JP2014047632A - Power generation device and method of controlling power generation device - Google Patents

Power generation device and method of controlling power generation device Download PDF

Info

Publication number
JP2014047632A
JP2014047632A JP2012188743A JP2012188743A JP2014047632A JP 2014047632 A JP2014047632 A JP 2014047632A JP 2012188743 A JP2012188743 A JP 2012188743A JP 2012188743 A JP2012188743 A JP 2012188743A JP 2014047632 A JP2014047632 A JP 2014047632A
Authority
JP
Japan
Prior art keywords
working medium
temperature
superheater
evaporator
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012188743A
Other languages
Japanese (ja)
Other versions
JP5891146B2 (en
Inventor
Shigeto Adachi
成人 足立
Masayoshi Matsumura
昌義 松村
Yutaka Narukawa
成川  裕
Kazuo Takahashi
和雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012188743A priority Critical patent/JP5891146B2/en
Priority to KR1020130102290A priority patent/KR101428418B1/en
Priority to CN201310383539.5A priority patent/CN103671052B/en
Publication of JP2014047632A publication Critical patent/JP2014047632A/en
Application granted granted Critical
Publication of JP5891146B2 publication Critical patent/JP5891146B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • F01D17/08Arrangement of sensing elements responsive to condition of working-fluid, e.g. pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)
  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a working medium including droplets from flowing into an expander even when the working medium in a state of including droplets, flows out from an evaporator in controlling a superheating degree in a superheater to a prescribed target value.SOLUTION: A power generation device includes an evaporator 11, a superheater 12, an expander 13 connected with a power generator, a condenser 14, a working medium pump 15, pump control means 51 for controlling a rotational frequency of the working medium pump 15 so that a superheating degree at an outlet side of the superheater 12 becomes a prescribed target value, evaporation state detecting means 52 for detecting whether a temperature of the working medium at an outlet side of the evaporator 11 is less than a saturated temperature or not, and superheating degree correcting means 53 for increasing the prescribed target value of the superheating degree at the outlet side of the superheater 12 when the evaporation state detecting means 52 detects that the temperature of the working medium at the outlet side of the evaporator is less than the saturated temperature.

Description

本発明は、発電装置及び発電装置の制御方法に関するものである。   The present invention relates to a power generator and a method for controlling the power generator.

従来、下記特許文献1に開示されているように、蒸気発生器と、タービン発電機からなる膨張機と、凝縮器と、ポンプとを備え、蒸気発生器で得られた作動媒体(蒸気)で膨張機を駆動することによって発電を行う発電装置が知られている。そして、この特許文献1に開示された発電装置では、蒸気発生器の出口側での作動媒体の過熱度が所定の目標値となるように作動媒体の循環流量を制御する過熱度制御手段が設けられている。この特許文献1の段落0019には、過熱度が所定の目標値に維持されるので、過熱器や液滴分離器を備えなくても、膨張機に液滴が流入することがないと記載されている。   Conventionally, as disclosed in Patent Document 1 below, a working medium (steam) obtained by a steam generator is provided with a steam generator, an expander composed of a turbine generator, a condenser, and a pump. 2. Description of the Related Art A power generation apparatus that generates power by driving an expander is known. And in the electric power generating apparatus disclosed by this patent document 1, the superheat degree control means which controls the circulating flow volume of a working medium is provided so that the superheat degree of the working medium in the exit side of a steam generator may become a predetermined target value. It has been. In paragraph 0019 of this patent document 1, since the superheat degree is maintained at a predetermined target value, it is described that the liquid droplets do not flow into the expander even if the superheater and the liquid droplet separator are not provided. ing.

特開2008−309046号公報JP 2008-309046 A

前記の構成において、蒸気発生器を蒸発器及び過熱器からなる構成とした場合には、過熱度を所定の目標値に制御したとしても、実際には、液滴が膨張機に流入することがあるという問題がある。すなわち、蒸気発生器を蒸発器及び過熱器からなる構成とし、過熱器の出口側において作動媒体が所定の過熱度を有する過熱状態になるように制御したとしても、蒸発器の出口側において作動媒体が飽和状態に達していない場合、すなわち、蒸発器から液滴を含んだ状態の作動媒体が流出する場合には、液滴がそのまま過熱器を通過してしまうことがあるという問題がある。この問題は、蒸発器において作動媒体を加熱する加熱媒体の温度の変動が大きいとき、あるいは温度が低い加熱媒体が使用されるときに顕著となる。   In the above configuration, when the steam generator is configured by an evaporator and a superheater, even if the superheat degree is controlled to a predetermined target value, the droplets may actually flow into the expander. There is a problem that there is. That is, even if the steam generator is composed of an evaporator and a superheater, and the working medium is controlled so as to be in a superheated state having a predetermined superheat degree on the outlet side of the superheater, the working medium on the outlet side of the evaporator Is not saturated, that is, when the working medium containing droplets flows out of the evaporator, there is a problem that the droplets may pass through the superheater as they are. This problem becomes significant when the temperature of the heating medium that heats the working medium in the evaporator varies greatly or when a heating medium having a low temperature is used.

そこで、本発明は、前記従来技術を鑑みてなされたものであり、その目的とするところは、過熱器での過熱度を所定の目標値に制御する場合において蒸発器から液滴を含んだ状態の作動媒体が流出することがあったとしても、膨張機に液滴を含んだ作動媒体が流入することを防止することにある。   Therefore, the present invention has been made in view of the prior art, and the object of the present invention is a state in which droplets are included from the evaporator when the superheat degree in the superheater is controlled to a predetermined target value. This is to prevent the working medium containing droplets from flowing into the expander even if the working medium flows out.

前記の目的を達成するため、本発明は、加熱媒体によって作動媒体を加熱して当該作動媒体の少なくとも一部を蒸発させる蒸発器と、前記蒸発器で少なくとも一部が蒸発した作動媒体を、加熱媒体によって加熱して過熱状態にする過熱器と、発電機が連結され、前記過熱器で過熱状態となった作動媒体を膨張させることによって前記発電機を駆動する膨張機と、前記膨張機で膨張した作動媒体を凝縮させる凝縮器と、前記凝縮器で凝縮した作動媒体を前記蒸発器に向けて送出する媒体ポンプと、前記過熱器の出口側での過熱度が所定の目標値になるように前記媒体ポンプの回転数を制御するポンプ制御手段と、前記蒸発器の出口側での作動媒体の温度が飽和温度未満であるか否かを検出する蒸発状態検出手段と、前記蒸発状態検出手段によって蒸発器出口側での作動媒体の温度が飽和温度未満であることが検出されると、前記過熱器の出口側での過熱度の前記所定の目標値を上げる過熱度補正手段と、を備えている発電装置である。   In order to achieve the above-mentioned object, the present invention heats a working medium by a heating medium to evaporate at least a part of the working medium, and heats the working medium at least a part of which is evaporated by the evaporator. A superheater that is heated by a medium to be in an overheated state and a generator are connected, and an expander that drives the generator by expanding a working medium that has been overheated by the superheater, and expansion by the expander A condenser for condensing the working medium, a medium pump for sending the working medium condensed in the condenser to the evaporator, and a degree of superheat on the outlet side of the superheater to a predetermined target value. Pump control means for controlling the rotation speed of the medium pump, evaporation state detection means for detecting whether or not the temperature of the working medium on the outlet side of the evaporator is lower than a saturation temperature, and the evaporation state detection means By Superheat degree correction means for increasing the predetermined target value of the degree of superheat on the outlet side of the superheater when it is detected that the temperature of the working medium on the evaporator outlet side is lower than the saturation temperature. It is a power generator.

本発明では、媒体ポンプは、ポンプ制御手段によって過熱器の出口側での過熱度が所定の目標値になるように回転数制御される。そして、蒸発器出口側での作動媒体の温度が飽和温度未満であることが検出されると、過熱度補正手段は、過熱器の出口側での過熱度の目標値を上げる。このため、ポンプ制御手段は、過熱器での作動媒体の加熱を促進させるべく、ポンプの回転数を下げる制御を行う。これにより、作動媒体の循環量が低減され、過熱器の出口側での過熱度を上げることができる。したがって、蒸発器出口側での作動媒体の温度が飽和温度未満になっていて液滴が存在するような場合であっても、過熱器での加熱を促進するように制御を行うことにより、過熱器に流入した作動媒体に含まれる液滴が蒸発することなく過熱器を通過してしまうことを防止することができる。すなわち、蒸発器に導入される加熱媒体の温度が余り高くなくて作動媒体が全て蒸発しきらない場合であっても、膨張機に液滴を含んだ作動媒体が流入することを防止することができる。このため、加熱媒体の温度が異なる場合や加熱媒体の温度が大きく変動する場合にも対応可能となる。   In the present invention, the rotation speed of the medium pump is controlled by the pump control means so that the degree of superheat on the outlet side of the superheater becomes a predetermined target value. When it is detected that the temperature of the working medium on the evaporator outlet side is lower than the saturation temperature, the superheat degree correction means increases the target value of the superheat degree on the outlet side of the superheater. For this reason, the pump control means performs control to lower the rotation speed of the pump in order to promote heating of the working medium in the superheater. Thereby, the circulation amount of the working medium is reduced, and the degree of superheat on the outlet side of the superheater can be increased. Therefore, even when the temperature of the working medium on the outlet side of the evaporator is lower than the saturation temperature and droplets are present, by controlling so as to promote heating in the superheater, It is possible to prevent droplets contained in the working medium flowing into the heater from passing through the superheater without evaporating. That is, even when the temperature of the heating medium introduced into the evaporator is not so high that the working medium is completely evaporated, it is possible to prevent the working medium containing droplets from flowing into the expander. it can. For this reason, it becomes possible to cope with the case where the temperature of the heating medium is different or the temperature of the heating medium greatly fluctuates.

ここで、前記過熱度補正手段は、前記過熱器に流入する加熱媒体の温度又は流量が低下するに従って、前記過熱度の目標値の変更量を大きくするのが好ましい。   Here, it is preferable that the superheat degree correction means increases the amount of change of the target value of the superheat degree as the temperature or flow rate of the heating medium flowing into the superheater decreases.

過熱器に流入する加熱媒体の温度が低いほど、あるいは加熱媒体の流量が少ないほど、過熱器において作動媒体の加熱量が小さくなる。したがって、この態様では、過熱器に流入する加熱媒体の温度が低い場合又は加熱媒体の流量が少ない場合に、過熱度の目標値の変更量を大きくすることにより、過熱器において作動媒体中の液滴を確実に蒸発させることができる。   The lower the temperature of the heating medium flowing into the superheater or the smaller the flow rate of the heating medium, the smaller the amount of heating of the working medium in the superheater. Therefore, in this aspect, when the temperature of the heating medium flowing into the superheater is low or the flow rate of the heating medium is small, the amount of change in the target value of the superheat degree is increased to increase the amount of liquid in the working medium. Drops can be reliably evaporated.

前記過熱度補正手段は、前記蒸発器の出口側での作動媒体の温度が飽和温度未満の状態から飽和温度以上となったことが検出されると、前記過熱度の目標値を下げるのが好ましい。   Preferably, the superheat degree correction means lowers the target value of the superheat degree when it is detected that the temperature of the working medium at the outlet side of the evaporator has become equal to or higher than the saturation temperature from a state below the saturation temperature. .

この態様では、膨張機に液滴を含んだ作動媒体が流入することを防止しつつ、作動媒体の循環量を増大させることができる。   In this aspect, it is possible to increase the circulation amount of the working medium while preventing the working medium containing droplets from flowing into the expander.

前記発電装置は、前記蒸発器と前記過熱器との間の作動媒体通路を流れる作動媒体の温度を検出する温度検出手段と、前記蒸発器と前記過熱器との間の作動媒体通路を流れる作動媒体の圧力を検出する圧力検出手段と、を備え、前記蒸発状態検出手段は、前記温度検出手段の検出値及び前記圧力検出手段の検出値に基づいて、前記蒸発器の出口側での作動媒体の温度が飽和温度未満であることを検出するのが好ましい。   The power generation device includes temperature detecting means for detecting a temperature of a working medium flowing through a working medium passage between the evaporator and the superheater, and an operation flowing through a working medium passage between the evaporator and the superheater. Pressure detecting means for detecting the pressure of the medium, and the evaporation state detecting means is a working medium on the outlet side of the evaporator based on the detected value of the temperature detecting means and the detected value of the pressure detecting means. It is preferable to detect that the temperature of is less than the saturation temperature.

この態様では、蒸発器の出口側での作動媒体の温度が飽和温度未満にあるときに、それを確実に検出することができる。   In this aspect, when the temperature of the working medium on the outlet side of the evaporator is below the saturation temperature, it can be reliably detected.

また本発明は、加熱媒体によって作動媒体を加熱して当該作動媒体の少なくとも一部を蒸発させる蒸発器と、前記蒸発器で少なくとも一部が蒸発した作動媒体を、加熱媒体によって加熱して過熱状態にする過熱器と、発電機が連結され、前記過熱器で過熱状態となった作動媒体を膨張させることによって前記発電機を駆動する膨張機と、前記膨張機で膨張した作動媒体を凝縮させる凝縮器と、前記凝縮器で凝縮した作動媒体を前記蒸発器に向けて送出する媒体ポンプとを備え、前記過熱器の出口側での過熱度が所定の目標値になるように前記媒体ポンプの回転数が制御される発電装置の制御方法であって、記蒸発器の出口側での作動媒体の温度が飽和温度未満であるか否かを検出する検出ステップと、前記検出ステップにおいて、蒸発器出口側での作動媒体の温度が飽和温度未満であることが検出されると、前記過熱器の出口側での過熱度の前記所定の目標値を上げる過熱度補正ステップと、が含まれている発電装置の制御方法である。   The present invention also provides an evaporator that heats the working medium with a heating medium to evaporate at least a part of the working medium, and the working medium that has at least partly evaporated with the evaporator is heated to a superheated state. A superheater that is connected to a generator and an expander that drives the generator by expanding the working medium that has been overheated by the superheater, and a condensation that condenses the working medium expanded by the expander And a medium pump for sending the working medium condensed in the condenser toward the evaporator, and the rotation of the medium pump so that the degree of superheat on the outlet side of the superheater becomes a predetermined target value. A control method for a power generation apparatus in which the number is controlled, wherein a detection step for detecting whether or not the temperature of the working medium on the outlet side of the evaporator is less than a saturation temperature, and in the detection step, the evaporator outlet And a superheat degree correcting step for increasing the predetermined target value of the superheat degree at the outlet side of the superheater when it is detected that the temperature of the working medium at the temperature is lower than the saturation temperature. This is a control method.

前記過熱度補正ステップでは、前記過熱器に流入する加熱媒体の温度又は流量が低下するに従って、前記過熱度の目標値の変更量を大きくするのが好ましい。   In the superheat degree correction step, it is preferable to increase the amount of change in the target value of the superheat degree as the temperature or flow rate of the heating medium flowing into the superheater decreases.

前記発電装置の制御方法において、前記蒸発器の出口側での作動媒体の温度が飽和温度未満の状態から飽和温度以上となったことが検出されると、前記過熱度の目標値を下げるのが好ましい。   In the control method of the power generation device, when it is detected that the temperature of the working medium on the outlet side of the evaporator is lower than the saturation temperature, the target value of the superheat degree is decreased. preferable.

以上説明したように、本発明によれば、過熱器での過熱度を所定の目標値に制御する場合において蒸発器から液滴を含んだ状態の作動媒体が流出することがあったとしても、膨張機に液滴を含んだ作動媒体が流入することを防止することができる。   As described above, according to the present invention, even when the working medium containing droplets flows out of the evaporator when the degree of superheating in the superheater is controlled to a predetermined target value, It is possible to prevent the working medium containing droplets from flowing into the expander.

本発明の一実施形態の発電装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the electric power generating apparatus of one Embodiment of this invention. 前記発電装置の制御方法を説明するためのフロー図である。It is a flowchart for demonstrating the control method of the said electric power generating apparatus. 過熱度補正ステップを説明するためのフロー図である。It is a flowchart for demonstrating a superheat degree correction | amendment step. 本発明のその他の実施形態の発電装置の構成の概略を示す図である。It is a figure which shows the outline of a structure of the electric power generating apparatus of other embodiment of this invention.

本発明の一実施形態の発電装置及びその制御方法について、図1及び図2を参照しながら説明する。   A power generation apparatus and a control method thereof according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

図1は、本実施形態の発電装置の構成を示している。具体的には、この発電装置は、作動媒体が循環する循環流路10と、発電機20と、各種制御を行う制御部50とを備えている。なお、循環流路10内は、水よりも沸点の低い作動媒体(例えば、HFC245fa)が循環する。   FIG. 1 shows the configuration of the power generation device of this embodiment. Specifically, this power generation device includes a circulation flow path 10 through which a working medium circulates, a power generator 20, and a control unit 50 that performs various controls. Note that a working medium (for example, HFC245fa) having a boiling point lower than that of water circulates in the circulation channel 10.

循環流路10は、作動媒体の少なくとも一部を蒸発させる蒸発器11と、蒸発器11から流出した作動媒体を過熱状態にする過熱器12と、過熱状態にある作動媒体を膨張させる膨張機13と、膨張機13で膨張した作動媒体を凝縮させる凝縮器14と、凝縮器14で凝縮された作動媒体を蒸発器11へ送る作動媒体ポンプ15とが直列に接続された閉回路である。   The circulation channel 10 includes an evaporator 11 that evaporates at least a part of the working medium, a superheater 12 that causes the working medium that has flowed out of the evaporator 11 to be in a superheated state, and an expander 13 that expands the working medium that is in a superheated state. And a condenser 14 that condenses the working medium expanded by the expander 13 and a working medium pump 15 that sends the working medium condensed by the condenser 14 to the evaporator 11 are connected in series.

蒸発器11は、液状の作動媒体の少なくとも一部を蒸発させるものである。蒸発器11は、作動媒体が流れる作動媒体流路11aと、加熱媒体が流れる加熱媒体流路11bとを有している。加熱媒体流路11bは加熱媒体回路16に接続されていて、この加熱媒体流路11bには、外部の熱源から供給された加熱媒体が流れる。作動媒体流路11aを流れる作動媒体は、加熱媒体流路11bを流れる加熱媒体と熱交換し、少なくとも一部が蒸発する。   The evaporator 11 evaporates at least a part of the liquid working medium. The evaporator 11 has a working medium flow path 11a through which the working medium flows and a heating medium flow path 11b through which the heating medium flows. The heating medium flow path 11b is connected to the heating medium circuit 16, and the heating medium supplied from an external heat source flows through the heating medium flow path 11b. The working medium flowing through the working medium flow path 11a exchanges heat with the heating medium flowing through the heating medium flow path 11b, and at least a part thereof evaporates.

過熱器12は、蒸発器11で蒸発した作動媒体を加熱して過熱蒸気とするものである。過熱器12は、作動媒体が流れる作動媒体流路12aと、加熱媒体が流れる加熱媒体流路12bとを有している。加熱媒体流路12bも蒸発器11の加熱媒体流路11bと同様に前記加熱媒体回路16に接続されている。すなわち、過熱器12の加熱媒体流路12bは、加熱媒体回路16において、蒸発器11の加熱媒体流路11bの接続部よりも上流側に接続されている。したがって、過熱器12の加熱媒体流路12bには、外部の熱源から供給された高温の加熱媒体が流れ、蒸発器11の加熱媒体流路11bには、過熱器12において作動媒体を加熱するのに使用された加熱媒体が流れる。過熱器12の作動媒体流路12aを流れる作動媒体は、加熱媒体流路12bを流れる加熱媒体と熱交換し、過熱状態となる。   The superheater 12 heats the working medium evaporated in the evaporator 11 to form superheated steam. The superheater 12 has a working medium flow path 12a through which the working medium flows and a heating medium flow path 12b through which the heating medium flows. The heating medium channel 12 b is also connected to the heating medium circuit 16 in the same manner as the heating medium channel 11 b of the evaporator 11. That is, the heating medium flow path 12 b of the superheater 12 is connected in the heating medium circuit 16 to the upstream side of the connection portion of the heating medium flow path 11 b of the evaporator 11. Therefore, a high-temperature heating medium supplied from an external heat source flows through the heating medium flow path 12b of the superheater 12, and the working medium is heated by the superheater 12 through the heating medium flow path 11b of the evaporator 11. The heating medium used for the flow. The working medium flowing through the working medium flow path 12a of the superheater 12 exchanges heat with the heating medium flowing through the heating medium flow path 12b, and is in an overheated state.

加熱媒体回路16を流れる加熱媒体としては、例えば、坑井(蒸気井)から採取された蒸気や、工場等から排出された蒸気のほか、太陽熱を熱源とする集熱器により生成された蒸気や、エンジン、圧縮機等の排熱から生成された蒸気や温水、バイオマスや化石燃料を熱源とするボイラーから生成された蒸気、温水等が挙げられる。   Examples of the heating medium flowing through the heating medium circuit 16 include steam collected from a well (steam well), steam discharged from a factory, etc., steam generated by a heat collector using solar heat as a heat source, Steam, hot water generated from exhaust heat from an engine, a compressor, etc., steam generated from a boiler using biomass or fossil fuel as a heat source, hot water, and the like.

膨張機13は、循環流路10における蒸発器11の下流側に設けられており、蒸発器11で蒸発した作動媒体を膨張させることによって当該作動媒体から運動エネルギーを取り出す。本実施形態では、膨張機13としてスクリュ膨張機が用いられている。スクリュ膨張機では、膨張機のケーシング内に形成されたロータ室(図示せず)に雌雄一対のスクリュロータ(図示せず)が収容されている。このスクリュ膨張機では、前記ケーシングに形成された吸気口から前記ロータ室に供給された作動媒体の膨張力によって前記スクリュロータが回転する。そして、前記ロータ室内で膨張することにより圧力が低下した作動媒体は、前記ケーシングに形成された排出口から排出される。   The expander 13 is provided on the downstream side of the evaporator 11 in the circulation channel 10, and extracts the kinetic energy from the working medium by expanding the working medium evaporated by the evaporator 11. In this embodiment, a screw expander is used as the expander 13. In the screw expander, a pair of male and female screw rotors (not shown) are accommodated in a rotor chamber (not shown) formed in the casing of the expander. In this screw expander, the screw rotor is rotated by the expansion force of the working medium supplied from the intake port formed in the casing to the rotor chamber. Then, the working medium whose pressure has been reduced by expanding in the rotor chamber is discharged from a discharge port formed in the casing.

凝縮器14は、膨張機13から排出されたガス状の作動媒体を凝縮させて液状の作動媒体とするものである。凝縮器14は、ガス状の作動媒体が流れる作動媒体流路14aと、外部から供給される冷却媒体が流れる流路17と接続されることによりその冷却媒体が流れる冷却媒体流路14bとを有している。作動媒体流路14aを流れる作動媒体は、冷却媒体流路14bを流れる冷却媒体と熱交換することにより凝縮する。流路17を流れる冷却媒体としては、例えば、クーリングタワーで冷却された冷却水が挙げられる。   The condenser 14 condenses the gaseous working medium discharged from the expander 13 to form a liquid working medium. The condenser 14 has a working medium flow path 14a through which a gaseous working medium flows, and a cooling medium flow path 14b through which the cooling medium flows by being connected to a flow path 17 through which a cooling medium supplied from the outside flows. doing. The working medium flowing through the working medium flow path 14a is condensed by exchanging heat with the cooling medium flowing through the cooling medium flow path 14b. Examples of the cooling medium flowing through the flow path 17 include cooling water cooled by a cooling tower.

作動媒体ポンプ15は、循環流路10における凝縮器14の下流側(蒸発器11と凝縮器14との間)に設けられており、循環流路10内で作動媒体を循環させるためのものである。この作動媒体ポンプ15は、凝縮器14で凝縮された液状の作動媒体を所定の圧力まで加圧して蒸発器11に送り出す。作動媒体ポンプ15として、インペラをロータとして備える遠心ポンプや、ロータが一対のギアからなるギアポンプ等が用いられる。この作動媒体ポンプ15は、任意の回転数で駆動されることが可能である。   The working medium pump 15 is provided on the downstream side of the condenser 14 (between the evaporator 11 and the condenser 14) in the circulation channel 10, and circulates the working medium in the circulation channel 10. is there. The working medium pump 15 pressurizes the liquid working medium condensed by the condenser 14 to a predetermined pressure and sends it to the evaporator 11. As the working medium pump 15, a centrifugal pump having an impeller as a rotor, a gear pump having a rotor composed of a pair of gears, or the like is used. The working medium pump 15 can be driven at an arbitrary rotational speed.

発電機20は、膨張機13に接続されており、膨張機13内で作動媒体が膨張して前記スクリュロータが駆動されることにより駆動される。本実施形態では、発電機20として、IPM発電機(永久磁石同期発電機)が用いられている。具体的には、IPM発電機は、膨張機13の一対のスクリュロータのうちの一方に接続された回転軸を有しており、この回転軸が前記スクリュロータの回転に伴って回転することにより電力を発生させる。発電機20は、インバータ24によって回転数調整可能となっている。制御部50は、発電機20の発電効率がなるべく高くなるように発電機20の回転数を調整すべく、インバータ24に回転数調整信号を出力する。なお、発電機20は、IPM発電機に限られるものではなく、例えば誘導発電機等、他のタイプの発電機としてもよい。   The generator 20 is connected to the expander 13, and is driven when the working medium is expanded in the expander 13 and the screw rotor is driven. In this embodiment, an IPM generator (permanent magnet synchronous generator) is used as the generator 20. Specifically, the IPM generator has a rotating shaft connected to one of the pair of screw rotors of the expander 13, and the rotating shaft rotates as the screw rotor rotates. Generate power. The number of revolutions of the generator 20 can be adjusted by an inverter 24. The controller 50 outputs a rotation speed adjustment signal to the inverter 24 in order to adjust the rotation speed of the generator 20 so that the power generation efficiency of the generator 20 is as high as possible. The generator 20 is not limited to the IPM generator, and may be another type of generator such as an induction generator.

循環流路10における蒸発器11と過熱器12との間の作動媒体通路には、第1温度センサT1と第1圧力センサP1とが設けられている。第1温度センサT1は、蒸発器11を通過した作動媒体の温度を検出する温度検出手段として機能する。第1圧力センサP1は、過熱器12を通過した作動媒体の圧力を検出する圧力検出手段として機能する。   A first temperature sensor T1 and a first pressure sensor P1 are provided in the working medium passage between the evaporator 11 and the superheater 12 in the circulation flow path 10. The first temperature sensor T <b> 1 functions as a temperature detection unit that detects the temperature of the working medium that has passed through the evaporator 11. The first pressure sensor P <b> 1 functions as a pressure detection unit that detects the pressure of the working medium that has passed through the superheater 12.

循環流路10における過熱器12と膨張機13との間の作動媒体通路には、第2温度センサT2と第2圧力センサP2とが設けられている。第2温度センサT2は、過熱器12を通過した作動媒体の温度を検出する手段として機能し、第2圧力センサP2は、過熱器12を通過した作動媒体の圧力を検出する手段として機能する。   A second temperature sensor T2 and a second pressure sensor P2 are provided in the working medium passage between the superheater 12 and the expander 13 in the circulation channel 10. The second temperature sensor T2 functions as a means for detecting the temperature of the working medium that has passed through the superheater 12, and the second pressure sensor P2 functions as a means for detecting the pressure of the working medium that has passed through the superheater 12.

制御部50は、ROM、RAM、CPU等を備えていて、ROMに記憶されたプログラムを実行することにより所定の機能を発揮する。この制御部50の機能には、ポンプ制御手段51と蒸発状態検出手段52と過熱度補正手段53とが含まれている。   The control unit 50 includes a ROM, a RAM, a CPU, and the like, and exhibits a predetermined function by executing a program stored in the ROM. The functions of the control unit 50 include a pump control unit 51, an evaporation state detection unit 52, and a superheat degree correction unit 53.

ポンプ制御手段51は、過熱器12の出口側での作動媒体の過熱度が所定の目標値になるように、作動媒体ポンプ15の回転数制御を行う。すなわち、制御部50には、過熱器12の出口側での過熱度の目標値として、所定の目標値(例えば3℃)が予め設定されていて、第2温度センサT2及び第2圧力センサP2の検出値から過熱器12出口側での過熱度が算出されるため、ポンプ制御手段51は、第2温度センサT2及び第2圧力センサP2の検出値に基づき、過熱度が前記所定の目標値になるように作動媒体ポンプ15の回転数制御を行う。作動媒体ポンプ15はインバータ22によって回転数制御される構成となっているため、ポンプ制御手段51は、インバータ22に制御信号を送ることによって作動媒体ポンプ15の回転数制御を行う。   The pump control means 51 controls the rotation speed of the working medium pump 15 so that the degree of superheating of the working medium on the outlet side of the superheater 12 becomes a predetermined target value. That is, a predetermined target value (for example, 3 ° C.) is preset in the control unit 50 as the target value of the degree of superheat on the outlet side of the superheater 12, and the second temperature sensor T2 and the second pressure sensor P2 are set. Since the superheat degree at the outlet side of the superheater 12 is calculated from the detected value of the superheater 12, the pump control means 51 determines that the superheat degree is the predetermined target value based on the detected values of the second temperature sensor T2 and the second pressure sensor P2. Thus, the rotational speed control of the working medium pump 15 is performed. Since the working medium pump 15 has a configuration in which the rotation speed is controlled by the inverter 22, the pump control unit 51 controls the rotation speed of the working medium pump 15 by sending a control signal to the inverter 22.

蒸発状態検出手段52は、蒸発器11の出口側での作動媒体の状態を検出するためのものであり、第1温度センサT1の検出値及び第1圧力センサP1の検出値に基づいて当該作動媒体の温度が飽和温度未満であるか否かを検出する制御を行う。具体的に、蒸発状態検出手段52は、第1圧力センサP1の検出値から作動媒体の飽和温度を導出するとともに、導出された飽和温度と第1温度センサT1の検出温度とを比較することにより、蒸発器11の出口側において作動媒体の温度が飽和温度未満にあるか否かを検出する。   The evaporation state detection means 52 is for detecting the state of the working medium on the outlet side of the evaporator 11, and operates based on the detection value of the first temperature sensor T1 and the detection value of the first pressure sensor P1. Control is performed to detect whether the temperature of the medium is lower than the saturation temperature. Specifically, the evaporation state detection means 52 derives the saturation temperature of the working medium from the detection value of the first pressure sensor P1, and compares the derived saturation temperature with the detection temperature of the first temperature sensor T1. Then, it is detected on the outlet side of the evaporator 11 whether or not the temperature of the working medium is lower than the saturation temperature.

過熱度補正手段53は、蒸発状態検出手段52によって蒸発器11出口側での作動媒体の温度が飽和温度未満であることが検出されると、過熱器12の出口側での過熱度の目標値を上げる制御を行う。すなわち、制御部50には、過熱器12の出口側での過熱度の目標値として所定の目標値が設定されており、過熱度補正手段53は、蒸発器11の出口側において作動媒体の温度が飽和温度未満であるときには、過熱度の目標値を上げる。過熱度の目標値が上げられることにより、過熱器12における作動媒体の加熱を促進させるべく、ポンプ制御手段51は、作動媒体ポンプ15の回転数を下げる制御を行う。これにより作動媒体の循環流量が低減され、過熱器12において作動媒体の過熱度を上げることができる。   When the evaporation state detection unit 52 detects that the temperature of the working medium on the outlet side of the evaporator 11 is lower than the saturation temperature, the superheat degree correction unit 53 detects the target value of the superheat degree on the outlet side of the superheater 12. Control to raise. That is, the control unit 50 is set with a predetermined target value as the target value of the degree of superheat on the outlet side of the superheater 12, and the superheat degree correction means 53 performs the temperature of the working medium on the outlet side of the evaporator 11. When is below the saturation temperature, the target value of superheat is increased. The pump control means 51 performs control to lower the rotational speed of the working medium pump 15 in order to promote the heating of the working medium in the superheater 12 by increasing the target value of the superheat degree. As a result, the circulating flow rate of the working medium is reduced, and the degree of superheating of the working medium can be increased in the superheater 12.

また過熱度補正手段53は、過熱器12に流入する加熱媒体の温度が低下するに従って、過熱器12出口側での過熱度の目標値の変更量を大きくする。すなわち、加熱媒体回路16において、過熱器12よりも上流側には、過熱器12に流入する前の加熱媒体の温度を検出する第3温度センサTW1(加熱媒体温度検出手段)が設けられており、過熱度補正手段53は、過熱度の目標値を上げる際には、第3温度センサTW1の検出値が低下するに従って、過熱度の目標値を上げる量を増大させる一方、第3温度センサTW1の検出値が上昇するに従って、過熱度の目標値を上げる量を低減させる。   Further, the superheat degree correcting means 53 increases the amount of change in the target value of the superheat degree on the outlet side of the superheater 12 as the temperature of the heating medium flowing into the superheater 12 decreases. That is, in the heating medium circuit 16, a third temperature sensor TW1 (heating medium temperature detecting means) for detecting the temperature of the heating medium before flowing into the superheater 12 is provided upstream of the superheater 12. When the superheat degree target value is increased, the superheat degree correction means 53 increases the amount by which the superheat degree target value is increased as the detection value of the third temperature sensor TW1 decreases, while the third temperature sensor TW1. As the detected value increases, the amount by which the target value of the superheat is increased is reduced.

また、過熱度補正手段53は、蒸発器11の出口側での作動媒体の温度が飽和温度未満の状態から飽和温度以上となったことが検出されると、過熱度の目標値を下げる制御を行う。過熱度の目標値が下げられると、ポンプ制御手段51は、作動媒体ポンプ15の回転数を上げる制御を行う。   Further, when it is detected that the temperature of the working medium on the outlet side of the evaporator 11 has reached the saturation temperature or higher from the state below the saturation temperature, the superheat degree correction means 53 performs control to lower the target value of the superheat degree. Do. When the target value of the degree of superheat is lowered, the pump control means 51 performs control to increase the rotational speed of the working medium pump 15.

続いて、本実施形態に係る発電装置の制御方法について、図2を参照しつつ説明する。   Then, the control method of the electric power generating apparatus which concerns on this embodiment is demonstrated, referring FIG.

作動媒体ポンプ15が駆動し、作動媒体が循環流路10を循環しているときには(ステップST11)、第1温度センサT1及び第1圧力センサP1によって蒸発器11の出口側での作動媒体の温度及び圧力が検出されており、また第2温度センサT2及び第2圧力センサP2によって過熱器12の出口側での作動媒体の温度及び圧力が検出されている(ステップST12)。そして、制御部50のポンプ制御手段51は、第2温度センサT2及び第2圧力センサP2の検出値から算出された過熱器12出口側での過熱度が所定の目標値になるように作動媒体ポンプ15の回転数制御を行っている(ステップST13)。   When the working medium pump 15 is driven and the working medium is circulating in the circulation flow path 10 (step ST11), the temperature of the working medium on the outlet side of the evaporator 11 is measured by the first temperature sensor T1 and the first pressure sensor P1. Further, the temperature and pressure of the working medium on the outlet side of the superheater 12 are detected by the second temperature sensor T2 and the second pressure sensor P2 (step ST12). Then, the pump control means 51 of the control unit 50 operates the working medium so that the degree of superheat on the outlet side of the superheater 12 calculated from the detection values of the second temperature sensor T2 and the second pressure sensor P2 becomes a predetermined target value. The number of revolutions of the pump 15 is controlled (step ST13).

作動媒体ポンプ15が駆動して作動媒体が循環流路10を循環している間、蒸発状態検出手段52は、第1温度センサT1及び第1圧力センサP1の検出値に基づいて、蒸発器11の出口側での作動媒体の温度が飽和温度未満であるか否かを検出している(検出ステップST14)。そして、検出ステップST14において、蒸発器11出口側での作動媒体の温度が飽和温度未満であることが検出されると、過熱度補正手段53は、過熱器12の出口側での過熱度の目標値を上げる制御を行う(過熱度補正ステップST15)。これにより、ポンプ制御手段51は、過熱器12出口側での過熱度が補正後の目標値になるように作動媒体ポンプ15の回転数制御を行う(ステップST16)。   While the working medium pump 15 is driven and the working medium circulates in the circulation flow path 10, the evaporation state detection means 52 is based on the detection values of the first temperature sensor T1 and the first pressure sensor P1 and the evaporator 11. It is detected whether or not the temperature of the working medium on the outlet side is lower than the saturation temperature (detection step ST14). Then, in the detection step ST14, when it is detected that the temperature of the working medium on the outlet side of the evaporator 11 is lower than the saturation temperature, the superheat degree correcting means 53 sets the target of the superheat degree on the outlet side of the superheater 12. Control to increase the value is performed (superheat degree correction step ST15). Thereby, the pump control means 51 controls the rotational speed of the working medium pump 15 so that the degree of superheat on the outlet side of the superheater 12 becomes the corrected target value (step ST16).

その後、蒸発状態検出手段52が第1温度センサT1及び第1圧力センサP1の検出値に基づいて、蒸発器11の出口側での作動媒体の温度が飽和温度以上になったことが検出されると(ステップST17においてYES)、過熱度補正手段53は過熱度の目標値を下げる制御を行う(ステップST18)。そして、ポンプ制御手段51は、過熱器12出口側での過熱度が補正後の目標値になるように作動媒体ポンプ15の回転数制御を行う(ステップST19)。   Thereafter, the evaporation state detection means 52 detects that the temperature of the working medium on the outlet side of the evaporator 11 has become equal to or higher than the saturation temperature based on the detection values of the first temperature sensor T1 and the first pressure sensor P1. (YES in step ST17), the superheat degree correction means 53 performs control to lower the target value of the superheat degree (step ST18). Then, the pump control means 51 controls the rotational speed of the working medium pump 15 so that the degree of superheating at the outlet side of the superheater 12 becomes the corrected target value (step ST19).

前記過熱度補正ステップST15において、過熱器12に流入する加熱媒体の温度(第3温度センサTW1の検出値)が低下するに従って、過熱度の目標値の変更量を大きくする。具体的に説明すると、まず、図3に示すように、制御部50は、第3温度センサTW1から出力された信号(第3温度センサTW1の検出値に応じた信号)を取得する(ステップST21)。制御部50には、第3温度センサTW1の検出値すなわち過熱器12に流入する加熱媒体の温度と、過熱度の目標値の変更量とを関連付ける関数あるいはマップが記憶されており、制御器50の過熱度補正手段53は、この関数あるいはマップを利用し、第3温度センサTW1の検出値に応じて過熱度の目標値の変更量を変える(ステップST22)。例えば、この関数(マップ)は、第3温度センサTW1の検出値が低いほど、過熱度の目標値を上げる量が大きくなり、該検出値が高いほど、過熱度の目標値を上げる量が小さくなるような関数(マップ)となっている。そして、第3温度センサTW1の検出値をこの関数に代入して目標値の変更量を算出することにより、あるいはマップから検出値に応じた変更量を読み出すことにより、過熱度の目標値の変更量を変えることができる。   In the superheat degree correction step ST15, the amount of change in the target value of the superheat degree is increased as the temperature of the heating medium flowing into the superheater 12 (detected value of the third temperature sensor TW1) decreases. Specifically, as shown in FIG. 3, first, the control unit 50 acquires a signal output from the third temperature sensor TW1 (a signal corresponding to a detection value of the third temperature sensor TW1) (step ST21). ). The control unit 50 stores a function or map that correlates the detected value of the third temperature sensor TW1, that is, the temperature of the heating medium flowing into the superheater 12, and the amount of change in the target value of the superheat degree. The superheat degree correction means 53 uses this function or map to change the change amount of the target value of the superheat degree according to the detection value of the third temperature sensor TW1 (step ST22). For example, in this function (map), the lower the detection value of the third temperature sensor TW1, the larger the amount of increase in the superheat target value, and the higher the detection value, the smaller the amount of increase in the superheat target value. This is a function (map). Then, the target value of the superheat degree is changed by substituting the detected value of the third temperature sensor TW1 into this function to calculate the target value change amount or by reading the change amount corresponding to the detected value from the map. The amount can be changed.

以上説明したように、本実施形態では、作動媒体ポンプ15は、ポンプ制御手段51によって過熱器12の出口側での過熱度が所定の目標値になるように回転数制御される。そして、蒸発器11出口側での作動媒体の温度が飽和温度未満であることが検出されると、過熱度補正手段53は、過熱器12の出口側での過熱度の目標値を上げる。このため、ポンプ制御手段51は、過熱器12での作動媒体の加熱を促進させるべく、ポンプ15の回転数を下げる制御を行う。これにより、作動媒体の循環量が低減され、過熱器12の出口側での過熱度を上げることができる。したがって、蒸発器11出口側での作動媒体の温度が飽和温度未満になっていて液滴が存在するような場合であっても、過熱器12での加熱を促進するように制御を行うことにより、過熱器12に流入した作動媒体に含まれる液滴が蒸発することなく過熱器12を通過してしまうことを防止することができる。すなわち、蒸発器11に導入される加熱媒体の温度が余り高くなくて作動媒体が全て蒸発しきらない場合であっても、液滴を含んだ作動媒体が膨張機13に流入することを防止することができる。このため、加熱媒体の温度が異なる場合や加熱媒体の温度が大きく変動する場合にも対応可能となる。   As described above, in the present embodiment, the rotation speed of the working medium pump 15 is controlled by the pump control means 51 so that the degree of superheat on the outlet side of the superheater 12 becomes a predetermined target value. When it is detected that the temperature of the working medium on the outlet side of the evaporator 11 is lower than the saturation temperature, the superheat degree correcting means 53 increases the target value of the superheat degree on the outlet side of the superheater 12. For this reason, the pump control means 51 performs control to lower the rotational speed of the pump 15 in order to promote heating of the working medium in the superheater 12. Thereby, the circulation amount of a working medium is reduced and the superheat degree in the exit side of the superheater 12 can be raised. Therefore, even when the temperature of the working medium at the outlet side of the evaporator 11 is lower than the saturation temperature and droplets are present, the control is performed so as to promote the heating in the superheater 12. It is possible to prevent the droplets contained in the working medium flowing into the superheater 12 from passing through the superheater 12 without evaporating. That is, even when the temperature of the heating medium introduced into the evaporator 11 is not so high and the working medium cannot be completely evaporated, the working medium containing droplets is prevented from flowing into the expander 13. be able to. For this reason, it becomes possible to cope with the case where the temperature of the heating medium is different or the temperature of the heating medium greatly fluctuates.

本実施形態において、過熱器12に流入する加熱媒体の温度が低いほど、過熱器12において作動媒体の加熱量が小さくなる。したがって、本実施形態では、過熱器12に流入する加熱媒体の温度が低い場合に、過熱度の目標値の変更量を大きくすることにより、過熱器12において作動媒体中の液滴を確実に蒸発させることができる。   In the present embodiment, the lower the temperature of the heating medium flowing into the superheater 12, the smaller the heating amount of the working medium in the superheater 12. Therefore, in this embodiment, when the temperature of the heating medium flowing into the superheater 12 is low, the amount of change in the target value of the superheat degree is increased, so that the droplets in the working medium are reliably evaporated in the superheater 12. Can be made.

また本実施形態では、蒸発器11の出口側での作動媒体の温度が飽和温度未満の状態から飽和温度以上となったことが検出されると、過熱度補正手段53は過熱度の目標値を下げるので、膨張機13に液滴を含んだ作動媒体が流入することを防止しつつ、作動媒体の循環量を増大させることができる。   Further, in this embodiment, when it is detected that the temperature of the working medium at the outlet side of the evaporator 11 has become equal to or higher than the saturation temperature from the state below the saturation temperature, the superheat degree correction means 53 sets the target value of the superheat degree. Therefore, the circulating amount of the working medium can be increased while preventing the working medium containing droplets from flowing into the expander 13.

なお、本発明は、前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々変更、改良等が可能である。例えば、前記実施形態では、加熱媒体回路16に第3温度センサTW1が設けられ、過熱度補正手段53が、この第3温度センサTW1の検出値(過熱器に流入する加熱媒体の温度)が低下するに従って、過熱度の目標値の変更量を大きくする構成としたが、これに限られるものではない。例えば、図4に示すように、加熱媒体回路16には、過熱器12に流入する加熱媒体の流量を検出するための流量計30(流量検出手段)が設けられ、過熱度補正手段53は、流量計30の検出値(過熱器12に流入する加熱媒体の流量)が低下するに従い、過熱度の目標値の変更量を大きくする構成としてもよい。過熱器12に流入する加熱媒体の流量が少ないほど、過熱器12において作動媒体の加熱量が小さくなるため、この構成でも、過熱度の目標値の変更量を大きくすることにより、過熱器12において作動媒体中の液滴を確実に蒸発させることができる。この場合、過熱度補正ステップST15において、過熱器12に流入する加熱媒体の流量(流量計30の検出値)が低下するに従って、過熱度の目標値の変更量を大きくする。すなわち、制御部50には、過熱器12に流入する加熱媒体の流量(流量計30の検出値)と、過熱度の目標値の変更量とを関連付ける関数あるいはマップが記憶されており、制御器50の過熱度補正手段53は、この関数あるいはマップを利用し、流量計30の検出値に応じて過熱度の目標値の変更量を変える。   Note that the present invention is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the heating medium circuit 16 is provided with the third temperature sensor TW1, and the superheat degree correcting unit 53 reduces the detected value of the third temperature sensor TW1 (the temperature of the heating medium flowing into the superheater). Accordingly, the amount of change in the target value of the superheat degree is increased, but the present invention is not limited to this. For example, as shown in FIG. 4, the heating medium circuit 16 is provided with a flow meter 30 (flow rate detection means) for detecting the flow rate of the heating medium flowing into the superheater 12, and the superheat degree correction means 53 is The amount of change in the target value of the superheat degree may be increased as the detection value of the flow meter 30 (the flow rate of the heating medium flowing into the superheater 12) decreases. The smaller the flow rate of the heating medium flowing into the superheater 12, the smaller the heating amount of the working medium in the superheater 12. Therefore, even in this configuration, by increasing the change amount of the target value of the superheat degree, The droplets in the working medium can be surely evaporated. In this case, in the superheat degree correction step ST15, the change amount of the target value of the superheat degree is increased as the flow rate of the heating medium flowing into the superheater 12 (detected value of the flow meter 30) decreases. That is, the control unit 50 stores a function or map that correlates the flow rate of the heating medium flowing into the superheater 12 (detected value of the flow meter 30) and the change amount of the target value of the superheat degree. The 50 superheat degree correcting means 53 uses this function or map to change the amount of change in the target value of the superheat degree according to the detected value of the flow meter 30.

P1 第1圧力センサ
P2 第2圧力センサ
T1 第1温度センサ
T2 第2温度センサ
TW1 第3温度センサ
10 循環流路
11 蒸発器
12 過熱器
13 膨張機
14 凝縮器
15 作動媒体ポンプ
16 加熱媒体回路
17 流路
20 発電機
30 流量計
50 制御部
51 ポンプ制御手段
52 蒸発状態検出手段
53 過熱度補正手段
P1 1st pressure sensor P2 2nd pressure sensor T1 1st temperature sensor T2 2nd temperature sensor TW1 3rd temperature sensor 10 Circulation flow path 11 Evaporator 12 Superheater 13 Expander 14 Condenser 15 Working medium pump 16 Heating medium circuit 17 Flow path 20 Generator 30 Flow meter 50 Control unit 51 Pump control means 52 Evaporation state detection means 53 Superheat degree correction means

Claims (7)

加熱媒体によって作動媒体を加熱して当該作動媒体の少なくとも一部を蒸発させる蒸発器と、
前記蒸発器で少なくとも一部が蒸発した作動媒体を、加熱媒体によって加熱して過熱状態にする過熱器と、
発電機が連結され、前記過熱器で過熱状態となった作動媒体を膨張させることによって前記発電機を駆動する膨張機と、
前記膨張機で膨張した作動媒体を凝縮させる凝縮器と、
前記凝縮器で凝縮した作動媒体を前記蒸発器に向けて送出する媒体ポンプと、
前記過熱器の出口側での過熱度が所定の目標値になるように前記媒体ポンプの回転数を制御するポンプ制御手段と、
前記蒸発器の出口側での作動媒体の温度が飽和温度未満であるか否かを検出する蒸発状態検出手段と、
前記蒸発状態検出手段によって蒸発器出口側での作動媒体の温度が飽和温度未満であることが検出されると、前記過熱器の出口側での過熱度の前記所定の目標値を上げる過熱度補正手段と、
を備えている発電装置。
An evaporator that heats the working medium with a heating medium to evaporate at least a portion of the working medium;
A superheater that heats at least a part of the working medium evaporated in the evaporator to a superheated state by heating with a heating medium;
An expander that is connected to a generator and drives the generator by expanding a working medium that has been overheated by the superheater;
A condenser for condensing the working medium expanded by the expander;
A medium pump for delivering the working medium condensed in the condenser toward the evaporator;
Pump control means for controlling the rotation speed of the medium pump so that the degree of superheat on the outlet side of the superheater becomes a predetermined target value;
Evaporating state detecting means for detecting whether or not the temperature of the working medium on the outlet side of the evaporator is lower than a saturation temperature;
When the evaporation state detecting means detects that the temperature of the working medium on the outlet side of the evaporator is lower than the saturation temperature, the superheat correction for increasing the predetermined target value of the superheat degree on the outlet side of the superheater Means,
A power generator equipped with.
前記過熱度補正手段は、前記過熱器に流入する加熱媒体の温度又は流量が低下するに従って、前記過熱度の目標値の変更量を大きくする請求項1に記載の発電装置。   The power generator according to claim 1, wherein the superheat degree correction means increases the amount of change in the target value of the superheat degree as the temperature or flow rate of the heating medium flowing into the superheater decreases. 前記過熱度補正手段は、前記蒸発器の出口側での作動媒体の温度が飽和温度未満の状態から飽和温度以上となったことが検出されると、前記過熱度の目標値を下げる請求項1又は2に記載の発電装置。   The superheat degree correcting means lowers the target value of the superheat degree when it is detected that the temperature of the working medium on the outlet side of the evaporator is lower than the saturation temperature to be equal to or higher than the saturation temperature. Or the electric power generating apparatus of 2. 前記蒸発器と前記過熱器との間の作動媒体通路を流れる作動媒体の温度を検出する温度検出手段と、
前記蒸発器と前記過熱器との間の作動媒体通路を流れる作動媒体の圧力を検出する圧力検出手段と、を備え、
前記蒸発状態検出手段は、前記温度検出手段の検出値及び前記圧力検出手段の検出値に基づいて、前記蒸発器の出口側での作動媒体の温度が飽和温度未満であることを検出する請求項1から3の何れか1項に記載の発電装置。
Temperature detecting means for detecting the temperature of the working medium flowing in the working medium passage between the evaporator and the superheater;
Pressure detecting means for detecting the pressure of the working medium flowing in the working medium passage between the evaporator and the superheater,
The evaporation state detection means detects that the temperature of the working medium on the outlet side of the evaporator is lower than a saturation temperature based on a detection value of the temperature detection means and a detection value of the pressure detection means. The power generation device according to any one of 1 to 3.
加熱媒体によって作動媒体を加熱して当該作動媒体の少なくとも一部を蒸発させる蒸発器と、前記蒸発器で少なくとも一部が蒸発した作動媒体を、加熱媒体によって加熱して過熱状態にする過熱器と、発電機が連結され、前記過熱器で飽和状態または過熱状態となった作動媒体を膨張させることによって前記発電機を駆動する膨張機と、前記膨張機で膨張した作動媒体を凝縮させる凝縮器と、前記凝縮器で凝縮した作動媒体を前記蒸発器に向けて送出する媒体ポンプとを備え、前記過熱器の出口側での過熱度が所定の目標値になるように前記媒体ポンプの回転数が制御される発電装置の制御方法であって、
記蒸発器の出口側での作動媒体の温度が飽和温度未満であるか否かを検出する検出ステップと、
前記検出ステップにおいて、蒸発器出口側での作動媒体の温度が飽和温度未満であることが検出されると、前記過熱器の出口側での過熱度の前記所定の目標値を上げる過熱度補正ステップと、が含まれている発電装置の制御方法。
An evaporator that heats the working medium with a heating medium to evaporate at least a part of the working medium; and a superheater that heats the working medium at least partially evaporated with the evaporator to a superheated state by heating with the heating medium. An expander that is connected to a generator and drives the generator by expanding the working medium that is saturated or overheated by the superheater; and a condenser that condenses the working medium expanded by the expander A medium pump that sends the working medium condensed in the condenser toward the evaporator, and the rotation speed of the medium pump is set so that the degree of superheat on the outlet side of the superheater becomes a predetermined target value. A method for controlling a power generator to be controlled, comprising:
A detecting step for detecting whether or not the temperature of the working medium at the outlet side of the evaporator is lower than a saturation temperature;
In the detection step, when it is detected that the temperature of the working medium on the evaporator outlet side is lower than the saturation temperature, the superheat degree correcting step for increasing the predetermined target value of the superheat degree on the outlet side of the superheater And a method of controlling the power generator.
前記過熱度補正ステップでは、前記過熱器に流入する加熱媒体の温度又は流量が低下するに従って、前記過熱度の目標値の変更量を大きくする請求項5に記載の発電装置の制御方法。   The method for controlling a power generator according to claim 5, wherein, in the superheat degree correction step, the amount of change in the target value of the superheat degree is increased as the temperature or flow rate of the heating medium flowing into the superheater decreases. 前記蒸発器の出口側での作動媒体の温度が飽和温度未満の状態から飽和温度以上となったことが検出されると、前記過熱度の目標値を下げる請求項5又は6に記載の発電装置の制御方法。   The power generator according to claim 5 or 6, wherein when the temperature of the working medium at the outlet side of the evaporator is detected to be equal to or higher than a saturation temperature from a state below the saturation temperature, the target value of the superheat degree is decreased. Control method.
JP2012188743A 2012-08-29 2012-08-29 Power generation device and method for controlling power generation device Expired - Fee Related JP5891146B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012188743A JP5891146B2 (en) 2012-08-29 2012-08-29 Power generation device and method for controlling power generation device
KR1020130102290A KR101428418B1 (en) 2012-08-29 2013-08-28 Power generation apparatus and control method thereof
CN201310383539.5A CN103671052B (en) 2012-08-29 2013-08-29 The controlling method of electricity generating device and electricity generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012188743A JP5891146B2 (en) 2012-08-29 2012-08-29 Power generation device and method for controlling power generation device

Publications (2)

Publication Number Publication Date
JP2014047632A true JP2014047632A (en) 2014-03-17
JP5891146B2 JP5891146B2 (en) 2016-03-22

Family

ID=50309602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012188743A Expired - Fee Related JP5891146B2 (en) 2012-08-29 2012-08-29 Power generation device and method for controlling power generation device

Country Status (3)

Country Link
JP (1) JP5891146B2 (en)
KR (1) KR101428418B1 (en)
CN (1) CN103671052B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3118425A1 (en) 2015-07-16 2017-01-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and start-up method thereof
KR20170009761A (en) 2015-07-16 2017-01-25 가부시키가이샤 고베 세이코쇼 Thermal energy recovery device and start-up method thereof
JP2017066917A (en) * 2015-09-29 2017-04-06 株式会社神戸製鋼所 Thermal energy recovery system
WO2018101043A1 (en) 2016-12-02 2018-06-07 株式会社神戸製鋼所 Thermal energy recovery device and startup operation method for same
JP2018127948A (en) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 Energy recovery device
JP2018155484A (en) * 2013-05-31 2018-10-04 メタウォーター株式会社 Control method for organic waste combustion plant
JP2019011710A (en) * 2017-06-30 2019-01-24 株式会社神戸製鋼所 Internal combustion engine mounted with engine with supercharger
KR20190027170A (en) * 2017-09-06 2019-03-14 한국기계연구원 Steam cycle-based heat engine for waste heat recovery and method for operating the same heat engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6194273B2 (en) * 2014-04-04 2017-09-06 株式会社神戸製鋼所 Waste heat recovery device and waste heat recovery method
JP6763797B2 (en) * 2017-02-08 2020-09-30 株式会社神戸製鋼所 Binary power generation system
JP6941076B2 (en) * 2018-06-05 2021-09-29 株式会社神戸製鋼所 Power generation method
SE542760C2 (en) * 2018-12-14 2020-07-07 Climeon Ab Method and controller for preventing formation of droplets in a heat exchanger

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
US20050247056A1 (en) * 2004-05-06 2005-11-10 United Technologies Corporation Startup and control methods for an orc bottoming plant
JP2008309046A (en) * 2007-06-13 2008-12-25 Ebara Corp Exhaust heat power generation device, and method for controlling degree of superheating of working medium steam of exhaust heat power generation device
WO2009101977A1 (en) * 2008-02-14 2009-08-20 Sanden Corporation Waste heat utilization device for internal combustion engine
WO2010019990A1 (en) * 2008-08-18 2010-02-25 Renewable Energy Systems Limited Solar energy collection system and power generation system including a solar energy collection system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099908A (en) * 1983-11-02 1985-06-03 株式会社日立製作所 Device for changing over operation of pump
KR20000021784A (en) * 1998-09-30 2000-04-25 윤영석 Device for controlling temperature of steam of complex generation
JP3963940B2 (en) * 2004-04-27 2007-08-22 松下電器産業株式会社 Heat pump equipment
JP2006329119A (en) * 2005-05-27 2006-12-07 Kobe Steel Ltd Power generation system, cogeneration system and power generation method
JP2007218530A (en) * 2006-02-17 2007-08-30 Kobe Steel Ltd Method and system for generating superheated steam, and method and system for steam power generation
JP4196307B1 (en) * 2008-03-06 2008-12-17 三浦工業株式会社 Steam system
CN101458000B (en) * 2009-01-06 2012-02-22 东南大学 Heat-driven refrigeration and power generation integration apparatus
CN101614139A (en) * 2009-07-31 2009-12-30 王世英 Multicycle power generation thermodynamic system
KR101135682B1 (en) 2009-12-31 2012-07-11 한국에너지기술연구원 Control method of Organic Rankine Cycle System working fluid quality

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069566A (en) * 2003-08-25 2005-03-17 Daikin Ind Ltd Freezer
US20050247056A1 (en) * 2004-05-06 2005-11-10 United Technologies Corporation Startup and control methods for an orc bottoming plant
JP2008309046A (en) * 2007-06-13 2008-12-25 Ebara Corp Exhaust heat power generation device, and method for controlling degree of superheating of working medium steam of exhaust heat power generation device
WO2009101977A1 (en) * 2008-02-14 2009-08-20 Sanden Corporation Waste heat utilization device for internal combustion engine
US20100307155A1 (en) * 2008-02-14 2010-12-09 Junichiro Kasuya Waste Heat Utilization Device for Internal Combustion Engine
WO2010019990A1 (en) * 2008-08-18 2010-02-25 Renewable Energy Systems Limited Solar energy collection system and power generation system including a solar energy collection system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155484A (en) * 2013-05-31 2018-10-04 メタウォーター株式会社 Control method for organic waste combustion plant
CN106351705B (en) * 2015-07-16 2018-11-09 株式会社神户制钢所 Heat-energy recovering apparatus and its starting method
KR20170009761A (en) 2015-07-16 2017-01-25 가부시키가이샤 고베 세이코쇼 Thermal energy recovery device and start-up method thereof
JP2017025901A (en) * 2015-07-16 2017-02-02 株式会社神戸製鋼所 Thermal energy recovery device and activation method therefor
CN106351705A (en) * 2015-07-16 2017-01-25 株式会社神户制钢所 Thermal energy recovery device and start-up method thereof
EP3118425A1 (en) 2015-07-16 2017-01-18 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Thermal energy recovery device and start-up method thereof
US10060298B2 (en) 2015-07-16 2018-08-28 Kobe Steel, Ltd. Thermal energy recovery device and start-up method thereof
JP2017066917A (en) * 2015-09-29 2017-04-06 株式会社神戸製鋼所 Thermal energy recovery system
WO2018101043A1 (en) 2016-12-02 2018-06-07 株式会社神戸製鋼所 Thermal energy recovery device and startup operation method for same
KR20190086534A (en) 2016-12-02 2019-07-22 가부시키가이샤 고베 세이코쇼 Heat energy recovery device and its starting operation method
US10851678B2 (en) 2016-12-02 2020-12-01 Kobe Steel, Ltd. Thermal energy recovery device and startup operation method for the same
JP2018127948A (en) * 2017-02-08 2018-08-16 株式会社神戸製鋼所 Energy recovery device
JP2019011710A (en) * 2017-06-30 2019-01-24 株式会社神戸製鋼所 Internal combustion engine mounted with engine with supercharger
KR20190027170A (en) * 2017-09-06 2019-03-14 한국기계연구원 Steam cycle-based heat engine for waste heat recovery and method for operating the same heat engine
KR102013829B1 (en) * 2017-09-06 2019-08-23 한국기계연구원 Steam cycle-based heat engine for waste heat recovery and method for operating the same heat engine

Also Published As

Publication number Publication date
CN103671052A (en) 2014-03-26
KR101428418B1 (en) 2014-08-07
KR20140029261A (en) 2014-03-10
CN103671052B (en) 2015-12-23
JP5891146B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
JP5891146B2 (en) Power generation device and method for controlling power generation device
US9765652B2 (en) Energy recovery device and compression device, and energy recovery method
KR101708109B1 (en) Waste heat recovery apparatus and waste heat recovery method
KR101361253B1 (en) Power generating apparatus
JP6060040B2 (en) Waste heat recovery device and operation control method of waste heat recovery device
KR101897871B1 (en) Thermal energy recovery system
JP2012202269A (en) Binary generator and control method for the same
JP6223886B2 (en) Power generator
JP5918117B2 (en) Power generator
JP6060029B2 (en) Rotating machine drive system
JP6406583B2 (en) Rankine cycle equipment
JP6578136B2 (en) Combined cycle plant, its control device and start-up method
JP6433749B2 (en) Thermal energy recovery device
TWI579520B (en) Heat exchanger, heat engine system and control method using the same
JP2018141579A (en) Binary power generation device and binary power generation method
KR102179759B1 (en) Heat energy recovery device and operation method thereof
JP2019094843A (en) Thermal energy recovery system
JP2019056348A (en) Rankine cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5891146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees