JP2009014767A - Variable power optical system, optical equipment and variable power method for variable power optical system - Google Patents

Variable power optical system, optical equipment and variable power method for variable power optical system Download PDF

Info

Publication number
JP2009014767A
JP2009014767A JP2007173173A JP2007173173A JP2009014767A JP 2009014767 A JP2009014767 A JP 2009014767A JP 2007173173 A JP2007173173 A JP 2007173173A JP 2007173173 A JP2007173173 A JP 2007173173A JP 2009014767 A JP2009014767 A JP 2009014767A
Authority
JP
Japan
Prior art keywords
lens group
lens
optical system
end state
variable magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007173173A
Other languages
Japanese (ja)
Other versions
JP5176410B2 (en
JP2009014767A5 (en
Inventor
Goji Suzuki
剛司 鈴木
Tomoki Ito
智希 伊藤
Hiroshi Yamamoto
浩史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007173173A priority Critical patent/JP5176410B2/en
Publication of JP2009014767A publication Critical patent/JP2009014767A/en
Publication of JP2009014767A5 publication Critical patent/JP2009014767A5/ja
Application granted granted Critical
Publication of JP5176410B2 publication Critical patent/JP5176410B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a variable power optical system having excellent optical performance, optical equipment, and a variable power method for a variable power optical system. <P>SOLUTION: The variable power optical system includes, in order from an object side, a first lens group G1 having negative refractive power, a second lens group G2 having positive refractive power, and a third lens group G3 having negative refractive power. Upon variable power from a wide-angle end state W to a telephoto end state T, space between the respective lens groups is changed, and the second lens group G2 is shifted in a direction nearly orthogonal to an optical axis. The variable power optical system satisfies a predetermined condition. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、変倍光学系、光学装置、変倍光学系の変倍方法に関する。   The present invention relates to a variable magnification optical system, an optical apparatus, and a variable magnification optical system variable magnification method.

従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。
特開平11−174329号公報
Conventionally, a variable magnification optical system suitable for a photographic camera, an electronic still camera, a video camera, and the like has been proposed (see, for example, Patent Document 1).
JP-A-11-174329

従来の変倍光学系は、良好な光学性能を達成できていないという問題があった。   The conventional variable magnification optical system has a problem in that good optical performance cannot be achieved.

上記課題を解決するために、本発明は、
物体側から順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化し、
前記第2レンズ群が光軸と略直交する方向へシフトし、
以下の条件を満足することを特徴とする変倍光学系を提供する。
1.20<f2/fw<2.50
−2.10<f3/fw<−0.80
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
また、本発明は、前記変倍光学系を有することを特徴とする光学装置を提供する。
In order to solve the above problems, the present invention provides:
In order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the lens groups changes,
The second lens group is shifted in a direction substantially perpendicular to the optical axis;
Provided is a variable magnification optical system characterized by satisfying the following conditions.
1.20 <f2 / fw <2.50
-2.10 <f3 / fw <−0.80
However,
f2: Focal length of the second lens group f3: Focal length of the third lens group fw: Focal length of the variable magnification optical system in the wide-angle end state Further, the present invention includes the variable magnification optical system. An optical device is provided.

また、本発明は、
物体側から順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、
前記第2レンズ群が光軸と略直交する方向へシフトし、
以下の条件を満足する変倍光学系の変倍方法であって、
広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化することを特徴とする変倍光学系の変倍方法を提供する。
1.20<f2/fw<2.50
−2.10<f3/fw<−0.80
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
The present invention also provides:
In order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power,
The second lens group is shifted in a direction substantially perpendicular to the optical axis;
A zooming method for a zooming optical system that satisfies the following conditions,
Provided is a zooming method for a zooming optical system, characterized in that the distance between each lens unit changes when zooming from a wide-angle end state to a telephoto end state.
1.20 <f2 / fw <2.50
-2.10 <f3 / fw <−0.80
However,
f2: focal length of the second lens group f3: focal length of the third lens group fw: focal length of the variable magnification optical system in the wide-angle end state

本発明によれば、良好な光学性能を有する変倍光学系、光学装置、及び変倍光学系の変倍方法を提供することができる。   According to the present invention, it is possible to provide a variable power optical system, an optical device, and a variable power method for the variable power optical system having good optical performance.

以下、本発明の実施形態に係る変倍光学系、光学装置、及び変倍光学系の変倍方法について説明する。   Hereinafter, a variable power optical system, an optical apparatus, and a variable power method of the variable power optical system according to embodiments of the present invention will be described.

本変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化し、前記第2レンズ群が光軸と略直交する方向へシフトし、以下の条件式(1),(2)を満足する。
(1) 1.20<f2/fw<2.50
(2) −2.10<f3/fw<−0.80
但し、f2は前記第2レンズ群の焦点距離、f3は前記第3レンズ群の焦点距離、fwは広角端状態における前記変倍光学系の焦点距離である。
The variable magnification optical system includes, in order from the object side, a first lens group having a negative refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. At the time of zooming from the state to the telephoto end state, the distance between the lens groups changes, and the second lens group shifts in a direction substantially perpendicular to the optical axis, and satisfies the following conditional expressions (1) and (2) To do.
(1) 1.20 <f2 / fw <2.50
(2) -2.10 <f3 / fw <-0.80
Where f2 is the focal length of the second lens group, f3 is the focal length of the third lens group, and fw is the focal length of the variable magnification optical system in the wide-angle end state.

条件式(1)は、第2レンズ群の屈折力を規定したものである。本変倍光学系は、この条件式(1)を満足することで、所定の変倍比を効果的に確保しつつ、良好な光学性能、特に防振時においても良好な光学性能を実現することができる。   Conditional expression (1) defines the refractive power of the second lens group. By satisfying this conditional expression (1), the present variable magnification optical system effectively achieves a predetermined variable magnification ratio and realizes good optical performance, particularly good optical performance even during image stabilization. be able to.

条件式(1)の下限値を下回ると、第2レンズ群の屈折力が大きくなり過ぎて、コマ収差が悪化してしまう。また、防振時の偏心収差、即ちコマ収差又は非点収差が悪化してしまう。   If the lower limit value of conditional expression (1) is not reached, the refractive power of the second lens group becomes too large and coma aberration is deteriorated. In addition, the decentration aberration at the time of image stabilization, that is, coma or astigmatism is deteriorated.

なお、本発明の効果をより確実にするためには、条件式(1)の下限値を1.30に設定することが望ましい。   In order to secure the effect of the present invention, it is desirable to set the lower limit value of conditional expression (1) to 1.30.

一方、条件式(1)の上限値を上回ると、第2レンズ群の屈折力が小さくなり過ぎて、変倍時の各レンズ群の移動量が増加してしまう。このため、広角端状態から望遠端状態への変倍時に像面湾曲収差や色収差を補正することが困難になってしまう。   On the other hand, if the upper limit of conditional expression (1) is exceeded, the refractive power of the second lens group becomes too small, and the amount of movement of each lens group at the time of zooming increases. For this reason, it becomes difficult to correct field curvature aberration and chromatic aberration at the time of zooming from the wide-angle end state to the telephoto end state.

なお、本発明の効果をより確実にするためには、条件式(1)の上限値を1.80に設定することが望ましい。   In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (1) to 1.80.

条件式(2)は、第3レンズ群の屈折力を規定したものである。本変倍光学系は、この条件式(2)を満足することで、所定の変倍比を効果的に確保しつつ、良好な光学性能、特に防振時においても良好な光学性能を実現することができる。   Conditional expression (2) defines the refractive power of the third lens group. By satisfying this conditional expression (2), the present variable magnification optical system effectively achieves a predetermined variable magnification ratio and realizes good optical performance, particularly good optical performance even during image stabilization. be able to.

条件式(2)の下限値を下回ると、第3レンズ群の屈折力が小さくなり過ぎて、変倍時の第3レンズ群の移動量が増加してしまう。このため、変倍時の像面湾曲収差の変動が大きくなり、これを補正することが困難になってしまう。   If the lower limit of conditional expression (2) is not reached, the refractive power of the third lens group becomes too small, and the amount of movement of the third lens group at the time of zooming increases. For this reason, the fluctuation of the field curvature aberration at the time of zooming becomes large, and it becomes difficult to correct this.

なお、本発明の効果をより確実にするためには、条件式(2)の下限値を−2.00に設定することが望ましい。   In order to secure the effect of the present invention, it is desirable to set the lower limit value of conditional expression (2) to -2.00.

一方、条件式(2)の上限値を上回ると、第3レンズ群の屈折力が大きくなり過ぎて、球面収差が悪化してしまう。また、防振時の偏心収差、即ちコマ収差又は非点収差が悪化してしまう。   On the other hand, if the upper limit value of conditional expression (2) is exceeded, the refractive power of the third lens group becomes too large and the spherical aberration is deteriorated. In addition, the decentration aberration at the time of image stabilization, that is, coma or astigmatism is deteriorated.

なお、本発明の効果をより確実にするためには、条件式(2)の上限値を−1.50に設定することが望ましい。   In order to secure the effect of the present invention, it is desirable to set the upper limit of conditional expression (2) to -1.50.

また、前記第2レンズ群を光軸と略直交する方向へシフトさせる構成である。   Further, the second lens group is shifted in a direction substantially orthogonal to the optical axis.

この構成により、防振時のコマ収差と非点収差を良好に補正することができる。   With this configuration, coma and astigmatism during image stabilization can be corrected well.

また本変倍光学系は、正屈折力を有する第4レンズ群を有し、広角端状態から望遠端状態への変倍に際して、前記第2レンズ群と前記第3レンズ群との間隔が増大し、前記第3レンズ群と前記第4レンズ群との間隔が減少することが望ましい。   The variable magnification optical system has a fourth lens group having positive refractive power, and the distance between the second lens group and the third lens group is increased upon zooming from the wide-angle end state to the telephoto end state. It is preferable that the distance between the third lens group and the fourth lens group is reduced.

この構成により、各レンズ群で効果的に変倍を行うことができる。   With this configuration, it is possible to effectively perform zooming in each lens group.

また本変倍光学系は、開口絞りを有し、広角端状態から望遠端状態への変倍に際して、前記開口絞りは前記第3レンズ群とともに移動することが望ましい。   In addition, it is preferable that the zoom optical system has an aperture stop, and the aperture stop moves together with the third lens group when zooming from the wide-angle end state to the telephoto end state.

この構成により、変倍時において光軸外でのコマ収差をバランス良く補正し、良好な光学性能を実現することができる。また、レンズ群全体、特に第1レンズ群及び最終レンズ群(最も像面側のレンズ群)の小型化を図ることができる。   With this configuration, coma aberration outside the optical axis can be corrected with good balance during zooming, and good optical performance can be realized. Further, it is possible to reduce the size of the entire lens group, in particular, the first lens group and the final lens group (lens group closest to the image plane).

また本変倍光学系は、前記第2レンズ群は接合レンズを有していることが望ましい。   In the variable magnification optical system, it is preferable that the second lens group has a cemented lens.

この構成により、変倍時において倍率色収差の変動を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct the variation in lateral chromatic aberration during zooming.

また本変倍光学系は、前記第2レンズ群は、物体側から順に、負レンズと正レンズとからなる前記接合レンズと、正屈折力を有する単レンズとからなり、前記接合レンズが光軸と略直交する方向へシフトすることが望ましい。   In the zoom optical system, the second lens group includes, in order from the object side, the cemented lens including a negative lens and a positive lens, and a single lens having positive refracting power. It is desirable to shift in a direction substantially orthogonal to

この構成により、防振時の下側斜光線のコマ収差と非点収差を良好に補正することができ、さらに接合レンズのみ光軸と略直交する方向へシフトさせることで2群のパワーバランスと防振性能を良好に保つ事ができる。   With this configuration, it is possible to satisfactorily correct the coma and astigmatism of the lower oblique rays during image stabilization, and to shift the power balance between the two groups by shifting only the cemented lens in a direction substantially perpendicular to the optical axis. The vibration proof performance can be kept good.

また本変倍光学系は、前記第3レンズ群及び前記第4レンズ群はそれぞれ、少なくとも1つの接合レンズを有していることが望ましい。   In the variable power optical system, it is desirable that each of the third lens group and the fourth lens group has at least one cemented lens.

この構成により、変倍時において倍率色収差の変動を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct the variation in lateral chromatic aberration during zooming.

また本変倍光学系は、前記第4レンズ群は、像面側から順に、負レンズと正レンズとからなる前記接合レンズと、正屈折力を有する単レンズとからなることが望ましい。   In the variable power optical system, it is preferable that the fourth lens group includes, in order from the image surface side, the cemented lens including a negative lens and a positive lens, and a single lens having a positive refractive power.

この構成により、第3レンズ群と第4レンズ群との間隔を確保しつつ、倍率色収差や球面収差やコマ収差を良好に補正することができる。   With this configuration, it is possible to satisfactorily correct lateral chromatic aberration, spherical aberration, and coma aberration while securing the distance between the third lens group and the fourth lens group.

また本変倍光学系は、広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、一旦像面側へ移動した後に物体側へ移動することが望ましい。   In the zooming optical system according to the present invention, it is desirable that the zoom lens system is moved from the wide-angle end state to the telephoto end state, the first lens group is moved once to the image plane side and then moved to the object side.

この構成により、本変倍光学系の小型化と高変倍比化を実現することができる。   With this configuration, it is possible to reduce the size and increase the zoom ratio of the zoom optical system.

また本変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) −0.60<(d1w−d1t)/Ymax<0.17
但し、d1wは、広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離、d1tは、望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離、Ymaxは最大像高である。
In addition, it is desirable that the variable magnification optical system satisfies the following conditional expression (3).
(3) -0.60 <(d1w-d1t) / Ymax <0.17
Where d1w is the distance on the optical axis from the lens surface closest to the object side to the image plane in the variable magnification optical system in the wide-angle end state, and d1t is the most object side in the variable magnification optical system in the telephoto end state. The distance on the optical axis from the lens surface to the image plane, Ymax, is the maximum image height.

条件式(3)は、広角端状態から望遠端状態への変倍に際する第1レンズ群の移動条件を規定したものである。本変倍光学系は、この条件式(3)を満足することで、所定の変倍比を効果的に確保しつつ、良好な光学性能を実現することができ、小型化を実現することもできる。   Conditional expression (3) defines a moving condition of the first lens group upon zooming from the wide-angle end state to the telephoto end state. By satisfying this conditional expression (3), the present variable magnification optical system can achieve good optical performance while effectively securing a predetermined variable magnification ratio, and can also realize downsizing. it can.

条件式(3)の下限値を下回ると、屈折力の大きな第1レンズ群の変倍時の移動量が大きくなり過ぎるため、広角端状態から望遠端状態にわたって球面収差を良好に補正することができなくなってしまう。   If the lower limit of conditional expression (3) is not reached, the amount of movement of the first lens unit having a large refractive power at the time of zooming becomes too large, so that spherical aberration can be favorably corrected from the wide-angle end state to the telephoto end state. It becomes impossible.

なお、本発明の効果をより確実にするためには、条件式(3)の下限値を−0.50に設定することが望ましい。   In order to secure the effect of the present invention, it is desirable to set the lower limit of conditional expression (3) to −0.50.

一方、条件式(3)の上限値を上回ると、変倍時の第2レンズ群と第3レンズ群の移動量が小さくなるため、第2レンズ群と第3レンズ群の屈折力がそれぞれ大きくなり過ぎて、球面収差が悪化してしまう。また、防振時の偏心収差、即ちコマ収差又は非点収差が悪化してしまう。   On the other hand, if the upper limit value of conditional expression (3) is exceeded, the amount of movement of the second lens group and the third lens group at the time of zooming decreases, so that the refractive power of the second lens group and the third lens group increases. It becomes too much and the spherical aberration becomes worse. In addition, the decentration aberration at the time of image stabilization, that is, coma or astigmatism is deteriorated.

なお、本発明の効果をより確実にするためには、条件式(3)の上限値を0.05に設定することが望ましい。   In order to secure the effect of the present invention, it is desirable to set the upper limit value of conditional expression (3) to 0.05.

また本変倍光学系は、該変倍光学系中の最も像面側のレンズ面が、像面側に凸形状であることが望ましい。   In the variable magnification optical system, it is desirable that the lens surface closest to the image plane in the variable magnification optical system has a convex shape on the image plane side.

この構成により、像面からの反射光によるゴーストを軽減することができる。   With this configuration, it is possible to reduce a ghost caused by reflected light from the image plane.

本光学装置は、上述した構成の変倍光学系を備えている。   This optical apparatus includes the variable magnification optical system having the above-described configuration.

これにより、高変倍比を有し、良好な光学性能を有する光学装置を実現することができる。   Thereby, an optical device having a high zoom ratio and good optical performance can be realized.

本変倍光学系の変倍方法は、物体側から順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、前記第2レンズ群が光軸と略直交する方向へシフトし、以下の条件式(1),(2)を満足する変倍光学系の変倍方法であって、広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化する。
(1) 1.20<f2/fw<2.50
(2) −2.10<f3/fw<−0.80
但し、f2は前記第2レンズ群の焦点距離、f3は前記第3レンズ群の焦点距離、fwは広角端状態における前記変倍光学系の焦点距離である。
The zooming method of the zooming optical system includes, in order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power. The zooming method of the zooming optical system satisfies the following conditional expressions (1) and (2) by shifting the second lens group in a direction substantially orthogonal to the optical axis. At the time of zooming to the end state, the interval between the lens groups changes.
(1) 1.20 <f2 / fw <2.50
(2) -2.10 <f3 / fw <-0.80
Where f2 is the focal length of the second lens group, f3 is the focal length of the third lens group, and fw is the focal length of the variable magnification optical system in the wide-angle end state.

これにより、変倍光学系において高変倍比化と良好な光学性能を実現することができる。   As a result, a high zoom ratio and good optical performance can be realized in the zoom optical system.

(実施例)
以下、数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(Example)
Hereinafter, a variable magnification optical system according to numerical examples will be described with reference to the accompanying drawings.

(第1実施例)
図1は、第1実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(First embodiment)
FIG. 1 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the first example.

本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、負屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4とからなる。   The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power. And a fourth lens group G4 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。そして、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凸面を向けた正メニスカスレンズL23とからなる。   The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. Become.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, a cemented lens of a biconvex positive lens L42 and a negative meniscus lens L43 having a convex surface directed toward the image surface I. It consists of.

斯かる構成の本実施例に係る変倍光学系では、広角端状態Wから望遠端状態Tへの変倍に際して、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1は一旦像面I側へ移動した後に物体側へ移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4は物体側へ移動する。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state W to the telephoto end state T, the distance between the second lens group G2 and the third lens group G3 increases. The first lens group G1 once moves to the image plane I side and then moves to the object side so that the distance between the lens group G3 and the fourth lens group G4 decreases, and then the second lens group G2 and the third lens group G3. , And the fourth lens group G4 moves to the object side.

また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態Wから望遠端状態Tへの変倍に際して第3レンズ群G3とともに移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state W to the telephoto end state T.

また本実施例に係る変倍光学系では、第2レンズ群中のL21とL22との接合レンズを光軸と略直交する方向へシフトさせることで像ブレ発生時の像面補正が行われる。   In the zoom optical system according to the present embodiment, the image plane is corrected when the image blur occurs by shifting the cemented lens of L21 and L22 in the second lens group in a direction substantially orthogonal to the optical axis.

また、フレアカット絞りFSは、第3レンズ群G3と第4レンズ群G4との間において第3レンズ群G3の近傍に配置されており、第3レンズ群G3と一体的に移動する。   The flare cut stop FS is disposed in the vicinity of the third lens group G3 between the third lens group G3 and the fourth lens group G4, and moves integrally with the third lens group G3.

以下の表1に第1実施例に係る変倍光学系の諸元値を掲げる。   Table 1 below lists specifications of the variable magnification optical system according to the first example.

表中の(面データ)において、物面は物体面、面番号は物体側からの面の番号、rは曲率半径、dは面間隔、ndはd線(波長λ=587.6nm)における屈折率、νdはd線(波長λ=587.6nm)におけるアッベ数、(可変)は可変面間隔、(絞り)は開口絞りS、像面は像面Iをそれぞれ表している。なお、空気の屈折率nd=1.000000は記載を省略している。また、曲率半径r及び面間隔d欄の「∞」は平面を示している。   In (surface data) in the table, the object surface is the object surface, the surface number is the surface number from the object side, r is the radius of curvature, d is the surface spacing, and nd is the refraction at the d-line (wavelength λ = 587.6 nm). The ratio, νd represents the Abbe number in the d-line (wavelength λ = 587.6 nm), (variable) represents the variable surface interval, (diaphragm) represents the aperture stop S, and the image plane represents the image plane I. Note that the refractive index of air nd = 1.000 000 is omitted. Further, “∞” in the curvature radius r and the surface interval d column indicates a plane.

(非球面データ)において、非球面は以下の式で表される。
X(y)=(y/r)/[1+[1−κ(y/r)]1/2
+A4×y+A6×y+A8×y+A10×y10
ここで、光軸に垂直な方向の高さをy、高さyにおける光軸方向の変位量をX(y)、基準球面の曲率半径(近軸曲率半径)をr、円錐係数をκ、n次の非球面係数をAnとする。なお、「E-n」は「×10−n」を示し、例えば「1.234E-05」は「1.234×10−5」を示す。また、各非球面は、(面データ)において、面番号の右側に「*」を付して示している。
In (Aspheric data), the aspheric surface is expressed by the following equation.
X (y) = (y 2 / r) / [1+ [1-κ (y 2 / r 2 )] 1/2 ]
+ A4 × y 4 + A6 × y 6 + A8 × y 8 + A10 × y 10
Here, the height in the direction perpendicular to the optical axis is y, the amount of displacement in the optical axis direction at height y is X (y), the radius of curvature of the reference sphere (paraxial radius of curvature) is r, the cone coefficient is κ, Let the n-th order aspheric coefficient be An. “En” represents “× 10 −n ”, for example “1.234E-05” represents “1.234 × 10 −5 ”. Each aspherical surface is indicated with “*” on the right side of the surface number in (surface data).

(各種データ)において、変倍比は変倍光学系の変倍比、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態、fは焦点距離、FNOはFナンバー、ωは半画角(単位:「°」)、Yは像高、TLはズームレンズ全長、Bfはバックフォーカス、diは面番号iでの可変面間隔値をそれぞれ表している。   (Various data), the zoom ratio is the zoom ratio of the zoom optical system, W is the wide-angle end state, M is the intermediate focal length state, T is the telephoto end state, f is the focal length, FNO is the F number, and ω is Half angle of view (unit: “°”), Y is image height, TL is the entire length of the zoom lens, Bf is back focus, and di is the variable surface interval value at surface number i.

(ズームレンズ群データ)は、各レンズ群の始面番号とレンズ群の焦点距離をそれぞれ示す。   (Zoom lens group data) indicates the start surface number of each lens group and the focal length of the lens group.

(条件式対応値)は、各条件式の対応値をそれぞれ示す。   (Conditional expression corresponding value) indicates the corresponding value of each conditional expression.

なお、以下の全ての諸元値において、掲載されている焦点距離f、曲率半径r、面間隔dその他の長さ等は、特記の無い場合一般に「mm」が使われるが、光学系は比例拡大または比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されること無く他の適当な単位を用いることもできる。さらに、これらの記号の説明は、以降の他の実施例においても同様とし説明を省略する。   In all the following specification values, “mm” is generally used as the focal length f, radius of curvature r, surface interval d and other lengths, etc. unless otherwise specified, but the optical system is proportional. Even if it is enlarged or proportionally reduced, the same optical performance can be obtained. Further, the unit is not limited to “mm”, and other appropriate units may be used. Further, the explanation of these symbols is the same in the other embodiments, and the explanation is omitted.

ここで、レンズ全系の焦点距離がf、ぶれ補正時の防振レンズ群の移動量に対する像面Iにおける像の移動量の比、即ち防振係数がKであるレンズにおいて、角度θの回転ぶれを補正するためには、防振レンズ群を(f・tanθ)/Kだけ光軸と直交する方向へ移動させればよい。したがって、本実施例に係る変倍光学系は、広角端状態において防振係数が1.333、焦点距離が18.5(mm)であるため、0.7°の回転ぶれを補正するための第2レンズ群中のL21とL22の接合レンズの移動量は0.150(mm)となる。また、望遠端状態においては防振係数が2.222、焦点距離が53.4(mm)であるため、0.4°の回転ぶれを補正するための第2レンズ群中のL21とL22の接合レンズの移動量は0.168(mm)となる。   Here, in a lens in which the focal length of the entire lens system is f, and the ratio of the amount of movement of the image on the image plane I to the amount of movement of the image stabilizing lens group at the time of blur correction, that is, a lens whose image stabilization coefficient is K, rotation of the angle θ. In order to correct the blur, the anti-vibration lens group may be moved in the direction orthogonal to the optical axis by (f · tan θ) / K. Therefore, the variable magnification optical system according to the present example has an anti-vibration coefficient of 1.333 and a focal length of 18.5 (mm) in the wide-angle end state. The amount of movement of the cemented lens of L21 and L22 in the second lens group is 0.150 (mm). Further, in the telephoto end state, since the image stabilization coefficient is 2.222 and the focal length is 53.4 (mm), L21 and L22 in the second lens group for correcting the rotation blur of 0.4 ° are used. The amount of movement of the cemented lens is 0.168 (mm).

(表1)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 120.000 1.90 1.51680 64.12
2 15.400 0.15 1.55389 38.09
3* 13.400 9.40
4 -1809.922 1.50 1.62299 58.22
5 27.803 1.00
6 24.779 3.20 1.75520 27.51
7 61.610 (可変)

8 25.814 1.00 1.84666 23.78
9 15.602 4.20 1.51823 58.89
10 -35.194 0.10
11 21.899 1.70 1.48749 70.45
12 43.506 (可変)

13(絞り) ∞ 2.60
14 -37.463 2.65 1.85026 32.35
15 -10.093 0.90 1.81600 46.63
16 105.000 4.90
17 ∞ (可変)

18 -103.623 2.50 1.51823 58.89
19 -25.585 0.10
20 99.568 5.60 1.51823 58.89
21 -15.750 1.30 1.79504 28.69
22 -38.473
像面 ∞

(非球面データ)
第3面
κ = 0.0
A4 = 2.6707E-05
A6 = 4.2684E-08
A8 = 3.0111E-11
A10 = 6.16E-13

(各種データ)
変倍比 2.8864
W M T
f = 18.5 35.0 53.4
FNO = 3.7 4.6 5.9
ω = 19.2 10.9 7.3
Y = 14.25 14.25 14.25
TL = 127.70 121.40 132.28
Bf = 37.62 53.54 71.89

d7 31.69 9.47 2.00
d12 2.60 7.96 12.19
d17 11.09 5.73 1.50

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −25.1
2 8 26.9
3 14 −36.6
4 18 42.6

(条件式対応値)
(1) f2/fw=1.45
(2) f3/fw=−1.98
(3) (d1w−d1t)/Ymax=−0.32
(Table 1)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 120.000 1.90 1.51680 64.12
2 15.400 0.15 1.55389 38.09
3 * 13.400 9.40
4 -1809.922 1.50 1.62299 58.22
5 27.803 1.00
6 24.779 3.20 1.75520 27.51
7 61.610 (variable)

8 25.814 1.00 1.84666 23.78
9 15.602 4.20 1.51823 58.89
10 -35.194 0.10
11 21.899 1.70 1.48749 70.45
12 43.506 (variable)

13 (Aperture) ∞ 2.60
14 -37.463 2.65 1.85026 32.35
15 -10.093 0.90 1.81600 46.63
16 105.000 4.90
17 ∞ (variable)

18 -103.623 2.50 1.51823 58.89
19 -25.585 0.10
20 99.568 5.60 1.51823 58.89
21 -15.750 1.30 1.79504 28.69
22 -38.473
Image plane ∞

(Aspheric data)
Third surface κ = 0.0
A4 = 2.6707E-05
A6 = 4.2684E-08
A8 = 3.0111E-11
A10 = 6.16E-13

(Various data)
Scaling ratio 2.8864
W M T
f = 18.5 35.0 53.4
FNO = 3.7 4.6 5.9
ω = 19.2 10.9 7.3
Y = 14.25 14.25 14.25
TL = 127.70 121.40 132.28
Bf = 37.62 53.54 71.89

d7 31.69 9.47 2.00
d12 2.60 7.96 12.19
d17 11.09 5.73 1.50

(Zoom lens group data)
Group Start surface Focal length 1 1-25.1
2 8 26.9
3 14 -36.6
4 18 42.6

(Values for conditional expressions)
(1) f2 / fw = 1.45
(2) f3 / fw = -1.98
(3) (d1w−d1t) /Ymax=−0.32

図2(a)、及び図2(b)はそれぞれ、第1実施例に係る変倍光学系の広角端状態における、無限遠合焦時の諸収差図、及び0.7°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。   FIGS. 2A and 2B are graphs showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the first example, and a rotation blur of 0.7 °, respectively. FIG. 6 is a meridional transverse aberration diagram when shake correction is performed on the image.

図3は、第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。   FIG. 3 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example.

図4(a)、及び図4(b)はそれぞれ、第1実施例に係る変倍光学系の望遠端状態における、無限遠合焦時の諸収差図、及び0.4°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。   4 (a) and 4 (b) are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the first example, and a rotation blur of 0.4 °, respectively. FIG. 6 is a meridional transverse aberration diagram when shake correction is performed on the image.

各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。なお、球面収差図では最大口径に対応するFナンバーの値を示し、非点収差図及び歪曲収差図では像高の最大値をそれぞれ示し、コマ収差図では各像高の値を示す。またdはd線(λ=587.6nm)、gはg線(λ=435.8nm)をそれぞれ示す。そして非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。   In each aberration diagram, FNO represents an F number, and Y represents an image height. The spherical aberration diagram shows the F-number value corresponding to the maximum aperture, the astigmatism diagram and the distortion diagram show the maximum image height, and the coma diagram shows the value of each image height. D represents a d-line (λ = 587.6 nm), and g represents a g-line (λ = 435.8 nm). In the astigmatism diagram, the solid line indicates the sagittal image plane, and the broken line indicates the meridional image plane.

なお、以降の実施例においても同様の記号を使用し、以降の説明を省略する。   In the following examples, the same symbols are used, and the following description is omitted.

各収差図より本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第2実施例)
図5は、第2実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(Second embodiment)
FIG. 5 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the second example.

本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、負屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4とからなる。   The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power. And a fourth lens group G4 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。そして、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凸面を向けた正メニスカスレンズL23とからなる。   The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. Become.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, a cemented lens of a biconvex positive lens L42 and a negative meniscus lens L43 having a convex surface directed toward the image surface I. It consists of.

斯かる構成の本実施例に係る変倍光学系では、広角端状態Wから望遠端状態Tへの変倍に際して、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1は一旦像面I側へ移動した後に物体側へ移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4は物体側へ移動する。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state W to the telephoto end state T, the distance between the second lens group G2 and the third lens group G3 increases. The first lens group G1 once moves to the image plane I side and then moves to the object side so that the distance between the lens group G3 and the fourth lens group G4 decreases, and then the second lens group G2 and the third lens group G3. , And the fourth lens group G4 moves to the object side.

また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態Wから望遠端状態Tへの変倍に際して第3レンズ群G3とともに移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state W to the telephoto end state T.

また本実施例に係る変倍光学系では、第2レンズ群中のL21とL22との接合レンズを光軸と略直交する方向へシフトさせることで像ブレ発生時の像面補正が行われる。   In the zoom optical system according to the present embodiment, the image plane is corrected when the image blur occurs by shifting the cemented lens of L21 and L22 in the second lens group in a direction substantially orthogonal to the optical axis.

また、フレアカット絞りFSは、第3レンズ群G3と第4レンズ群G4との間において第3レンズ群G3の近傍に配置されており、第3レンズ群G3と一体的に移動する。   The flare cut stop FS is disposed in the vicinity of the third lens group G3 between the third lens group G3 and the fourth lens group G4, and moves integrally with the third lens group G3.

以下の表2に、第2実施例に係る変倍光学系の諸元値を掲げる。   Table 2 below lists specifications of the variable magnification optical system according to the second example.

ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が1.087、焦点距離が18.5(mm)であるため、0.7°の回転ぶれを補正するための第2レンズ群中のL21とL22の接合レンズの移動量は0.108(mm)となる。また、望遠端状態においては防振係数が1.802、焦点距離が53.4(mm)であるため、0.4°の回転ぶれを補正するための第2レンズ群中のL21とL22の接合レンズの移動量は0.207(mm)となる。   Here, since the variable magnification optical system according to the present example has a vibration isolation coefficient of 1.087 and a focal length of 18.5 (mm) in the wide-angle end state, it corrects a rotational shake of 0.7 °. The movement amount of the cemented lens of L21 and L22 in the second lens group is 0.108 (mm). In the telephoto end state, since the image stabilization coefficient is 1.802 and the focal length is 53.4 (mm), L21 and L22 in the second lens group for correcting the rotation blur of 0.4 ° are used. The amount of movement of the cemented lens is 0.207 (mm).

(表2)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 71.493 1.80 1.51680 64.10
2 15.544 0.15 1.55389 38.09
3* 13.612 9.00
4 -182.855 1.50 1.51680 64.10
5 25.496 0.60
6 23.646 3.00 1.78470 26.30
7 49.198 (可変)

8 34.463 1.00 1.78470 26.30
9 18.206 4.00 1.51860 69.98
10 -36.088 2.44
11 18.370 2.00 1.51823 58.93
12 43.588 (可変)

13(絞り) ∞ 1.00
14 -37.471 2.50 1.85026 32.35
15 -10.944 1.00 1.80400 46.57
16 66.452 2.00
17 ∞ (可変)

18 -139.816 3.20 1.49782 82.52
19 -21.720 0.10
20 68.096 6.00 1.51860 69.98
21 -15.449 1.00 1.83400 37.16
22 -44.317
像面 ∞

(非球面データ)
第3面
κ = -0.5048
A4 = 4.0935E-06
A6 = 3.2895E-08
A8 = -1.7008E-10
A10 = 9.5756E-13

(各種データ)
変倍比 2.8864
W M T
f = 18.5 34.6 53.4
FNO = 3.6 4.6 5.9
ω = 19.2 11.1 7.3
Y = 14.25 14.25 14.25
TL = 124.15 117.62 127.62
Bf = 37.82 53.11 70.81

d7 31.91 10.08 2.39
d12 2.14 5.95 9.34
d17 10.00 6.19 2.80

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −26.3
2 8 26.4
3 14 −32.3
4 18 39.0

(条件式対応値)
(1) f2/fw=1.43
(2) f3/fw=−1.75
(3) (d1w−d1t)/Ymax=−0.24
(Table 2)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 71.493 1.80 1.51680 64.10
2 15.544 0.15 1.55389 38.09
3 * 13.612 9.00
4 -182.855 1.50 1.51680 64.10
5 25.496 0.60
6 23.646 3.00 1.78470 26.30
7 49.198 (variable)

8 34.463 1.00 1.78470 26.30
9 18.206 4.00 1.51860 69.98
10 -36.088 2.44
11 18.370 2.00 1.51823 58.93
12 43.588 (variable)

13 (Aperture) ∞ 1.00
14 -37.471 2.50 1.85026 32.35
15 -10.944 1.00 1.80400 46.57
16 66.452 2.00
17 ∞ (variable)

18 -139.816 3.20 1.49782 82.52
19 -21.720 0.10
20 68.096 6.00 1.51860 69.98
21 -15.449 1.00 1.83400 37.16
22 -44.317
Image plane ∞

(Aspheric data)
Third surface κ = -0.5048
A4 = 4.0935E-06
A6 = 3.2895E-08
A8 = -1.7008E-10
A10 = 9.5756E-13

(Various data)
Scaling ratio 2.8864
W M T
f = 18.5 34.6 53.4
FNO = 3.6 4.6 5.9
ω = 19.2 11.1 7.3
Y = 14.25 14.25 14.25
TL = 124.15 117.62 127.62
Bf = 37.82 53.11 70.81

d7 31.91 10.08 2.39
d12 2.14 5.95 9.34
d17 10.00 6.19 2.80

(Zoom lens group data)
Group Start surface Focal length 1 1 -26.3
2 8 26.4
3 14-32.3
4 18 39.0

(Values for conditional expressions)
(1) f2 / fw = 1.43
(2) f3 / fw = -1.75
(3) (d1w−d1t) /Ymax=−0.24

図6(a)、及び図6(b)はそれぞれ、第2実施例に係る変倍光学系の広角端状態における、無限遠合焦時の諸収差図、及び0.7°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。   FIGS. 6A and 6B are graphs showing various aberrations at the time of focusing at infinity and a rotation blur of 0.7 ° in the wide-angle end state of the variable magnification optical system according to the second example. FIG. 6 is a meridional transverse aberration diagram when shake correction is performed on the image.

図7は、第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。   FIG. 7 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the second example.

図8(a)、及び図8(b)はそれぞれ、第2実施例に係る変倍光学系の望遠端状態における、無限遠合焦時の諸収差図、及び0.4°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。   FIGS. 8A and 8B are graphs showing various aberrations at the time of focusing on infinity and a rotational blur of 0.4 ° in the telephoto end state of the variable magnification optical system according to the second example. FIG. 6 is a meridional transverse aberration diagram when shake correction is performed on the image.

各収差図より本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

(第3実施例)
図9は、第3実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。
(Third embodiment)
FIG. 9 is a lens cross-sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the third example.

本実施例に係る変倍光学系は、物体側から順に、負屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2と、負屈折力を有する第3レンズ群G3と、正屈折力を有する第4レンズ群G4とからなる。   The variable magnification optical system according to this example includes, in order from the object side, a first lens group G1 having a negative refractive power, a second lens group G2 having a positive refractive power, and a third lens group G3 having a negative refractive power. And a fourth lens group G4 having positive refractive power.

第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。そして、負メニスカスレンズL11は、像面I側のガラスレンズ面に樹脂層を設けて非球面が形成された非球面レンズである。   The first lens group G1 includes, in order from the object side, a negative meniscus lens L11 having a convex surface facing the object side, a biconcave negative lens L12, and a positive meniscus lens L13 having a convex surface facing the object side. The negative meniscus lens L11 is an aspheric lens in which an aspheric surface is formed by providing a resin layer on the glass lens surface on the image plane I side.

第2レンズ群G2は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL21と両凸形状の正レンズL22との接合レンズと、物体側に凸面を向けた正メニスカスレンズL23とからなる。   The second lens group G2 includes, in order from the object side, a cemented lens of a negative meniscus lens L21 having a convex surface facing the object side and a biconvex positive lens L22, and a positive meniscus lens L23 having a convex surface facing the object side. Become.

第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。   The third lens group G3 is composed of a cemented lens of a positive meniscus lens L31 having a concave surface directed toward the object side and a biconcave negative lens L32 in order from the object side.

第4レンズ群G4は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL41と、両凸形状の正レンズL42と像面I側に凸面を向けた負メニスカスレンズL43との接合レンズとからなる。   The fourth lens group G4 includes, in order from the object side, a positive meniscus lens L41 having a concave surface directed toward the object side, a cemented lens of a biconvex positive lens L42 and a negative meniscus lens L43 having a convex surface directed toward the image surface I. It consists of.

斯かる構成の本実施例に係る変倍光学系では、広角端状態Wから望遠端状態Tへの変倍に際して、第2レンズ群G2と第3レンズ群G3との間隔が増大し、第3レンズ群G3と第4レンズ群G4との間隔が減少するように、第1レンズ群G1は一旦像面I側へ移動した後に物体側へ移動し、第2レンズ群G2、第3レンズ群G3、及び第4レンズ群G4は物体側へ移動する。   In the zoom optical system according to the present embodiment having such a configuration, when zooming from the wide-angle end state W to the telephoto end state T, the distance between the second lens group G2 and the third lens group G3 increases. The first lens group G1 once moves to the image plane I side and then moves to the object side so that the distance between the lens group G3 and the fourth lens group G4 decreases, and then the second lens group G2 and the third lens group G3. , And the fourth lens group G4 moves to the object side.

また、開口絞りSは、第2レンズ群G2と第3レンズ群G3との間に配置されており、広角端状態Wから望遠端状態Tへの変倍に際して第3レンズ群G3とともに移動する。   The aperture stop S is disposed between the second lens group G2 and the third lens group G3, and moves together with the third lens group G3 upon zooming from the wide-angle end state W to the telephoto end state T.

また本実施例に係る変倍光学系では、第2レンズ群中のL21とL22との接合レンズを光軸と略直交する方向へシフトさせることで像ブレ発生時の像面補正が行われる。   In the zoom optical system according to the present embodiment, the image plane is corrected when the image blur occurs by shifting the cemented lens of L21 and L22 in the second lens group in a direction substantially orthogonal to the optical axis.

また、フレアカット絞りFSは、第3レンズ群G3と第4レンズ群G4との間において第3レンズ群G3の近傍に配置されており、第3レンズ群G3と一体的に移動する。   The flare cut stop FS is disposed in the vicinity of the third lens group G3 between the third lens group G3 and the fourth lens group G4, and moves integrally with the third lens group G3.

以下の表3に、第3実施例に係る変倍光学系の諸元値を掲げる。   Table 3 below lists specification values of the variable magnification optical system according to the third example.

ここで、本実施例に係る変倍光学系は、広角端状態において防振係数が1.117、焦点距離が18.5(mm)であるため、0.7°の回転ぶれを補正するための第2レンズ群中のL21とL22の接合レンズの移動量は0.202(mm)となる。また、望遠端状態においては防振係数が1.872、焦点距離が53.4(mm)であるため、0.4°の回転ぶれを補正するための第2レンズ群中のL21とL22の接合レンズの移動量は0.184(mm)となる。   Here, since the variable magnification optical system according to the present example has an anti-vibration coefficient of 1.117 and a focal length of 18.5 (mm) in the wide-angle end state, in order to correct a rotational shake of 0.7 °. The amount of movement of the cemented lens of L21 and L22 in the second lens group is 0.202 (mm). In the telephoto end state, since the image stabilization coefficient is 1.872 and the focal length is 53.4 (mm), L21 and L22 in the second lens group for correcting the rotation blur of 0.4 ° are used. The moving amount of the cemented lens is 0.184 (mm).

(表3)
(面データ)
面番号 r d nd νd
物面 ∞ ∞
1 67.809 1.90 1.51680 64.12
2 15.703 0.16 1.55389 38.09
3* 13.795 9.60
4 -385.006 1.60 1.51680 64.12
5 25.456 0.80
6 23.559 3.10 1.75520 27.51
7 45.397 (可変)

8 32.087 0.90 1.80518 25.43
9 18.951 4.00 1.48749 70.45
10 -32.360 0.30
11 19.104 2.00 1.48749 70.45
12 49.291 (可変)

13(絞り) ∞ 1.80
14 -38.593 2.30 1.80518 25.43
15 -14.806 0.90 1.74320 49.32
16 48.154 2.80
17 ∞ (可変)

18 -129.727 2.70 1.48749 70.45
19 -23.935 0.10
20 114.841 5.30 1.51823 58.89
21 -15.137 1.40 1.75520 27.51
22 -35.148
像面 ∞

(非球面データ)
第3面
κ = -1
A4 = 2.8619E-05
A6 = 6.0722E-08
A8 = -1.1756E-10
A10 = 1.1889E-12

(各種データ)
変倍比 2.8864
W M T
f = 18.5 35.0 53.4
FNO = 3.6 4.6 5.9
ω = 19.2 11.0 7.3
Y = 14.25 14.25 14.25
TL = 124.36 116.75 124.07
Bf = 38.31 52.96 67.25

d7 31.23 8.97 2.00
d12 2.60 7.03 11.66
d17 10.56 6.13 1.50

(ズームレンズ群データ)
群 始面 焦点距離
1 1 −26.6
2 8 25.9
3 14 −30.7
4 18 37.6

(条件式対応値)
(1) f2/fw=1.40
(2) f3/fw=−1.66
(3) (d1w−d1t)/Ymax=0.02
(Table 3)
(Surface data)
Surface number rd nd νd
Object ∞ ∞
1 67.809 1.90 1.51680 64.12
2 15.703 0.16 1.55389 38.09
3 * 13.795 9.60
4 -385.006 1.60 1.51680 64.12
5 25.456 0.80
6 23.559 3.10 1.75520 27.51
7 45.397 (variable)

8 32.087 0.90 1.80518 25.43
9 18.951 4.00 1.48749 70.45
10 -32.360 0.30
11 19.104 2.00 1.48749 70.45
12 49.291 (variable)

13 (Aperture) ∞ 1.80
14 -38.593 2.30 1.80518 25.43
15 -14.806 0.90 1.74320 49.32
16 48.154 2.80
17 ∞ (variable)

18 -129.727 2.70 1.48749 70.45
19 -23.935 0.10
20 114.841 5.30 1.51823 58.89
21 -15.137 1.40 1.75520 27.51
22 -35.148
Image plane ∞

(Aspheric data)
Third surface κ = -1
A4 = 2.8619E-05
A6 = 6.0722E-08
A8 = -1.1756E-10
A10 = 1.1889E-12

(Various data)
Scaling ratio 2.8864
W M T
f = 18.5 35.0 53.4
FNO = 3.6 4.6 5.9
ω = 19.2 11.0 7.3
Y = 14.25 14.25 14.25
TL = 124.36 116.75 124.07
Bf = 38.31 52.96 67.25

d7 31.23 8.97 2.00
d12 2.60 7.03 11.66
d17 10.56 6.13 1.50

(Zoom lens group data)
Group start surface focal length 1
2 8 25.9
3 14 -30.7
4 18 37.6

(Values for conditional expressions)
(1) f2 / fw = 1.40
(2) f3 / fw = −1.66
(3) (d1w−d1t) /Ymax=0.02

図10(a)、及び図10(b)はそれぞれ、第3実施例に係る変倍光学系の広角端状態における、無限遠合焦時の諸収差図、及び0.7°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。   FIGS. 10A and 10B are graphs showing various aberrations at the time of focusing on infinity and a rotation blur of 0.7 ° in the wide-angle end state of the variable magnification optical system according to the third example. FIG. 6 is a meridional transverse aberration diagram when shake correction is performed on the image.

図11は、第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。   FIG. 11 is a diagram of various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the third example.

図12(a)、及び図12(b)はそれぞれ、第3実施例に係る変倍光学系の望遠端状態における、無限遠合焦時の諸収差図、及び0.4°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。   FIGS. 12A and 12B are graphs showing various aberrations at the time of focusing on infinity and a rotational blur of 0.4 ° in the telephoto end state of the variable magnification optical system according to the third example. FIG. 6 is a meridional transverse aberration diagram when shake correction is performed on the image.

各収差図より本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。   From each aberration diagram, it can be seen that the variable magnification optical system according to the present example has excellent imaging performance with various aberrations corrected well from the wide-angle end state to the telephoto end state.

以上の各実施例によれば、高変倍比と良好な光学性能を有し、写真用カメラ、電子スチルカメラ、ビデオカメラ等に好適な防振機能を有する変倍光学系を実現することができる。   According to each of the embodiments described above, it is possible to realize a variable power optical system having a high zoom ratio and good optical performance and having an image stabilization function suitable for a photographic camera, an electronic still camera, a video camera, and the like. it can.

次に、本変倍光学系を備えたカメラについて説明する。   Next, a camera provided with the variable magnification optical system will be described.

図13は、上記第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。   FIG. 13 is a diagram illustrating a configuration of a camera including the variable magnification optical system according to the first example.

図13において、カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたデジタル一眼レフカメラである。なお、第1実施例に係る変倍光学系を搭載した場合について説明するが、他の実施例でも同様である。   In FIG. 13, the camera 1 is a digital single-lens reflex camera provided with the variable magnification optical system according to the first example as the photographing lens 2. Although the case where the variable magnification optical system according to the first example is mounted will be described, the same applies to other examples.

カメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。   In the camera 1, light from an unillustrated object (subject) is collected by the photographing lens 2 and imaged on the focusing screen 4 via the quick return mirror 3. The light imaged on the focusing screen 4 is reflected in the pentaprism 5 a plurality of times and guided to the eyepiece lens 6. Thus, the photographer can observe the subject image as an erect image through the eyepiece 6.

また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。   When the release button (not shown) is pressed by the photographer, the quick return mirror 3 is retracted out of the optical path, and light from the subject (not shown) reaches the image sensor 7. As a result, light from the subject is picked up by the image sensor 7 and recorded as a subject image in a memory (not shown). In this way, the photographer can shoot the subject with the camera 1.

ここで、カメラ1に撮影レンズ2として搭載した第1実施例に係る変倍光学系は、第1実施例において説明したように、その特徴的なレンズ構成によって、高変倍比、良好な光学性能、及び防振機能を実現している。これによりカメラ1は、防振機能を有し、高変倍比と良好な光学性能を実現することができる。   Here, the variable magnification optical system according to the first example mounted as the photographing lens 2 on the camera 1 has a high variable magnification ratio and good optical performance due to its characteristic lens configuration as described in the first example. Achieves performance and anti-vibration function. As a result, the camera 1 has an anti-vibration function and can realize a high zoom ratio and good optical performance.

なお、以下に記載の内容は、光学性能を損なわない範囲で適宜採用可能である。   The contents described below can be appropriately adopted as long as the optical performance is not impaired.

実施例では、4群構成を示したが、5群、6群等の他の群構成にも適用可能である。   In the embodiment, the four-group configuration is shown, but the present invention can also be applied to other group configurations such as the fifth group and the sixth group.

また、単独または複数のレンズ群、または部分レンズ群を光軸方向に移動させて、無限遠物体から近距離物体への合焦を行う合焦レンズ群としても良い。   Alternatively, a single lens group, a plurality of lens groups, or a partial lens group may be moved in the optical axis direction to be a focusing lens group that performs focusing from an object at infinity to a near object.

また、前記合焦レンズ群はオートフォーカスにも適用出来、オートフォーカス用の(超音波モーター等の)モーター駆動にも適している。特に第1レンズ群の少なくとも一部を合焦レンズ群とするのが好ましい。   The focusing lens group can also be applied to autofocus, and is also suitable for driving a motor for autofocus (such as an ultrasonic motor). In particular, it is preferable that at least a part of the first lens group is a focusing lens group.

また、レンズ群または部分レンズ群を光軸に垂直な方向に振動させて、手ぶれによって生じる像ぶれを補正する防振レンズ群としても良い。特に第2レンズ群を防振レンズ群とするのが好ましい。また、防振レンズ群の振動方向は、光軸に垂直でなくとも同等の効果があれば多少傾いていても良く、チルトでも構わない。   Alternatively, the lens group or the partial lens group may be vibrated in a direction perpendicular to the optical axis so as to correct an image blur caused by camera shake. In particular, the second lens group is preferably an anti-vibration lens group. Further, the vibration direction of the anti-vibration lens group may be slightly tilted or tilted as long as it has the same effect even if it is not perpendicular to the optical axis.

また、レンズ面を非球面としても構わない。また、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。   The lens surface may be an aspherical surface. The aspherical surface may be any of an aspherical surface by grinding, a glass mold aspherical surface in which a glass is formed into an aspherical shape, or a composite aspherical surface in which a resin is formed in an aspherical shape on the glass surface.

また、開口絞りは第3レンズ群近傍に配置されるのが好ましいが、開口絞りとしての部材は設けずにレンズ枠でその役割を代用しても良い。   The aperture stop is preferably disposed in the vicinity of the third lens group, but the role may be substituted by a lens frame without providing a member as an aperture stop.

また、各レンズ面には、広い波長域で高い透過率を有する反射防止膜が施されれば、フレアやゴーストを軽減し高いコントラストの高い光学性能を達成できる。   If each lens surface is provided with an antireflection film having a high transmittance in a wide wavelength range, flare and ghost can be reduced and high contrast and high optical performance can be achieved.

なお、本発明を分かり易く説明するために実施形態の構成要件を付して説明したが、本発明がこれに限定されるものでないことは言うまでもない。   In addition, in order to explain the present invention in an easy-to-understand manner, the configuration requirements of the embodiment have been described, but it goes without saying that the present invention is not limited to this.

第1実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。It is a lens sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the first example. (a)、及び(b)はそれぞれ、第1実施例に係る変倍光学系の広角端状態における、無限遠合焦時の諸収差図、及び0.7°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the first example, and shake correction for rotational shake of 0.7 °, respectively. It is a meridional transverse aberration diagram when performing. 第1実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。FIG. 7 is a diagram illustrating various aberrations during focusing at infinity in the intermediate focal length state of the variable magnification optical system according to the first example. (a)、及び(b)はそれぞれ、第1実施例に係る変倍光学系の望遠端状態における、無限遠合焦時の諸収差図、及び0.4°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the first example, and blur correction with respect to a rotation blur of 0.4 °. It is a meridional transverse aberration diagram when performing. 第2実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。It is a lens sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the second example. (a)、及び(b)はそれぞれ、第2実施例に係る変倍光学系の広角端状態における、無限遠合焦時の諸収差図、及び0.7°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the second example, and blur correction for rotational shake of 0.7 °, respectively. It is a meridional transverse aberration diagram when performing. 第2実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。FIG. 12 is a diagram illustrating various aberrations at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the second example. (a)、及び(b)はそれぞれ、第2実施例に係る変倍光学系の望遠端状態における、無限遠合焦時の諸収差図、及び0.4°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the second example, and blur correction with respect to a rotation blur of 0.4 °. It is a meridional transverse aberration diagram when performing. 第3実施例に係る変倍光学系の構成を示す広角端状態でのレンズ断面図である。It is a lens sectional view in the wide-angle end state showing the configuration of the variable magnification optical system according to the third example. (a)、及び(b)はそれぞれ、第3実施例に係る変倍光学系の広角端状態における、無限遠合焦時の諸収差図、及び0.7°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。FIGS. 9A and 9B are diagrams showing various aberrations at the time of focusing on infinity in the wide-angle end state of the variable magnification optical system according to the third example, and blur correction with respect to a rotational shake of 0.7 °. It is a meridional transverse aberration diagram when performing. 第3実施例に係る変倍光学系の中間焦点距離状態における無限遠合焦時の諸収差図である。It is an aberration diagram at the time of focusing on infinity in the intermediate focal length state of the variable magnification optical system according to the third example. (a)、及び(b)はそれぞれ、第3実施例に係る変倍光学系の望遠端状態における、無限遠合焦時の諸収差図、及び0.4°の回転ぶれに対してぶれ補正を行った際のメリディオナル横収差図である。(A) and (b) are diagrams showing various aberrations at the time of focusing on infinity in the telephoto end state of the variable magnification optical system according to the third example, and blur correction for rotational shake of 0.4 °. It is a meridional transverse aberration diagram when performing. 第1実施例に係る変倍光学系を備えたカメラの構成を示す図である。It is a figure which shows the structure of the camera provided with the variable magnification optical system which concerns on 1st Example.

符号の説明Explanation of symbols

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
S 開口絞り
I 像面
W 広角端状態
T 望遠端状態
1 カメラ
G1 First lens group G2 Second lens group G3 Third lens group G4 Fourth lens group S Aperture stop I Image plane W Wide-angle end state T Telephoto end state 1 Camera

Claims (12)

物体側から順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、
広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化し、
前記第2レンズ群が光軸と略直交する方向へシフトし、
以下の条件を満足することを特徴とする変倍光学系。
1.20<f2/fw<2.50
−2.10<f3/fw<−0.80
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
In order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power,
When zooming from the wide-angle end state to the telephoto end state, the distance between the lens groups changes,
The second lens group is shifted in a direction substantially perpendicular to the optical axis;
A zoom optical system characterized by satisfying the following conditions.
1.20 <f2 / fw <2.50
-2.10 <f3 / fw <−0.80
However,
f2: focal length of the second lens group f3: focal length of the third lens group fw: focal length of the variable magnification optical system in the wide-angle end state
正屈折力を有する第4レンズ群を有し、
広角端状態から望遠端状態への変倍に際して、前記第2レンズ群と前記第3レンズ群との間隔が増大し、前記第3レンズ群と前記第4レンズ群との間隔が減少することを特徴とする請求項1に記載の変倍光学系。
A fourth lens group having positive refractive power;
When zooming from the wide-angle end state to the telephoto end state, the distance between the second lens group and the third lens group increases, and the distance between the third lens group and the fourth lens group decreases. 2. The variable magnification optical system according to claim 1, wherein
開口絞りを有し、
広角端状態から望遠端状態への変倍に際して、前記開口絞りは前記第3レンズ群とともに移動することを特徴とする請求項1又は2に記載の変倍光学系。
Having an aperture stop,
3. The zoom optical system according to claim 1, wherein the aperture stop moves together with the third lens group when zooming from the wide-angle end state to the telephoto end state.
前記第2レンズ群は接合レンズを有していることを特徴とする請求項1から3のいずれか1項に記載の変倍光学系。   4. The variable magnification optical system according to claim 1, wherein the second lens group includes a cemented lens. 5. 前記第2レンズ群は、物体側から順に、負レンズと正レンズとからなる前記接合レンズと、正屈折力を有する単レンズとからなり、前記接合レンズが光軸と略直交する方向へシフトすることを特徴とする請求項4に記載の変倍光学系。   The second lens group includes, in order from the object side, the cemented lens including a negative lens and a positive lens and a single lens having a positive refractive power, and the cemented lens shifts in a direction substantially orthogonal to the optical axis. 5. The variable magnification optical system according to claim 4, wherein 前記第3レンズ群及び前記第4レンズ群はそれぞれ、少なくとも1つの接合レンズを有していることを特徴とする請求項2から5のいずれか1項に記載の変倍光学系。   6. The variable magnification optical system according to claim 2, wherein each of the third lens group and the fourth lens group includes at least one cemented lens. 前記第4レンズ群は、像面側から順に、負レンズと正レンズとからなる前記接合レンズと、正屈折力を有する単レンズとからなることを特徴とする請求項6に記載の変倍光学系。   The variable power optical system according to claim 6, wherein the fourth lens group includes, in order from the image surface side, the cemented lens including a negative lens and a positive lens, and a single lens having a positive refractive power. system. 広角端状態から望遠端状態への変倍に際して、前記第1レンズ群は、一旦像面側へ移動した後に物体側へ移動することを特徴とする請求項1から7のいずれか1項に記載の変倍光学系。   8. The zoom lens according to claim 1, wherein, when zooming from the wide-angle end state to the telephoto end state, the first lens group once moves to the image plane side and then moves to the object side. Variable magnification optical system. 以下の条件を満足することを特徴とする請求項1から8のいずれか1項に記載の変倍光学系。
−0.60<(d1w−d1t)/Ymax<0.17
但し、
d1w:広角端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
d1t:望遠端状態における前記変倍光学系中の最も物体側のレンズ面から像面までの光軸上の距離
Ymax :最大像高
9. The variable magnification optical system according to claim 1, wherein the following condition is satisfied.
−0.60 <(d1w−d1t) / Ymax <0.17
However,
d1w: Distance on the optical axis from the lens surface closest to the object side to the image plane in the variable magnification optical system in the wide-angle end state d1t: Image from the lens surface closest to the object side in the variable magnification optical system in the telephoto end state Distance on the optical axis to the surface Ymax: Maximum image height
前記変倍光学系中の最も像面側のレンズ面が、像面側に凸形状であることを特徴とする請求項1から9のいずれか1項に記載の変倍光学系。   10. The variable magnification optical system according to claim 1, wherein a lens surface closest to the image plane in the variable magnification optical system has a convex shape on the image plane side. 11. 請求項1から10のいずれか1項に記載の変倍光学系を有することを特徴とする光学装置。   An optical apparatus comprising the variable magnification optical system according to claim 1. 物体側から順に、負屈折力を有する第1レンズ群と、正屈折力を有する第2レンズ群と、負屈折力を有する第3レンズ群とを有し、
前記第2レンズ群が光軸と略直交する方向へシフトし、
以下の条件を満足する変倍光学系の変倍方法であって、
広角端状態から望遠端状態への変倍に際して、各レンズ群の間隔が変化することを特徴とする変倍光学系の変倍方法。
1.20<f2/fw<2.50
−2.10<f3/fw<−0.80
但し、
f2:前記第2レンズ群の焦点距離
f3:前記第3レンズ群の焦点距離
fw:広角端状態における前記変倍光学系の焦点距離
In order from the object side, a first lens group having negative refractive power, a second lens group having positive refractive power, and a third lens group having negative refractive power,
The second lens group is shifted in a direction substantially perpendicular to the optical axis;
A zooming method for a zooming optical system that satisfies the following conditions,
A zooming method for a zooming optical system, characterized in that the distance between the lens groups changes upon zooming from the wide-angle end state to the telephoto end state.
1.20 <f2 / fw <2.50
-2.10 <f3 / fw <−0.80
However,
f2: focal length of the second lens group f3: focal length of the third lens group fw: focal length of the variable magnification optical system in the wide-angle end state
JP2007173173A 2007-06-29 2007-06-29 Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method Expired - Fee Related JP5176410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007173173A JP5176410B2 (en) 2007-06-29 2007-06-29 Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007173173A JP5176410B2 (en) 2007-06-29 2007-06-29 Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method

Publications (3)

Publication Number Publication Date
JP2009014767A true JP2009014767A (en) 2009-01-22
JP2009014767A5 JP2009014767A5 (en) 2010-08-26
JP5176410B2 JP5176410B2 (en) 2013-04-03

Family

ID=40355783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007173173A Expired - Fee Related JP5176410B2 (en) 2007-06-29 2007-06-29 Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method

Country Status (1)

Country Link
JP (1) JP5176410B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042527A (en) * 2007-08-09 2009-02-26 Canon Inc Zoom lens and imaging apparatus with the same
JP2011107267A (en) * 2009-11-13 2011-06-02 Nikon Corp Lens system, optical apparatus, method for manufacturing the lens system
JP2011112716A (en) * 2009-11-24 2011-06-09 Nikon Corp Photographic lens, optical device and method for adjusting the photographic lens
WO2012086153A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2014048374A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048370A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048372A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048376A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
US8934176B2 (en) 2009-11-13 2015-01-13 Nikon Corporation Optical system, optical apparatus and method for manufacturing optical system
JP2015045799A (en) * 2013-08-29 2015-03-12 株式会社ニコン Variable power optical system, optical device, and method for manufacturing variable power optical system
JP2015075533A (en) * 2013-10-07 2015-04-20 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2015172694A (en) * 2014-03-12 2015-10-01 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens
US9541768B2 (en) 2013-09-10 2017-01-10 Samsung Electronics Co., Ltd. Zoom lens and electronic apparatus
KR101782994B1 (en) * 2010-09-07 2017-09-28 삼성전자주식회사 Compact zoom lens
US9939621B2 (en) 2013-08-02 2018-04-10 Nikon Corporation Zoom lens, optical apparatus, and method for manufacturing the zoom lens

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201310A (en) * 1989-01-30 1990-08-09 Canon Inc Zoom lens with internal focus lens
JPH10325923A (en) * 1997-05-23 1998-12-08 Nikon Corp Superwide-angle zoom lens
JP2004061910A (en) * 2002-07-30 2004-02-26 Canon Inc Zoom lens provided with vibration-proofing function
JP2006113572A (en) * 2004-09-17 2006-04-27 Pentax Corp Zoom lens system
JP2007078834A (en) * 2005-09-12 2007-03-29 Canon Inc Zoom lens and imaging apparatus having the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02201310A (en) * 1989-01-30 1990-08-09 Canon Inc Zoom lens with internal focus lens
JPH10325923A (en) * 1997-05-23 1998-12-08 Nikon Corp Superwide-angle zoom lens
JP2004061910A (en) * 2002-07-30 2004-02-26 Canon Inc Zoom lens provided with vibration-proofing function
JP2006113572A (en) * 2004-09-17 2006-04-27 Pentax Corp Zoom lens system
JP2007078834A (en) * 2005-09-12 2007-03-29 Canon Inc Zoom lens and imaging apparatus having the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009042527A (en) * 2007-08-09 2009-02-26 Canon Inc Zoom lens and imaging apparatus with the same
US8934176B2 (en) 2009-11-13 2015-01-13 Nikon Corporation Optical system, optical apparatus and method for manufacturing optical system
JP2011107267A (en) * 2009-11-13 2011-06-02 Nikon Corp Lens system, optical apparatus, method for manufacturing the lens system
JP2011112716A (en) * 2009-11-24 2011-06-09 Nikon Corp Photographic lens, optical device and method for adjusting the photographic lens
KR101782994B1 (en) * 2010-09-07 2017-09-28 삼성전자주식회사 Compact zoom lens
CN103038687B (en) * 2010-12-22 2015-06-17 松下电器产业株式会社 Zoom lens system, interchangeable lens device, and camera system
WO2012086153A1 (en) * 2010-12-22 2012-06-28 パナソニック株式会社 Zoom lens system, interchangeable lens device, and camera system
CN103038687A (en) * 2010-12-22 2013-04-10 松下电器产业株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2014048376A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048374A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048372A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
JP2014048370A (en) * 2012-08-30 2014-03-17 Nikon Corp Variable power optical system, optical device including the variable power optical system, and method for manufacturing the variable power optical system
US9939621B2 (en) 2013-08-02 2018-04-10 Nikon Corporation Zoom lens, optical apparatus, and method for manufacturing the zoom lens
US10670847B2 (en) 2013-08-02 2020-06-02 Nikon Corporation Zoom lens, optical apparatus, and method for manufacturing the zoom lens
US11428913B2 (en) 2013-08-02 2022-08-30 Nikon Corporation Zoom lens, optical apparatus, and method for manufacturing the zoom lens
JP2015045799A (en) * 2013-08-29 2015-03-12 株式会社ニコン Variable power optical system, optical device, and method for manufacturing variable power optical system
US9541768B2 (en) 2013-09-10 2017-01-10 Samsung Electronics Co., Ltd. Zoom lens and electronic apparatus
JP2015075533A (en) * 2013-10-07 2015-04-20 パナソニックIpマネジメント株式会社 Zoom lens system, interchangeable lens device, and camera system
JP2015172694A (en) * 2014-03-12 2015-10-01 株式会社ニコン Zoom lens, optical device, and method for manufacturing zoom lens

Also Published As

Publication number Publication date
JP5176410B2 (en) 2013-04-03

Similar Documents

Publication Publication Date Title
JP5176410B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5407119B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5458477B2 (en) Variable magnification optical system, optical apparatus, and variable magnification optical system magnification method
JP5130806B2 (en) Magnification optical system, image pickup device, and magnifying optical system magnifying method
JP5288238B2 (en) Magnifying optical system, optical apparatus equipped with the magnifying optical system, and magnifying method of the magnifying optical system
JP5581730B2 (en) Variable magnification optical system, optical device
JP5641680B2 (en) Zoom lens and optical apparatus having the same
JP5135723B2 (en) Zoom lens having image stabilization function, image pickup apparatus, image stabilization method for zoom lens, and zooming method for zoom lens
JP2008176271A (en) Variable power optical system having vibration-proof function, imaging device, and method of varying magnification of variable power optical system
JP2009009104A (en) Zoom lens and optical apparatus
JP2010044225A (en) Zoom lens system, optical equipment having same, and variable magnification method using same
WO2010004806A1 (en) Zoom lens, optical device having same, and zoom lens manufacturing method
JP5157295B2 (en) Optical system, imaging device, and optical system imaging method
JP5845972B2 (en) Variable magnification optical system, optical device
JP5839062B2 (en) Zoom lens, optical device
JP5201460B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP6070055B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5565676B2 (en) Optical element, imaging optical system having the same, and optical instrument
JP2010170063A (en) Zoom lens system, image capturing apparatus, and method of manufacturing the zoom lens system
JP2018200472A (en) Variable power optical system, optical device, and method for manufacturing variable power optical system
JP6197489B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP6070054B2 (en) Variable-magnification optical system, optical device, and variable-magnification optical system manufacturing method
JP5201461B2 (en) Zoom lens, optical apparatus having the same, and zooming method
JP2010170062A (en) Zoom lens system, image capturing apparatus, and method of manufacturing the zoom lens system
JP5831294B2 (en) Variable magnification optical system, optical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121224

R150 Certificate of patent or registration of utility model

Ref document number: 5176410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees