JP2014048370A - Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system - Google Patents

Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system Download PDF

Info

Publication number
JP2014048370A
JP2014048370A JP2012189688A JP2012189688A JP2014048370A JP 2014048370 A JP2014048370 A JP 2014048370A JP 2012189688 A JP2012189688 A JP 2012189688A JP 2012189688 A JP2012189688 A JP 2012189688A JP 2014048370 A JP2014048370 A JP 2014048370A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
object side
end state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012189688A
Other languages
Japanese (ja)
Other versions
JP6251947B2 (en
Inventor
Takeshi Uehara
健 上原
Goji Suzuki
剛司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2012189688A priority Critical patent/JP6251947B2/en
Publication of JP2014048370A publication Critical patent/JP2014048370A/en
Application granted granted Critical
Publication of JP6251947B2 publication Critical patent/JP6251947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a variable power optical system which has small aberration fluctuations when varying power and has optical performance capable of coping with aberration fluctuations occurring when correcting camera shake, an optical device including the variable power optical system, and a method for manufacturing the variable power optical system.SOLUTION: A variable power optical system ZL to be mounted on a camera 1 or the like, includes, in order from the object side: a first lens group G1 having a negative refractive power; a second lens group G2 having a positive refractive power; a third lens group G3 having a negative refractive power; and a fourth lens group G4 having a positive refractive power. When varying power from a wide angle end state to a telephoto end state, the distance between the first lens group G1 and the second lens group G2 is changed, the distance between the second lens group G2 and the third lens group G3 is changed, and the distance between the third lens group G3 and the fourth lens group G4 is changed. At least one single lens in the second lens group G2 serves as an anti-vibration lens group VL which is moved so as to include a component of a direction perpendicular to the optical axis. The first lens group G1 has a negative lens at the position closest to the object side.

Description

本発明は、変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus having the variable magnification optical system, and a method for manufacturing the variable magnification optical system.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1参照)。   Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).

特開平11−174329号公報JP-A-11-174329

しかしながら、従来の変倍光学系は、変倍時における収差変動が大きく、また、手ぶれ補正時の収差変動にも対応できていないという課題があった。   However, the conventional variable-power optical system has a problem that the aberration fluctuation at the time of zooming is large and that it cannot cope with the aberration fluctuation at the time of camera shake correction.

本発明はこのような課題に鑑みてなされたものであり、変倍時における収差変動が小さく、手ぶれ補正時の収差変動に対応可能な光学性能を備えた変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法を提供することを目的とする。   The present invention has been made in view of such a problem, and a variable power optical system having an optical performance that is small in aberration fluctuation at the time of zooming and can cope with aberration fluctuation at the time of camera shake correction, and the variable power optical system It is an object of the present invention to provide an optical device having the above and a method for manufacturing a variable magnification optical system.

前記課題を解決するため、本発明に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有し、広角端状態から望遠端状態に変倍する際に、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化し、第2レンズ群のうちの少なくとも一枚の単レンズは、光軸と直交する方向の成分を含むように移動する防振レンズ群であり、第1レンズ群は、最も物体側に負レンズを有し、次式の条件を満足することを特徴とする。
−2.00 < (R2+R1)/(R2−R1) < −1.00
但し、
R1:第1レンズ群の最も物体側の負レンズの物体側面の曲率半径
R2:第1レンズ群の最も物体側の負レンズの像側面の曲率半径
In order to solve the above problems, a variable magnification optical system according to the present invention includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. And a fourth lens group having a positive refractive power, and the distance between the first lens group and the second lens group when zooming from the wide-angle end state to the telephoto end state Changes, the distance between the second lens group and the third lens group changes, the distance between the third lens group and the fourth lens group changes, and at least one single lens in the second lens group is The anti-vibration lens group moves so as to include a component in a direction orthogonal to the optical axis, and the first lens group has a negative lens closest to the object side and satisfies the following condition: .
−2.00 <(R2 + R1) / (R2−R1) <− 1.00
However,
R1: radius of curvature of the object side surface of the negative lens closest to the object side in the first lens group R2: radius of curvature of the image side surface of the negative lens closest to the object side of the first lens group

また、このような変倍光学系において、第3レンズ群は、少なくとも一枚の、両側に空気間隔を有する単レンズを有し、次式の条件を満足することが好ましい。
3.00 < f4/d3w < 9.00
但し、
f4:第4レンズ群の焦点距離
d3w:広角端状態における第3レンズ群と第4レンズ群との空気間隔
In such a variable magnification optical system, it is preferable that the third lens group has at least one single lens having an air interval on both sides, and satisfies the following condition.
3.00 <f4 / d3w <9.00
However,
f4: Focal length of the fourth lens group d3w: Air distance between the third lens group and the fourth lens group in the wide-angle end state

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.40 < f1/f3 < 1.00
但し、
f1:第1レンズ群の焦点距離
f3:第3レンズ群の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.40 <f1 / f3 <1.00
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group

また、このような変倍光学系は、第2レンズ群の中又は近傍に開口絞りを有し、第4レンズ群は、最も像側に正レンズと負レンズとを貼り合わせた接合レンズを有し、次式の条件を満足することが好ましい。
0.10 < dSt/f4 < 0.60
但し、
dSt:望遠端状態における開口絞りと第3レンズ群との空気間隔
f4:第4レンズ群の焦点距離
Further, such a variable magnification optical system has an aperture stop in or near the second lens group, and the fourth lens group has a cemented lens in which a positive lens and a negative lens are bonded to the most image side. However, it is preferable to satisfy the condition of the following formula.
0.10 <dSt / f4 <0.60
However,
dSt: Air distance between the aperture stop and the third lens group in the telephoto end state f4: Focal length of the fourth lens group

また、このような変倍光学系において、第1レンズ群のうち、最も物体側のレンズは非球面を有することが好ましい。   In such a variable magnification optical system, it is preferable that the most object side lens in the first lens group has an aspherical surface.

また、このような変倍光学系は、次式の条件を満足することが好ましい。
0.10 < f2/f2a < 0.55
但し、
f2:第2レンズ群の焦点距離
f2a:防振レンズ群の焦点距離
Moreover, it is preferable that such a variable magnification optical system satisfies the condition of the following formula.
0.10 <f2 / f2a <0.55
However,
f2: focal length of the second lens group f2a: focal length of the anti-vibration lens group

また、このような変倍光学系において、第3レンズ群は、単レンズのみからなることが好ましい。   In such a variable magnification optical system, it is preferable that the third lens group is composed of only a single lens.

また、このような変倍光学系において、単レンズは、両凹形状であることが好ましい。   In such a variable magnification optical system, it is preferable that the single lens has a biconcave shape.

また、このような変倍光学系において、第4レンズ群は、少なくとも1面の非球面を有することが好ましい。   In such a variable magnification optical system, it is preferable that the fourth lens group has at least one aspheric surface.

また、このような変倍光学系において、第4レンズ群に含まれる非球面を有するレンズは、第4レンズ群の最も物体側に位置することが好ましい。   In such a variable magnification optical system, it is preferable that the lens having an aspheric surface included in the fourth lens group is positioned closest to the object side of the fourth lens group.

また、このような変倍光学系において、第4レンズ群に含まれる接合レンズのうち、少なくとも一枚はその接合面が像側に凸向きであることが好ましい。   In such a variable magnification optical system, it is preferable that at least one of the cemented lenses included in the fourth lens group has a cemented surface convex toward the image side.

また、このような変倍光学系は、広角端状態から望遠端状態に変倍する際に、第2レンズ群と第3レンズ群との間隔が増大し、第3レンズ群と第4レンズ群との間隔が減少することが好ましい。   Further, in such a variable magnification optical system, when changing the magnification from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group increases, and the third lens group and the fourth lens group. It is preferable that the interval between and decreases.

また、本発明に係る光学装置は、物体の像を所定の像面上に結像させる上述の変倍光学系のいずれかを有して構成される。   The optical apparatus according to the present invention includes any one of the above-described variable magnification optical systems that forms an image of an object on a predetermined image plane.

また、本発明に係る変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する変倍光学系の製造方法であって、第1レンズ群、第2レンズ群、第3レンズ群及び第4レンズ群を、広角端状態から望遠端状態に変倍する際に、第1レンズ群と第2レンズ群との間隔が変化し、第2レンズ群と第3レンズ群との間隔が変化し、第3レンズ群と第4レンズ群との間隔が変化するように配置し、第2レンズ群のうちの少なくとも一枚の単レンズを、光軸と直交する方向の成分を含むように移動する防振レンズ群として配置し、第1レンズ群の最も物体側に次式の条件を満足する負レンズを配置することを特徴とする。
−2.00 < (R2+R1)/(R2−R1) < −1.00
但し、
R1:第1レンズ群の最も物体側の負レンズの物体側面の曲率半径
R2:第1レンズ群の最も物体側の負レンズの像側面の曲率半径
The variable magnification optical system manufacturing method according to the present invention has, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a negative refractive power. A variable magnification optical system manufacturing method having a third lens group and a fourth lens group having a positive refractive power, the first lens group, the second lens group, the third lens group, and the fourth lens group Is changed from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group is changed, and the distance between the second lens group and the third lens group is changed. An anti-vibration lens that is arranged so that the distance between the lens group and the fourth lens group changes and moves at least one single lens of the second lens group so as to include a component in a direction orthogonal to the optical axis. A negative lens that satisfies the following condition on the most object side of the first lens group. And butterflies.
−2.00 <(R2 + R1) / (R2−R1) <− 1.00
However,
R1: radius of curvature of the object side surface of the negative lens closest to the object side in the first lens group R2: radius of curvature of the image side surface of the negative lens closest to the object side of the first lens group

本発明を以上のように構成すると、変倍時における収差変動が小さく、手ぶれ補正時の収差変動に対応可能な光学性能を備えた変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法を提供することができる。   When the present invention is configured as described above, a variable magnification optical system having an optical performance that is small in aberration variation at the time of zooming and can cope with aberration variation at the time of camera shake correction, an optical device having the variable magnification optical system, and A variable magnification optical system manufacturing method can be provided.

第1実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 1st Example. 第1実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 7A is a diagram illustrating various aberrations in the wide-angle end state of the variable magnification optical system according to the first example, where FIG. 9A is an aberration diagram in the infinite focus state, and FIG. It is a coma aberration figure when performing. 第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦状態の諸収差図である。FIG. 7 is a diagram illustrating various aberrations in the infinitely focused state in the intermediate focal length state of the variable magnification optical system according to the first example. 第1実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 3A is a diagram illustrating various aberrations in the telephoto end state of the variable magnification optical system according to the first example, where FIG. 3A is an aberration diagram in an infinite focus state, and FIG. 3B is an image blur correction in an infinite focus state. It is a coma aberration figure when performing. 第2実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 2nd Example. 第2実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 6A is a diagram illustrating various aberrations in the wide-angle end state of the variable magnification optical system according to Example 2, wherein FIG. 5A is an aberration diagram in the infinite focus state, and FIG. 5B is an image blur correction in the infinite focus state. It is a coma aberration figure when performing. 第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦状態の諸収差図である。FIG. 10 is a diagram illustrating various aberrations in the infinitely focused state in the intermediate focal length state of the variable magnification optical system according to the second example. 第2実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 7A is a diagram illustrating various aberrations in the telephoto end state of the variable magnification optical system according to Example 2, wherein FIG. 9A is an aberration diagram in the infinite focus state, and FIG. 9B is an image blur correction in the infinite focus state. It is a coma aberration figure when performing. 第3実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 3rd Example. 第3実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 6A is an aberration diagram in the wide-angle end state of the variable magnification optical system according to Example 3; FIG. 5A is an aberration diagram in the infinite focus state, and FIG. It is a coma aberration figure when performing. 第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦状態の諸収差図である。FIG. 12 is a diagram illustrating various aberrations in the infinitely focused state in the intermediate focal length state of the variable magnification optical system according to the third example. 第3実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 7A is a diagram illustrating various aberrations in the telephoto end state of the variable magnification optical system according to the third example, where FIG. 9A is an aberration diagram in the infinite focus state, and FIG. 9B is an image blur correction in the infinite focus state. It is a coma aberration figure when performing. 第4実施例に係る変倍光学系のレンズ構成を示す断面図である。It is sectional drawing which shows the lens structure of the variable magnification optical system which concerns on 4th Example. 第4実施例に係る変倍光学系の広角端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 6A is a diagram illustrating various aberrations in the wide-angle end state of the zoom optical system according to the fourth example, where FIG. 5A is an aberration diagram in the infinite focus state, and FIG. 5B is an image blur correction in the infinite focus state. It is a coma aberration figure when performing. 第4実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦状態の諸収差図である。FIG. 11 is a diagram illustrating various aberrations in the infinitely focused state in the intermediate focal length state of the variable magnification optical system according to the fourth example. 第4実施例に係る変倍光学系の望遠端状態における諸収差図であって、(a)は無限遠合焦状態の収差図であり、(b)は無限遠合焦状態において像ぶれ補正を行ったときのコマ収差図である。FIG. 9A is a diagram illustrating various aberrations of the zoom optical system according to Example 4 in the telephoto end state, where FIG. 9A is an aberration diagram in the infinite focus state, and FIG. It is a coma aberration figure when performing. 上記変倍光学系を搭載するカメラの断面図を示す。A sectional view of a camera carrying the above-mentioned variable magnification optical system is shown. 上記変倍光学系の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the said variable magnification optical system.

以下、本発明の好ましい実施形態について図面を参照して説明する。図1に示すように、
本実施形態に係る変倍光学系ZLは、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、を有して構成される。また、この変倍光学系ZLは、広角端状態から望遠端状態に変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化する。また、この変倍光学系ZLにおいて、第2レンズ群G2のうちの少なくとも一枚の単レンズ(例えば、図1における両凸レンズL21)は、光軸と直交する方向の成分を含むように移動する防振レンズ群VLである。本実施形態に係る変倍光学系ZLをこのように構成すると、変倍時の望遠端におけるコマ収差と広角端における像面湾曲収差とを効果的に補正しつつ、光軸と略直交する方向の所定の像面移動量を確保することができる。さらにまた、この変倍光学系ZLにおいて、第1レンズ群G1は、最も物体側に負レンズ(例えば、図1における負メニスカスレンズL11)を有する。
Preferred embodiments of the present invention will be described below with reference to the drawings. As shown in FIG.
The zoom optical system ZL according to this embodiment includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a first lens group having a negative refractive power. The third lens group G3 includes a third lens group G3 and a fourth lens group G4 having a positive refractive power. In addition, when the zooming optical system ZL zooms from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the second lens group G2 and the third lens group G3 change. The distance between the lens group G3 changes and the distance between the third lens group G3 and the fourth lens group G4 changes. In the variable magnification optical system ZL, at least one single lens (for example, the biconvex lens L21 in FIG. 1) of the second lens group G2 moves so as to include a component in a direction orthogonal to the optical axis. This is the image stabilizing lens group VL. When the zoom optical system ZL according to the present embodiment is configured in this manner, the coma aberration at the telephoto end and the field curvature aberration at the wide angle end at the time of zooming are effectively corrected, and the direction substantially orthogonal to the optical axis. A predetermined image plane movement amount can be ensured. Furthermore, in the variable magnification optical system ZL, the first lens group G1 has a negative lens (for example, the negative meniscus lens L11 in FIG. 1) on the most object side.

それでは、このような変倍光学系ZLを構成するための条件について説明する。まず、この変倍光学系ZLは、以下に示す条件式(1)を満足することが望ましい。   Now, conditions for constructing such a variable magnification optical system ZL will be described. First, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (1).

−2.00 < (R2+R1)/(R2−R1) < −1.00 (1)
但し、
R1:第1レンズ群G1の最も物体側の負レンズの物体側面の曲率半径
R2:第1レンズ群G1の最も物体側の負レンズの像側面の曲率半径
−2.00 <(R2 + R1) / (R2−R1) <− 1.00 (1)
However,
R1: radius of curvature of the object side surface of the negative lens closest to the object side in the first lens group G1 R2: radius of curvature of the image side surface of the negative lens closest to the object side of the first lens group G1

条件式(1)は、第1レンズ群G1の最も物体側に配置された負レンズの形状を規定するための条件式である。この条件式(1)の上限値を上回ると、負レンズの物体側レンズ面の曲率半径が大きくなり、または、像側レンズ面の曲率半径が小さくなり、望遠端における球面収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(1)の上限値を−1.30にすることが好ましい。反対に、条件式(1)の下限値を下回ると、負レンズの像側レンズ面の曲率半径が小さくなり、または、物体側レンズ面の曲率半径が大きくなり、広角端における像面湾曲収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(1)の下限値を−1.80にすることが好ましい。   Conditional expression (1) is a conditional expression for defining the shape of the negative lens disposed closest to the object side of the first lens group G1. If the upper limit of conditional expression (1) is exceeded, the radius of curvature of the object side lens surface of the negative lens becomes large, or the radius of curvature of the image side lens surface becomes small, which makes it difficult to correct spherical aberration at the telephoto end. Therefore, it is not preferable. In order to secure the effect of the present application, it is preferable to set the upper limit value of conditional expression (1) to -1.30. On the other hand, if the lower limit of conditional expression (1) is not reached, the radius of curvature of the image side lens surface of the negative lens becomes smaller, or the radius of curvature of the object side lens surface becomes larger, and the field curvature aberration at the wide-angle end becomes larger. Since correction becomes difficult, it is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (1) to −1.80.

また、この変倍光学系ZLにおいて、第3レンズ群G3は、少なくとも一枚の、両側に空気間隔を有する単レンズ(例えば、図1における両凹レンズL31)を有し、以下に示す条件式(2)を満足することが望ましい。   In this variable magnification optical system ZL, the third lens group G3 has at least one single lens (for example, a biconcave lens L31 in FIG. 1) having an air gap on both sides, and the following conditional expression ( It is desirable to satisfy 2).

3.00 < f4/d3w < 9.00 (2)
但し、
f4:第4レンズ群G4の焦点距離
d3w:広角端状態における第3レンズ群G3と第4レンズ群G4との空気間隔
3.00 <f4 / d3w <9.00 (2)
However,
f4: Focal length of the fourth lens group G4 d3w: Air distance between the third lens group G3 and the fourth lens group G4 in the wide-angle end state

条件式(2)は、第4レンズ群G4の焦点距離に対する第3レンズ群G3と第4レンズ群G4との間隔を規定するための条件式である。この条件式(2)の上限値を上回ると、第3レンズ群G3と第4レンズ群G4との空気間隔d3wが狭くなり、変倍効率が低下し、広角端における球面収差の補正が困難になるため好ましくない。なお、本願の効果を確実にするために、条件式(2)の上限値を7.00にすることが好ましい。反対に、条件式(2)の下限値を下回ると、第4レンズ群G4の屈折力が強くなり、広角端における像面湾曲収差の補正が困難になるため好ましくない。なお、本願の効果を確実にするために、条件式(2)の下限値を4.00にすることが好ましい。   Conditional expression (2) is a conditional expression for defining the distance between the third lens group G3 and the fourth lens group G4 with respect to the focal length of the fourth lens group G4. If the upper limit value of the conditional expression (2) is exceeded, the air gap d3w between the third lens group G3 and the fourth lens group G4 becomes narrow, the zooming efficiency decreases, and it becomes difficult to correct spherical aberration at the wide angle end. Therefore, it is not preferable. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (2) to 7.00. On the other hand, if the lower limit of conditional expression (2) is not reached, the refractive power of the fourth lens group G4 becomes strong, and it becomes difficult to correct field curvature aberration at the wide-angle end, which is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (2) to 4.00.

また、この変倍光学系ZLは、以下に示す条件式(3)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (3).

0.40 < f1/f3 < 1.00 (3)
但し、
f1:第1レンズ群G1の焦点距離
f3:第3レンズ群G3の焦点距離
0.40 <f1 / f3 <1.00 (3)
However,
f1: Focal length of the first lens group G1 f3: Focal length of the third lens group G3

条件式(3)は、第3レンズ群G3の焦点距離に対する第1レンズ群G1の焦点距離を規定するための条件式である。この条件式(3)の上限値を上回ると、第3レンズ群G3の屈折力が強くなり、広角端における球面収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(3)の上限値を0.80にすることが好ましい。反対に、条件式(3)の下限値を下回ると、第1レンズ群G1の屈折力が強くなり、望遠端における像面湾曲収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(3)の下限値を0.50にすることが好ましい。   Conditional expression (3) is a conditional expression for defining the focal length of the first lens group G1 with respect to the focal length of the third lens group G3. Exceeding the upper limit of conditional expression (3) is not preferable because the refractive power of the third lens group G3 becomes strong and it becomes difficult to correct spherical aberration at the wide-angle end. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (3) to 0.80. On the other hand, if the lower limit of conditional expression (3) is not reached, the refractive power of the first lens group G1 becomes strong, and it becomes difficult to correct field curvature aberration at the telephoto end, which is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (3) to 0.50.

また、本変倍光学系ZLは、第2レンズ群G2の中又は近傍に開口絞りSを有し、第4レンズ群G4は、最も像側に正レンズと負レンズとを貼り合わせた接合レンズ(例えば、図1の正メニスカスレンズL42と負メニスカスレンズL42とからなる接合レンズ)を有することが望ましい。第4レンズ群G4のうち最も像側のレンズに凸凹の貼り合わせレンズを配置することにより広角端における色コマ収差を良好に補正することができる。   The variable magnification optical system ZL has an aperture stop S in or near the second lens group G2, and the fourth lens group G4 is a cemented lens in which a positive lens and a negative lens are bonded to the most image side. (For example, it is desirable to have a cemented lens including the positive meniscus lens L42 and the negative meniscus lens L42 in FIG. 1). By disposing a convex and concave cemented lens on the most image side lens in the fourth lens group G4, it is possible to satisfactorily correct chromatic coma at the wide angle end.

ここで、この変倍光学系ZLは、以下に示す条件式(4)を満足することが望ましい。   Here, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (4).

0.10 < dSt/f4 < 0.60 (4)
但し、
dSt:望遠端状態における開口絞りSと第3レンズ群G3との空気間隔
f4:第4レンズ群G4の焦点距離
0.10 <dSt / f4 <0.60 (4)
However,
dSt: Air gap between the aperture stop S and the third lens group G3 in the telephoto end state f4: Focal length of the fourth lens group G4

条件式(4)は、第4レンズ群G4の焦点距離に対する望遠端状態における開口絞りSの位置を規定するための条件式である。この条件式(4)の上限値を上回ると、開口絞りSと第3レンズ群G3との間隔が広くなり過ぎ、望遠端における像面湾曲収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(4)の下限値を0.50にすることが好ましい。反対に、条件式(4)の下限値を下回ると、開口絞りSと第3レンズ群G3との間隔が狭くなり過ぎ、望遠端における球面収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(4)の下限値を0.15にすることが好ましい。   Conditional expression (4) is a conditional expression for defining the position of the aperture stop S in the telephoto end state with respect to the focal length of the fourth lens group G4. Exceeding the upper limit value of conditional expression (4) is not preferable because the distance between the aperture stop S and the third lens group G3 becomes too wide and it becomes difficult to correct field curvature aberration at the telephoto end. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (4) to 0.50. On the other hand, if the lower limit value of conditional expression (4) is not reached, the distance between the aperture stop S and the third lens group G3 becomes too narrow, which makes it difficult to correct spherical aberration at the telephoto end, which is not preferable. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (4) to 0.15.

また、この変倍光学系ZLにおいて、第1レンズ群G1のうち、最も物体側のレンズは非球面を有することが好ましい(例えば、図1における非球面負レンズL11の像側の面(第3面))。この構成により、広角端における像面湾曲収差と望遠端における球面収差とを効果的に補正することができる。   In the variable magnification optical system ZL, it is preferable that the most object side lens in the first lens group G1 has an aspherical surface (for example, the image side surface of the aspherical negative lens L11 in FIG. surface)). With this configuration, it is possible to effectively correct the field curvature aberration at the wide angle end and the spherical aberration at the telephoto end.

また、この変倍光学系ZLは、以下に示す条件式(5)を満足することが望ましい。   In addition, it is desirable that the variable magnification optical system ZL satisfies the following conditional expression (5).

0.10 < f2/f2a < 0.55 (5)
但し、
f2:第2レンズ群G2の焦点距離
f2a:防振レンズ群VLの焦点距離
0.10 <f2 / f2a <0.55 (5)
However,
f2: focal length of the second lens group G2 f2a: focal length of the image stabilizing lens group VL

条件式(5)は、第2レンズ群G2の焦点距離に対する防振レンズ群VLの焦点距離を規定するための条件式である。この条件式(5)の上限値を上回ると、防振レンズ群VLの屈折力が強くなり、広角端における像面湾曲収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(5)の上限値を0.50にすることが好ましい。反対に、条件式(5)の下限値を下回ると、防振レンズ群VLの屈折力が弱くなり、望遠端におけるコマ収差の補正が困難となるため好ましくない。なお、本願の効果を確実にするために、条件式(5)の下限値を0.20にすることが好ましい。   Conditional expression (5) is a conditional expression for defining the focal length of the image stabilizing lens group VL with respect to the focal length of the second lens group G2. Exceeding the upper limit of conditional expression (5) is not preferable because the refractive power of the image stabilizing lens group VL becomes strong and it becomes difficult to correct field curvature aberration at the wide angle end. In order to secure the effect of the present application, it is preferable to set the upper limit of conditional expression (5) to 0.50. On the other hand, if the lower limit of conditional expression (5) is not reached, the refractive power of the image stabilizing lens group VL becomes weak, and it becomes difficult to correct coma at the telephoto end. In order to secure the effect of the present application, it is preferable to set the lower limit of conditional expression (5) to 0.20.

また、このような変倍光学系ZLにおいて、第3レンズ群G3は、単レンズのみからなることが望ましい。この構成により、望遠端における像面湾曲収差とコマ収差とを効果的に補正することができる。   In such a variable magnification optical system ZL, it is desirable that the third lens group G3 includes only a single lens. With this configuration, it is possible to effectively correct curvature of field aberration and coma at the telephoto end.

また、このような変倍光学系ZLにおいて、第3レンズ群G3を構成する単レンズは、両凹形状であることが望ましい。この構成によっても、望遠端における像面湾曲収差とコマ収差とを効果的に補正することができる。   In such a variable magnification optical system ZL, it is desirable that the single lenses constituting the third lens group G3 have a biconcave shape. Also with this configuration, it is possible to effectively correct field curvature aberration and coma at the telephoto end.

また、このような変倍光学系ZLにおいて、第4レンズ群G4は、少なくとも1面の非球面(例えば、図1における第17面)を有することが望ましい。この構成により、広角端における像面湾曲収差とコマ収差とを効果的に補正することができる。   In such a variable magnification optical system ZL, it is desirable that the fourth lens group G4 has at least one aspheric surface (for example, the seventeenth surface in FIG. 1). With this configuration, it is possible to effectively correct field curvature aberration and coma aberration at the wide angle end.

また、この変倍光学系ZLにおいて、第4レンズ群G4に含まれる非球面を有するレンズ(例えば、図1における非球面正レンズL41)は、第4レンズ群G4の最も物体側に位置することが好ましい。この構成により、望遠端における像面湾曲収差とコマ収差とを効果的に補正することができる。   In the variable magnification optical system ZL, a lens having an aspheric surface (for example, the aspheric positive lens L41 in FIG. 1) included in the fourth lens group G4 is located closest to the object side of the fourth lens group G4. Is preferred. With this configuration, it is possible to effectively correct curvature of field aberration and coma at the telephoto end.

また、この変倍光学系ZLにおいて、第4レンズ群G4に含まれる接合レンズのうち、少なくとも一枚はその接合面が像側に凸向きであることが好ましい(例えば、図1における第19面)。この構成により、広角端における色コマ収差を効果的に補正することができる。   In the zoom optical system ZL, it is preferable that at least one of the cemented lenses included in the fourth lens group G4 has a cemented surface convex toward the image side (for example, the 19th surface in FIG. 1). ). With this configuration, chromatic coma at the wide-angle end can be effectively corrected.

また、この変倍光学系ZLは、広角端状態から望遠端状態に変倍する際に、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少することが好ましい。この構成により、球面収差と像面湾曲の変動を効果的に補正しつつ、所定の変倍比を確保することができる。   Further, in the zoom optical system ZL, when zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group G2 and the third lens group G3 increases, and the third lens group G3 and the fourth lens group G4 It is preferable that the distance from the lens group G4 is reduced. With this configuration, it is possible to ensure a predetermined zoom ratio while effectively correcting variations in spherical aberration and curvature of field.

次に、本実施形態に係る変倍光学系ZLを備えた光学装置であるカメラを図17に基づいて説明する。このカメラ1は、撮影レンズ2として本実施形態に係る変倍光学系ZLを備えたレンズ交換式の所謂ミラーレスカメラである。本カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子により被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。   Next, a camera that is an optical device including the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. This camera 1 is a so-called mirrorless camera of interchangeable lens provided with a variable magnification optical system ZL according to the present embodiment as a photographing lens 2. In the camera 1, light from an object (subject) (not shown) is collected by the photographing lens 2 and is on the imaging surface of the imaging unit 3 via an OLPF (Optical low pass filter) (not shown). A subject image is formed on the screen. Then, the subject image is photoelectrically converted by the photoelectric conversion element provided in the imaging unit 3 to generate an image of the subject. This image is displayed on an EVF (Electronic view finder) 4 provided in the camera 1. Thus, the photographer can observe the subject via the EVF 4.

また、撮影者によって不図示のレリーズボタンが押されると、撮像部3により光電変換された画像が不図示のメモリに記憶される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。なお、本実施形態では、ミラーレスカメラの例を説明したが、カメラ本体にクイックリターンミラーを有しファインダー光学系により被写体を観察する一眼レフタイプのカメラに本実施形態に係る変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。   Further, when a release button (not shown) is pressed by the photographer, an image photoelectrically converted by the imaging unit 3 is stored in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1. In the present embodiment, an example of a mirrorless camera has been described. However, a variable power optical system ZL according to the present embodiment is applied to a single-lens reflex camera that has a quick return mirror in the camera body and observes a subject with a finder optical system. Even when the camera is mounted, the same effect as the camera 1 can be obtained.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

本実施形態では、4群構成の変倍光学系ZLを示したが、以上の構成条件等は、5群、6群等の他の群構成にも適用可能である。また、最も物体側にレンズまたはレンズ群を追加した構成や、最も像側にレンズまたはレンズ群を追加した構成でも構わない。また、レンズ群とは、変倍時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。   In the present embodiment, the variable magnification optical system ZL having the four-group configuration is shown, but the above-described configuration conditions and the like can be applied to other group configurations such as the fifth group and the sixth group. Further, a configuration in which a lens or a lens group is added to the most object side, or a configuration in which a lens or a lens group is added to the most image side may be used. The lens group refers to a portion having at least one lens separated by an air interval that changes during zooming.

また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。この場合、合焦レンズ群はオートフォーカスにも適用でき、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に、前述のように、第1レンズ群G1の少なくとも一部を合焦レンズ群とするのが好ましい。   Alternatively, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object. In this case, the focusing lens group can be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, as described above, it is preferable that at least a part of the first lens group G1 is a focusing lens group.

また、レンズ群または部分レンズ群を光軸に垂直な方向の成分を持つように移動させ、または、光軸を含む面内方向に回転移動(揺動)させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としてもよい。特に、前述のように、第2レンズ群G2の少なくとも一部を防振レンズ群とするのが好ましい。   Also, by moving the lens group or partial lens group so that it has a component in the direction perpendicular to the optical axis, or rotating (swinging) in the in-plane direction including the optical axis, image blur caused by camera shake is corrected. An anti-vibration lens group may be used. In particular, as described above, it is preferable that at least a part of the second lens group G2 is a vibration-proof lens group.

また、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工及び組立調整が容易になり、加工及び組立調整の誤差による光学性能の劣化を妨げるので好ましい。また、像面がずれた場合でも描写性能の劣化が少ないので好ましい。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としても良く、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしても良い。   Further, the lens surface may be formed as a spherical surface, a flat surface, or an aspheric surface. It is preferable that the lens surface is a spherical surface or a flat surface because lens processing and assembly adjustment are facilitated, and deterioration of optical performance due to errors in processing and assembly adjustment is prevented. Further, even when the image plane is deviated, it is preferable because there is little deterioration in drawing performance. When the lens surface is an aspheric surface, the aspheric surface is an aspheric surface by grinding, a glass mold aspheric surface made of glass with an aspheric shape, or a composite aspheric surface made of resin with an aspheric shape on the glass surface. Any aspherical surface may be used. The lens surface may be a diffractive surface, and the lens may be a gradient index lens (GRIN lens) or a plastic lens.

開口絞りSは、第2レンズ群G2中または近傍に配置されるのが好ましいが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用しても良い。   The aperture stop S is preferably disposed in or near the second lens group G2, but the role of the aperture stop S may be substituted by a lens frame without providing a member as an aperture stop.

さらに、各レンズ面には、フレアやゴーストを軽減し高コントラストの高い光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施しても良い。   Further, each lens surface may be provided with an antireflection film having a high transmittance in a wide wavelength region in order to reduce flare and ghost and achieve high optical performance with high contrast.

また、本実施形態の変倍光学系ZLは、変倍比が2.0〜5.0程度である。   The variable magnification optical system ZL of the present embodiment has a variable magnification ratio of about 2.0 to 5.0.

以下、本実施形態に係る変倍光学系ZLの製造方法の概略を、図18を参照して説明する。まず、各レンズを配置してレンズ群G1〜G4をそれぞれ準備する(ステップS100)。また、広角端状態から望遠端状態まで変倍する際に、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が変化するよう配置する(ステップS200)。また、第2レンズ群G2のうちの少なくとも一枚の単レンズを、光軸と直交する方向の成分を含むように移動する防振レンズ群VLとして配置する(ステップS300)。さらにまた、第1レンズ群G1の最も物体側に前述の条件式(1)を満足する負レンズを配置する(ステップS400)。   Hereinafter, an outline of a method for manufacturing the variable magnification optical system ZL according to the present embodiment will be described with reference to FIG. First, the lenses are arranged to prepare lens groups G1 to G4, respectively (step S100). Further, when zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group G1 and the second lens group G2 changes, and the distance between the second lens group G2 and the third lens group G3 changes. Then, it arrange | positions so that the space | interval of the 3rd lens group G3 and 4th lens group G4 may change (step S200). In addition, at least one single lens in the second lens group G2 is arranged as a vibration-proof lens group VL that moves so as to include a component in a direction orthogonal to the optical axis (step S300). Furthermore, a negative lens that satisfies the above-described conditional expression (1) is disposed closest to the object side of the first lens group G1 (step S400).

具体的には、本実施形態では、例えば図1に示すように、物体側から順に、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL11、物体側に凸面を向けた負メニスカスレンズL12、及び、物体側に凸面を向けた正メニスカスレンズL13を配置して第1レンズ群G1とし、物体側から順に、両凸レンズL21、及び、物体側に凸面を向けた負メニスカスレンズL22と両凸レンズL23との接合レンズを配置して第2レンズ群G2とし、両凹レンズL31を配置して第3レンズ群G3とし、物体側から順に、物体側に凸面を向けた正メニスカスレンズ形状の非球面正レンズL41、及び、物体側に凹面を向けた正メニスカスレンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズを配置して第4レンズ群G4とする。このようにして準備した各レンズ群を上述の手順で配置して変倍光学系ZLを製造する。   Specifically, in the present embodiment, for example, as shown in FIG. 1, in order from the object side, a negative meniscus negative lens L11 having a negative meniscus lens shape with a convex surface facing the object side, and a negative meniscus with a convex surface facing the object side. A lens L12 and a positive meniscus lens L13 having a convex surface facing the object side are arranged as a first lens group G1, and in order from the object side, a biconvex lens L21 and a negative meniscus lens L22 having a convex surface facing the object side; A cemented lens with a biconvex lens L23 is arranged to form a second lens group G2, and a biconcave lens L31 is arranged to form a third lens group G3. A non-positive meniscus lens having a convex surface facing the object side in order from the object side. A spherical positive lens L41, and a cemented lens of a positive meniscus lens L42 having a concave surface facing the object side and a negative meniscus lens L43 having a concave surface facing the object side are arranged to form a fourth lens. And's group G4. The lens groups thus prepared are arranged according to the above-described procedure to manufacture the variable magnification optical system ZL.

以下、本願の各実施例を、図面に基づいて説明する。なお、図1、図5、図9及び図13は、各実施例に係る変倍光学系ZL(ZL1〜ZL4)の構成及び屈折力配分並びに無限遠合焦状態から近距離合焦状態への合焦状態の変化における各レンズ群の移動の様子を示す断面図である。また、これらの変倍光学系ZL1〜ZL4の断面図の下部には、広角端状態(W)から望遠端状態(T)に変倍する際の各レンズ群G1〜G4の光軸に沿った移動方向が矢印で示されている。また、図1、図5、図9及び図13に示すように、第1〜第4実施例に係る変倍光学系ZL1〜ZL4は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。そして、広角端状態から望遠端状態への変倍に際し、第1レンズ群G1と第2レンズ群G2との空気間隔が変化し、第2レンズ群G2と第3レンズ群G3との空気間隔が増大し、第3レンズ群G3と第4レンズ群G4との空気間隔が減少するように、各レンズ群の間隔が変化する。   Hereinafter, each example of the present application will be described with reference to the drawings. 1, FIG. 5, FIG. 9 and FIG. 13 show the configuration and refractive power distribution of the variable magnification optical system ZL (ZL1 to ZL4) according to each example, and from the infinitely focused state to the short-distance focused state. It is sectional drawing which shows the mode of the movement of each lens group in the change of a focusing state. Further, in the lower part of the sectional views of these zoom optical systems ZL1 to ZL4, along the optical axes of the lens groups G1 to G4 when zooming from the wide-angle end state (W) to the telephoto end state (T) The direction of movement is indicated by an arrow. As shown in FIGS. 1, 5, 9, and 13, the variable magnification optical systems ZL1 to ZL4 according to the first to fourth examples are first lenses having negative refractive power in order from the object side. The lens unit includes a group G1, a second lens group G2 having a positive refractive power, a third lens group G3 having a negative refractive power, and a fourth lens group G4 having a positive refractive power. Then, during zooming from the wide-angle end state to the telephoto end state, the air gap between the first lens group G1 and the second lens group G2 changes, and the air gap between the second lens group G2 and the third lens group G3 changes. The distance between the lens groups changes so that the air distance between the third lens group G3 and the fourth lens group G4 decreases and increases.

各実施例において、非球面は、光軸に垂直な方向の高さをyとし、高さyにおける各非球面の頂点の接平面から各非球面までの光軸に沿った距離(サグ量)をS(y)とし、基準球面の曲率半径(近軸曲率半径)をrとし、円錐定数をκとし、n次の非球面係数をAnとしたとき、以下の式(a)で表される。   In each embodiment, the height of the aspheric surface in the direction perpendicular to the optical axis is y, and the distance (sag amount) along the optical axis from the tangential plane of the apex of each aspheric surface to each aspheric surface at height y. Is S (y), r is the radius of curvature of the reference sphere (paraxial radius of curvature), κ is the conic constant, and An is the nth-order aspheric coefficient, and is expressed by the following equation (a). .

S(y)=(y2/r)/{1+(1−κ×y2/r21/2
+A4×y4+A6×y6+A8×y8+A10×y10 (a)
S (y) = (y 2 / r) / {1+ (1−κ × y 2 / r 2 ) 1/2 }
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10 (a)

なお、各実施例において、2次の非球面係数A2は0である。また、各実施例の表中において、非球面には面番号の右側に*印を付している。また、以降の実施例において、「E−n」は「×10-n」を示す。 In each embodiment, the secondary aspheric coefficient A2 is zero. In the table of each example, an aspherical surface is marked with * on the right side of the surface number. In the following examples, “E−n” indicates “× 10 −n ”.

〔第1実施例〕
図1は、第1実施例に係る変倍光学系ZL1の構成を示す図である。この図1に示す変倍光学系ZL1において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL11、物体側に凸面を向けた負メニスカスレンズL12、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。ここで、非球面負レンズL11は、像側のガラスレンズ面(第2面)に樹脂層を設け、その樹脂層の像側の面(第3面)が非球面形状に形成されている。第2レンズ群G2は、物体側から順に、両凸レンズL21、及び、物体側に凸面を向けた負メニスカスレンズL22と両凸レンズL23との接合レンズから構成されている。第3レンズ群G3は、両凹レンズL31から構成されている。第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズ形状の非球面正レンズL41、及び、物体側に凹面を向けた正メニスカスレンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズから構成されている。ここで、非球面正レンズL41はその像側の面(第17面)が非球面形状に形成されている。
[First embodiment]
FIG. 1 is a diagram showing a configuration of a variable magnification optical system ZL1 according to the first example. In the variable magnification optical system ZL1 shown in FIG. 1, the first lens group G1 includes, in order from the object side, an aspheric negative lens L11 having a negative meniscus lens shape with a convex surface facing the object side, and a negative surface with a convex surface facing the object side. It comprises a meniscus lens L12 and a positive meniscus lens L13 having a convex surface facing the object side. Here, in the aspheric negative lens L11, a resin layer is provided on the glass lens surface (second surface) on the image side, and the image side surface (third surface) of the resin layer is formed in an aspheric shape. The second lens group G2 includes, in order from the object side, a biconvex lens L21 and a cemented lens of a negative meniscus lens L22 having a convex surface facing the object side and a biconvex lens L23. The third lens group G3 is composed of a biconcave lens L31. The fourth lens group G4 includes, in order from the object side, an aspheric positive lens L41 having a positive meniscus lens shape with a convex surface facing the object side, a positive meniscus lens L42 with a concave surface facing the object side, and a concave surface facing the object side. Further, it is composed of a cemented lens with a negative meniscus lens L43. Here, the image-side surface (the 17th surface) of the aspherical positive lens L41 is formed in an aspherical shape.

また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して第2レンズ群G2とともに移動する。また、無限遠から近距離物体への合焦は、第1レンズ群G1を物体方向に繰り出す(移動させる)ことにより行う。   The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the second lens group G2 upon zooming from the wide-angle end state to the telephoto end state. Further, focusing from infinity to a close object is performed by extending (moving) the first lens group G1 in the object direction.

また、像ぶれ補正(防振)は、第2レンズ群G2の両凸レンズL21を防振レンズ群VLとし、この防振レンズ群VLを光軸と直交する方向の成分を含むように移動させることにより行う。   In image blur correction (anti-shake), the biconvex lens L21 of the second lens group G2 is used as the anti-shake lens group VL, and the anti-shake lens group VL is moved so as to include a component in a direction perpendicular to the optical axis. To do.

なお、全系の焦点距離がfで、防振係数(像ぶれ補正での防振レンズ群VLの移動量に対する結像面での像移動量の比)がKのレンズで角度θの回転ぶれを補正するには、ぶれ補正用の防振レンズ群VLを(f・tanθ)/Kだけ光軸と直交方向に移動させればよい(以降の実施例においても同様である)。この第1実施例の広角端状態においては、防振係数は0.50であり、焦点距離は18.50(mm)であるので、0.43°の回転ぶれを補正するための防振レンズ群VLの移動量は0.28(mm)である。また、この第1実施例の望遠端状態においては、防振係数は0.83であり、焦点距離は53.40(mm)であるので、0.26°の回転ぶれを補正するための防振レンズ群VLの移動量は0.29(mm)である。   It is to be noted that the focal length of the entire system is f, and the image stabilization coefficient (ratio of the amount of image movement on the imaging surface to the amount of movement of the image stabilization lens group VL in image blur correction) is K. Can be corrected by moving the image stabilizing lens group VL for blur correction by (f · tan θ) / K in the direction orthogonal to the optical axis (the same applies to the following embodiments). In the first embodiment, in the wide-angle end state, the image stabilization coefficient is 0.50 and the focal length is 18.50 (mm). Therefore, the image stabilization lens for correcting the rotation blur of 0.43 ° is used. The movement amount of the group VL is 0.28 (mm). Further, in the telephoto end state of the first embodiment, since the image stabilization coefficient is 0.83 and the focal length is 53.40 (mm), the anti-vibration for correcting the rotation blur of 0.26 °. The moving amount of the vibration lens group VL is 0.29 (mm).

以下の表1に、第1実施例の諸元の値を掲げる。この表1において、fは焦点距離、FNOはFナンバー、2ωは画角、TLは全長をそれぞれ表している。ここで、全長TLは、無限遠合焦時のレンズ面の第1面から像面Iまでの光軸上の距離を表している。さらに、レンズデータの第1欄mは、光線の進行する方向に沿った物体側からのレンズ面の順序(面番号)を、第2欄rは、各レンズ面の曲率半径を、第3欄dは、各光学面から次の光学面までの光軸上の距離(面間隔)を、第4欄νd及び第5欄ndは、d線(λ=587.6nm)に対するアッベ数及び屈折率を示している。また、曲率半径0.0000は平面を示し、空気の屈折率1.00000は省略してある。なお、表1に示す面番号1〜20は、図1に示す番号1〜20に対応している。また、レンズ群焦点距離は第1〜第4レンズ群G1〜G4の各々の始面と焦点距離を示している。ここで、以下の全ての諸元値において掲載されている焦点距離f、曲率半径r、面間隔d、その他長さの単位は一般に「mm」が使われるが、光学系は、比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、これらの符号の説明及び諸元表の説明は以降の実施例においても同様である。   Table 1 below lists values of specifications of the first embodiment. In Table 1, f represents the focal length, FNO represents the F number, 2ω represents the angle of view, and TL represents the total length. Here, the total length TL represents the distance on the optical axis from the first surface of the lens surface to the image plane I when focusing on infinity. Further, the first column m of the lens data indicates the order (surface number) of the lens surfaces from the object side along the traveling direction of the light beam, the second column r indicates the curvature radius of each lens surface, and the third column. d is the distance on the optical axis from each optical surface to the next optical surface (surface interval). The fourth column νd and the fifth column nd are Abbe numbers and refractive indices for the d-line (λ = 587.6 nm). Is shown. The radius of curvature of 0.0000 indicates a plane, and the refractive index of air of 1.0000 is omitted. The surface numbers 1 to 20 shown in Table 1 correspond to the numbers 1 to 20 shown in FIG. The lens group focal length indicates the start surface and focal length of each of the first to fourth lens groups G1 to G4. Here, the focal length f, the radius of curvature r, the surface interval d, and other length units listed in all the following specification values are generally “mm”, but the optical system is proportionally enlarged or proportional. Since the same optical performance can be obtained even if the image is reduced, the present invention is not limited to this. The description of these symbols and the description of the specification table are the same in the following embodiments.

(表1)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f = 18.50 〜 45.00 〜 53.40
FNO= 3.64 〜 5.35 〜 5.88
2ω = 78.1 〜 35.0 〜 29.7
TL = 122.38 〜 119.93 〜 124.96

[レンズデータ]
m r d νd nd
1 66.21 1.60 63.9 1.51680
2 15.70 0.17 38.1 1.55389
3* 13.42 10.50
4 262.72 1.20 58.1 1.62299
5 21.53 1.10
6 21.37 4.40 28.4 1.72825
7 57.46 d7
8 1434.71 1.60 70.3 1.48749
9 -51.87 1.50
10 16.18 0.83 29.4 1.95000
11 11.88 4.50 63.9 1.51680
12 -162.43 1.50
13 0.00 d13 開口絞りS
14 -60.18 1.50 52.77 1.74100
15 54.80 d15
16 135.21 1.50 56.2 1.52444
17* 168.80 0.50
18 -337.52 3.50 59.4 1.58313
19 -14.39 0.80 35.3 1.74950
20 -21.48 Bf

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 -27.23
第2レンズ群 8 28.21
第3レンズ群 14 -38.49
第4レンズ群 16 44.36
(Table 1)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f = 18.50 to 45.00 to 53.40
FNO = 3.64 to 5.35 to 5.88
2ω = 78.1 to 35.0 to 29.7
TL = 122.38 to 119.93 to 124.96

[Lens data]
m r d νd nd
1 66.21 1.60 63.9 1.51680
2 15.70 0.17 38.1 1.55389
3 * 13.42 10.50
4 262.72 1.20 58.1 1.62299
5 21.53 1.10
6 21.37 4.40 28.4 1.72825
7 57.46 d7
8 1434.71 1.60 70.3 1.48749
9 -51.87 1.50
10 16.18 0.83 29.4 1.95000
11 11.88 4.50 63.9 1.51680
12 -162.43 1.50
13 0.00 d13 Aperture stop S
14 -60.18 1.50 52.77 1.74100
15 54.80 d15
16 135.21 1.50 56.2 1.52444
17 * 168.80 0.50
18 -337.52 3.50 59.4 1.58313
19 -14.39 0.80 35.3 1.74950
20 -21.48 Bf

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 -27.23
Second lens group 8 28.21
Third lens group 14 -38.49
Fourth lens group 16 44.36

この第1実施例において、第3面、及び、第17面の各レンズ面は非球面形状に形成されている。次の表2に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the first embodiment, the third and seventeenth lens surfaces are aspherical. The following Table 2 shows the data of aspheric surfaces, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.

(表2)
κ A4 A6 A8 A10
第 3面 -1.0 2.89951E-05 1.00217E-07 -2.55575E-10 1.58270E-12
第17面 -1.0 2.22627E-05 1.13930E-08 2.20954E-10 -3.78091E-12
(Table 2)
κ A4 A6 A8 A10
3rd surface -1.0 2.89951E-05 1.00217E-07 -2.55575E-10 1.58270E-12
17th surface -1.0 2.22627E-05 1.13930E-08 2.20954E-10 -3.78091E-12

この第1実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d7、第2レンズ群G2とともに移動する開口絞りSと第3レンズ群G3との軸上空気間隔d13、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d15、及び、バックフォーカスBfは、変倍に際して変化する。次の表3に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔及びバックフォーカスBfの値を示す。なお、バックフォーカスBfは、最も像側のレンズ面(図1における第20面)から像面Iまでの光軸上の距離を表している。この説明は以降の実施例においても同様である。   In this first example, the axial air distance d7 between the first lens group G1 and the second lens group G2, and the axial air distance d13 between the aperture stop S moving with the second lens group G2 and the third lens group G3. The on-axis air distance d15 between the third lens group G3 and the fourth lens group G4 and the back focus Bf change during zooming. Table 3 below shows the values of the variable interval and the back focus Bf at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing on infinity. Note that the back focus Bf represents the distance on the optical axis from the most image side lens surface (the 20th surface in FIG. 1) to the image surface I. This description is the same in the following embodiments.

(表3)
[可変間隔データ]
広角端 中間焦点距離 望遠端
f 18.50 45.00 53.40
d7 35.325 5.896 3.068
d13 4.498 8.862 10.192
d15 7.548 2.891 1.561
Bf 38.600 65.580 73.437
(Table 3)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end f 18.50 45.00 53.40
d7 35.325 5.896 3.068
d13 4.498 8.862 10.192
d15 7.548 2.891 1.561
Bf 38.600 65.580 73.437

次の表4に、この第1実施例における各条件式対応値を示す。なおこの表4において、R1は第1レンズ群G1の最も物体側にある負レンズ(非球面正レンズL11)の物体側面の曲率半径を、R2は第1レンズ群G1の最も物体側にある負レンズの像側面の曲率半径を、f1は第1レンズ群G1の焦点距離を、f2は第2レンズ群G2の焦点距離を、f3は第3レンズ群G3の焦点距離を、f4は第4レンズ群G4の焦点距離を、f2aは第2レンズ群G2における防振レンズ群VLの焦点距離を、d3wは広角端状態における第3レンズ群G3と第4レンズ群G4との空気間隔を、dStは望遠端状態における開口絞りSと第3レンズ群G3との空気間隔を、それぞれ表している。以上の符号の説明は以降の実施例においても同様である。   Table 4 below shows values corresponding to the conditional expressions in the first embodiment. In Table 4, R1 is the radius of curvature of the object side surface of the negative lens (aspheric positive lens L11) closest to the object side of the first lens group G1, and R2 is the negative radius closest to the object side of the first lens group G1. The radius of curvature of the image side surface of the lens, f1 is the focal length of the first lens group G1, f2 is the focal length of the second lens group G2, f3 is the focal length of the third lens group G3, and f4 is the fourth lens. The focal length of the group G4, f2a is the focal length of the anti-vibration lens group VL in the second lens group G2, d3w is the air gap between the third lens group G3 and the fourth lens group G4 in the wide-angle end state, and dSt is The air gap between the aperture stop S and the third lens group G3 in the telephoto end state is shown. The description of the above symbols is the same in the following embodiments.

(表4)
(1)(R2+R1)/(R2−R1) =-1.62
(2)f4/d3w =6.11
(3)f1/f3 =0.71
(4)dSt/f4 =0.23
(5)f2/f2a =0.27
(Table 4)
(1) (R2 + R1) / (R2-R1) = -1.62
(2) f4 / d3w = 6.11
(3) f1 / f3 = 0.71
(4) dSt / f4 = 0.23
(5) f2 / f2a = 0.27

このように、この第1実施例に係る変倍光学系ZL1は、上記条件式(1)〜(5)を全て満足している。   Thus, the variable magnification optical system ZL1 according to the first example satisfies all the conditional expressions (1) to (5).

この第1実施例の広角端状態での無限遠合焦状態の収差図を図2(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図3に示し、望遠端状態での無限遠合焦状態の収差図を図4(a)に示す。また、第1実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.28)を行ったときのコマ収差図を図2(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.29)を行った時のコマ収差図を図4(b)に示す。各収差図において、FNOはFナンバーを、Yは半画角に対する像高を、dはd線(λ=587.6nm)を、gはg線(λ=435.6nm)を、それぞれ示している。また、非点収差を示す収差図において実線はサジタル像面を示し、破線はメリディオナル像面を示している。この収差図の説明は以降の実施例においても同様である。各収差図から明らかなように、第1実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、また手ぶれ補正時の収差変動も良好であり、優れた結像性能を有することがわかる。   FIG. 2A shows an aberration diagram in the infinite focus state in the wide-angle end state of the first embodiment, and FIG. 3 shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 4A shows an aberration diagram in the infinitely focused state in the state. FIG. 2B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.28) is performed in the infinite focus state at the wide-angle end state in the first embodiment. FIG. 4B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.29) is performed in the infinitely focused state at the telephoto end state. In each aberration diagram, FNO is an F number, Y is an image height with respect to a half angle of view, d is a d-line (λ = 587.6 nm), and g is a g-line (λ = 435.6 nm). Yes. In the aberration diagrams showing astigmatism, the solid line shows the sagittal image plane, and the broken line shows the meridional image plane. The explanation of this aberration diagram is the same in the following examples. As is apparent from the respective aberration diagrams, in the first embodiment, various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and aberration fluctuations at the time of camera shake correction are also excellent. It can be seen that the imaging performance is excellent.

〔第2実施例〕
図5は、第2実施例に係る変倍光学系ZL2の構成を示す図である。この図5に示す変倍光学系ZL2において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL11、両凹レンズL12、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。ここで、非球面負レンズL11は、像側のガラスレンズ面(第2面)に樹脂層を設け、その樹脂層の像側の面(第3面)が非球面形状に形成されている。第2レンズ群G2は、物体側から順に、両凸レンズL21、及び、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズから構成されている。第3レンズ群G3は、両凹レンズL31から構成されている。第4レンズ群G4は、物体側から順に、両凸レンズ形状の非球面正レンズL41、及び、両凸レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズから構成されている。ここで、非球面正レンズL41はその像側の面(第17面)が非球面形状に形成されている。
[Second Embodiment]
FIG. 5 is a diagram showing a configuration of the variable magnification optical system ZL2 according to the second example. In the variable magnification optical system ZL2 shown in FIG. 5, the first lens group G1 includes, in order from the object side, a negative meniscus aspheric negative lens L11 having a convex surface facing the object side, a biconcave lens L12, and an object side. And a positive meniscus lens L13 having a convex surface. Here, in the aspheric negative lens L11, a resin layer is provided on the glass lens surface (second surface) on the image side, and the image side surface (third surface) of the resin layer is formed in an aspheric shape. The second lens group G2 includes, in order from the object side, a biconvex lens L21, and a cemented lens of a negative meniscus lens L22 having a convex surface facing the object side and a positive meniscus lens L23 having a convex surface facing the object side. . The third lens group G3 is composed of a biconcave lens L31. The fourth lens group G4 includes, in order from the object side, a biconvex aspherical positive lens L41, and a cemented lens of a biconvex lens L42 and a negative meniscus lens L43 having a concave surface facing the object. Here, the image-side surface (the 17th surface) of the aspherical positive lens L41 is formed in an aspherical shape.

また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して第2レンズ群G2とともに移動する。また、無限遠から近距離物体への合焦は、第1レンズ群G1を物体方向に繰り出す(移動させる)ことにより行う。   The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the second lens group G2 upon zooming from the wide-angle end state to the telephoto end state. Further, focusing from infinity to a close object is performed by extending (moving) the first lens group G1 in the object direction.

また、像ぶれ補正(防振)は、第2レンズ群G2の両凸レンズL21を防振レンズ群VLとし、この防振レンズ群VLを光軸と直交する方向の成分を含むように移動させることにより行う。この第2実施例の広角端状態においては、防振係数は0.80であり、焦点距離は18.50(mm)であるので、0.45°の回転ぶれを補正するための防振レンズ群VLの移動量は0.18(mm)である。また、この第2実施例の望遠端状態においては、防振係数は1.27であり、焦点距離は53.40(mm)であるので、0.26°の回転ぶれを補正するための防振レンズ群VLの移動量は0.19(mm)である。   In image blur correction (anti-shake), the biconvex lens L21 of the second lens group G2 is used as the anti-shake lens group VL, and the anti-shake lens group VL is moved so as to include a component in a direction perpendicular to the optical axis. To do. In the second embodiment, in the wide-angle end state, the image stabilization coefficient is 0.80 and the focal length is 18.50 (mm). Therefore, the image stabilization lens for correcting the rotation blur of 0.45 ° is used. The movement amount of the group VL is 0.18 (mm). In the telephoto end state of the second embodiment, the image stabilization coefficient is 1.27 and the focal length is 53.40 (mm). The moving amount of the vibration lens group VL is 0.19 (mm).

以下の表5に、この第2実施例の諸元の値を掲げる。なお、表5に示す面番号1〜20は、図5に示す番号1〜20に対応している。   Table 5 below shows values of specifications of the second embodiment. The surface numbers 1 to 20 shown in Table 5 correspond to the numbers 1 to 20 shown in FIG.

(表5)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f = 18.50 〜 45.00 〜 53.40
FNO= 3.64 〜 5.35 〜 5.88
2ω = 78.1 〜 35.5 〜 29.7
TL = 120.79 〜 114.99 〜 121.16

[レンズデータ]
m r d νd nd
1 84.49 1.60 63.9 1.51680
2 15.40 0.17 38.2 1.55389
3* 13.42 11.50
4 -137.54 1.20 58.1 1.62299
5 51.74 1.20
6 30.42 3.50 27.6 1.75520
7 77.73 d7
8 52.97 1.60 82.6 1.49782
9 -84.25 1.50
10 18.26 0.83 29.4 1.95000
11 13.53 4.50 70.3 1.48749
12 1657.95 1.50
13 0.00 d13 開口絞りS
14 -92.69 1.50 52.2 1.51742
15 31.73 d15
16 374.19 1.50 56.4 1.52444
17* -215.67 0.50
18 28.47 6.00 58.8 1.51823
19 -32.76 0.80 34.9 1.80100
20 -103.60 Bf

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 -29.64
第2レンズ群 8 30.11
第3レンズ群 14 -45.50
第4レンズ群 16 47.38
(Table 5)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f = 18.50 to 45.00 to 53.40
FNO = 3.64 to 5.35 to 5.88
2ω = 78.1 to 35.5 to 29.7
TL = 120.79-114.99-121.16

[Lens data]
m r d νd nd
1 84.49 1.60 63.9 1.51680
2 15.40 0.17 38.2 1.55389
3 * 13.42 11.50
4 -137.54 1.20 58.1 1.62299
5 51.74 1.20
6 30.42 3.50 27.6 1.75520
7 77.73 d7
8 52.97 1.60 82.6 1.49782
9 -84.25 1.50
10 18.26 0.83 29.4 1.95000
11 13.53 4.50 70.3 1.48749
12 1657.95 1.50
13 0.00 d13 Aperture stop S
14 -92.69 1.50 52.2 1.51742
15 31.73 d15
16 374.19 1.50 56.4 1.52444
17 * -215.67 0.50
18 28.47 6.00 58.8 1.51823
19 -32.76 0.80 34.9 1.80 100
20 -103.60 Bf

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 -29.64
Second lens group 8 30.11
Third lens group 14 -45.50
Fourth lens group 16 47.38

この第2実施例において、第3面、及び、第17面の各レンズ面は非球面形状に形成されている。次の表6に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the second embodiment, the third and seventeenth lens surfaces are aspherical. Table 6 below shows the aspheric data, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.

(表6)
κ A4 A6 A8 A10
第 3面 -1.0 3.22810E-05 9.22930E-08 -2.01905E-10 1.43420E-12
第17面 -1.0 1.93725E-05 3.05794E-08 1.79558E-10 -2.62590E-13
(Table 6)
κ A4 A6 A8 A10
3rd surface -1.0 3.22810E-05 9.22930E-08 -2.01905E-10 1.43420E-12
17th surface -1.0 1.93725E-05 3.05794E-08 1.79558E-10 -2.62590E-13

この第2実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d7、第2レンズ群G2とともに移動する開口絞りSと第3レンズ群G3との軸上空気間隔d13、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d15、及び、バックフォーカスBfは、変倍に際して変化する。次の表7に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔及びバックフォーカスBfの値を示す。   In the second embodiment, the axial air distance d7 between the first lens group G1 and the second lens group G2, and the axial air distance d13 between the aperture stop S moving with the second lens group G2 and the third lens group G3. The on-axis air distance d15 between the third lens group G3 and the fourth lens group G4 and the back focus Bf change during zooming. Table 7 below shows the values of the variable interval and the back focus Bf at the respective focal lengths in the wide-angle end state, the intermediate focal length state, and the telephoto end state when focusing on infinity.

(表7)
[可変間隔データ]
広角端 中間焦点距離 望遠端
f 18.50 45.0 53.4
d7 39.110 4.869 1.288
d13 13.462 15.786 15.803
d15 8.812 5.411 5.368
Bf 20.000 49.520 59.299
(Table 7)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end f 18.50 45.0 53.4
d7 39.110 4.869 1.288
d13 13.462 15.786 15.803
d15 8.812 5.411 5.368
Bf 20.000 49.520 59.299

次の表8に、この第2実施例における各条件式対応値を示す。   Table 8 below shows values corresponding to the conditional expressions in the second embodiment.

(表8)
(1)(R2+R1)/(R2−R1) =-1.45
(2)f4/d3w =5.38
(3)f1/f3 =0.65
(4)dSt/f4 =0.33
(5)f2/f2a =0.46
(Table 8)
(1) (R2 + R1) / (R2-R1) = -1.45
(2) f4 / d3w = 5.38
(3) f1 / f3 = 0.65
(4) dSt / f4 = 0.33
(5) f2 / f2a = 0.46

このように、この第2実施例に係る変倍光学系ZL2は、上記条件式(1)〜(5)を全て満足している。   Thus, the zoom optical system ZL2 according to the second example satisfies all the conditional expressions (1) to (5).

この第2実施例の広角端状態での無限遠合焦状態の収差図を図6(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図7に示し、望遠端状態での無限遠合焦状態の収差図を図8(a)に示す。また、第2実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.18)を行ったときのコマ収差図を図6(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.19)を行ったときのコマ収差図を図8(b)に示す。各収差図から明らかなように、第2実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、また手ぶれ補正時の収差変動も良好であり、優れた結像性能を有することがわかる。   FIG. 6A shows an aberration diagram in the infinite focus state in the wide-angle end state of this second embodiment, and FIG. 7 shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 8A shows an aberration diagram in the infinitely focused state in the state. FIG. 6B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.18) is performed in the infinite focus state at the wide-angle end state in the second embodiment. FIG. 8B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.19) is performed in the infinitely focused state at the telephoto end state. As is apparent from the respective aberration diagrams, in the second embodiment, various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and aberration fluctuations at the time of camera shake correction are also excellent. It can be seen that the imaging performance is excellent.

〔第3実施例〕
図9は、第3実施例に係る変倍光学系ZL3の構成を示す図である。この図9に示す変倍光学系ZL3において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL11、両凹レンズL12、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。ここで、非球面負レンズL11は、像側のガラスレンズ面(第2面)に樹脂層を設け、その樹脂層の像側の面(第3面)が非球面形状に形成されている。第2レンズ群G2は、物体側から順に、両凸レンズL21、及び、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズから構成されている。第3レンズ群G3は、両凹レンズL31から構成されている。第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズ形状の非球面正レンズL41、及び、両凸レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズから構成されている。ここで、非球面正レンズL41はその像側の面(第17面)が非球面形状に形成されている。
[Third embodiment]
FIG. 9 is a diagram illustrating a configuration of the variable magnification optical system ZL3 according to the third example. In the zoom optical system ZL3 shown in FIG. 9, the first lens group G1 includes, in order from the object side, a negative meniscus aspheric negative lens L11 having a convex surface facing the object side, a biconcave lens L12, and an object side. And a positive meniscus lens L13 having a convex surface. Here, in the aspheric negative lens L11, a resin layer is provided on the glass lens surface (second surface) on the image side, and the image side surface (third surface) of the resin layer is formed in an aspheric shape. The second lens group G2 includes, in order from the object side, a biconvex lens L21, and a cemented lens of a negative meniscus lens L22 having a convex surface facing the object side and a positive meniscus lens L23 having a convex surface facing the object side. . The third lens group G3 is composed of a biconcave lens L31. The fourth lens group G4 includes, in order from the object side, a positive meniscus aspheric lens L41 having a convex surface facing the object side, and a biconvex lens L42 and a negative meniscus lens L43 having a concave surface facing the object side. It consists of a lens. Here, the image-side surface (the 17th surface) of the aspherical positive lens L41 is formed in an aspherical shape.

また、開口絞りSは、第2レンズ群G2の両凸レンズL21と負メニスカスレンズL22との間に位置し、広角端状態から望遠端状態への変倍に際して第2レンズ群G2とともに移動する。また、無限遠から近距離物体への合焦は、第1レンズ群G1を物体方向に繰り出す(移動させる)ことにより行う。   The aperture stop S is located between the biconvex lens L21 and the negative meniscus lens L22 of the second lens group G2, and moves together with the second lens group G2 upon zooming from the wide-angle end state to the telephoto end state. Further, focusing from infinity to a close object is performed by extending (moving) the first lens group G1 in the object direction.

また、像ぶれ補正(防振)は、第2レンズ群G2の両凸レンズL21を防振レンズ群VLとし、この防振レンズ群VLを光軸と直交する方向の成分を含むように移動させることにより行う。この第3実施例の広角端状態においては、防振係数は0.56であり、焦点距離は18.03(mm)であるので、0.45°の回転ぶれを補正するための防振レンズ群VLの移動量は0.25(mm)である。また、この第3実施例の望遠端状態においては、防振係数は0.92であり、焦点距離は53.63(mm)であるので、0.26°の回転ぶれを補正するための防振レンズ群VLの移動量は0.26(mm)である。   In image blur correction (anti-shake), the biconvex lens L21 of the second lens group G2 is used as the anti-shake lens group VL, and the anti-shake lens group VL is moved so as to include a component in a direction perpendicular to the optical axis. To do. In the third embodiment, in the wide-angle end state, the image stabilization coefficient is 0.56 and the focal length is 18.03 (mm). Therefore, the image stabilization lens for correcting the rotation blur of 0.45 ° is used. The movement amount of the group VL is 0.25 (mm). In the telephoto end state of the third embodiment, the image stabilization coefficient is 0.92, and the focal length is 53.63 (mm). The moving amount of the vibration lens group VL is 0.26 (mm).

以下の表9に、この第3実施例の諸元の値を掲げる。なお、表9に示す面番号1〜20は、図9に示す面番号1〜20に対応している。   Table 9 below shows values of specifications of the third embodiment. The surface numbers 1 to 20 shown in Table 9 correspond to the surface numbers 1 to 20 shown in FIG.

(表9)
[全体諸元]
広角端状態 中間焦点距離状態 望遠端状態
f = 18.03 〜 43.66 〜 53.63
FNO= 3.63 〜 4.10 〜 5.78
2ω = 79.4 〜 63.3 〜 29.7
TL = 127.57 〜 125.30 〜 132.98

[レンズデータ]
m r d νd nd
1 66.53 1.60 63.9 1.51680
2 15.30 0.17 38.2 1.55389
3* 12.92 10.54
4 -4417.66 1.40 58.1 1.62299
5 27.61 2.07
6 26.72 3.05 28.4 1.72825
7 74.43 d7
8 86.65 2.30 63.9 1.51680
9 -105.78 1.01
10 0.00 0.18 開口絞りS
11 19.59 2.61 25.4 1.80518
12 12.86 3.91 52.3 1.51742
13 -266.13 d13
14 -131.20 2.05 52.8 1.74100
15 47.96 d15
16 86.82 1.73 56.4 1.52444
17* 298.28 1.07
18 1340.85 4.44 52.3 1.51742
19 -14.96 1.46 25.4 1.80518
20 -21.92 Bf

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 -26.64
第2レンズ群 8 30.89
第3レンズ群 14 -47.17
第4レンズ群 16 45.15
(Table 9)
[Overall specifications]
Wide-angle end state Intermediate focal length state Telephoto end state f = 18.03 to 43.66 to 53.63
FNO = 3.63 to 4.10 to 5.78
2ω = 79.4 to 63.3 to 29.7
TL = 127.57 to 125.30 to 132.98

[Lens data]
m r d νd nd
1 66.53 1.60 63.9 1.51680
2 15.30 0.17 38.2 1.55389
3 * 12.92 10.54
4 -4417.66 1.40 58.1 1.62299
5 27.61 2.07
6 26.72 3.05 28.4 1.72825
7 74.43 d7
8 86.65 2.30 63.9 1.51680
9 -105.78 1.01
10 0.00 0.18 Aperture stop S
11 19.59 2.61 25.4 1.80518
12 12.86 3.91 52.3 1.51742
13 -266.13 d13
14 -131.20 2.05 52.8 1.74100
15 47.96 d15
16 86.82 1.73 56.4 1.52444
17 * 298.28 1.07
18 1340.85 4.44 52.3 1.51742
19 -14.96 1.46 25.4 1.80518
20 -21.92 Bf

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 -26.64
Second lens group 8 30.89
Third lens group 14 -47.17
Fourth lens group 16 45.15

この第3実施例において、第3面、及び、第17面の各レンズ面は非球面形状に形成されている。次の表10に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the third embodiment, the third and seventeenth lens surfaces are aspherical. Table 10 below shows the data of the aspheric surface, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.

(表10)
κ A4 A6 A8 A10
第 3面 -1.0 3.11022E-05 7.96306E-08 -1.01842E-10 1.04228E-12
第17面 -1.0 1.59804E-05 -4.88413E-08 1.46203E-09 -1.17341E-11
(Table 10)
κ A4 A6 A8 A10
3rd surface -1.0 3.11022E-05 7.96306E-08 -1.01842E-10 1.04228E-12
17th surface -1.0 1.59804E-05 -4.88413E-08 1.46203E-09 -1.17341E-11

この第3実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d7、第2レンズ群G2と第3レンズ群G3との軸上空気間隔d13、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d15、及び、バックフォーカスBfは、変倍に際して変化する。次の表11に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。   In the third embodiment, the axial air distance d7 between the first lens group G1 and the second lens group G2, the axial air distance d13 between the second lens group G2 and the third lens group G3, and the third lens group G3. The on-axis air distance d15 between the first lens group G4 and the fourth lens group G4 and the back focus Bf change during zooming. Table 11 below shows the values of the variable interval and the back focus at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing on infinity.

(表11)
[可変間隔データ]
広角端 中間焦点距離 望遠端
f 18.03 43.66 53.63
d7 34.649 4.502 0.909
d13 4.001 10.088 2.744
d15 10.297 4.119 2.744
Bf 37.161 65.048 73.106
(Table 11)
[Variable interval data]
Wide angle end Intermediate focal length Telephoto end f 18.03 43.66 53.63
d7 34.649 4.502 0.909
d13 4.001 10.088 2.744
d15 10.297 4.119 2.744
Bf 37.161 65.048 73.106

次の表12に、この第3実施例における各条件式対応値を示す。   Table 12 below shows values corresponding to the conditional expressions in the third embodiment.

(表12)
(1)(R2+R1)/(R2−R1) =-1.60
(2)f4/d3w =4.38
(3)f1/f3 =0.56
(4)dSt/f4 =0.38
(5)f2/f2a =0.33
(Table 12)
(1) (R2 + R1) / (R2-R1) = -1.60
(2) f4 / d3w = 4.38
(3) f1 / f3 = 0.56
(4) dSt / f4 = 0.38
(5) f2 / f2a = 0.33

このように、この第3実施例に係る変倍光学系ZL3は、上記条件式(1)〜(5)を全て満足している。   Thus, the variable magnification optical system ZL3 according to the third example satisfies all the conditional expressions (1) to (5).

この第3実施例の広角端状態での無限遠合焦状態の収差図を図10(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図11に示し、望遠端状態での無限遠合焦状態の収差図を図12(a)に示す。また、第3実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.25)を行ったときのコマ収差図を図10(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.26)を行ったときのコマ収差図を図12(b)に示す。各収差図から明らかなように、第3実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、また手ぶれ補正時の収差変動も良好であり、優れた結像性能を有することがわかる。   FIG. 10A shows an aberration diagram in the infinite focus state in the wide-angle end state of the third embodiment, and FIG. 11 shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 12A shows an aberration diagram in the infinitely focused state in the state. FIG. 10B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.25) is performed in the infinite focus state at the wide-angle end state in the third example. FIG. 12B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.26) is performed in the infinitely focused state at the telephoto end state. As is apparent from the respective aberration diagrams, in the third example, various aberrations are favorably corrected in each focal length state from the wide-angle end state to the telephoto end state, and aberration fluctuations at the time of camera shake correction are also excellent. It can be seen that the imaging performance is excellent.

〔第4実施例〕
図13は、本願の第4実施例に係る変倍光学系ZL4の構成を示す図である。この図13の変倍光学系ZL4において、第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズ形状の非球面負レンズL11、両凹レンズL12、及び、物体側に凸面を向けた正メニスカスレンズL13から構成されている。ここで、非球面負レンズL11は、像側のガラスレンズ面(第2面)に樹脂層を設け、その樹脂層の像側の面(第3面)が非球面形状に形成されている。第2レンズ群G2は、物体側から順に、両凸レンズL21、物体側に凸面を向けた負メニスカスレンズL22と物体側に凸面を向けた正メニスカスレンズL23との接合レンズ、及び、物体側に凸面を向けた正メニスカスレンズL24から構成されている。第3レンズ群G3は、両凹レンズL31から構成されている。第4レンズ群G4は、物体側から順に、両凹レンズ形状の非球面負レンズL41、及び、両凸レンズL42と物体側に凹面を向けた負メニスカスレンズL43との接合レンズから構成されている。ここで、非球面負レンズL41はその像側の面(第19面)が非球面形状に形成されている。
[Fourth embodiment]
FIG. 13 is a diagram showing a configuration of a variable magnification optical system ZL4 according to the fourth example of the present application. In the variable magnification optical system ZL4 in FIG. 13, the first lens group G1 includes, in order from the object side, a negative meniscus aspheric negative lens L11 having a convex surface facing the object side, a biconcave lens L12, and an object side. It is composed of a positive meniscus lens L13 having a convex surface. Here, in the aspheric negative lens L11, a resin layer is provided on the glass lens surface (second surface) on the image side, and the image side surface (third surface) of the resin layer is formed in an aspheric shape. The second lens group G2 includes, in order from the object side, a biconvex lens L21, a cemented lens of a negative meniscus lens L22 having a convex surface facing the object side and a positive meniscus lens L23 having a convex surface facing the object side, and a convex surface facing the object side. Is formed from a positive meniscus lens L24. The third lens group G3 is composed of a biconcave lens L31. The fourth lens group G4 includes, in order from the object side, a biconcave lens-shaped aspheric negative lens L41 and a cemented lens of a biconvex lens L42 and a negative meniscus lens L43 having a concave surface facing the object. Here, the image-side surface (19th surface) of the aspheric negative lens L41 is formed in an aspheric shape.

また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に位置し、広角端状態から望遠端状態への変倍に際して第2レンズ群G2とともに移動する。また、無限遠から近距離物体への合焦は、第1レンズ群G1を物体方向に繰り出す(移動させる)ことにより行う。   The aperture stop S is located between the second lens group G2 and the third lens group G3, and moves together with the second lens group G2 upon zooming from the wide-angle end state to the telephoto end state. Further, focusing from infinity to a close object is performed by extending (moving) the first lens group G1 in the object direction.

また、像ぶれ補正(防振)は、第2レンズ群G2の両凸レンズL21を防振レンズ群VLとし、この防振レンズ群VLを光軸と直交する方向の成分を含むように移動させることにより行う。この第4実施例の広角端状態においては、防振係数は0.54であり、焦点距離は18.53(mm)であるので、0.44°の回転ぶれを補正するための防振レンズ群VLの移動量は0.27(mm)である。また、この第4実施例の望遠端状態においては、防振係数は0.86であり、焦点距離は53.71(mm)であるので、0.26°の回転ぶれを補正するための防振レンズ群VLの移動量は0.28(mm)である。   In image blur correction (anti-shake), the biconvex lens L21 of the second lens group G2 is used as the anti-shake lens group VL, and the anti-shake lens group VL is moved so as to include a component in a direction perpendicular to the optical axis. To do. In the fourth embodiment, in the wide-angle end state, the image stabilization coefficient is 0.54 and the focal length is 18.53 (mm). Therefore, the image stabilization lens for correcting the rotation blur of 0.44 ° is used. The movement amount of the group VL is 0.27 (mm). In the telephoto end state of the fourth embodiment, the image stabilization coefficient is 0.86 and the focal length is 53.71 (mm). The moving amount of the vibration lens group VL is 0.28 (mm).

以下の表13に、この第4実施例の諸元の値を掲げる。なお、表13に示す面番号1〜22は、図13に示す番号1〜22に対応している。   Table 13 below lists values of specifications of the fourth embodiment. The surface numbers 1 to 22 shown in Table 13 correspond to the numbers 1 to 22 shown in FIG.

(表13)
広角端状態 中間焦点距離状態 望遠端状態
f = 18.53 〜 43.38 〜 53.71
FNO= 3.47 〜 5.24 〜 6.12
2ω = 78.0 〜 36.4 〜 29.7
TL = 127.58 〜 127.55 〜 135.41

[レンズデータ]
m r d νd nd
1 58.81 1.60 63.9 1.51680
2 15.85 0.17 38.2 1.55389
3* 13.48 9.44
4 -180.66 1.39 58.1 1.62299
5 26.02 1.49
6 26.67 3.49 28.4 1.72825
7 94.09 d7
8 312.58 2.29 63.9 1.51680
9 -58.78 1.49
10 21.84 3.08 23.8 1.84666
11 14.16 2.73 52.2 1.51742
12 33.66 4.05
13 19.49 2.80 52.2 1.51742
14 316.42 1.03
15 0.00 d15 開口絞りS
16 -6000.00 1.60 52.8 1.74100
17 29.14 d17
18 -81.46 1.39 56.4 1.52444
19* 182.48 0.21
20 43.32 5.37 63.9 1.51680
21 -14.00 1.21 35.3 1.74950
22 -20.86 Bf

[レンズ群焦点距離]
レンズ群 始面 焦点距離
第1レンズ群 1 -26.23
第2レンズ群 8 29.14
第3レンズ群 16 -39.13
第4レンズ群 18 44.82
(Table 13)
Wide-angle end state Intermediate focal length state Telephoto end state f = 18.53 to 43.38 to 53.71
FNO = 3.47 to 5.24 to 6.12
2ω = 78.0 to 36.4 to 29.7
TL = 127.58 to 127.55 to 135.41

[Lens data]
m r d νd nd
1 58.81 1.60 63.9 1.51680
2 15.85 0.17 38.2 1.55389
3 * 13.48 9.44
4 -180.66 1.39 58.1 1.62299
5 26.02 1.49
6 26.67 3.49 28.4 1.72825
7 94.09 d7
8 312.58 2.29 63.9 1.51680
9 -58.78 1.49
10 21.84 3.08 23.8 1.84666
11 14.16 2.73 52.2 1.51742
12 33.66 4.05
13 19.49 2.80 52.2 1.51742
14 316.42 1.03
15 0.00 d15 Aperture stop S
16 -6000.00 1.60 52.8 1.74100
17 29.14 d17
18 -81.46 1.39 56.4 1.52444
19 * 182.48 0.21
20 43.32 5.37 63.9 1.51680
21 -14.00 1.21 35.3 1.74950
22 -20.86 Bf

[Lens focal length]
Lens group Start surface Focal length 1st lens group 1 -26.23
Second lens group 8 29.14
Third lens group 16 -39.13
Fourth lens group 18 44.82

この第4実施例において、第3面、及び、第19面の各レンズ面は非球面形状に形成されている。次の表14に、非球面のデータ、すなわち頂点曲率半径R、円錐定数κ及び各非球面定数A4〜A10の値を示す。   In the fourth embodiment, the third and nineteenth lens surfaces are aspherical. Table 14 below shows the data of aspheric surfaces, that is, the values of the vertex curvature radius R, the conic constant κ, and the aspheric constants A4 to A10.

(表14)
κ A4 A6 A8 A10
第 3面 -1.0 2.74278E-05 7.96306E-08 -1.01842E-10 1.04228E-12
第19面 -1.0 2.60580E-05 3.23416E-09 1.06234E-09 -9.17414E-12
(Table 14)
κ A4 A6 A8 A10
3rd surface -1.0 2.74278E-05 7.96306E-08 -1.01842E-10 1.04228E-12
19th surface -1.0 2.60580E-05 3.23416E-09 1.06234E-09 -9.17414E-12

この第4実施例において、第1レンズ群G1と第2レンズ群G2との軸上空気間隔d7、第2レンズ群G2とともに移動する開口絞りSと第3レンズ群G3との軸上空気間隔d15、第3レンズ群G3と第4レンズ群G4との軸上空気間隔d17、及び、バックフォーカスBfは、変倍に際して変化する。次の表15に、無限遠合焦時の広角端状態、中間焦点距離状態、及び、望遠端状態の各焦点距離における可変間隔及びバックフォーカスの値を示す。   In the fourth embodiment, the axial air distance d7 between the first lens group G1 and the second lens group G2, and the axial air distance d15 between the aperture stop S moving with the second lens group G2 and the third lens group G3. The on-axis air distance d17 between the third lens group G3 and the fourth lens group G4 and the back focus Bf change during zooming. Table 15 below shows the values of the variable interval and the back focus at each focal length in the wide-angle end state, the intermediate focal length state, and the telephoto end state at the time of focusing on infinity.

(表15)
広角端 中間焦点距離 望遠端
f 18.53 43.38 53.71
d7 33.970 4.901 1.207
d15 2.413 5.616 6.346
d17 7.546 3.804 2.432
Bf 38.814 68.397 80.595
(Table 15)
Wide angle end Intermediate focal length Telephoto end f 18.53 43.38 53.71
d7 33.970 4.901 1.207
d15 2.413 5.616 6.346
d17 7.546 3.804 2.432
Bf 38.814 68.397 80.595

次の表16に、この第4実施例における各条件式対応値を示す。   Table 16 below shows values corresponding to the conditional expressions in the fourth embodiment.

(表16)
(1)(R2+R1)/(R2−R1) =-1.74
(2)f4/d3w =5.94
(3)f1/f3 =0.67
(4)dSt/f4 =0.17
(5)f2/f2a =0.30
(Table 16)
(1) (R2 + R1) / (R2-R1) = -1.74
(2) f4 / d3w = 5.94
(3) f1 / f3 = 0.67
(4) dSt / f4 = 0.17
(5) f2 / f2a = 0.30

このように、この第4実施例に係る変倍光学系ZL4は、上記条件式(1)〜(5)を全て満足している。   Thus, the zoom optical system ZL4 according to the fourth example satisfies all the conditional expressions (1) to (5).

この第4実施例の広角端状態での無限遠合焦状態の収差図を図14(a)に示し、中間焦点距離状態での無限遠合焦状態の収差図を図15に示し、望遠端状態での無限遠合焦状態の収差図を図16(a)に示す。また、第4実施例の広角端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.27)を行ったときのコマ収差図を図14(b)に示し、望遠端状態での無限遠合焦状態において像ぶれ補正(防振レンズ群VLのシフト量=0.28)を行った時のコマ収差図を図16(b)に示す。各収差図から明らかなように、第4実施例では、広角端状態から望遠端状態までの各焦点距離状態において諸収差が良好に補正され、また手ぶれ補正時の収差変動も良好であり、優れた結像性能を有することがわかる。   FIG. 14A shows an aberration diagram in the infinite focus state in the wide-angle end state of the fourth embodiment, and FIG. 15 shows an aberration diagram in the infinite focus state in the intermediate focal length state. FIG. 16A shows an aberration diagram in the infinitely focused state in the state. FIG. 14B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens unit VL = 0.27) is performed in the infinitely focused state at the wide-angle end state in the fourth example. FIG. 16B shows a coma aberration diagram when image blur correction (shift amount of the image stabilizing lens group VL = 0.28) is performed in the infinitely focused state at the telephoto end state. As is apparent from the respective aberration diagrams, in the fourth example, various aberrations are satisfactorily corrected in each focal length state from the wide-angle end state to the telephoto end state, and aberration fluctuation at the time of camera shake correction is also excellent. It can be seen that the imaging performance is excellent.

ZL(ZL1〜ZL4) 変倍光学系
G1 第1レンズ群 G2 第2レンズ群 G3 第3レンズ群
G4 第4レンズ群 S 開口絞り
1 カメラ(光学装置)
ZL (ZL1 to ZL4) Variable magnification optical system G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop 1 Camera (optical device)

Claims (14)

物体側から順に、
負の屈折力を有する第1レンズ群と、
正の屈折力を有する第2レンズ群と、
負の屈折力を有する第3レンズ群と、
正の屈折力を有する第4レンズ群と、を有し、
広角端状態から望遠端状態に変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化し、
前記第2レンズ群のうちの少なくとも一枚の単レンズは、光軸と直交する方向の成分を含むように移動する防振レンズ群であり、
前記第1レンズ群は、最も物体側に負レンズを有し、
次式の条件を満足することを特徴とする変倍光学系。
−2.00 < (R2+R1)/(R2−R1) < −1.00
但し、
R1:前記第1レンズ群の最も物体側の前記負レンズの物体側面の曲率半径
R2:前記第1レンズ群の最も物体側の前記負レンズの像側面の曲率半径
From the object side,
A first lens group having negative refractive power;
A second lens group having a positive refractive power;
A third lens group having negative refractive power;
A fourth lens group having a positive refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the first lens group and the second lens group changes, and the distance between the second lens group and the third lens group changes, The distance between the third lens group and the fourth lens group changes,
At least one single lens of the second lens group is an anti-vibration lens group that moves so as to include a component in a direction orthogonal to the optical axis,
The first lens group has a negative lens closest to the object side,
A variable magnification optical system characterized by satisfying the following condition:
−2.00 <(R2 + R1) / (R2−R1) <− 1.00
However,
R1: radius of curvature of the object side surface of the negative lens closest to the object side of the first lens group R2: radius of curvature of the image side surface of the negative lens closest to the object side of the first lens group
前記第3レンズ群は、少なくとも一枚の、両側に空気間隔を有する単レンズを有し、
次式の条件を満足することを特徴とする請求項1に記載の変倍光学系。
3.00 < f4/d3w < 9.00
但し、
f4:前記第4レンズ群の焦点距離
d3w:広角端状態における前記第3レンズ群と前記第4レンズ群との空気間隔
The third lens group has at least one single lens having an air gap on both sides,
2. The variable magnification optical system according to claim 1, wherein a condition of the following formula is satisfied.
3.00 <f4 / d3w <9.00
However,
f4: Focal length of the fourth lens group d3w: Air distance between the third lens group and the fourth lens group in the wide-angle end state
次式の条件を満足することを特徴とする請求項1又は2に記載の変倍光学系。
0.40 < f1/f3 < 1.00
但し、
f1:前記第1レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
3. The variable magnification optical system according to claim 1, wherein a condition of the following formula is satisfied.
0.40 <f1 / f3 <1.00
However,
f1: Focal length of the first lens group f3: Focal length of the third lens group
前記第2レンズ群の中又は近傍に開口絞りを有し、
前記第4レンズ群は、最も像側に正レンズと負レンズとを貼り合わせた接合レンズを有し、
次式の条件を満足することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
0.10 < dSt/f4 < 0.60
但し、
dSt:望遠端状態における前記開口絞りと前記第3レンズ群との空気間隔
f4:前記第4レンズ群の焦点距離
An aperture stop in or near the second lens group;
The fourth lens group includes a cemented lens in which a positive lens and a negative lens are bonded to the most image side,
The zoom lens system according to any one of claims 1 to 3, wherein a condition of the following formula is satisfied.
0.10 <dSt / f4 <0.60
However,
dSt: Air distance between the aperture stop and the third lens group in the telephoto end state f4: Focal length of the fourth lens group
前記第1レンズ群のうち、最も物体側のレンズは非球面を有することを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。   5. The variable magnification optical system according to claim 1, wherein a lens closest to the object side in the first lens group has an aspherical surface. 次式の条件を満足することを特徴とする請求項1〜5のいずれか一項に記載の変倍光学系。
0.10 < f2/f2a < 0.55
但し、
f2:前記第2レンズ群の焦点距離
f2a:前記防振レンズ群の焦点距離
The zoom lens system according to any one of claims 1 to 5, wherein a condition of the following formula is satisfied.
0.10 <f2 / f2a <0.55
However,
f2: focal length of the second lens group f2a: focal length of the anti-vibration lens group
前記第3レンズ群は、単レンズのみからなることを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。   The variable magnification optical system according to claim 1, wherein the third lens group includes only a single lens. 前記単レンズは、両凹形状であることを特徴とする請求項7に記載の変倍光学系。   The variable power optical system according to claim 7, wherein the single lens has a biconcave shape. 前記第4レンズ群は、少なくとも1面の非球面を有することを特徴とする請求項1〜8のいずれか一項に記載の変倍光学系。   The variable power optical system according to any one of claims 1 to 8, wherein the fourth lens group has at least one aspherical surface. 前記第4レンズ群に含まれる前記非球面を有するレンズは、前記第4レンズ群の最も物体側に位置することを特徴とする請求項9に記載の変倍光学系。   10. The variable magnification optical system according to claim 9, wherein the lens having the aspheric surface included in the fourth lens group is positioned closest to the object side of the fourth lens group. 前記第4レンズ群に含まれる接合レンズのうち、少なくとも一枚はその接合面が像側に凸向きであることを特徴とする請求項1〜10のいずれか一項に記載の変倍光学系。   The variable power optical system according to claim 1, wherein at least one of the cemented lenses included in the fourth lens group has a cemented surface convex toward the image side. . 広角端状態から望遠端状態に変倍する際に、前記第2レンズ群と前記第3レンズ群との間隔が増大し、前記第3レンズ群と前記第4レンズ群との間隔が減少することを特徴とする請求項1〜11のいずれか一項に記載の変倍光学系。   When zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group increases, and the distance between the third lens group and the fourth lens group decreases. The variable power optical system according to any one of claims 1 to 11, wherein: 物体の像を所定の像面上に結像させる請求項1〜12のいずれか一項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1, wherein an image of an object is formed on a predetermined image plane. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群と、を有する変倍光学系の製造方法であって、
前記第1レンズ群、前記第2レンズ群、前記第3レンズ群及び前記第4レンズ群を、広角端状態から望遠端状態に変倍する際に、前記第1レンズ群と前記第2レンズ群との間隔が変化し、前記第2レンズ群と前記第3レンズ群との間隔が変化し、前記第3レンズ群と前記第4レンズ群との間隔が変化するように配置し、
前記第2レンズ群のうちの少なくとも一枚の単レンズを、光軸と直交する方向の成分を含むように移動する防振レンズ群として配置し、
前記第1レンズ群の最も物体側に次式の条件を満足する負レンズを配置することを特徴とする変倍光学系の製造方法。
−2.00 < (R2+R1)/(R2−R1) < −1.00
但し、
R1:前記第1レンズ群の最も物体側の前記負レンズの物体側面の曲率半径
R2:前記第1レンズ群の最も物体側の前記負レンズの像側面の曲率半径
In order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, a third lens group having a negative refractive power, and a fourth lens having a positive refractive power A variable magnification optical system having a group,
When the first lens group, the second lens group, the third lens group, and the fourth lens group are zoomed from the wide-angle end state to the telephoto end state, the first lens group and the second lens group And the distance between the second lens group and the third lens group is changed, and the distance between the third lens group and the fourth lens group is changed,
Arranging at least one single lens of the second lens group as an anti-vibration lens group that moves so as to include a component in a direction orthogonal to the optical axis,
A method of manufacturing a variable magnification optical system, comprising disposing a negative lens that satisfies the following condition on the most object side of the first lens group.
−2.00 <(R2 + R1) / (R2−R1) <− 1.00
However,
R1: radius of curvature of the object side surface of the negative lens closest to the object side of the first lens group R2: radius of curvature of the image side surface of the negative lens closest to the object side of the first lens group
JP2012189688A 2012-08-30 2012-08-30 Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system Active JP6251947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012189688A JP6251947B2 (en) 2012-08-30 2012-08-30 Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012189688A JP6251947B2 (en) 2012-08-30 2012-08-30 Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system

Publications (2)

Publication Number Publication Date
JP2014048370A true JP2014048370A (en) 2014-03-17
JP6251947B2 JP6251947B2 (en) 2017-12-27

Family

ID=50608132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012189688A Active JP6251947B2 (en) 2012-08-30 2012-08-30 Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system

Country Status (1)

Country Link
JP (1) JP6251947B2 (en)

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235514A (en) * 1991-01-11 1992-08-24 Nikon Corp Super-wide angle zoom lens
JPH0611650A (en) * 1992-03-10 1994-01-21 Nikon Corp Zoom lens
JP2002244044A (en) * 2001-02-19 2002-08-28 Canon Inc Zoom lens and optical instrument using it
JP2005352265A (en) * 2004-06-11 2005-12-22 Canon Inc Optical system
JP2007010912A (en) * 2005-06-29 2007-01-18 Pentax Corp Wide-angle zoom lens system
JP2007256695A (en) * 2006-03-24 2007-10-04 Nikon Corp Zoom lens, imaging apparatus and variable power method
JP2008046612A (en) * 2006-07-21 2008-02-28 Nikon Corp Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2008176271A (en) * 2006-12-19 2008-07-31 Nikon Corp Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
JP2009014767A (en) * 2007-06-29 2009-01-22 Nikon Corp Variable power optical system, optical equipment and variable power method for variable power optical system
JP2009014761A (en) * 2007-06-29 2009-01-22 Nikon Corp Variable power optical zoom lens system, optical apparatus, and method for zooming zoom lens system
JP2009048012A (en) * 2007-08-21 2009-03-05 Nikon Corp Optical system
JP2010152147A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2010217535A (en) * 2009-03-17 2010-09-30 Nikon Corp Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
JP2011112716A (en) * 2009-11-24 2011-06-09 Nikon Corp Photographic lens, optical device and method for adjusting the photographic lens
JP2012048200A (en) * 2010-07-28 2012-03-08 Panasonic Corp Zoom lens system, image pickup device, and camera
JP2012068303A (en) * 2010-09-21 2012-04-05 Nikon Corp Photographic lens, optical equipment including photographic lens, and method for manufacturing photographic lens
WO2012086153A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2012133229A (en) * 2010-12-22 2012-07-12 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2012141600A (en) * 2010-12-17 2012-07-26 Nikon Corp Optical system, imaging apparatus, and manufacturing method of optical system
JP2013182054A (en) * 2012-02-29 2013-09-12 Sony Corp Zoom lens and image capturing device
JP2013257497A (en) * 2012-06-14 2013-12-26 Sony Corp Zoom lens and imaging apparatus
JP2014026211A (en) * 2012-07-30 2014-02-06 Canon Inc Zoom lens and image capturing device having the same

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235514A (en) * 1991-01-11 1992-08-24 Nikon Corp Super-wide angle zoom lens
JPH0611650A (en) * 1992-03-10 1994-01-21 Nikon Corp Zoom lens
JP2002244044A (en) * 2001-02-19 2002-08-28 Canon Inc Zoom lens and optical instrument using it
JP2005352265A (en) * 2004-06-11 2005-12-22 Canon Inc Optical system
JP2007010912A (en) * 2005-06-29 2007-01-18 Pentax Corp Wide-angle zoom lens system
JP2007256695A (en) * 2006-03-24 2007-10-04 Nikon Corp Zoom lens, imaging apparatus and variable power method
JP2008046612A (en) * 2006-07-21 2008-02-28 Nikon Corp Variable power optical system, imaging device, method of varying magnification of the variable power optical system
JP2008176271A (en) * 2006-12-19 2008-07-31 Nikon Corp Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
JP2009014767A (en) * 2007-06-29 2009-01-22 Nikon Corp Variable power optical system, optical equipment and variable power method for variable power optical system
JP2009014761A (en) * 2007-06-29 2009-01-22 Nikon Corp Variable power optical zoom lens system, optical apparatus, and method for zooming zoom lens system
JP2009048012A (en) * 2007-08-21 2009-03-05 Nikon Corp Optical system
JP2010152147A (en) * 2008-12-25 2010-07-08 Panasonic Corp Zoom lens system, image capturing apparatus, and camera
JP2010217535A (en) * 2009-03-17 2010-09-30 Nikon Corp Imaging lens, optical apparatus equipped therewith and method for manufacturing the imaging lens
JP2011112716A (en) * 2009-11-24 2011-06-09 Nikon Corp Photographic lens, optical device and method for adjusting the photographic lens
JP2012048200A (en) * 2010-07-28 2012-03-08 Panasonic Corp Zoom lens system, image pickup device, and camera
JP2012068303A (en) * 2010-09-21 2012-04-05 Nikon Corp Photographic lens, optical equipment including photographic lens, and method for manufacturing photographic lens
JP2012141600A (en) * 2010-12-17 2012-07-26 Nikon Corp Optical system, imaging apparatus, and manufacturing method of optical system
WO2012086153A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2012133229A (en) * 2010-12-22 2012-07-12 Panasonic Corp Zoom lens system, interchangeable lens device and camera system
JP2013182054A (en) * 2012-02-29 2013-09-12 Sony Corp Zoom lens and image capturing device
JP2013257497A (en) * 2012-06-14 2013-12-26 Sony Corp Zoom lens and imaging apparatus
JP2014026211A (en) * 2012-07-30 2014-02-06 Canon Inc Zoom lens and image capturing device having the same

Also Published As

Publication number Publication date
JP6251947B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
JP5582303B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
WO2018012624A1 (en) Variable-power optical system, optical device, and method for manufacturing variable-power optical system
WO2015015792A1 (en) Variable magnification optical system, optical device, and method for manufacturing variable magnification optical system
JP5648900B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP2017156428A (en) Variable power optical system, optical apparatus and method for manufacturing variable power optical system
JP2012155087A (en) Variable power optical system, optical device, and manufacturing method for variable power optical system
JP6583420B2 (en) Zoom lens and optical equipment
JP5212813B2 (en) Zoom lens, optical device including the same, and manufacturing method
JP6281200B2 (en) Variable magnification optical system and optical apparatus
JP6620998B2 (en) Variable magnification optical system and optical apparatus
WO2014034728A1 (en) Variable-magnification optical system, optical device having same variable-magnification optical system, and method for manufacturing variable-magnification optical system
JP2017156426A (en) Variable power optical system, optical apparatus and method for manufacturing variable power optical system
JP6119953B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP6260075B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6232806B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6232805B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6281199B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system manufacturing method
JP6256732B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6251947B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP6260074B2 (en) Variable magnification optical system and optical apparatus having the variable magnification optical system
JP6601471B2 (en) Variable magnification optical system and optical apparatus
JP5338865B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6098863B2 (en) Variable magnification optical system, optical apparatus having the variable magnification optical system, and method of manufacturing the variable magnification optical system
JP2014048376A (en) Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160518

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170217

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6251947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250