JP2014047334A - Production method of polymerizable composition for optical material - Google Patents

Production method of polymerizable composition for optical material Download PDF

Info

Publication number
JP2014047334A
JP2014047334A JP2012193833A JP2012193833A JP2014047334A JP 2014047334 A JP2014047334 A JP 2014047334A JP 2012193833 A JP2012193833 A JP 2012193833A JP 2012193833 A JP2012193833 A JP 2012193833A JP 2014047334 A JP2014047334 A JP 2014047334A
Authority
JP
Japan
Prior art keywords
compound
mass
temperature
optical material
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012193833A
Other languages
Japanese (ja)
Other versions
JP6048013B2 (en
Inventor
Yoshihiko NISHIMORI
慶彦 西森
Teruo Kamura
輝雄 嘉村
Eiji Koshiishi
英二 輿石
Motoharu Takeuchi
基晴 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2012193833A priority Critical patent/JP6048013B2/en
Priority to TW102105396A priority patent/TWI568775B/en
Priority to PCT/JP2013/053306 priority patent/WO2013122068A1/en
Priority to KR1020147022425A priority patent/KR101900837B1/en
Priority to CN201380009317.5A priority patent/CN104114608B/en
Priority to BR112014020099-8A priority patent/BR112014020099B1/en
Priority to IN7467DEN2014 priority patent/IN2014DN07467A/en
Priority to EP13749331.8A priority patent/EP2816070B1/en
Priority to US14/373,718 priority patent/US9529117B2/en
Publication of JP2014047334A publication Critical patent/JP2014047334A/en
Application granted granted Critical
Publication of JP6048013B2 publication Critical patent/JP6048013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eyeglasses (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a polymerizable composition for optical material in which when producing the polymerizable composition for optical material using sulfur, a compound having intramolecular episulfide group, and a compound having an intramolecular SH group, a side reaction in a preliminary polymerization reaction and viscosity increase due to excessive reaction progress can be suppressed, and productivity is favorable without generating striae.SOLUTION: A preliminary reaction temperature is made near to a room temperature that is near to a polymerization initiation temperature, in a production method of a polymerizable composition for optical material from a mixture including inorganic compound having a sulfur atom, a compound having an episulfide group, and an SH group inclusion organic compound having two intermolecular SH groups.

Description

本発明は生産性の高い低粘度な光学材料用組成物の製造法、更には、それを用いたプラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料(光学用樹脂材料)に関する。本発明の光学材料はプラスチックレンズ、特にメガネ用レンズとして好適に使用される。   The present invention relates to a method for producing a highly productive composition for low-viscosity optical materials, and further relates to optical materials (optical resin materials) such as plastic lenses, prisms, optical fibers, information recording bases, and filters using the composition. The optical material of the present invention is suitably used as a plastic lens, particularly a spectacle lens.

プラスチック材料は軽量かつ靭性に富み、また染色が容易であることから、各種光学材料、特に眼鏡レンズに近年多用されている。光学材料、中でも眼鏡レンズに要求される主な性能は、低比重、高透明性および低黄色度、光学性等として高屈折率と高アッベ数であり、近年、高屈折率と高アッベ数を達成する為にポリエピスルフィド化合物に硫黄原子および/またはセレン原子を有する無機化合物を配合する光学材料用重合性組成物が提案されている(例えば、特許文献1)。
これら組成物を重合硬化して得られる光学材料は高屈折率化が達成されているが、硫黄原子および/またはセレン原子を有する無機化合物は常温で固体であり溶解性の低いものが多く、組成物とした場合に析出したり、同化合物を高濃度にすると溶解が不完全となったりする問題があった。
そこで、硫黄原子および/またはセレン原子を有する無機化合物と、この無機化合物と反応可能なポリエピスルフィド化合物などの含硫黄有機化合物を事前に予備重合反応させる手法が提案されている(特許文献2参照)。しかしながら、前記参照文献の予備重合反応は通常50℃〜70℃で行われ、モールド注入後の重合開始温度である室温程度に組成物を冷却する必要がある。しかしながら予備反応温度が高いために副反応の進行や、冷却による大幅な温度低下によって重合性組成物の粘度上昇が起こるという問題があり、粘度上昇を抑えるために冷却後温度を高く設定するとポットライフの短縮や、冷却後温度と重合工程の初期保持温度との差に起因する脈理の発生といった問題が発生している。このため、ポリエピスルフィド化合物などの含硫黄有機化合物と硫黄原子および/またはセレン原子を有する無機化合物を含む光学材料用重合性組成物の室温に近い反応温度で予備重合反応可能な製造方法が望まれていた。
In recent years, plastic materials have been widely used in various optical materials, particularly eyeglass lenses, because they are light and tough and easy to dye. The main performance required for optical materials, especially spectacle lenses, is low specific gravity, high transparency and low yellowness, high refractive index and high Abbe number as optical properties, etc. In recent years, high refractive index and high Abbe number In order to achieve this, a polymerizable composition for an optical material in which an inorganic compound having a sulfur atom and / or a selenium atom is blended with a polyepisulfide compound has been proposed (for example, Patent Document 1).
Optical materials obtained by polymerizing and curing these compositions have achieved a high refractive index, but many inorganic compounds having sulfur atoms and / or selenium atoms are solid at room temperature and have low solubility. In the case of a product, there is a problem that it precipitates or the dissolution becomes incomplete when the concentration of the compound is high.
Therefore, a method has been proposed in which an inorganic compound having a sulfur atom and / or a selenium atom and a sulfur-containing organic compound such as a polyepisulfide compound capable of reacting with the inorganic compound are preliminarily polymerized (see Patent Document 2). . However, the preliminary polymerization reaction of the above-mentioned reference is usually carried out at 50 ° C. to 70 ° C., and it is necessary to cool the composition to about room temperature which is the polymerization starting temperature after mold injection. However, since the preliminary reaction temperature is high, there is a problem that the viscosity of the polymerizable composition increases due to the progress of side reactions or a significant temperature decrease due to cooling. There are problems such as shortening of temperature and generation of striae due to the difference between the temperature after cooling and the initial holding temperature of the polymerization process. For this reason, a production method capable of a prepolymerization reaction at a reaction temperature close to room temperature of a polymerizable composition for an optical material containing a sulfur-containing organic compound such as a polyepisulfide compound and an inorganic compound having a sulfur atom and / or a selenium atom is desired. It was.

特開2001−2783号公報Japanese Patent Laid-Open No. 2001-2783 特開2004−197005号公報JP 2004-197005 A

本発明の課題は、硫黄、エピスルフィド基を分子内に有する化合物およびSH基を分子中に有する化合物を用いた光学材料用重合性組成物を製造する際に、脈理を発生させずに予備重合反応の副反応や過剰な反応進行による粘度上昇を抑えることが可能な生産性の良い光学材料用重合性組成物の製造方法を提供することにある。 An object of the present invention is to perform prepolymerization without causing striae when producing a polymerizable composition for an optical material using a compound having sulfur, an episulfide group in the molecule, and a compound having an SH group in the molecule. An object of the present invention is to provide a method for producing a polymerizable composition for an optical material with good productivity capable of suppressing an increase in viscosity due to reaction side reaction or excessive reaction progress.

本発明者らは、このような状況に鑑み、鋭意研究を重ねた結果、硫黄原子を有する無機化合物、エピスルフィド基を有する化合物、分子中にSH基を2個有するSH基含有有機化合物を含む混合物からの光学材料用重合性組成物の製造方法において、予備反応温度を重合開始温度に近い室温付近とすることにより、予備反応時の副反応や予備反応後の冷却中の過剰な反応進行が抑制され、脈理を発生させずに光学材料用重合性組成物の粘度を低く抑えることが可能であることを見出し本発明に至った。即ち、本発明は以下のとおりである。 As a result of intensive studies in view of such circumstances, the present inventors have found that an inorganic compound having a sulfur atom, a compound having an episulfide group, and a mixture containing an SH group-containing organic compound having two SH groups in the molecule In the method for producing a polymerizable composition for optical materials from the above, by making the preliminary reaction temperature near room temperature close to the polymerization initiation temperature, side reactions during the preliminary reaction and excessive reaction progress during cooling after the preliminary reaction are suppressed. As a result, the inventors have found that the viscosity of the polymerizable composition for optical materials can be kept low without causing striae, and have reached the present invention. That is, the present invention is as follows.

[1]:下記(a)化合物、下記(b)化合物、および下記(c)化合物の混合物を反応温度T1(T1は0〜45℃)で予備反応させることにより予備反応液を得、該予備反応液に重合触媒を加え温度をT2(ただし、T2はT1−10℃〜T1+10℃であり、かつ、0〜45℃である)とすることを特徴とする光学材料用重合性組成物の製造方法。
(a)硫黄(以下(a)化合物)
(b)下記(1)式で表されるエピスルフィド基を分子内に2個有する化合物(以下(b)化合物)

Figure 2014047334
(ここで、mは0〜4の整数、nは0〜1の整数を表す。)
(c)SH基を2個有する化合物(以下(c)化合物)
[2]:前記混合物が、予備反応触媒として下記(d)化合物を含むことを特徴とする[1]記載の光学材料用重合性組成物の製造方法。
(d)下記(2)式で表される化合物(以下(d)化合物)。
Figure 2014047334
(Rは炭素数1〜4のアルキル基、
Xはビニル基、ビニリデン基またはビニレン基のいずれかを有する炭素数2〜11の有機基)
[3]:[1]または[2]記載の製造方法で製造された光学材料用重合性組成物を重合初期温度T3(ただし、T3はT2−10℃〜T2+10℃であり、かつ、0〜40℃である)として重合させることを特徴とする光学材料の製造方法。
[4]:[3]記載の方法により製造される光学材料。 [1]: A preliminary reaction solution is obtained by prereacting a mixture of the following (a) compound, the following (b) compound, and the following (c) compound at a reaction temperature T1 (T1 is 0 to 45 ° C.). Production of a polymerizable composition for an optical material, characterized in that a polymerization catalyst is added to the reaction solution and the temperature is T2 (where T2 is T1-10 ° C to T1 + 10 ° C and 0-45 ° C). Method.
(A) Sulfur (hereinafter referred to as (a) compound)
(B) Compound having two episulfide groups represented by the following formula (1) in the molecule (hereinafter referred to as compound (b))
Figure 2014047334
(Here, m represents an integer of 0 to 4, and n represents an integer of 0 to 1.)
(C) Compound having two SH groups (hereinafter referred to as (c) compound)
[2] The method for producing a polymerizable composition for an optical material according to [1], wherein the mixture contains the following compound (d) as a pre-reaction catalyst.
(D) A compound represented by the following formula (2) (hereinafter referred to as (d) compound).
Figure 2014047334
(R is an alkyl group having 1 to 4 carbon atoms,
X is a C2-C11 organic group having any of a vinyl group, vinylidene group or vinylene group)
[3]: The polymerizable composition for an optical material produced by the production method described in [1] or [2] is subjected to polymerization initial temperature T3 (where T3 is T2-10 ° C. to T2 + 10 ° C., and 40.degree. C.), and a method for producing an optical material.
[4]: An optical material produced by the method according to [3].

本発明により、硫黄、エピスルフィド基を分子内に2個有する化合物およびSH基を2個有する化合物を用いた光学材料用重合性組成物を製造する際の予備重合反応において、反応温度を室温付近にすることにより製造過程において組成物の温度が従来手法のように50℃以上になることがない。そのため、副反応が抑制され重合性組成物の粘度の上昇が抑制され生産性を向上することが可能となった。 According to the present invention, in the prepolymerization reaction for producing a polymerizable composition for an optical material using a compound having two sulfur and episulfide groups in the molecule and a compound having two SH groups, the reaction temperature is set to about room temperature. Thus, the temperature of the composition does not exceed 50 ° C. in the manufacturing process unlike the conventional method. For this reason, side reactions are suppressed, and an increase in the viscosity of the polymerizable composition is suppressed, and productivity can be improved.

生産性を鑑みると光学材料用重合性組成物は、ろ過やモールドへの注入操作が容易である低粘度であることが望ましく、好ましくは注型時温度での粘度200mPa・s以下であり、より好ましくは注型時温度での粘度100mPa・s以下である。また、工業的な量産を鑑みた場合、調合した組成物全量をモールドに注入するために要する時間として3時間程度が必要であり、この間重合性組成物の粘度が上記の粘度を超えないことが好ましい。 In view of productivity, it is desirable that the polymerizable composition for an optical material has a low viscosity that facilitates filtration and injection into a mold, and preferably has a viscosity of 200 mPa · s or less at the temperature at the time of casting. Preferably, the viscosity at the casting temperature is 100 mPa · s or less. In view of industrial mass production, it takes about 3 hours as the time required to inject the total amount of the prepared composition into the mold. During this time, the viscosity of the polymerizable composition may not exceed the above viscosity. preferable.

本発明で使用する(a)化合物である硫黄の純度は98%以上である。98%未満の場合、不純物の影響で光学材料にクモリが生じる現象が生じやすくなるが、98%以上の純度であればクモリが生じる現象は解消される。硫黄の純度は、好ましくは99.0%以上であり、より好ましくは99.5%以上であり、さらに好ましくは99.9%以上である。一般に入手できる硫黄は、その形状や精製法の違いにより、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等があるが、本発明においては、純度98%以上であれば、いずれの硫黄でもかまわない。好ましくは、光学材料用重合性組成物製造時に溶解しやすい粒子の細かい微粉硫黄である。(a)化合物の添加量は、光学材料用重合性組成物中の硫黄原子含有率が高いほど高屈折率な光学材料が得られるが、添加量が多すぎると組成物に溶け残りが生じたり、組成物の粘度が著しく高くなるため、(a)および(b)化合物の合計質量を100質量部とした場合、10〜50質量部使用するが、好ましくは10〜45質量部、さらに好ましくは15〜35質量部である。 The purity of sulfur as the compound (a) used in the present invention is 98% or more. If the purity is less than 98%, a phenomenon in which the optical material is spoiled easily due to the influence of impurities is likely to occur. However, if the purity is 98% or more, the phenomenon in which the spider is generated is eliminated. The purity of sulfur is preferably 99.0% or more, more preferably 99.5% or more, and further preferably 99.9% or more. Generally available sulfur includes finely divided sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimated sulfur, etc. depending on the shape and purification method. In the present invention, any sulfur having a purity of 98% or more can be used. But it doesn't matter. Preferably, it is finely divided finely divided sulfur that is easily dissolved during the production of the polymerizable composition for an optical material. (A) As for the addition amount of the compound, the higher the sulfur atom content in the optical material polymerizable composition, the higher the refractive index of the optical material is obtained. However, if the addition amount is too large, the composition may remain undissolved. Since the viscosity of the composition is remarkably increased, when the total mass of the compounds (a) and (b) is 100 parts by mass, 10 to 50 parts by mass is used, preferably 10 to 45 parts by mass, more preferably 15 to 35 parts by mass.

本発明で使用する(b)化合物の添加量は、(a)および(b)化合物の合計を100質量部とした場合、50〜90質量部使用するが、好ましくは55〜90質量部、より好ましくは60〜85質量部である。
(b)化合物の具体例としては、ビス(β−エピチオプロピル)スルフィド、ビス(β−エピチオプロピル)ジスルフィド、ビス(β−エピチオプロピルチオ)メタン、1,2−ビス(β−エピチオプロピルチオ)エタン、1,3−ビス(β−エピチオプロピルチオ)プロパン、1,4−ビス(β−エピチオプロピルチオ)ブタンなどのエピスルフィド基を分子内に2個有するエピスルフィド化合物である。(a)化合物は単独でも、2種類以上を混合して用いてもかまわない。 中でも好ましい具体例は、ビス(β−エピチオプロピル)スルフィド(式(3))および/またはビス(β−エピチオプロピル)ジスルフィド(式(4))であり、最も好ましい具体例は、ビス(β−エピチオプロピル)スルフィドである。

Figure 2014047334
ビス(β−エピチオプロピル)スルフィド The addition amount of the compound (b) used in the present invention is 50 to 90 parts by mass, preferably 55 to 90 parts by mass, when the total of the compounds (a) and (b) is 100 parts by mass. Preferably it is 60-85 mass parts.
Specific examples of the compound (b) include bis (β-epithiopropyl) sulfide, bis (β-epithiopropyl) disulfide, bis (β-epithiopropylthio) methane, 1,2-bis (β-epi It is an episulfide compound having two episulfide groups in the molecule, such as thiopropylthio) ethane, 1,3-bis (β-epithiopropylthio) propane, 1,4-bis (β-epithiopropylthio) butane. . (A) The compounds may be used alone or in combination of two or more. Among them, preferred specific examples are bis (β-epithiopropyl) sulfide (formula (3)) and / or bis (β-epithiopropyl) disulfide (formula (4)), and the most preferred specific example is bis ( β-epithiopropyl) sulfide.
Figure 2014047334
Bis (β-epithiopropyl) sulfide

Figure 2014047334
ビス(β−エピチオプロピル)ジスルフィド
Figure 2014047334
Bis (β-epithiopropyl) disulfide

本発明で使用する(c)化合物はSH基を2個有する化合物である。SH基が1個の場合は、予備重合反応時の粘度上昇速度は低下するが、得られる光学材料の耐熱性、および屈折率が低下しやすくなり、SH基が3個以上の場合は予備重合反応時の粘度上昇が著しく大きくなるため好ましくない。
本発明で使用する(c)化合物の添加量は、(a)および(b)化合物の合計を100質量部とした場合、1〜20質量部使用するが、好ましくは2〜18質量部、より好ましくは3〜15質量部、特に好ましくは4〜12質量部、最も好ましくは5〜10質量部である。(c)化合物の割合が上記範囲よりも小さい場合、予備重合反応時の粘度上昇速度を抑える効果が小さくなってしまう。一方、上記範囲よりも多い場合には、得られる光学材料の耐熱性が低くなるなどの問題が発生する。
(c)化合物具体例としては、メタンジチオール、1,2−ジメルカプトエタン、1,2−ジメルカプトプロパン、1,3−ジメルカプトプロパン、2,2−ジメルカプトプロパン、1,4−ジメルカプトブタン、1,6−ジメルカプトヘキサン、ビス(メルカプトメチル)エーテル、ビス(2−メルカプトエチル)エーテル、ビス(メルカプトメチル)スルフィド、ビス(2−メルカプトエチル)スルフィド、ビス(2−メルカプトエチル)ジスルフィド、1,2−ビス(2−メルカプトエチルオキシ)エタン、1,2−ビス(2−メルカプトエチルチオ)エタン、2,3−ジメルカプト−1−プロパノール、1,3−ジメルカプト−2−プロパノール、エチレングリコールビス(2−メルカプトアセテート)、エチレングリコールビス(3−メルカプトプロピオネート)、ジエチレングリコールビス(2−メルカプトアセテート)、ジエチレングリコールビス(3−メルカプトプロピオネート)、1,4−ブタンジオールビス(2−メルカプトアセテート)、1,4−ブタンジオールビス(3−メルカプトプロピオネート)、1,2−ジメルカプトシクロヘキサン、1,3−ジメルカプトシクロヘキサン、1,4−ジメルカプトシクロヘキサン、1,3−ビス(メルカプトメチル)シクロヘキサン、1,4−ビス(メルカプトメチル)シクロヘキサン、2,5−ビス(メルカプトメチル)−1,4−ジチアン、2,5−ビス(2−メルカプトエチル)−1,4−ジチアン、2,5−ビス(2−メルカプトエチルチオメチル)−1,4−ジチアン、2,5−ビス(メルカプトメチル)−1−チアン、2,5−ビス(2−メルカプトエチル)−1−チアン、2,5−ビス(メルカプトメチル)チオフェン、1,2−ジメルカプトベンゼン、1,3−ジメルカプトベンゼン、1,4−ジメルカプトベンゼン、1,3−ビス(メルカプトメチル)ベンゼン、1,4−ビス(メルカプトメチル)ベンゼン、2,2’−ジメルカプトビフェニル、4、4’−ジメルカプトビフェニル、ビス(4−メルカプトフェニル)メタン、2,2−ビス(4−メルカプトフェニル)プロパン、ビス(4−メルカプトフェニル)エーテル、ビス(4−メルカプトフェニル)スルフィド、ビス(4−メルカプトフェニル)スルホン、ビス(4−メルカプトメチルフェニル)メタン、2,2−ビス(4−メルカプトメチルフェニル)プロパン、ビス(4−メルカプトメチルフェニル)エーテル、ビス(4−メルカプトメチルフェニル)スルフィド等があげられる。なかでも好ましい具体例としては、メタンジチオール、1,2−ジメルカプトエタン、1,2−ジメルカプトプロパン、1,3−ジメルカプトプロパン、2,2−ジメルカプトプロパン、ビス(メルカプトメチル)エーテル、ビス(メルカプトメチル)スルフィド、ビス(2−メルカプトエチル)スルフィド、ビス(2−メルカプトエチル)ジスルフィド、2,5−ビス(メルカプトメチル)−1,4−ジチアン、2,5−ビス(2−メルカプトエチル)−1,4−ジチアン、2,5−ビス(メルカプトメチル)チオフェン、1,2−ジメルカプトベンゼン、1,3−ジメルカプトベンゼン、1,4−ジメルカプトベンゼン、1,3−ビス(メルカプトメチル)ベンゼン、1,4−ビス(メルカプトメチル)ベンゼン、ビス(4−メルカプトフェニル)メタン、ビス(4−メルカプトフェニル)スルフィドである。より好ましくはメタンジチオール、1,2−ジメルカプトエタン、ビス(2−メルカプトエチル)スルフィド、ビス(2−メルカプトエチル)ジスルフィド、2,5−ビス(メルカプトメチル)−1,4−ジチアン、2,5−ビス(メルカプトメチル)チオフェン、1,2−ジメルカプトベンゼン、1,3−ジメルカプトベンゼン、1,4−ジメルカプトベンゼン、1,3−ビス(メルカプトメチル)ベンゼン、1,4−ビス(メルカプトメチル)ベンゼン、特に好ましくは1,2−ジメルカプトエタン、ビス(2−メルカプトエチル)スルフィド、2,5−ビス(メルカプトメチル)−1,4−ジチアン、1,3−ビス(メルカプトメチル)ベンゼン、1,4−ビス(メルカプトメチル)ベンゼンである。なお、これらのSH基を2個有する化合物は単独でも、2種類以上を混合して用いてもかまわない。
The compound (c) used in the present invention is a compound having two SH groups. When the number of SH groups is 1, the rate of increase in viscosity during the prepolymerization reaction is reduced, but the heat resistance and refractive index of the obtained optical material are likely to decrease. When the number of SH groups is 3 or more, prepolymerization is performed. This is not preferable because the increase in viscosity during the reaction is remarkably increased.
The addition amount of the compound (c) used in the present invention is 1 to 20 parts by mass, preferably 2 to 18 parts by mass, when the total of the compounds (a) and (b) is 100 parts by mass. Preferably it is 3-15 mass parts, Most preferably, it is 4-12 mass parts, Most preferably, it is 5-10 mass parts. (C) When the ratio of a compound is smaller than the said range, the effect which suppresses the viscosity increase rate at the time of prepolymerization reaction will become small. On the other hand, when the amount is larger than the above range, there arises a problem that the heat resistance of the obtained optical material is lowered.
(C) Specific examples of the compound include methanedithiol, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 1,3-dimercaptopropane, 2,2-dimercaptopropane, 1,4-dimercapto Butane, 1,6-dimercaptohexane, bis (mercaptomethyl) ether, bis (2-mercaptoethyl) ether, bis (mercaptomethyl) sulfide, bis (2-mercaptoethyl) sulfide, bis (2-mercaptoethyl) disulfide 1,2-bis (2-mercaptoethyloxy) ethane, 1,2-bis (2-mercaptoethylthio) ethane, 2,3-dimercapto-1-propanol, 1,3-dimercapto-2-propanol, ethylene Glycol bis (2-mercaptoacetate), ethylene glycol bis ( -Mercaptopropionate), diethylene glycol bis (2-mercaptoacetate), diethylene glycol bis (3-mercaptopropionate), 1,4-butanediol bis (2-mercaptoacetate), 1,4-butanediol bis (3 -Mercaptopropionate), 1,2-dimercaptocyclohexane, 1,3-dimercaptocyclohexane, 1,4-dimercaptocyclohexane, 1,3-bis (mercaptomethyl) cyclohexane, 1,4-bis (mercaptomethyl) ) Cyclohexane, 2,5-bis (mercaptomethyl) -1,4-dithiane, 2,5-bis (2-mercaptoethyl) -1,4-dithiane, 2,5-bis (2-mercaptoethylthiomethyl) -1,4-dithiane, 2,5-bis (mercaptomethi ) -1-thian, 2,5-bis (2-mercaptoethyl) -1-thian, 2,5-bis (mercaptomethyl) thiophene, 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, , 4-Dimercaptobenzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, 2,2′-dimercaptobiphenyl, 4,4′-dimercaptobiphenyl, bis (4 -Mercaptophenyl) methane, 2,2-bis (4-mercaptophenyl) propane, bis (4-mercaptophenyl) ether, bis (4-mercaptophenyl) sulfide, bis (4-mercaptophenyl) sulfone, bis (4- Mercaptomethylphenyl) methane, 2,2-bis (4-mercaptomethylphenyl) propane, bis (4- Mercaptoethyloleates methylphenyl) ether, bis (4-mercaptomethylphenyl) sulfide, and the like. Among them, preferred specific examples include methanedithiol, 1,2-dimercaptoethane, 1,2-dimercaptopropane, 1,3-dimercaptopropane, 2,2-dimercaptopropane, bis (mercaptomethyl) ether, Bis (mercaptomethyl) sulfide, bis (2-mercaptoethyl) sulfide, bis (2-mercaptoethyl) disulfide, 2,5-bis (mercaptomethyl) -1,4-dithiane, 2,5-bis (2-mercapto) Ethyl) -1,4-dithiane, 2,5-bis (mercaptomethyl) thiophene, 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,3-bis ( Mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, bis (4-mercapto) Eniru) methane, bis (4-mercapto-phenyl) sulfide. More preferably methanedithiol, 1,2-dimercaptoethane, bis (2-mercaptoethyl) sulfide, bis (2-mercaptoethyl) disulfide, 2,5-bis (mercaptomethyl) -1,4-dithiane, 2, 5-bis (mercaptomethyl) thiophene, 1,2-dimercaptobenzene, 1,3-dimercaptobenzene, 1,4-dimercaptobenzene, 1,3-bis (mercaptomethyl) benzene, 1,4-bis ( Mercaptomethyl) benzene, particularly preferably 1,2-dimercaptoethane, bis (2-mercaptoethyl) sulfide, 2,5-bis (mercaptomethyl) -1,4-dithiane, 1,3-bis (mercaptomethyl) Benzene, 1,4-bis (mercaptomethyl) benzene. These compounds having two SH groups may be used alone or in combination of two or more.

本発明では、予備反応触媒として(d)化合物を用いることができる。(d)化合物は、前記(2)式で表される化合物をすべて包括するが、他の組成成分との相溶性や、光学材料用重合性組成物を重合硬化後得られる硬化物の屈折率を低下させないために低分子量の化合物が好ましく、具体的には(2)式のXが下記構造式(5)である化合物である。これら化合物の中でも好ましくは、1,2,2,6,6−ペンタメチルピペリジルメタクリレ−ト(下記構造式(6))、1,2,2,6,6−ペンタメチルピペリジルアクリレ−ト(下記構造式(7))および/ または1,2,2,6,6−ペンタメチルピペリジル−4−ビニルベンゾエート(下記構造式(8))が挙げられ、最も好ましい具体例は工業的に入手が容易な1,2,2,6,6−ペンタメチルピペリジルメタクリレ−トである。
(d)化合物の添加量は、(a)および(b)化合物の合計100質量部に対して、0.001〜3質量部であり、好ましくは0.002〜1質量部であり、より好ましくは0.003〜0.5質量部である。

Figure 2014047334
Figure 2014047334
1,2,2,6,6−ペンタメチルピペリジルメタクリレ−ト
Figure 2014047334
1,2,2,6,6−ペンタメチルピペリジルアクリレ−ト
Figure 2014047334
1,2,2,6,6−ペンタメチルピペリジル−4−ビニルベンゾエート In the present invention, the compound (d) can be used as a preliminary reaction catalyst. (D) The compound includes all the compounds represented by the formula (2), but is compatible with other composition components and the refractive index of the cured product obtained after polymerization and curing of the polymerizable composition for optical materials. Is a compound having a low molecular weight, in particular, a compound in which X in the formula (2) is the following structural formula (5). Among these compounds, 1,2,2,6,6-pentamethylpiperidyl methacrylate (the following structural formula (6)), 1,2,2,6,6-pentamethylpiperidyl acrylate are preferable. (The following structural formula (7)) and / or 1,2,2,6,6-pentamethylpiperidyl-4-vinylbenzoate (the following structural formula (8)). Is easy 1,2,2,6,6-pentamethylpiperidyl methacrylate.
(D) The addition amount of a compound is 0.001-3 mass parts with respect to a total of 100 mass parts of (a) and (b) compound, Preferably it is 0.002-1 mass parts, More preferably Is 0.003 to 0.5 parts by mass.
Figure 2014047334
Figure 2014047334
1,2,2,6,6-pentamethylpiperidyl methacrylate
Figure 2014047334
1,2,2,6,6-pentamethylpiperidyl acrylate
Figure 2014047334
1,2,2,6,6-pentamethylpiperidyl-4-vinylbenzoate

本発明の光学材料用重合性組成物を得るための予備重合反応について、詳細を以下に説明する。本発明は、(a)化合物である硫黄と(c)化合物であるSH基を2個有する化合物を(b)化合物存在下、予備重合反応することを特徴としている。硫黄とチオールとの反応は、通常、塩基性化合物の存在下あるいは非存在下に加熱することで促進されるが、塩基性化合物を使用する方法で反応時間が大幅に短縮できることから好ましい。しかしながら、塩基性化合物はエピスルフィド化合物の重合触媒として好適に作用するため、(a)化合物と(c)化合物とを(b)化合物存在下予備重合反応の触媒として通常の塩基性化合物を用いると、予備反応物(プレポリマー)および/または予備反応物(プレポリマー)を含んでなる重合性組成物の粘度が高くなったり、粘度上昇速度が速くポットライフが短くなるなどの問題がある。そこで鋭意検討を行った結果、特定の塩基性化合物である(d)化合物0.001〜3質量部を予備重合触媒として予備重合反応すると、(d)化合物は、そのアミノ基両端の置換基による立体障害に起因してエピスルフィド化合物の重合触媒として活性が著しく低いため、高選択的に(a)化合物と(c)化合物とを予備重合反応できることが判明した。さらに(d)化合物を予備重合触媒とした場合、室温付近の反応温度でも(a)化合物である硫黄の析出のない予備反応物(プレポリマー)が得られることが判明した。 Details of the prepolymerization reaction for obtaining the polymerizable composition for an optical material of the present invention will be described below. The present invention is characterized in that a prepolymerization reaction is performed in the presence of the compound (b) with a compound (a) having two sulfur groups as the compound (a) and two SH groups as the compound (c). The reaction between sulfur and thiol is usually accelerated by heating in the presence or absence of a basic compound, but this is preferable because the reaction time can be greatly shortened by a method using a basic compound. However, since the basic compound preferably acts as a polymerization catalyst for the episulfide compound, when a normal basic compound is used as the catalyst for the prepolymerization reaction in the presence of the compound (a) and the compound (c), There are problems such that the viscosity of the pre-reacted product (prepolymer) and / or the polymerizable composition comprising the pre-reacted product (prepolymer) is increased, the speed of increasing the viscosity is high, and the pot life is shortened. As a result of intensive studies, when a prepolymerization reaction was performed using 0.001 to 3 parts by mass of the compound (d), which is a specific basic compound, as a prepolymerization catalyst, the compound (d) depends on substituents at both ends of the amino group. Due to the steric hindrance, the activity as a polymerization catalyst for the episulfide compound is remarkably low, and it has been found that the (a) compound and the (c) compound can be prepolymerized with high selectivity. Furthermore, when the compound (d) was used as a prepolymerization catalyst, it was found that a prereacted product (prepolymer) without precipitation of sulfur as the compound (a) was obtained even at a reaction temperature near room temperature.

すなわち、本発明における、(a)化合物と(c)化合物を(b)化合物の存在下、予備重合反応させる具体的な方法は、(a)、(b)および(c)化合物に、好ましくは(d)化合物を添加し0℃〜45℃、好ましくは5℃〜40℃、より好ましくは10℃〜40℃で撹拌混合する。その際の添加方法は(a)、(b)化合物を反応温度に温度制御しつつ混合後、(c)および(d)化合物を混合後添加しても、(a)、(b)化合物と(c)化合物の一部を反応温度に温度制御しつつ混合後、(c)化合物の残りおよび(d)化合物を混合後添加しても、(a)、(b)、(c)化合物を反応温度に温度制御しつつ混合後、(d)化合物を添加しても良い。
反応は窒素、酸素、水素、硫化水素などの気体の存在下、常圧または加減圧による密閉下または減圧下等の任意の雰囲気下で行ってよいが、得られる光学材料の色調、耐熱性、耐光性等の物性を保持するためには酸素等の酸化性気体分圧を可能な限り低減させることが好ましい。
予備重合反応の際には液体クロマトグラフィーおよび/または粘度および/または比重および/または屈折率および/または発生ガス量を測定する事は、反応進行度を検知し、反応を制御する事により一定の光学材料を製造するうえで好ましい。なお、予備重合反応の停止点は、得られる予備反応物(プレポリマー)における(a)化合物の再析出や粘度などを考慮して適宜設定されるが、(a)化合物の50%以上を反応させることが好ましい。予備重合反応時間は、(d)化合物の添加量や反応温度によって制御することは可能であるが、反応時間が短すぎると停止点の制御が難しく、長すぎると生産性が悪くなるため10分から5時間、好ましくは10分から3時間、より好ましくは10分から2時間である。
さらに必要に応じて、予備重合反応の際に酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、などの得られる光学材料の性能を向上させうる各種添加剤等を適宜添加しても構わない。
That is, in the present invention, the specific method of prepolymerizing the compound (a) and the compound (c) in the presence of the compound (b) is preferably the compounds (a), (b) and (c). (D) A compound is added and stirred and mixed at 0 ° C to 45 ° C, preferably 5 ° C to 40 ° C, more preferably 10 ° C to 40 ° C. In this case, the addition method (a) and (b) is carried out while controlling the temperature of the compound to the reaction temperature, and even if the compounds (c) and (d) are added after mixing, the compounds (a) and (b) (C) Even if a part of the compound is mixed while controlling the temperature to the reaction temperature, and the remainder of the compound (c) and the compound (d) are added after mixing, the compounds (a), (b) and (c) are added. The compound (d) may be added after mixing while controlling the reaction temperature.
The reaction may be carried out in the presence of a gas such as nitrogen, oxygen, hydrogen, hydrogen sulfide, etc., in any atmosphere such as sealed under normal pressure or increased or reduced pressure, or under reduced pressure, but the color tone, heat resistance, In order to maintain physical properties such as light resistance, it is preferable to reduce the partial pressure of oxidizing gas such as oxygen as much as possible.
In the prepolymerization reaction, liquid chromatography and / or measuring the viscosity and / or specific gravity and / or refractive index and / or the amount of gas generated can be determined by detecting the degree of reaction progress and controlling the reaction. It is preferable when manufacturing an optical material. The stopping point of the prepolymerization reaction is appropriately set in consideration of the reprecipitation and viscosity of the compound (a) in the prereacted product (prepolymer) to be obtained, but 50% or more of the compound (a) is reacted. It is preferable to make it. The prepolymerization reaction time can be controlled by the amount of the compound (d) added and the reaction temperature. However, if the reaction time is too short, it is difficult to control the stopping point, and if it is too long, the productivity will be poor, and therefore, from 10 minutes. 5 hours, preferably 10 minutes to 3 hours, more preferably 10 minutes to 2 hours.
Furthermore, if necessary, various additives that can improve the performance of the obtained optical material such as an antioxidant, bluing agent, ultraviolet absorber, deodorant, etc. may be added as appropriate during the prepolymerization reaction. I do not care.

得られた予備反応液(プレポリマー)を用いて重合性組成物を調製する具体的な方法は、予備反応液に重合硬化のために必要な重合触媒を混合する。この際、重合触媒を予め、(b)化合物、(c)化合物あるいは予備重合反応生成物の組成成分の少なくとも一成分と反応可能な化合物に溶解させて添加することもできるが、(c)化合物に溶解させて添加する方法が好ましい。重合触媒を混合するにあたり、設定温度、これに要する時間等は基本的には各成分が十分に混合される条件であればよいが、過剰の温度、時間は各原料、添加剤間の好ましくない反応が起こり、さらには粘度の上昇をきたし注型操作を困難にする等適当ではない。混合温度は5℃から40℃程度の範囲で行われるべきであり、好ましい温度範囲は10℃から40℃である。混合時間は、1分から12時間、好ましくは5分から8時間、最も好ましいのは5分から4時間程度である。必要に応じて、活性エネルギー線を遮断して混合してもかまわない。さらに必要に応じて、減圧下で混合することもでき、減圧条件は、0.001〜100torrであり、好ましくは0.005〜50torrであり、より好ましくは0.01〜30torrであり、これらの範囲で減圧度を可変しても構わない。
さらに必要に応じて、重合触媒を混合する際に、光学材料を得るための重合反応を適切に制御するために、重合調節剤を加えることが好ましい。
さらに必要に応じて、重合触媒を混合する際に、予備重合反応生成物の組成成分の少なくとも一成分と反応可能な化合物、酸化防止剤、ブルーイング剤、紫外線吸収剤、消臭剤、などの各種添加剤等を適宜添加しても構わない。
A specific method for preparing a polymerizable composition using the obtained preliminary reaction liquid (prepolymer) is to mix a polymerization catalyst necessary for polymerization and curing with the preliminary reaction liquid. At this time, the polymerization catalyst can be added in advance dissolved in a compound capable of reacting with at least one component of the component (b), the compound (c) or the prepolymerization reaction product. A method of adding it by dissolving in is preferable. In mixing the polymerization catalyst, the set temperature, the time required for this, etc. may be basically the conditions that each component is sufficiently mixed, but the excessive temperature and time are not preferable between the respective raw materials and additives. This is not appropriate, for example, when a reaction occurs and the viscosity is increased to make the casting operation difficult. The mixing temperature should be in the range of about 5 ° C to 40 ° C, and the preferred temperature range is 10 ° C to 40 ° C. The mixing time is 1 minute to 12 hours, preferably 5 minutes to 8 hours, and most preferably about 5 minutes to 4 hours. If necessary, the active energy ray may be blocked and mixed. Further, if necessary, it can be mixed under reduced pressure, and the reduced pressure condition is 0.001 to 100 torr, preferably 0.005 to 50 torr, more preferably 0.01 to 30 torr. The degree of decompression may be varied within the range.
Further, if necessary, it is preferable to add a polymerization regulator in order to appropriately control the polymerization reaction for obtaining the optical material when mixing the polymerization catalyst.
Further, if necessary, when mixing the polymerization catalyst, such as a compound capable of reacting with at least one of the components of the prepolymerization reaction product, antioxidant, bluing agent, ultraviolet absorber, deodorant, etc. Various additives and the like may be added as appropriate.

本発明における重合触媒としては、アミン化合物、ホスフィン化合物、第4級アンモニウム塩誘導体、第4級ホスホニウム塩誘導体、アルデヒドとアミン系化合物の縮合物、カルボン酸とアンモニアとの塩、ウレタン化合物、チオウレタン化合物、グアニジン化合物、チオ尿素化合物、チアゾール化合物、スルフェンアミド化合物、チウラム化合物、ジチオカルバミン酸塩誘導体、キサントゲン酸塩、第3級スルホニウム塩誘導体、第2級ヨードニウム塩誘導体、鉱酸、ルイス酸、有機酸、ケイ酸、四フッ化ホウ酸、過酸化物、アゾ系化合物、酸性リン酸エステル誘導体を挙げることができる。これら重合触媒は単独でも2種類以上を混合して使用してもかまわない。これらのうち好ましい具体例は、テトラ−n−ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1−n−ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラ−n−ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。これらの中で、さらに好ましい具体例は、トリエチルベンジルアンモニウムクロライドおよび/またはテトラ−n−ブチルホスホニウムブロマイドである。 As the polymerization catalyst in the present invention, amine compounds, phosphine compounds, quaternary ammonium salt derivatives, quaternary phosphonium salt derivatives, condensates of aldehyde and amine compounds, salts of carboxylic acid and ammonia, urethane compounds, thiourethanes Compound, guanidine compound, thiourea compound, thiazole compound, sulfenamide compound, thiuram compound, dithiocarbamate derivative, xanthate, tertiary sulfonium salt derivative, secondary iodonium salt derivative, mineral acid, Lewis acid, organic Examples thereof include acids, silicic acid, tetrafluoroboric acid, peroxides, azo compounds, and acidic phosphate derivatives. These polymerization catalysts may be used alone or in combination of two or more. Among these, preferred specific examples include tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, quaternary ammonium salts such as 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, Quaternary phosphonium salts such as tetraphenylphosphonium bromide can be mentioned. Among these, more preferred specific examples are triethylbenzylammonium chloride and / or tetra-n-butylphosphonium bromide.

本発明における重合調節剤としては、長期周期律表における第13〜16族元素のハロゲン化物を挙げることができる。これら重合調節剤は、単独でも2種類以上を混合して使用してもかまわない。これらのうち好ましいものはケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物である。より好ましくはケイ素、ゲルマニウム、スズ、アンチモンの塩化物であり、さらに好ましくはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。最も好ましいものの具体例はジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、トリフェニルアンチモンジクロライドである。 As a polymerization regulator in this invention, the halide of the 13th-16th group element in a long-term periodic table can be mentioned. These polymerization regulators may be used alone or in combination of two or more. Of these, preferred are halides of silicon, germanium, tin and antimony. More preferred are chlorides of silicon, germanium, tin and antimony, and further preferred are chlorides of germanium, tin and antimony having an alkyl group. Specific examples of the most preferred are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride.

本発明における予備重合反応生成物の組成成分の少なくとも一成分と反応可能な化合物は、耐酸化性、耐候性、染色性、強度、屈折率等の各種性能改良を目的として添加することができ、SH基を有する化合物、エポキシ化合物、イソ(チオ)シアネート化合物、カルボン酸誘導体、カルボン酸無水物、フェノール誘導体、アミン化合物、ビニル化合物、アリル化合物、アクリル化合物、メタクリル化合物等が挙げられる。 The compound capable of reacting with at least one component of the prepolymerization reaction product in the present invention can be added for the purpose of improving various performances such as oxidation resistance, weather resistance, dyeability, strength, refractive index, Examples of the compound include an SH group, an epoxy compound, an iso (thio) cyanate compound, a carboxylic acid derivative, a carboxylic acid anhydride, a phenol derivative, an amine compound, a vinyl compound, an allyl compound, an acrylic compound, and a methacrylic compound.

前記方法により調製した光学材料用重合性組成物をモールドに注入する前にあらかじめ脱気処理を行うことは、重合性組成物の粘度上昇速度の低減、光学材料の高度な透明性の面から好ましい。脱気処理は、(a)化合物、(b)化合物、(c)化合物および(d)化合物を予備重合反応して得られる反応物と、組成成分の一部もしくは全部と反応可能な化合物、各種添加剤、重合触媒、重合調節剤等の混合前、混合時あるいは混合後に、減圧下に行う。好ましくは、混合時あるいは混合後に、減圧下に行う。脱気処理条件は、0.001〜100torrの減圧下、1分間〜24時間、0℃〜45℃で行う。減圧度は、好ましくは0.005〜50torrであり、より好ましくは0.01〜30torrであり、これらの範囲で減圧度を可変しても構わない。脱気時間は、好ましくは5分間〜8時間であり、より好ましくは10分間〜4時間である。脱気の際の温度は、好ましくは5℃〜40℃であり、より好ましくは10℃〜40℃であり、これらの範囲で温度を可変しても構わない。脱気処理の際は、撹拌、気体の吹き込み、超音波などによる振動などによって、光学材料用重合性組成物の界面を更新することは、脱気効果を高める上で好ましい操作である。脱気処理により、除去される成分は、主に光学材料用重合性組成物の粘度上昇を促進する硫化水素等の溶存ガスや低分子量のメルカプタン等の低沸点物等であるが、脱気処理の効果を発現するのであれば、特に種類は限定されない。 It is preferable to perform a degassing treatment before injecting the polymerizable composition for an optical material prepared by the above method into a mold from the viewpoint of reducing the rate of increase in the viscosity of the polymerizable composition and the high transparency of the optical material. . The deaeration treatment includes a reaction product obtained by prepolymerizing (a) compound, (b) compound, (c) compound and (d) compound, a compound capable of reacting with some or all of the composition components, It is carried out under reduced pressure before, during or after mixing of the additive, polymerization catalyst, polymerization regulator and the like. Preferably, it is performed under reduced pressure during or after mixing. The deaeration process is performed under a reduced pressure of 0.001 to 100 torr for 1 minute to 24 hours at 0 to 45 ° C. The degree of vacuum is preferably 0.005 to 50 torr, more preferably 0.01 to 30 torr, and the degree of vacuum may be varied within these ranges. The deaeration time is preferably 5 minutes to 8 hours, more preferably 10 minutes to 4 hours. The temperature at the time of deaeration is preferably 5 ° C. to 40 ° C., more preferably 10 ° C. to 40 ° C., and the temperature may be varied within these ranges. In the deaeration treatment, renewing the interface of the polymerizable composition for an optical material by stirring, blowing of gas, vibration by ultrasonic waves, or the like is a preferable operation for enhancing the deaeration effect. The components removed by the degassing treatment are mainly dissolved gases such as hydrogen sulfide and low-boiling substances such as low molecular weight mercaptans, which accelerate the increase in viscosity of the polymerizable composition for optical materials. The type is not particularly limited as long as the above effect is exhibited.

光学材料用重合性組成物をモールドに注入する前の注型液温度を制御しておくことは作業性向上のために重要である。反応進行や温度低下による粘度上昇の効果のために予備反応温度から大きく温度変化させることは望ましくなく、予備反応温度から好ましくは+10℃〜−10℃、より好ましくは+5℃〜−5℃である。また、注型液温度を重合初期温度に近づけておくことは良好な光学材料を得るために有効である。この温度制御により注型液温度と重合炉の炉温の差に起因する対流による脈理の発生を防止する効果がある。この脈理防止効果は組成物温度が炉温と等しい場合に最大となるが、注型液温度が低すぎる場合には結露や(a)化合物の析出といった問題が、注型液温度が高すぎる場合には粘度上昇速度が高くなるという問題が出るため注型液温度は重合初期温度に対して+10℃〜−10℃であることが好ましく、+5℃〜−5℃であることがさらに好ましく、かつ0℃〜45℃であり、好ましくは10℃〜40℃、さらに好ましくは15℃〜35℃である。 Controlling the temperature of the casting liquid before pouring the polymerizable composition for optical materials into the mold is important for improving workability. It is not desirable to greatly change the temperature from the pre-reaction temperature due to the effect of viscosity increase due to reaction progress or temperature decrease, preferably from + 10 ° C. to −10 ° C., more preferably from + 5 ° C. to −5 ° C. from the pre-reaction temperature. . In addition, it is effective to obtain a good optical material by keeping the casting solution temperature close to the initial polymerization temperature. This temperature control has the effect of preventing striae due to convection due to the difference between the casting liquid temperature and the temperature of the polymerization furnace. This striae prevention effect is maximized when the composition temperature is equal to the furnace temperature, but when the casting liquid temperature is too low, problems such as condensation and (a) compound precipitation cause the casting liquid temperature to be too high. In this case, since the problem that the rate of increase in viscosity is increased, the casting liquid temperature is preferably + 10 ° C. to −10 ° C., more preferably + 5 ° C. to −5 ° C. with respect to the initial polymerization temperature, And it is 0 degreeC-45 degreeC, Preferably it is 10 degreeC-40 degreeC, More preferably, it is 15 degreeC-35 degreeC.

モールドに注入する直前に、これらの重合性組成物をフィルターで不純物等をろ過し精製することは本発明の光学材料の品質をさらに高める上から好ましい。ここで用いるフィルターの孔径は0.05〜10μm程度であり、一般的には0.1〜5.0μmのものが使用され、フィルターの材質としては、PTFEやPETやPPなどが好適に使用される。ろ過を行わなかったり、孔径が10μmを超えるフィルターでろ過を行った場合は、光学材料に異物が混入したり、透明性が低下したりするため、通常光学材料として使用に耐えなくなる。このようにして得られた重合性組成物は、ガラスや金属製のモールドに注入後、電気炉や活性エネルギー線発生装置等による重合硬化を行うが、重合時間は0.1〜100時間、通常1〜48時間であり、重合温度は−10〜160℃、通常0〜140℃の範囲であり、特に重合開始温度は0〜40℃が一般的である。重合は所定の重合温度で所定時間のホールド、0.1℃〜100℃/hの昇温、0.1℃〜100℃/hの降温およびこれらの組み合わせで行うことができる。また、重合終了後、材料を40から150℃の温度で5分から5時間程度アニール処理を行う事は、光学材料の歪を除くために好ましい処理である。さらに必要に応じて染色、ハードコート、反射防止、防曇性、防汚性、耐衝撃性付与等の表面処理を行うことができる。 Immediately before injection into the mold, it is preferable to purify these polymerizable compositions by filtering impurities and the like with a filter in order to further improve the quality of the optical material of the present invention. The pore diameter of the filter used here is about 0.05 to 10 μm, and generally 0.1 to 5.0 μm is used. As the material of the filter, PTFE, PET, PP or the like is preferably used. The When filtration is not performed, or when filtration is performed with a filter having a pore diameter exceeding 10 μm, foreign materials are mixed in the optical material or transparency is lowered, so that it is usually unusable as an optical material. The polymerizable composition thus obtained is injected into a glass or metal mold and then polymerized and cured by an electric furnace or an active energy ray generator. The polymerization time is usually 0.1 to 100 hours. The polymerization temperature is -10 to 160 ° C, usually 0 to 140 ° C, and the polymerization initiation temperature is generally 0 to 40 ° C. The polymerization can be carried out by holding at a predetermined polymerization temperature for a predetermined time, raising the temperature from 0.1 ° C. to 100 ° C./h, lowering the temperature from 0.1 ° C. to 100 ° C./h, and a combination thereof. Further, after the polymerization is completed, annealing the material at a temperature of 40 to 150 ° C. for about 5 minutes to 5 hours is a preferable treatment for removing distortion of the optical material. Furthermore, surface treatments such as dyeing, hard coating, antireflection, antifogging, antifouling and impact resistance can be performed as necessary.

本発明で得られる光学材料の脈理とは、光学材料中の母体材質と屈折率を異にした材質成分が綿状または層状になっている部分であり、重合硬化中の重合発熱による重合性組成物の対流による光学材料中の微少な疎密や、重合反応の不均一な進行などによって生じる。通常、光学材料の脈理評価を行う場合、水銀灯光源を作製した光学材料(光学レンズ)に透過させ、透過光を白色板に投影し、次の基準で外観脈理レベルを評価する。すなわち、目視で脈理が確認されない場合は脈理1級、薄くて分散した脈理で目に見える限界の脈理が確認された場合は脈理2級、脈理2級以上の脈理が確認された場合は脈理3級と分類し、製造した光学材料の90%以上95%未満が脈理1級かつ脈理3級が5%未満であることが好ましく、製造した光学材料の90%以上95%未満が脈理1級かつ脈理3級の光学材料がないことがより好ましく、製造した光学材料の95%以上が脈理1級かつ脈理3級の光学材料がないことがさらに好ましい。 The striae of the optical material obtained in the present invention is a portion in which the material component having a refractive index different from that of the base material in the optical material is formed in a cotton-like or layered form, and the polymerizability due to polymerization heat generation during polymerization curing It is caused by minute density in the optical material due to the convection of the composition, non-uniform progression of the polymerization reaction, or the like. Usually, when performing striae evaluation of an optical material, it is transmitted through the optical material (optical lens) from which the mercury lamp light source is manufactured, and the transmitted light is projected onto a white plate, and the appearance striae level is evaluated according to the following criteria. That is, if no striae are visually confirmed, the striae is 1st grade, and if the striae of visible limit are confirmed by thin and dispersed striae, the striae is 2nd grade, and the striae is 2nd grade or higher. When confirmed, it is classified as striae class 3, and 90% or more and less than 95% of the manufactured optical material is preferably striae class 1 and striae class 3 is less than 5%. % Or more and less than 95% is more preferably free of striae 1 and striae 3 optical materials, and 95% or more of the manufactured optical material is free of striae 1 and striae 3 optical materials. Further preferred.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。光学材料用重合性組成物および重合して得られる光学材料の分析は以下の方法で行った。
[粘度]
B型粘度計(東機産業製、TV10M型)を使用し、各々の注型液温度での粘度を測定した。
[光学材料の耐熱性測定]
サンプルを厚さ3mmに切り出し、0.5mmφのピンに10gの加重を与え、30℃から10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行い、軟化点を測定した。
[光学材料の屈折率、アッベ数]
光学材料の屈折率、アッベ数はデジタル精密屈折率計(株式会社島津製作所製、KPR−200)を用い、25℃でのe線での屈折率、d線でのアッベ数を測定した。
[光学材料(光学レンズ)の脈理評価]
水銀灯光源を作製した光学材料(光学レンズ)に透過させ、透過光を白色板に投影し、下記の基準で外観脈理レベルを評価した。目視で脈理が確認されない場合は脈理1級、薄くて分散した脈理で目に見える限界の脈理が確認された場合は脈理2級、脈理2級以上の脈理が確認された場合は脈理3級とした。また、光学レンズは100枚作成し、以下の5段階で評価した。
A:100枚中、脈理1級の光学レンズが95枚以上で、脈理3級の光学レンズがないこと。
B:100枚中、脈理1級の光学レンズが90枚以上95枚未満で、脈理3級の光学レンズがないこと。
C:100枚中、脈理1級の光学レンズが90枚以上95枚未満で、脈理3級の光学レンズが5枚未満。
D:100枚中、脈理1級の光学レンズが80枚以上90枚未満で、脈理3級の光学レンズが5枚以上10枚未満。
E:100枚中、脈理3級の光学レンズが10枚以上。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. Analysis of the polymerizable composition for optical material and the optical material obtained by polymerization were carried out by the following methods.
[viscosity]
Using a B-type viscometer (manufactured by Toki Sangyo Co., Ltd., TV10M type), the viscosity at each casting liquid temperature was measured.
[Measurement of heat resistance of optical materials]
Cut the sample to 3mm thickness, give 10g weight to the 0.5mmφ pin, raise the temperature from 30 ° C to 10 ° C / min, perform TMA measurement (Seiko Instruments, TMA / SS6100), and measure the softening point did.
[Refractive index of optical material, Abbe number]
The refractive index and Abbe number of the optical material were measured using a digital precision refractometer (manufactured by Shimadzu Corporation, KPR-200), and the refractive index at the e-line at 25 ° C. and the Abbe number at the d-line.
[Strategic evaluation of optical materials (optical lenses)]
The mercury lamp light source was transmitted through the optical material (optical lens), the transmitted light was projected onto a white plate, and the appearance striae level was evaluated according to the following criteria. If no striae are confirmed by visual inspection, the striae is grade 1; if striations that are visible in the thin and dispersed striae are confirmed, striae 2 is confirmed; In the case of struggle, it was classified as third grade. In addition, 100 optical lenses were prepared and evaluated according to the following five levels.
A: There are 95 or more striae class 1 optical lenses out of 100, and there are no striae class 3 optical lenses.
B: The number of striae class 1 optical lenses is 90 or more and less than 95 out of 100, and there is no striae class 3 optical lens.
C: The number of striae class 1 optical lenses is 90 or more and less than 95 out of 100 sheets, and the number of striae class 3 optical lenses is less than 5.
D: The number of striae class 1 optical lenses is 80 or more and less than 90 out of 100 sheets, and the number of striae class 3 optical lenses is 5 or more and less than 10.
E: 10 or more striae grade 3 optical lenses out of 100.

実施例1
(a)化合物である硫黄15.5質量部、(b)化合物としてビス(β−エピチオプロピル)スルフィド(以下b−1化合物と呼ぶ)84.5質量部、(c)化合物としてビス(2−メルカプトエチル)スルフィド(以下c−1化合物と呼ぶ)7.7質量部、(d)化合物として1,2,2,6,6−ペンタメチルピペリジルメタクリレ−ト(以下d−1化合物と呼ぶ)0.016質量部を加えて、窒素雰囲気常圧下、30℃で1.0時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である25℃に冷却して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である25℃での粘度は40mPa・sであり、注型時温度で3時間保持後の粘度は82mPa・sであった。
(プラスチックレンズの製造方法)
得られた重合性組成物を1.0μmのPTFE製メンブランフィルターでろ過をし、ガラスモールド(設計度数(S/C)−10.0D/0.0D)とガスケットから構成されるモールド300セットに注入した。これらモールドを100セットずつオーブンで初期保持温度5、20、35℃から100℃まで、22時間掛けて緩やかに昇温加熱して重合硬化させた後に室温まで冷却して、モールドから離型し光学レンズを得た。その際の光学レンズの脈理、屈折率、アッベ数および耐熱性軟化点(Tg)、の結果を表1に示した。
Example 1
(A) 15.5 parts by mass of sulfur as a compound, (b) 84.5 parts by mass of bis (β-epithiopropyl) sulfide (hereinafter referred to as b-1 compound) as the compound, (c) bis (2 -Mercaptoethyl) sulfide (hereinafter referred to as c-1 compound) 7.7 parts by mass, (d) 1,2,2,6,6-pentamethylpiperidyl methacrylate (hereinafter referred to as d-1 compound) as compound ) 0.016 parts by mass were added and reacted at 30 ° C. for 1.0 hour under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. The composition was cooled to 25 ° C., the hourly temperature, to obtain a polymerizable composition for an optical material without turbidity. The viscosity of the obtained composition at 25 ° C., which is the casting temperature, was 40 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 82 mPa · s.
(Plastic lens manufacturing method)
The obtained polymerizable composition was filtered through a 1.0 μm PTFE membrane filter to obtain a 300 mold set composed of a glass mold (design power (S / C) -10.0D / 0.0D) and a gasket. Injected. These molds are set in an oven in an oven at an initial holding temperature of 5, 20, 35 ° C. to 100 ° C. over 22 hours. I got a lens. Table 1 shows the results of the optical lens striae, refractive index, Abbe number, and heat resistant softening point (Tg).

実施例2
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物7.7質量部、(d)化合物としてd−1化合物0.005質量部を加えて、窒素雰囲気常圧下、40℃で1.5時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である30℃に冷却して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である30℃での粘度は36mPa・sであり、注型時温度で3時間保持後の粘度は110mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Example 2
(A) 15.5 parts by mass of sulfur as the compound, 84.5 parts by mass of b-1 compound as compound (b), 7.7 parts by mass of c-1 compound, and 0.005 of d-1 compound as (d) compound Mass parts were added and reacted at 40 ° C. for 1.5 hours under normal pressure of nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. The composition was cooled to 30 ° C., the hourly temperature, to obtain a polymerizable composition for an optical material without turbidity. The viscosity of the obtained composition at 30 ° C., which is the casting temperature, was 36 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 110 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

実施例3
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物7.7質量部、(d)化合物として1,2,2,6,6−ペンタメチルピペリジルアクリレ−ト(以下d−2化合物と呼ぶ)0.016質量部を加えて、窒素雰囲気常圧下、25℃で1.5時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である25℃に保って濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である25℃での粘度は42mPa・sであり、注型時温度で3時間保持後の粘度は85mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Example 3
(A) 15.5 parts by mass of sulfur as a compound, (b) 84.5 parts by mass of a b-1 compound, 7.7 parts by mass of a c-1 compound, (d) 1, 2, 2, 6 as a compound , 6-Pentamethylpiperidyl acrylate (hereinafter referred to as d-2 compound) (0.016 parts by mass) was added and reacted at 25 ° C. for 1.5 hours under normal pressure of nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. A polymerizable composition for optical materials was obtained which was kept at 25 ° C. which is the hourly temperature and was not turbid. The viscosity at 25 ° C., which is the casting temperature of the obtained composition, was 42 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 85 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

実施例4
(a)化合物である硫黄16.0質量部、(b)化合物としてb−1化合物84.0質量部、(c)化合物として1,3−ビス(メルカプトメチル)ベンゼン(以下c−2化合物と呼ぶ)8.7質量部、d−1化合物0.3質量部を加えて、窒素雰囲気常圧下、5℃で0.8時間反応させた。得られた反応液に、c-2化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である15℃に加熱して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である15℃での粘度は160mPa・sであり、注型時温度で3時間保持後の粘度は180mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Example 4
(A) 16.0 parts by mass of sulfur as a compound, 84.0 parts by mass of b-1 compound as (b) compound, 1,3-bis (mercaptomethyl) benzene (hereinafter referred to as c-2 compound) as (c) compound 8.7 parts by mass) and 0.3 part by mass of the d-1 compound were added, and the reaction was carried out at 5 ° C. for 0.8 hours under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-2 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added, and cast while degassing at 10 Torr. It heated to 15 degreeC which is hour temperature, and the polymeric composition for optical materials without a turbidity was obtained. The viscosity of the obtained composition at 15 ° C., which is the casting temperature, was 160 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 180 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

実施例5
(a)化合物である硫黄10.0質量部、(b)化合物としてビス(β−エピチオプロピル)ジスルフィド(以下b−2化合物と呼ぶ)90.0質量部、(c)化合物としてc−1化合物4.1質量部、d−1化合物0.1質量部を加えて、窒素雰囲気常圧下、5℃で1.2時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である15℃に加熱して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である15℃での粘度は90mPa・sであり、注型時温度で3時間保持後の粘度は103mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Example 5
(A) 10.0 parts by mass of sulfur as a compound, (b) 90.0 parts by mass of bis (β-epithiopropyl) disulfide (hereinafter referred to as b-2 compound) as the compound, (c) c-1 as the compound 4.1 parts by mass of the compound and 0.1 parts by mass of the d-1 compound were added and reacted at 5 ° C. for 1.2 hours under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. It heated to 15 degreeC which is hour temperature, and the polymeric composition for optical materials without a turbidity was obtained. The viscosity of the obtained composition at 15 ° C., which is the casting temperature, was 90 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 103 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

実施例6
(a)化合物である硫黄20.0質量部、(b)化合物としてb−1化合物80.0質量部、c−1化合物9.1質量部、(d)化合物としてd−1化合物0.016質量部を加えて、窒素雰囲気常圧下、30℃で1.5時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である20℃に冷却して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である20℃での粘度は82mPa・sであり、注型時温度で3時間保持後の粘度は115mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Example 6
(A) 20.0 parts by mass of sulfur as a compound, (b) 80.0 parts by mass of a b-1 compound, 9.1 parts by mass of a c-1 compound, (d) 0.016 parts of a d-1 compound as a compound A part by mass was added, and the mixture was reacted at 30 ° C. under a nitrogen atmosphere and normal pressure for 1.5 hours. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. The composition was cooled to 20 ° C., which is an hourly temperature, to obtain a polymerizable composition for an optical material without turbidity. The viscosity of the obtained composition at a casting temperature of 20 ° C. was 82 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 115 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

実施例7
(a)化合物である硫黄30.0質量部、(b)化合物としてb−1化合物70.0質量部、c−1化合物14.1質量部、(d)化合物としてd−1化合物0.033質量部を加えて、窒素雰囲気常圧下、30℃で1.0時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である25℃に冷却して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である25℃での粘度は55mPa・sであり、注型時温度で3時間保持後の粘度は96mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Example 7
(A) 30.0 parts by mass of sulfur as a compound, 70.0 parts by mass of b-1 compound as compound (b), 14.1 parts by mass of c-1 compound, and 0.033 of d-1 compound as (d) compound Mass parts were added and reacted at 30 ° C. for 1.0 hour under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. The composition was cooled to 25 ° C., the hourly temperature, to obtain a polymerizable composition for an optical material without turbidity. The viscosity of the obtained composition at 25 ° C., which is the temperature at the time of casting, was 55 mPa · s, and the viscosity after holding at the temperature at the time of casting for 3 hours was 96 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

比較例1
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物8.6質量部、(d)化合物を加えず、窒素雰囲気常圧下、60℃で24時間反応させたが硫黄が残存した。
Comparative Example 1
(A) 15.5 parts by mass of sulfur as a compound, (b) 84.5 parts by mass of a b-1 compound, 8.6 parts by mass of a c-1 compound, (d) without adding a compound, and under a nitrogen atmosphere and normal pressure The reaction was continued at 60 ° C. for 24 hours, but sulfur remained.

比較例2
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物7.7質量部、(d)化合物としてd−1化合物0.016質量部を加えて、窒素雰囲気常圧下、50℃で1.0時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である40℃に冷却して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である40℃での粘度は160mPa・sであり、注型時温度で3時間保持後の粘度は820mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Comparative Example 2
(A) 15.5 parts by mass of sulfur as the compound, 84.5 parts by mass of b-1 compound as compound (b), 7.7 parts by mass of c-1 compound, and 0.016 of d-1 compound as compound (d) Mass parts were added and reacted at 50 ° C. for 1.0 hour under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. The composition was cooled to 40 ° C., the hourly temperature, to obtain a polymerizable composition for an optical material having no turbidity. The viscosity of the obtained composition at 40 ° C., which is the casting temperature, was 160 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 820 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

比較例3
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物8.6質量部、(d)化合物としてd−1化合物0.2質量部を加えて、窒素雰囲気常圧下、−5℃で1.0時間反応させたが硫黄が残存した。
Comparative Example 3
(A) 15.5 parts by mass of sulfur as a compound, 84.5 parts by mass of b-1 compound as compound (b), 8.6 parts by mass of c-1 compound, 0.2 d-1 compound as compound (d) Part by mass was added and reacted at −5 ° C. under a nitrogen atmosphere and normal pressure for 1.0 hour, but sulfur remained.

比較例4
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物7.7質量部、(d)化合物としてd−1化合物0.016質量部を加えて、窒素雰囲気常圧下、45℃で1.0時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である25℃に冷却して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である25℃での粘度は210mPa・sであり、注型時温度で3時間保持後の粘度は450mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Comparative Example 4
(A) 15.5 parts by mass of sulfur as the compound, 84.5 parts by mass of b-1 compound as compound (b), 7.7 parts by mass of c-1 compound, and 0.016 of d-1 compound as compound (d) Mass parts were added and reacted at 45 ° C. for 1.0 hour under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. The composition was cooled to 25 ° C., the hourly temperature, to obtain a polymerizable composition for an optical material without turbidity. The viscosity at 25 ° C., which is the casting temperature of the obtained composition, was 210 mPa · s, and the viscosity after holding at the casting temperature for 3 hours was 450 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

比較例5
(a)化合物である硫黄15.5質量部、(b)化合物としてb−1化合物84.5質量部、c−1化合物7.7質量部、(d)化合物としてd−1化合物0.016質量部を加えて、窒素雰囲気常圧下、25℃で1.5時間反応させた。得られた反応液に、c-1化合物0.9質量部、ジ−n−ブチルスズジクロライド0.37質量部、トリエチルベンジルアンモニウムクロライド0.16質量部を加え、10Torrで脱気処理しながら注型時温度である40℃に加熱して濁りのない光学材料用重合性組成物を得た。得られた組成物の注型時温度である40℃での粘度は30mPa・sであり、注型時温度で3時間保持後の粘度は260mPa・sであった。
引き続き実施例1記載の方法で光学レンズを得た。その結果を表1に示した。
Comparative Example 5
(A) 15.5 parts by mass of sulfur as the compound, 84.5 parts by mass of b-1 compound as compound (b), 7.7 parts by mass of c-1 compound, and 0.016 of d-1 compound as compound (d) A part by mass was added, and the mixture was reacted at 25 ° C. for 1.5 hours under normal pressure in a nitrogen atmosphere. To the obtained reaction solution, 0.9 part by mass of c-1 compound, 0.37 part by mass of di-n-butyltin dichloride and 0.16 part by mass of triethylbenzylammonium chloride were added and cast while degassing at 10 Torr. It heated to 40 degreeC which is hour temperature, and the polymeric composition for optical materials without a turbidity was obtained. The viscosity of the obtained composition at 40 ° C., which is the casting temperature, was 30 mPa · s, and the viscosity after being held at the casting temperature for 3 hours was 260 mPa · s.
Subsequently, an optical lens was obtained by the method described in Example 1. The results are shown in Table 1.

Figure 2014047334
Figure 2014047334

Claims (4)

下記(a)化合物、下記(b)化合物、および下記(c)化合物の混合物を反応温度T1(T1は0〜45℃)で予備反応させることにより予備反応液を得、該予備反応液に重合触媒を加え温度をT2(ただし、T2はT1−10℃〜T1+10℃であり、かつ、0〜45℃である)とすることを特徴とする光学材料用重合性組成物の製造方法。
(a)硫黄(以下(a)化合物)
(b)下記(1)式で表されるエピスルフィド基を分子内に2個有する化合物(以下(b)化合物)
Figure 2014047334
(ここで、mは0〜4の整数、nは0〜1の整数を表す。)
(c)SH基を2個有する化合物(以下(c)化合物)
A pre-reaction solution is obtained by prereacting a mixture of the following (a) compound, the following (b) compound, and the following (c) compound at a reaction temperature T1 (T1 is 0 to 45 ° C.), and the pre-reaction solution is polymerized. A method for producing a polymerizable composition for an optical material, wherein a catalyst is added and the temperature is T2 (where T2 is T1-10 ° C to T1 + 10 ° C and 0-45 ° C).
(A) Sulfur (hereinafter referred to as (a) compound)
(B) Compound having two episulfide groups represented by the following formula (1) in the molecule (hereinafter referred to as compound (b))
Figure 2014047334
(Here, m represents an integer of 0 to 4, and n represents an integer of 0 to 1.)
(C) Compound having two SH groups (hereinafter referred to as (c) compound)
前記混合物が、予備反応触媒として下記(d)化合物を含むことを特徴とする請求項1記載の光学材料用重合性組成物の製造方法。
(d)下記(2)式で表される化合物(以下(d)化合物)。
Figure 2014047334
(Rは炭素数1〜4のアルキル基、
Xはビニル基、ビニリデン基またはビニレン基のいずれかを有する炭素数2〜11の有機基)
The said mixture contains the following (d) compound as a pre-reaction catalyst, The manufacturing method of the polymeric composition for optical materials of Claim 1 characterized by the above-mentioned.
(D) A compound represented by the following formula (2) (hereinafter referred to as (d) compound).
Figure 2014047334
(R is an alkyl group having 1 to 4 carbon atoms,
X is a C2-C11 organic group having any of a vinyl group, vinylidene group or vinylene group)
請求項1または請求項2記載の製造方法で製造された光学材料用重合性組成物を重合初期温度T3(ただし、T3はT2−10℃〜T2+10℃であり、かつ、0〜40℃である)として重合させることを特徴とする光学材料の製造方法。 The polymerizable composition for an optical material produced by the production method according to claim 1 or 2 is subjected to polymerization initial temperature T3 (where T3 is T2-10 ° C to T2 + 10 ° C and 0-40 ° C). And a method of producing an optical material. 請求項3に記載の方法により製造される光学材料。   An optical material produced by the method according to claim 3.
JP2012193833A 2012-02-14 2012-09-04 Method for producing polymerizable composition for optical material Active JP6048013B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2012193833A JP6048013B2 (en) 2012-09-04 2012-09-04 Method for producing polymerizable composition for optical material
TW102105396A TWI568775B (en) 2012-02-14 2013-02-08 A polymerizable composition for optical materials, a method for producing the same, and a method for producing an optical material
KR1020147022425A KR101900837B1 (en) 2012-02-14 2013-02-13 Polymerizable composition for optical material, method for producing same, and method for producing optical material
CN201380009317.5A CN104114608B (en) 2012-02-14 2013-02-13 The manufacture method of polymerizable composition for optical material, its manufacture method and optical material
PCT/JP2013/053306 WO2013122068A1 (en) 2012-02-14 2013-02-13 Polymerizable composition for optical material, method for producing same, and method for producing optical material
BR112014020099-8A BR112014020099B1 (en) 2012-02-14 2013-02-13 polymerizable composition for optical material, method for producing the composition, method for producing optical material, optical material and optical lens
IN7467DEN2014 IN2014DN07467A (en) 2012-02-14 2013-02-13
EP13749331.8A EP2816070B1 (en) 2012-02-14 2013-02-13 Polymerizable composition for optical material, method for producing same, and method for producing optical material
US14/373,718 US9529117B2 (en) 2012-02-14 2013-02-13 Polymerizable composition for optical material, method for producing same, and method for producing optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193833A JP6048013B2 (en) 2012-09-04 2012-09-04 Method for producing polymerizable composition for optical material

Publications (2)

Publication Number Publication Date
JP2014047334A true JP2014047334A (en) 2014-03-17
JP6048013B2 JP6048013B2 (en) 2016-12-21

Family

ID=50607338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193833A Active JP6048013B2 (en) 2012-02-14 2012-09-04 Method for producing polymerizable composition for optical material

Country Status (1)

Country Link
JP (1) JP6048013B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152208A (en) * 2013-02-06 2014-08-25 Mitsubishi Gas Chemical Co Inc Method for producing polymerizable composition for optical material
WO2020022369A1 (en) 2018-07-24 2020-01-30 三井化学株式会社 Method for setting polymerization conditions and method for producing optical material
WO2021182526A1 (en) * 2020-03-10 2021-09-16 三井化学株式会社 Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured object, and method for producing optical material
WO2022113955A1 (en) * 2020-11-24 2022-06-02 三井化学株式会社 Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335560A (en) * 1998-03-26 1999-12-07 Mitsubishi Gas Chem Co Inc Manufacture of resin for optical material having excellent color and transparency
JP2001342252A (en) * 2000-03-27 2001-12-11 Mitsui Chemicals Inc New polythiol-containing polymerizable composition, resin obtained by polymerizing the composition and lens
JP2003001643A (en) * 2001-06-20 2003-01-08 Seiko Epson Corp Method for producing plastic lens and plastic lens produced by the method
JP2004269673A (en) * 2003-03-07 2004-09-30 Mitsubishi Gas Chem Co Inc Composition for resin
WO2008136401A1 (en) * 2007-04-27 2008-11-13 Hoya Corporation Method for production of plastic lens
JP2009144094A (en) * 2007-12-17 2009-07-02 Seiko Epson Corp Method and apparatus for manufacturing optical material
JP2010043181A (en) * 2008-08-12 2010-02-25 Mitsui Chemicals Inc Polymerizable composition, method for producing polymerizable composition, method for producing resin, resin, and use thereof
JP2010053279A (en) * 2008-08-29 2010-03-11 Seiko Epson Corp Method and apparatus for producing resin for optical material, plastic lens, and method for producing the lens
WO2012147708A1 (en) * 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 Curable composition and adhesive for optics
WO2013129460A1 (en) * 2012-03-01 2013-09-06 三菱瓦斯化学株式会社 Polymerizable composition for optical materials

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11335560A (en) * 1998-03-26 1999-12-07 Mitsubishi Gas Chem Co Inc Manufacture of resin for optical material having excellent color and transparency
JP2001342252A (en) * 2000-03-27 2001-12-11 Mitsui Chemicals Inc New polythiol-containing polymerizable composition, resin obtained by polymerizing the composition and lens
JP2003001643A (en) * 2001-06-20 2003-01-08 Seiko Epson Corp Method for producing plastic lens and plastic lens produced by the method
JP2004269673A (en) * 2003-03-07 2004-09-30 Mitsubishi Gas Chem Co Inc Composition for resin
WO2008136401A1 (en) * 2007-04-27 2008-11-13 Hoya Corporation Method for production of plastic lens
JP2009144094A (en) * 2007-12-17 2009-07-02 Seiko Epson Corp Method and apparatus for manufacturing optical material
JP2010043181A (en) * 2008-08-12 2010-02-25 Mitsui Chemicals Inc Polymerizable composition, method for producing polymerizable composition, method for producing resin, resin, and use thereof
JP2010053279A (en) * 2008-08-29 2010-03-11 Seiko Epson Corp Method and apparatus for producing resin for optical material, plastic lens, and method for producing the lens
WO2012147708A1 (en) * 2011-04-28 2012-11-01 三菱瓦斯化学株式会社 Curable composition and adhesive for optics
WO2013129460A1 (en) * 2012-03-01 2013-09-06 三菱瓦斯化学株式会社 Polymerizable composition for optical materials

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014152208A (en) * 2013-02-06 2014-08-25 Mitsubishi Gas Chemical Co Inc Method for producing polymerizable composition for optical material
WO2020022369A1 (en) 2018-07-24 2020-01-30 三井化学株式会社 Method for setting polymerization conditions and method for producing optical material
KR20210021566A (en) 2018-07-24 2021-02-26 미쯔이가가꾸가부시끼가이샤 Method for setting polymerization conditions, method for manufacturing optical materials
WO2021182526A1 (en) * 2020-03-10 2021-09-16 三井化学株式会社 Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured object, and method for producing optical material
JPWO2021182526A1 (en) * 2020-03-10 2021-09-16
JP7434526B2 (en) 2020-03-10 2024-02-20 三井化学株式会社 Polymerizable composition for optical materials, polymerizable prepolymer composition for optical materials, cured product, and method for producing optical materials
EP4101876A4 (en) * 2020-03-10 2024-04-03 Mitsui Chemicals, Inc. Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured object, and method for producing optical material
WO2022113955A1 (en) * 2020-11-24 2022-06-02 三井化学株式会社 Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product

Also Published As

Publication number Publication date
JP6048013B2 (en) 2016-12-21

Similar Documents

Publication Publication Date Title
US9529117B2 (en) Polymerizable composition for optical material, method for producing same, and method for producing optical material
JP5720565B2 (en) Composition for optical materials with high refractive index and high strength
KR101561636B1 (en) Method for producing composition for optical material
JP5799949B2 (en) Optical material composition, production method thereof, and optical material obtained from optical material composition
KR20120042834A (en) Optical material, optical lens, and method for manufacturing an optical material
JP6048013B2 (en) Method for producing polymerizable composition for optical material
TWI572641B (en) Composition for optical materials
JP2007321072A (en) Method for producing high-refractive index resin
JP6048012B2 (en) Manufacturing method of optical material
JP6098112B2 (en) Method for producing episulfide resin cured product
JP2011207152A (en) Optical lens and manufacturing method of the same
JP6089747B2 (en) Polymerizable composition for optical material
WO2015056665A1 (en) Optical material composition and optical material using same
JPWO2018168419A1 (en) Composition for optical material
JP2011212850A (en) Optical lens, and method for producing the same
WO2015163269A1 (en) Method for producing cured product of episulfide-based resin
JP3794226B2 (en) Method for producing high refractive index resin excellent in color tone and transparency
JP6089744B2 (en) Method for producing polymerizable composition for optical material
JPWO2020031815A1 (en) New allyl compounds and compositions for optical materials
JP2011231185A (en) Method of manufacturing prepolymer for optical lens molding, and method of manufacturing optical lens
KR102683975B1 (en) Compositions and optical materials for optical materials
TW202204481A (en) Composition for optical material
JP2011152759A (en) Optical lens and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160512

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161107

R151 Written notification of patent or utility model registration

Ref document number: 6048013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151