and connected to each other via the welding material The metal plate joining apparatus according to claim 3, wherein the induction heating unit is controlled to apply the alternating magnetic field to the tail end portion and the tip end portion in a state to inductively heat the welding material. . 前記加熱部は、複数の電極を用い、双方の前記板幅方向両端部の各間に挟圧された前記溶接材に電流を流して、前記溶接材を通電加熱する通電加熱部であることを特徴とする請求項1に記載の金属板接合装置。   The heating unit is an energization heating unit that uses a plurality of electrodes and applies an electric current to the welding material sandwiched between both ends in the plate width direction to energize and heat the welding material. The metal plate joining apparatus according to claim 1, wherein the apparatus is a metal plate joining apparatus. 前記金属板は、0.2[mass%]以上、3.5[mass%]以下のシリコンを含有する合金鋼であり、
前記溶接材は、低炭素鋼であることを特徴とする請求項1〜5のいずれか一つに記載の金属板接合装置。
The metal plate is an alloy steel containing silicon of 0.2 [mass%] or more and 3.5 [mass%] or less,
The metal plate joining apparatus according to any one of claims 1 to 5, wherein the welding material is low carbon steel.
搬送経路に沿って搬送される複数の金属板のうちの先行する先行金属板の尾端部と、前記先行金属板に後続する後行金属板の先端部とを誘導加熱し、誘導加熱後の前記尾端部と前記先端部とを加熱接合する金属板接合方法において、
誘導加熱後の前記尾端部の板幅方向両端部と誘導加熱後の前記先端部の板幅方向両端部との各間に溶接材を送給する溶接材送給ステップと、
誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して、双方の前記板幅方向両端部の各間に前記溶接材を挟圧する溶接材挟圧ステップと、
双方の前記板幅方向両端部の各間に前記溶接材を挟圧しつつ、前記溶接材に電流を流して前記溶接材を加熱溶融する加熱溶融ステップと、
を含むことを特徴とする金属板接合方法。
Inductively heating the tail end portion of the preceding preceding metal plate of the plurality of metal plates conveyed along the conveying path and the leading end portion of the succeeding metal plate following the preceding metal plate, and after induction heating In the metal plate joining method of heating and joining the tail end and the tip end,
A welding material feeding step of feeding a welding material between each end portion in the plate width direction of the tail end portion after induction heating and both end portions in the plate width direction of the tip end portion after induction heating;
A welding material clamping step of pressing the tail end portion after induction heating and the tip end portion after induction heating to sandwich the welding material between both ends in the plate width direction;
A heating and melting step of heating and melting the welding material by passing an electric current through the welding material while sandwiching the welding material between both ends in the plate width direction;
The metal plate joining method characterized by including.
前記加熱溶融ステップは、前記金属板の板厚方向に前記金属板を貫通する交番磁界を前記尾端部と前記先端部とに印加して、双方の前記板幅方向両端部の各間に挟圧された前記溶接材を誘導加熱することを特徴とする請求項7に記載の金属板接合方法。   In the heating and melting step, an alternating magnetic field penetrating the metal plate in the plate thickness direction of the metal plate is applied to the tail end portion and the tip end portion and sandwiched between both ends in the plate width direction. The metal plate joining method according to claim 7, wherein the pressed welding material is induction-heated. 互いに離間した状態で対向する前記尾端部と前記先端部とを前記交番磁界の印加によって誘導加熱する誘導加熱ステップをさらに含み、
前記溶接材送給ステップは、前記誘導加熱ステップによる誘導加熱後の前記板幅方向両端部の各間に溶接材を送給することを特徴とする請求項7または8に記載の金属板接合方法。
An induction heating step of induction heating the tail end and the tip facing each other in a state of being separated from each other by application of the alternating magnetic field;
9. The metal plate joining method according to claim 7, wherein the welding material feeding step feeds the welding material between both ends of the plate width direction after the induction heating in the induction heating step. .
互いに離間した状態の前記尾端部と前記先端部とに対する誘導加熱を停止する誘導加熱停止ステップをさらに含み、
前記溶接材挟圧ステップは、前記誘導加熱の停止期間に、誘導加熱後の前記尾端部と誘導加熱後の前記先端部とを押圧して、双方の前記板幅方向両端部の各間に前記溶接材を挟圧し、
前記加熱溶融ステップは、前記溶接材を介して互いに接続した状態の前記尾端部と前記先端部とに前記交番磁界を印加して前記溶接材を誘導加熱することを特徴とする請求項9に記載の金属板接合方法。
An induction heating stop step of stopping induction heating for the tail end portion and the tip end portion in a state of being separated from each other;
In the welding material clamping step, during the induction heating stop period, the tail end portion after induction heating and the tip end portion after induction heating are pressed between each of both end portions in the plate width direction. Sandwiching the welding material,
The heating and melting step applies the alternating magnetic field to the tail end portion and the tip end portion that are connected to each other via the welding material to induction-heat the welding material. The metal plate joining method as described.
前記加熱溶融ステップは、複数の電極を用い、双方の前記板幅方向両端部の各間に挟圧された前記溶接材に電流を流して、前記溶接材を通電加熱することを特徴とする請求項7に記載の金属板接合方法。   In the heating and melting step, a plurality of electrodes are used, and an electric current is passed through the welding material sandwiched between each of both end portions in the plate width direction, whereby the welding material is energized and heated. Item 8. The metal plate joining method according to Item 7. 前記金属板として、0.2[mass%]以上、3.5[mass%]以下のシリコンを含有する合金鋼を用い、
前記溶接材として低炭素鋼を用いることを特徴とする請求項7〜11のいずれか一つに記載の金属板接合方法。
As the metal plate, alloy steel containing silicon of 0.2 [mass%] or more and 3.5 [mass%] or less,
The metal plate joining method according to any one of claims 7 to 11, wherein low carbon steel is used as the welding material.
JP2012195238A 2012-09-05 2012-09-05 Metal plate joining apparatus and metal plate joining method Expired - Fee Related JP6036031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195238A JP6036031B2 (en) 2012-09-05 2012-09-05 Metal plate joining apparatus and metal plate joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195238A JP6036031B2 (en) 2012-09-05 2012-09-05 Metal plate joining apparatus and metal plate joining method

Publications (2)

Publication Number Publication Date
JP2014050852A true JP2014050852A (en) 2014-03-20
JP6036031B2 JP6036031B2 (en) 2016-11-30

Family

ID=50609843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195238A Expired - Fee Related JP6036031B2 (en) 2012-09-05 2012-09-05 Metal plate joining apparatus and metal plate joining method

Country Status (1)

Country Link
JP (1) JP6036031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219416A1 (en) 2017-10-30 2019-05-02 Sms Group Gmbh Method and device for joining hot slabs

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489178A (en) * 1990-08-02 1992-03-23 Kawasaki Steel Corp Billet joining method for hot rolling
JPH04158905A (en) * 1990-10-24 1992-06-02 Mitsubishi Heavy Ind Ltd High frequency joining method of rolled stock
JPH05245507A (en) * 1992-02-25 1993-09-24 Sumitomo Metal Ind Ltd Method for jointing hot steel products
JPH07124606A (en) * 1993-11-01 1995-05-16 Kawasaki Steel Corp Method for joining slab in hot rolling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489178A (en) * 1990-08-02 1992-03-23 Kawasaki Steel Corp Billet joining method for hot rolling
JPH04158905A (en) * 1990-10-24 1992-06-02 Mitsubishi Heavy Ind Ltd High frequency joining method of rolled stock
JPH05245507A (en) * 1992-02-25 1993-09-24 Sumitomo Metal Ind Ltd Method for jointing hot steel products
JPH07124606A (en) * 1993-11-01 1995-05-16 Kawasaki Steel Corp Method for joining slab in hot rolling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017219416A1 (en) 2017-10-30 2019-05-02 Sms Group Gmbh Method and device for joining hot slabs
WO2019086183A1 (en) 2017-10-30 2019-05-09 Sms Group Gmbh Method and device for joining hot slabs by means of friction welding

Also Published As

Publication number Publication date
JP6036031B2 (en) 2016-11-30

Similar Documents

Publication Publication Date Title
JP5843847B2 (en) A method of joining the ends of steel strips suitable for induction heat treatment of joint welds
JP6643279B2 (en) High-grade steel continuous hot rolling method
JP6036031B2 (en) Metal plate joining apparatus and metal plate joining method
JP2017534469A (en) Method for producing spare material for cutting tools
JP2014180694A (en) Manufacturing apparatus and manufacturing method for hot rolled steel sheet
JP6665830B2 (en) Method of joining billets in continuous hot rolling
JP6421793B2 (en) Method of joining steel slabs in continuous hot rolling, continuous hot rolling method, and manufacturing method of hot rolled steel sheet
JP4081910B2 (en) Steel slab joining method in continuous hot rolling
JP5966705B2 (en) Metal plate joining apparatus and metal plate joining method
JP3340696B2 (en) Method of joining billets in continuous hot rolling
JP6443411B2 (en) Steel slab joining method in continuous hot rolling
JP6409848B2 (en) Steel slab joining method, continuous hot rolling method, and hot rolled steel sheet manufacturing method in continuous hot rolling
JP2905400B2 (en) Method and apparatus for joining billets in hot rolling
JP5339248B2 (en) Metal welding method
TWI789118B (en) Laser cutting method of steel strip, laser cutting equipment, cold rolling method of steel strip, and manufacturing method of cold rolled steel strip
JP5817430B2 (en) Sheet bar joining method
JP6432570B2 (en) Clamp for joining steel slabs in continuous hot rolling, joining apparatus and joining method, and continuous hot rolling method and hot rolled steel sheet manufacturing method
JP2905398B2 (en) How to join billets
WO2013051232A1 (en) Method for joining sheet bar during continuous hot rolling
JP2004042085A (en) Method of producing blank material for press forming and blank material for press forming obtained thereby
JP3307860B2 (en) Billet rolling equipment
JPH0375241B2 (en)
JP5445995B2 (en) Metal welding equipment
JP5640682B2 (en) How to connect cold-rolled steel sheets
JP2905393B2 (en) Method of joining billets in hot rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6036031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees