WO2022113955A1 - Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product - Google Patents

Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product Download PDF

Info

Publication number
WO2022113955A1
WO2022113955A1 PCT/JP2021/042848 JP2021042848W WO2022113955A1 WO 2022113955 A1 WO2022113955 A1 WO 2022113955A1 JP 2021042848 W JP2021042848 W JP 2021042848W WO 2022113955 A1 WO2022113955 A1 WO 2022113955A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
polymerizable composition
optical material
mass
optical materials
Prior art date
Application number
PCT/JP2021/042848
Other languages
French (fr)
Japanese (ja)
Inventor
勇輔 松井
幸治 末杉
伸介 伊藤
忠史 鳥居
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to CN202180078034.0A priority Critical patent/CN116529048A/en
Priority to JP2022565339A priority patent/JPWO2022113955A1/ja
Publication of WO2022113955A1 publication Critical patent/WO2022113955A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/12Making multilayered or multicoloured articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/24Feeding the material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/26Moulds or cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/22Component parts, details or accessories; Auxiliary operations
    • B29C39/44Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms

Definitions

  • the present disclosure relates to a method for manufacturing an optical material, a polymerizable composition for an optical material, an optical material manufacturing system, a method for manufacturing an optical member, a film for manufacturing an optical member, a mold for manufacturing an optical member, and a cured product.
  • a casting polymerization method in which a polymerizable composition containing a monomer is injected into a mold and cured by heating can be mentioned.
  • a polymerizable composition is prepared and degassed, then the polymerizable composition is injected into a mold (mold), and after heat curing (polymerization reaction), the product is taken out from the mold (demolding). ), Annealing is performed to obtain an optical material (for example, a lens, a semi-finished blank, etc.).
  • Patent Document 1 it is described that the mold into which the polymerizable composition is injected is gradually heated to 10 ° C to 120 ° C and polymerized in 20 hours to obtain a molded product.
  • the mold in which the polymerizable composition is injected is gradually heated from 25 ° C. over 16 hours to 120 ° C. and heated at 120 ° C. for 4 hours to form a molded product. It is stated that it was obtained.
  • Patent Document 1 International Publication No. 2014/027427
  • Patent Document 2 International Publication No. 2014/133111
  • the problem to be solved by one embodiment of the first embodiment of the present disclosure is a method for manufacturing an optical material capable of suppressing pulse in the obtained optical material and shortening the manufacturing time of the optical material, described above. It is an object of the present invention to provide a polymerizable composition for an optical material used in a method for producing an optical material.
  • An object to be solved by one embodiment of the second embodiment of the present disclosure is to provide a method for manufacturing an optical material and an optical material manufacturing system capable of suppressing a U-shaped pulse in the obtained optical material. Is.
  • the problem to be solved by one embodiment of the third embodiment of the present disclosure is a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, and a mold for manufacturing the optical member.
  • the problem to be solved by one embodiment of the fourth embodiment of the present disclosure is a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, and a mold for manufacturing the optical member. And to provide a cured product.
  • Specific means for solving the above-mentioned problems include the following aspects.
  • ⁇ 1> A method for producing an optical material using a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass as raw materials.
  • a part of the two or more different monomers for optical materials and at least a part of the polymerization catalyst are mixed, and at least a part of the two or more different monomers for optical materials is polymerized to prepolymerize.
  • a curing step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material is included.
  • the method for producing an optical material according to ⁇ 2> which is a step of obtaining a mixture containing the prepolymer by polymerizing at least a part thereof to obtain a prepolymer.
  • a part of the two or more different optical material monomers is all of one optical material monomer among the two or more different optical material monomers, and the one optical material monomer.
  • the method for producing an optical material according to ⁇ 3> which comprises a part of a monomer for an optical material other than the above.
  • ⁇ 5> In the prepolymerization step, a part of the two or more kinds of monomers for different optical materials and a part of the polymerization catalyst are mixed, and a part of the two or more kinds of monomers for different optical materials.
  • the method for producing an optical material according to ⁇ 2> which is a step of obtaining a polymerizable composition for an optical material containing the above-mentioned different monomers for an optical material, the prepolymer, and the polymerization catalyst.
  • the two or more different monomers for optical materials contain an isocyanate compound (A).
  • a part of the two or more kinds of monomers for different optical materials contains a part of the isocyanate compound (A), and the balance of the two or more kinds of monomers for different optical materials contains the balance of the isocyanate compound (A) ⁇ 5>.
  • the method for manufacturing an optical material according to. ⁇ 7> The method for producing an optical material according to ⁇ 5> or ⁇ 6>, wherein a part of the polymerization catalyst is 5 parts by mass to 80 parts by mass in 100 parts by mass of the polymerization catalyst.
  • a part of the two or more kinds of monomers for different optical materials is 5 parts by mass to 95 parts by mass out of 100 parts by mass of the two or more kinds of monomers for different optical materials ⁇ 2> to ⁇ 7.
  • the method for manufacturing an optical material according to any one of. ⁇ 9> After the prepolymerization step and before the step of producing the polymerizable composition for an optical material, the viscosity measured with a B-type viscosity meter of the mixture containing the prepolymer under the conditions of 25 ° C. and 60 rpm is measured.
  • the remnants of the two or more kinds of monomers for different optical materials and the remnants of the polymerization catalyst are mixed, and at least a part of the remnants of the two or more kinds of monomers for different optical materials is polymerized.
  • a polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst by adding the mixture containing the second prepolymer to the mixture containing the prepolymer.
  • a liquid feeding step of feeding the polymerizable composition for optical materials to a casting mold after the step of manufacturing the polymerizable composition for optical materials and before the curing step is further included.
  • the liquid feeding step is one of ⁇ 2> to ⁇ 10>, which is a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it in a static mixer.
  • the method for manufacturing an optical material according to the description. ⁇ 12> The curing step includes any one of ⁇ 2> to ⁇ 11> including a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand still.
  • the method for manufacturing an optical material according to the description. ⁇ 13> The curing step includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand in a closed system space ⁇ 2> to ⁇ 12>.
  • the curing step includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand without being heated from the outside ⁇ 2> to ⁇ 13>.
  • the curing step of ⁇ 2> to ⁇ 14> includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand for 2 to 10 hours. The method for manufacturing an optical material according to any one of them.
  • the two or more different monomers for optical materials are an isocyanate compound (A), a polythiol compound having two or more mercapto groups, and a hydroxythiol having one or more mercapto groups and one or more hydroxyl groups.
  • ⁇ 17> The method for producing an optical material according to ⁇ 16>, wherein the isocyanate compound (A) contains at least one of an alicyclic isocyanate compound and an aromatic isocyanate compound.
  • the polymerization catalyst is one of ⁇ 1> to ⁇ 17>, which comprises at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst.
  • ⁇ 19> The method for producing an optical material according to any one of ⁇ 1> to ⁇ 18>, wherein the polymerization catalyst contains at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
  • the polymerization catalyst is 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, N-ethylmorpholine, dibutyltin dichloride, dimethyltin dichloride, dibutyltin dilaurate and
  • the content of the polymerization catalyst is 0.010 parts by mass to 2.0 parts by mass with respect to 100 parts by mass in total of the two or more different monomers for optical materials and the prepolymer. thing.
  • a curing step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
  • Viscosity Va measured at 25 ° C. and 60 rpm with a B-type viscometer of the first raw material composition, and 2.
  • the absolute value V of the difference between the viscosity Vb measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer of the second raw material composition is in the range of 20 mPa ⁇ s to 1500 mPa ⁇ s. Manufacturing method of optical material.
  • the second raw material composition is a polythiol compound having two or more mercapto groups, a hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups, and a polyol compound containing two or more hydroxyl groups.
  • the method for producing an optical material according to any one of ⁇ 23> to ⁇ 26> which comprises at least one active hydrogen compound selected from the group consisting of amine compounds.
  • ⁇ 28> Any of ⁇ 23> to ⁇ 27> in which the viscosity measured at 25 ° C. and 60 rpm with a B-type viscometer of the polymerizable composition for optical materials in the casting step is 10 mPa ⁇ s to 1000 mPa ⁇ s.
  • ⁇ 29> The method for producing an optical material according to any one of ⁇ 23> to ⁇ 28>, wherein the polymerization catalyst satisfies the following condition 1.
  • the polymerization catalyst is any one of ⁇ 23> to ⁇ 29>, which comprises at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst. The method for manufacturing an optical material according to.
  • a system for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst A shearing portion that applies a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material, and a shearing portion.
  • a stirring unit that applies stirring force to the polymerizable composition for optical materials, and a stirring unit.
  • a cured portion that cures the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
  • the fixed quantity liquid delivery unit and Optical material manufacturing system including. ⁇ 32> Further, the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the optical quality of the cured product obtained by curing the polymerizable composition for optical material in the cured portion.
  • the stirring unit according to at least one condition selected from the group consisting of feature quantities correlating with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials.
  • the optical material manufacturing system according to ⁇ 31> comprising a viscosity control unit for controlling the viscosity measured under the condition of 25 ° C.
  • the film comprises an injection step of injecting a polymerizable composition and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass and heat-resistant at 85 ° C.
  • a film that completely peels off from the glass when an exponential test is performed, and the film is a method for manufacturing an optical member having a thermal deformation temperature of 70 ° C. or higher.
  • ⁇ 36> The method for manufacturing an optical member according to ⁇ 34> or ⁇ 35>, wherein the curing time is 10 hours or less in the curing step.
  • ⁇ 37> The method for manufacturing an optical member according to any one of ⁇ 34> to ⁇ 36>, wherein the film is subjected to a glass ball tack test at 80 ° C. and the moving distance of the glass balls is 200 mm or less. ..
  • the polymerizable composition comprises two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials. Is 0.010 part by mass to 2.0 parts by mass, and the viscosity measured with a B-type viscometer at 25 ° C.
  • the polymerizable composition is a polymer of two or more kinds of monomers for different optical materials, a polymerization catalyst, and a prepolymer containing a polymerizable functional group, which is a polymer of the two or more kinds of monomers for different optical materials.
  • the two or more different monomers for optical materials are polythiol compounds containing two or more mercapto groups, hydroxythiol compounds containing one or more mercapto groups and one or more hydroxyl groups, and two or more hydroxyl groups.
  • the method for producing an optical member according to ⁇ 39> or ⁇ 40> which comprises at least one active hydrogen compound selected from the group consisting of a polyol compound containing a thiol compound and an amine compound.
  • ⁇ 42> The method for manufacturing an optical member according to any one of ⁇ 39> to ⁇ 41>, wherein the polymerization catalyst satisfies the following condition 1. [Condition 1] -Ea / R is -7100 or more and -2900 or less.
  • a film for manufacturing an optical member that includes at least a base material layer and an adhesive layer and is completely peeled off from the glass when the film is attached to glass and subjected to a heat resistance index test at 85 ° C. ⁇ 45>
  • a film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and a polymerizable composition is formed in the space.
  • the outer peripheral surface of the cured product is a mirror surface, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a substantially straight line.
  • ⁇ 47> The cured product according to ⁇ 46>, wherein the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface include a protrusion substantially parallel to the outer peripheral surface.
  • ⁇ 48> The cured product according to ⁇ 46> or ⁇ 47>, wherein the amine content measured by gas chromatograph mass spectrometry is 0.03% by mass or more and 2.5% by mass or less.
  • ⁇ 49> The cured product according to any one of ⁇ 46> to ⁇ 48>, which contains a thiourethane resin.
  • the film comprises an injection step of injecting a polymerizable composition and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass and heat-resistant at 85 ° C.
  • ⁇ 52> The method for manufacturing an optical member according to ⁇ 50> or ⁇ 51>, wherein the curing time is 10 hours or less in the curing step.
  • ⁇ 53> The method for manufacturing an optical member according to any one of ⁇ 50> to ⁇ 52>, wherein the film is subjected to a glass ball tack test at 80 ° C. and the moving distance of the glass balls is 200 mm or less. ..
  • the polymerizable composition injected into the space is allowed to stand in a closed space to cure the polymerizable composition to any one of ⁇ 50> to ⁇ 53>.
  • the polymerizable composition comprises two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials. 1 The method for manufacturing an optical member according to the above.
  • the polymerizable composition is a polymer of two or more kinds of monomers for different optical materials, a polymerization catalyst, and a prepolymer containing a polymerizable functional group, which is a polymer of the two or more kinds of monomers for different optical materials.
  • the two or more different monomers for optical materials are a polythiol compound containing two or more mercapto groups, a hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups, and two or more hydroxyl groups.
  • the method for producing an optical member according to ⁇ 55> or ⁇ 56> which comprises at least one active hydrogen compound selected from the group consisting of a polyol compound containing a thiol compound and an amine compound.
  • ⁇ 58> The method for manufacturing an optical member according to any one of ⁇ 55> to ⁇ 57>, wherein the polymerization catalyst satisfies the following condition 1.
  • -Ea / R is -7100 or more and -2900 or less.
  • Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures
  • R is the gas constant (8.314 J / mol / K).
  • ⁇ 59> The method for producing an optical member according to any one of ⁇ 55> to ⁇ 58>, wherein the polymerization catalyst contains at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
  • a film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film, and a polymerizable composition is formed in the space. Is a film for manufacturing an optical member for manufacturing an optical member by arranging the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
  • optical members including at least a base material layer and an adhesive layer, and having a heat resistance index of 1 mm or more (except when completely peeling off from the glass) when attached to glass and subjected to a heat resistance index test at 85 ° C.
  • Film for. ⁇ 61> A film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and a polymerizable composition is formed in the space.
  • a mold for manufacturing an optical member by arranging and curing the polymerizable composition to obtain a cured product, wherein the main surface of the mold has a substantially diameter of 60 cm to 80 cm. ..
  • ⁇ 62> A cured product of two or more different optical monomers having no vein having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
  • the outer peripheral surface of the cured product is a mirror surface, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a concave curve.
  • ⁇ 63> The cured product according to ⁇ 62>, wherein the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface include a protrusion substantially parallel to the outer peripheral surface.
  • ⁇ 64> The cured product according to ⁇ 62> or ⁇ 63>, wherein the amine content measured by gas chromatograph mass spectrometry is 0.03% by mass or more and 2.5% by mass or less.
  • ⁇ 65> The cured product according to any one of ⁇ 62> to ⁇ 64>, which contains a thiourethane resin.
  • a method for producing an optical material capable of suppressing pulse in the obtained optical material and shortening the production time of the optical material, the production of the above-mentioned optical material It is possible to provide a polymerizable composition for an optical material used in the method.
  • a method for manufacturing an optical material and an optical material manufacturing system capable of suppressing a U-shaped pulse in the obtained optical material According to one embodiment of the third embodiment of the present disclosure, a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, a mold for manufacturing the optical member, and a cured product are provided. Can be provided.
  • a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, a mold for manufacturing the optical member, and a cured product are provided. Can be provided.
  • the numerical range represented by using “-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. means.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
  • the present disclosure includes the following first to fourth embodiments. Each embodiment will be described in detail.
  • the method for producing an optical material according to the first embodiment uses, in total, 100 parts by mass of two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of a polymerization catalyst as raw materials.
  • a method for producing an optical material which is a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for different optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass.
  • a part of the two or more different monomers for optical materials and at least a part of the polymerization catalyst are mixed, and at least a part of the two or more different monomers for optical materials is polymerized to pre-polymerize. It comprises a prepolymerization step of obtaining a mixture containing the prepolymer by obtaining the polymer.
  • the method for producing an optical material according to the first embodiment includes a preparation step and a prepolymerization step, whereby the pulse in the obtained optical material can be suppressed and the production time of the optical material can be shortened.
  • the refractive index refers to a state in which the refractive index of a specific portion is different from the normal refractive index of the surroundings. Pulsation in optical materials is one of the factors that deteriorate quality.
  • the method for producing an optical material in addition to the preparation step and the prepolymerization step described above, at least the balance of the two or more different monomers for the optical material is added to the mixture containing the prepolymer.
  • a polymerizable composition for an optical material containing the two or more different monomers for an optical material, the prepolymer, and the polymerization catalyst.
  • the method for producing an optical material according to the first embodiment further includes, in addition to a preparation step and a prepolymerization step, a step of manufacturing a polymerizable composition for an optical material and a curing step, so that a pulse in the obtained optical material can be obtained. It is possible to suppress the process better and to shorten the manufacturing time of the optical material better.
  • the content of the polymerization catalyst with respect to a total of 100 parts by mass of two or more different monomers for optical materials is 0.010 parts by mass to 2. It is 0 parts by mass.
  • the content of this polymerization catalyst is large as compared with the conventional method for producing an optical material.
  • the above reaction heat can be used to accelerate the polymerization reaction of the monomer for optical material in the polymerizable composition for optical material, a high-quality optical material whose pulse is suppressed in a shorter time than before can be obtained. Obtainable.
  • the polymerizable composition for an optical material is heated to generate a polymerization reaction.
  • the polymerizable composition for an optical material is heated. Is not always necessary.
  • the method for producing an optical material according to the first embodiment includes a preparation step, a prepolymerization step, a polymerizable composition manufacturing step for an optical material, and a curing step, whereby a molding in which a polymerization reaction is carried out is performed. It is possible to suppress the convection in the inside, and it is possible to suppress the generation of pulsation in the obtained cured product.
  • the prepolymer in the method for producing an optical material according to the first embodiment can maintain good storage stability. For example, even when the prepolymer is stored for a certain period of time, the curing of the prepolymer can be suppressed. That is, a long-term pot life can be secured.
  • the method for producing an optical material according to the first embodiment is a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of a polymerization catalyst.
  • the types of two or more different types of monomers for optical materials may be, for example, five or less, or three or less.
  • Examples of the monomer for optical materials include isocyanate compounds, polythiol compounds having two or more mercapto groups, hydroxythiol compounds having one or more mercapto groups and one or more hydroxyl groups, and polyol compounds having two or more hydroxyl groups. Examples thereof include amine compounds.
  • Two or more different monomers for optical materials are an isocyanate compound (A), a polythiol compound having two or more mercapto groups, and a hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups. It is preferable to contain the above-mentioned polyol compound having a hydroxyl group and the active hydrogen compound (B) which is at least one selected from the group consisting of amine compounds.
  • isocyanate compound (A) examples include an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound, and a heterocyclic isocyanate compound, and one type or a mixture of two or more types is used. These isocyanate compounds may include dimers, trimers and prepolymers. Examples of these isocyanate compounds include the compounds exemplified in International Publication No. 2011/0555540.
  • the alicyclic isocyanate compound refers to an isocyanate compound containing an alicyclic structure and may contain a structure other than the alicyclic structure such as a heterocyclic structure.
  • the aromatic isocyanate compound refers to an isocyanate compound containing an aromatic structure and which may contain any one of an aliphatic structure, an alicyclic structure and a heterocyclic structure, or a combination thereof.
  • the heterocyclic isocyanate compound refers to an isocyanate compound containing a heterocyclic structure and not containing an alicyclic structure and an aromatic structure.
  • Aliphatic isocyanate compounds refer to isocyanate compounds that do not contain aromatic, alicyclic and heterocyclic structures.
  • the isocyanate compound (A) preferably contains at least one selected from an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound and a heterocyclic isocyanate compound, and preferably contains an alicyclic isocyanate compound and an aromatic isocyanate compound. It is more preferable to include at least one of the above.
  • the isocyanate compound (A) is 2,5-bis (isocyanatomethyl) bicyclo- [2. 2.1] -Heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -Heptane, m-xylylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , Dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate.
  • m-xylylene diisocyanate 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane It is more preferable to include at least one selected from.
  • active hydrogen compound examples include polythiol compounds having two or more mercapto groups, hydroxythiol compounds having one or more mercapto groups and one or more hydroxyl groups, polyol compounds having two or more hydroxyl groups, amine compounds and the like. Can be mentioned.
  • an oligomer of the active hydrogen compound or a halogen-substituted product of the active hydrogen compound for example, a chlorine-substituted product, a bromine-substituted product, etc.
  • the active hydrogen compound may be used alone or in combination of two or more.
  • the polythiol compound is a compound having two or more mercapto groups, and examples thereof include the compounds exemplified in International Publication No. 2016/125736.
  • the polythiol compound is 4-mercaptomethyl-1,8-dimercapto-3,6-dithiane octane, 5 , 7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiane undecane, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiane undecane, 4,8 -Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiandecan, pentaerythritol tetrakis (3-mercaptopropionate), bis (mercaptoethyl) sul
  • Hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups examples include 2-mercaptoethanol, 3-mercapto-1,2-propanediol, glycerinbis (mercaptoacetate), 4-mercaptophenol, 2,3-dimercapto-1-propanol, and pentaerythritol.
  • Tris (3-mercaptopropionate), pentaerythritol tris (thioglycolate) and the like can be mentioned, but are not limited to these exemplified compounds.
  • polyol compound having two or more hydroxyl groups examples include one or more aliphatic or alicyclic alcohols. Specifically, a linear or branched fatty alcohol, an alicyclic alcohol, or an alcohol obtained by adding at least one selected from the group consisting of ethylene oxide, propylene oxide, and ⁇ -caprolactone to these alcohols. And so on. More specifically, the compounds exemplified in International Publication No. 2016/125736 can be mentioned.
  • the polyol compound is preferably ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1 , 3-Cyclohexanediol, 1,4-Cyclohexanediol is at least one selected from.
  • amine compound examples include ethylenediamine, 1,2- or 1,3-diaminopropane, 1,2-, 1,3- or 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane.
  • the active hydrogen compound (B) preferably contains a polythiol compound having two or more mercapto groups.
  • the content of the polythiol compound having two or more mercapto groups is preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass, based on the total mass of the active hydrogen compound (B). It is more preferably mass% or more.
  • the total content of the active hydrogen compound (B) in the first embodiment is 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and pentaerythritol tetrakis (3-mercaptopropionate). However, it is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more with respect to the total mass of the active hydrogen compound (B).
  • the molar ratio of the sum of the hydroxyl group (OH group) and the mercapto group (SH group) in the active hydrogen compound to the isocyanate group (NCO group) in the isocyanate compound (A) (NCO group / (OH group + SH group) )) Is preferably 0.8 to 1.2, more preferably 0.85 to 1.15, and even more preferably 0.9 to 1.1.
  • the polymerization catalyst in the preparatory step is used, at least in part, to obtain a prepolymer in the prepolymerization step described later.
  • the polymerization catalyst is not particularly limited, and for example, a basic catalyst, an organic metal catalyst, a zinc carbamic acid salt, an ammonium salt, a sulfonic acid, or the like can be used.
  • the above-mentioned polymerization catalyst may be used alone or in combination of two or more as appropriate.
  • Base catalyst examples include an amine-based catalyst and an imidazole-based catalyst.
  • tertiary amine-based catalysts such as triethylenediamine, N, N-dimethylethanolamine, triethylamine, and N-ethylmorpholin, 2-methylpyrazine, pyridine, ⁇ -picoline, ⁇ -picoline, ⁇ -picoline, 2 , 6-Lutidine, 3,5-Lutidine, 2,4,6-cholidine, 3-chlorpyridine, N, N-diethylaniline, N, N-dimethylaniline, hexamethylenetetramine, quinoline, isoquinoline, N, N-dimethyl-p-toluidine, N, N-dimethyl Examples thereof include piperazine, quinaldine, 4-methylmorpholine, triallylamine, trioctylamine, 1.2-dimethylimidazole, 1-benzyl-2-methylimidazole and the like.
  • an amine-based catalyst is preferable among the above.
  • the amine-based catalyst include tertiary amine-based catalysts such as 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, and N-ethylmorpholine. ..
  • the amine-based catalyst preferably contains at least one selected from 3,5-lutidine, 2,4,6-colysine, triethylenediamine, N, N-dimethylethanolamine, triethylamine and N-ethylmorpholine.
  • the basic catalyst preferably contains a compound represented by the following general formula (2) and / or a compound represented by the following general formula (3).
  • R 1 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a halogen atom, and there are a plurality of them. R 1 may be the same or different.
  • Q indicates a carbon atom or a nitrogen atom.
  • m represents an integer from 0 to 5.
  • R 2 , R 3 and R 4 are independently each of a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms. Indicates a group or an allyl group
  • the pKa value is preferably 1 to 9, more preferably 3 to 8, and even more preferably 4 to 8.
  • the pKa value is, for example, (a) The Journal of Physical Chemistry vol. It can be measured by the method described in 68, number 6, page 1560 (1964), (b) a method using an automatic potential difference titrator (AT-610 (trade name), etc.) manufactured by Kyoto Electronics Manufacturing Co., Ltd., and ( c) The acid dissociation index, etc. described in the Chemistry Handbook edited by the Chemical Society of Japan (Revised 3rd Edition, June 25, 1984, published by Maruzen Co., Ltd.) can be used.
  • the organometallic catalyst includes an organotin-based catalyst; organic acid salts such as iron, nickel, and zinc; an acetylacetonate complex; a catalyst composition composed of a carboxylate metal compound and a quaternary ammonium salt compound; Examples thereof include a catalyst composition composed of an amine compound and a quaternary ammonium salt compound; a metal catalyst in which an alkoxy group, a carboxy group or the like is coordinated with titanium or aluminum; and the like.
  • the organometallic catalyst is preferable as the organometallic catalyst.
  • the organotin catalyst include dibutyltin dichloride (DBC), dimethyltindichloride (DMC), dibutyltin dilaurate (DBTDL), dibutyltin diacetate and the like.
  • the organotin catalyst contains at least one selected from dibutyltin dichloride, dimethyltindichloride, dibutyltin dilaurate and dibutyltin diacetate.
  • the polymerization catalyst preferably contains at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst.
  • the polymerization catalyst contains at least one selected from an amine-based catalyst and an organic tin-based catalyst.
  • Polymerization catalysts include 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, N-ethylmorpholine, dibutyltin dichloride, dimethyltin dichloride, dibutyltin dilaurate and dibutyltin diacetate. It is also preferred to include at least one selected from the group consisting of.
  • a total of 100 parts by mass of two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of a polymerization catalyst are prepared. That is, in the method for producing an optical material of the first embodiment, a polymerization catalyst of 0.010 part by mass to 2.0 parts by mass is used with respect to a total of 100 parts by mass of two or more different monomers for optical materials. As described above, the amount of the polymerization catalyst used in the first embodiment is large as compared with the conventional method for producing an optical material. Thereby, when the monomer for the optical material in the polymerizable composition for the optical material is polymerized in the curing step, the reaction heat of the polymerizable composition for the optical material can be generated in a short time. By further utilizing this heat of reaction for polymerization, the polymerization reaction can be satisfactorily promoted, and a high-quality optical material in which pulse is suppressed can be obtained in a shorter time than before.
  • the polymerization catalyst By using a polymerization catalyst of 0.010 parts by mass or more with respect to 100 parts by mass of two or more different monomers for optical materials, the polymerization reaction can be satisfactorily promoted, so that the pulse is suppressed in a short time. High quality optical material can be obtained. Further, by satisfactorily promoting the polymerization reaction, it is possible to improve the releasability when the cured product is taken out from the mold. From the above viewpoint, the polymerization catalyst preferably uses 0.015 parts by mass or more, more preferably 0.038 parts by mass or more, with respect to 100 parts by mass of two or more different monomers for optical materials. It is more preferable to use 0.10 parts by mass or more, and it is particularly preferable to use 0.17 parts by mass or more.
  • the range of the content of the above-mentioned polymerization catalyst may be appropriately changed depending on the type of the monomer for optical materials and the polymerization catalyst.
  • the monomers for optical materials are 2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane, pentaerythritol tetrakis (3-mercaptopropionate), and 4-mercaptomethyl.
  • the polymerization catalyst is 0.10 with respect to 100 parts by mass of two or more different monomers for optical materials. It is preferable to use parts by mass or more, and it is more preferable to use parts by mass or more of 0.17.
  • the monomers for optical materials are m-xylylene diisocyanate, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-.
  • dimercapto-3,6,9-trichiaundecan and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane are contained and the polymerization catalyst contains 3,5-lutidine.
  • the polymerization catalyst preferably uses 0.015 parts by mass or more, and more preferably 0.020 parts by mass or more, with respect to 100 parts by mass of two or more different monomers for optical materials.
  • the polymerization catalyst is 2. It is preferable to use 0.010 parts by mass or more, and more preferably 0.015 parts by mass or more with respect to 100 parts by mass of the monomers for different types of optical materials.
  • the monomers for optical materials are dicyclohexylmethanediisocyanate and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto.
  • the polymerization catalyst is 3,5-lutidine.
  • the polymerization catalyst preferably uses 1.0 part by mass or more, and more preferably 1.5 parts by mass or more with respect to 100 parts by mass of two or more different monomers for optical materials.
  • the monomer for optical materials contains 1,3-bis (isocyanismethyl) cyclohexane, pentaerythritol tetrakis (2-mercaptoacetate) and 2,5-bis (mercaptomethyl) -1,4-dithian, and the polymerization catalyst is
  • 3,5-lutidine it is preferable to use 0.03 parts by mass or more, and 0.07 parts by mass or more of the polymerization catalyst with respect to 100 parts by mass of two or more different monomers for optical materials. Is more preferable.
  • the handleability when injecting a polymerizable composition for optical materials into a mold is improved. be able to.
  • the polymerization catalyst may be used in an amount of 1.0 part by mass or less, and 0.3 part by mass or less, based on 100 parts by mass of two or more different monomers for optical material. It may be used, or 0.15 part by mass or less may be used.
  • the amount of the polymerization catalyst can be appropriately set depending on the type of the polymerization catalyst, the type and amount of the monomers (isocyanate compound, active hydrogen compound, other components, etc.) used, and the desired shape of the molded product. ..
  • the method for producing an optical material according to the first embodiment is a method of mixing a part of two or more kinds of monomers for different optical materials and at least a part of a polymerization catalyst, and a part of two or more kinds of monomers for different optical materials. Including a prepolymerization step of obtaining a mixture containing a prepolymer by polymerizing at least a part of the above to obtain a prepolymer.
  • the present inventors considered that the occurrence of convection due to the non-uniform temperature distribution in the mold in which the polymerization reaction is carried out is one of the causes of the occurrence of pulse in the obtained cured product. Therefore, the present inventors have produced a prepolymer by prepolymerizing a part of the monomer for an optical material, and the polymerizable composition for an optical material contains the prepolymer, so that the viscosity of the polymerizable composition for an optical material is high. Focused on increasing. This makes it possible to suppress convection in the mold.
  • the method for manufacturing an optical material of the first embodiment it is possible to prevent a temperature difference between the inside and the outside of the mold from being generated by preventing the self-heating from escaping to the outside. Combined with the above viewpoints, it is presumed that the method for producing the optical material of the first embodiment can suppress the pulsation of the obtained cured product.
  • the method for producing an optical material according to the first embodiment includes all of the monomers for one type of optical material among two or more different monomers for optical material, and the monomer for one type of optical material other than the above-mentioned monomer for optical material.
  • the method for producing an optical material according to the first embodiment includes all of the monomers for one type of optical material among two or more different monomers for optical material, and the monomer for one type of optical material other than the above-mentioned monomer for optical material.
  • a part of two or more kinds of monomers for different optical materials is not particularly limited.
  • a part of two or more kinds of monomers for different optical materials may be an amount of a part of each of two or more kinds of monomers for different optical materials.
  • a part of two or more kinds of monomers for different optical materials may be all of one or more kinds of monomers for optical materials among two or more kinds of monomers for different optical materials.
  • a part of the polymerization catalyst may be used or the whole may be used.
  • a part is used as the polymerization catalyst, there is no particular limitation on the aspect of "a part of the polymerization catalyst” as well as "a part of two or more kinds of monomers for different optical materials".
  • a part of the polymerization catalyst may be a part of the amount of the polymerization catalyst.
  • the part of the polymerization catalyst is preferably 5 parts by mass to 80 parts by mass out of 100 parts by mass of the polymerization catalyst from the viewpoint of ensuring a long-term pot life, preferably 10 parts by mass. It is more preferably parts to 60 parts by mass, and even more preferably 15 parts by mass to 50 parts by mass.
  • a part of two or more kinds of monomers for different optical materials shall be 5 parts by mass to 95 parts by mass out of 100 parts by mass of two or more kinds of monomers for different optical materials from the viewpoint of ensuring a long-term pot life. It is more preferable, it is more preferably 20 parts by mass to 80 parts by mass, and further preferably 30 parts by mass to 70 parts by mass.
  • prepolymerization step in the first embodiment is not limited to the following embodiments.
  • a part of two or more different optical material monomers is all of one optical material monomer among two or more different optical material monomers, and other than one optical material monomer. It is preferably composed of a part of a monomer for other optical materials.
  • the prepolymerization step of embodiment b is a mixture of a part of two or more different monomers for optical materials and a part of a polymerization catalyst, and at least a part of a part of two or more different monomers for optical materials. Is a step of obtaining a mixture containing a prepolymer by polymerizing the above to obtain a prepolymer.
  • the step of producing a polymerizable composition for an optical material which will be described later, differs from the mixture containing the prepolymer by at least two or more kinds.
  • a polymerizable composition for an optical material containing two or more different monomers for an optical material, a prepolymer, and a polymerization catalyst by adding a residue of a monomer for an optical material and a residue of a polymerization catalyst.
  • two or more different monomers for optical materials are isocyanate compounds (A).
  • the residue of two or more different optical material monomers may contain a portion of the isocyanate compound (A), and the balance of the two or more different optical material monomers may contain the remainder of the isocyanate compound (A). preferable.
  • the method for producing the optical material of the first embodiment is after the prepolymerization step and before the step of producing the polymerizable composition for the optical material, using a B-type viscometer of the mixture containing the prepolymer at 25 ° C. and 60 rpm. It is preferable to further include a viscosity adjusting step of adjusting the viscosity measured under the conditions (also simply referred to as viscosity in the present disclosure) to 30 mPa ⁇ s to 2000 mPa ⁇ s.
  • the polymerizable composition for optical materials produced in the process for producing the polymerizable composition for optical materials is produced from the viewpoint of suppressing the pulse in the obtained optical material.
  • the viscosity can be within an appropriate range. As a result, the pulse in the obtained optical material can be suppressed.
  • the viscosity of the mixture containing the prepolymer is preferably 40 mPa ⁇ s to 2000 mPa ⁇ s, and more preferably 50 mPa ⁇ s to 1800 mPa ⁇ s.
  • the viscosity is measured using a B-type viscometer under the conditions of 25 ° C. and 60 rpm (revolutions per minute).
  • the method for adjusting the viscosity of the mixture containing the prepolymer is not particularly limited.
  • the viscosity of the mixture containing the prepolymer may be adjusted by a method such as heating or stirring.
  • the temperature at which the mixture containing the prepolymer is prepared is not particularly limited as long as the temperature at which the prepolymer can be obtained by the polymerization reaction. For example, it may be 20 ° C to 50 ° C or 25 ° C to 45 ° C.
  • the stirring time for preparing the mixture containing the prepolymer is not particularly limited as long as the stirring time is such that the prepolymer can be obtained by the polymerization reaction. For example, it may be 30 minutes to 5 hours, or 1 hour to 5 hours.
  • a method for preparing a mixture containing a prepolymer specifically, a method for preparing a mixture containing a prepolymer while adjusting the viscosity by stirring at 40 ° C. for 3 hours may be used.
  • the method for producing an optical material according to the first embodiment is to add at least the balance of two or more different optical material monomers to a mixture containing a prepolymer to obtain two or more different optical material monomers. It comprises a step of manufacturing a polymerizable composition for an optical material for obtaining a polymerizable composition for an optical material containing a prepolymer and a polymerization catalyst.
  • a mixture containing a prepolymer is prepared with two or more different monomers for an optical material by adding at least the balance of two or more different monomers for the optical material.
  • This is a step of obtaining a polymerizable composition for an optical material containing a polymer and a polymerization catalyst. This causes polymerization of the prepolymer with the remnants of the two or more different optical material monomers until the mixture is mixed with the mixture containing the prepolymer and the remnants of the two or more different optical material monomers. Can be prevented.
  • the step of producing the polymerizable composition for optical materials by performing the step of producing the polymerizable composition for optical materials at an appropriate time, it is possible to improve the handleability when, for example, the polymerizable composition for optical materials is injected into a mold.
  • the remnants of at least two or more different monomers for an optical material are added to a mixture containing a prepolymer, the remnants of two or more different monomers for an optical material are simply added. It may be mixed in multiple times, or it may be mixed in a plurality of times.
  • the temperature at which each of the above components is mixed is not particularly limited, but is preferably 30 ° C. or lower, and more preferably room temperature (25 ° C.) or lower. It may be preferable that the temperature at which each component is mixed is lower than 25 ° C. However, if the solubility of the additive such as an internal mold release agent and each of the above-mentioned components is not good, the temperature of each of the above-mentioned components may be raised in advance to dissolve the above-mentioned additive in each of the above-mentioned components. ..
  • an additive for example, an internal mold release agent
  • an additive for example, an internal mold release agent
  • This mixture is stirred at 25 ° C. for 1 hour to completely dissolve each component, and then degassed to obtain a first mixture.
  • the balance of the monomer for the optical material and the balance of the polymerization catalyst, if necessary, are stirred at 25 ° C. for 30 minutes to completely dissolve them to obtain a second mixed solution.
  • the first mixture and the second mixture are mixed, stirred and then degassed to obtain a polymerizable composition for an optical material as a uniform solution.
  • the method for producing an optical material according to the first embodiment is to feed the polymerizable composition for an optical material into a casting mold after the step of producing the polymerizable composition for the optical material and before the curing step. It may further include a liquid step.
  • the liquid feeding step may be a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it in a static mixer.
  • the liquid feeding step may be a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it with a dynamic mixer.
  • the non-uniformity of the distribution of the polymerizable composition for optical materials can be eliminated while the polymerizable composition for optical materials is sent to the mold, so that the pulse of the obtained cured product is suppressed. be able to.
  • the polymerizable composition for an optical material of the first embodiment comprises two or more kinds of monomers for different optical materials, a polymerization catalyst, and at least two kinds of monomers for optical materials among two or more kinds of monomers for different optical materials.
  • the content of the polymerization catalyst includes the prepolymer obtained by polymerization, and the content of the polymerization catalyst is 0.010 parts by mass to 2.0 parts by mass with respect to 100 parts by mass in total of the monomers and prepolymers for two or more different kinds of different optical materials. It is a department.
  • the reaction heat that is, the heat due to self-heating
  • the polymerizable composition for optical material can be increased.
  • the polymerization reaction of the monomer for optical material in the polymerizable composition for optical material can be promoted, and a high-quality optical material in which pulse is suppressed can be obtained in a shorter time than before. be able to.
  • the polymerizable composition for an optical material of the first embodiment has the above-mentioned structure, so that convection in the mold in which the polymerization reaction is carried out can be suppressed, and the generation of veins in the obtained cured product can be suppressed. It can be suppressed.
  • the content of the polymerization catalyst is 0.015 parts by mass or more with respect to 100 parts by mass in total of the two or more different monomers and prepolymers for optical materials. It is preferably 0.038 parts by mass or more, further preferably 0.10 parts by mass or more, and particularly preferably 0.17 parts by mass or more.
  • the content of the polymerization catalyst is 1.5 parts by mass or less with respect to 100 parts by mass in total of the two or more different monomers and prepolymers for optical materials. It is preferably 1.0 part by mass or less, and more preferably 1.0 part by mass or less.
  • the polymerizable composition for optical materials of the first embodiment has a viscosity (also simply referred to as viscosity in the present disclosure) of 70 mPa ⁇ s measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer from the viewpoint of suppressing pulse.
  • a viscosity also simply referred to as viscosity in the present disclosure
  • the above is preferable, 80 mPa ⁇ s or more is more preferable, 100 mPa ⁇ s or more is further preferable, and 120 mPa ⁇ s or more is particularly preferable.
  • the polymerizable composition for an optical material of the first embodiment preferably has a viscosity of 1000 mPa ⁇ s or less, preferably 700 mPa ⁇ s or less, from the viewpoint of maintaining good handleability when molding the optical material into a desired shape. It is more preferably 400 mPa ⁇ s or less, and further preferably 400 mPa ⁇ s or less.
  • the method for measuring the viscosity is as described above.
  • the polymerizable composition for an optical material of the first embodiment may contain any additive.
  • Optional additives include photochromic compounds, internal mold release agents, brewing agents, UV absorbers and the like.
  • a photochromic compound is a compound in which the molecular structure is reversibly changed by irradiation with light of a specific wavelength, and the absorption characteristics (absorption spectrum) are changed accordingly.
  • Examples of the photochromic compound used in the first embodiment include compounds whose absorption characteristics (absorption spectrum) change with respect to light having a specific wavelength.
  • the photochromic compound is not particularly limited, and any conventionally known compound that can be used for a photochromic lens can be appropriately selected and used.
  • any conventionally known compound that can be used for a photochromic lens can be appropriately selected and used.
  • one or more of spiropyran compounds, spirooxazine compounds, flugide compounds, naphthopyran compounds, bisimidazole compounds and the like can be used depending on the desired coloring.
  • Vivid's Reversacol Huber Blue polydimethylsiloxane chain, naphthopylan-based chromophore, Reversacol Calder Blue (polydimethylsiloxane chain, naphthopylan-based chromophore, Reversalcol Trent Blue).
  • Examples of the internal mold release agent include acidic phosphoric acid esters.
  • Examples of the acidic phosphoric acid ester include a phosphoric acid monoester and a phosphoric acid diester, which can be used alone or in combination of two or more.
  • a monomer for an optical material having a high polymerizability is used as the monomer for an optical material, it is preferable to use an internal mold release agent having a relatively low releasability.
  • the monomer for optical materials having high polymerizable properties include an isocyanate compound having an aromatic ring, a trifunctional polythiol compound (specifically, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, etc.) and the like. Can be mentioned.
  • These highly polymerizable monomers for optical materials are likely to be exfoliated from the mold earlier than expected (for example, during the polymerization of the optical monomers) (also referred to as early release).
  • the occurrence of the early release can be suppressed by using an internal mold release agent having a relatively low mold release property.
  • an internal mold release agent having a relatively low releasability for example, an acidic phosphoric acid ester having a relatively low releasability is preferable, and specifically, JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.) is more preferable.
  • JP-506H manufactured by Johoku Chemical Industry Co., Ltd.
  • the content of the internal release agent is preferably 1000 mass ppm or less.
  • the timing of adding the internal mold release agent to the mixture containing the prepolymer, the polymerizable composition for optical materials, and the like is not particularly limited.
  • the internal mold release agent may be added during the prepolymerization step, may be added to the mixture containing the prepolymer after the prepolymerization step, and two or more kinds may be added to the mixture containing the prepolymer. It may be added to the rest of the polymers for different optical materials.
  • an internal mold release agent such as an acidic phosphoric acid ester that may form a salt with the polymerization catalyst
  • the catalytic activity of the polymerization catalyst decreases due to the formation of the salt, and the reaction time. May be longer. Therefore, from the viewpoint of suppressing the extension of the polymerization reaction time in the prepolymerization step, it is preferable not to add the internal mold release agent at the stage where the polymerization reaction is in progress in the prepolymerization step.
  • the internal mold release agent is a mixture containing the prepolymer in a stable state after the polymerization reaction has progressed to some extent, or a monomer for two or more different optical materials. It is preferable to add it to the balance.
  • the internal release agent is used in the prepolymerization step for the purpose of suppressing the activity of the polymerization catalyst in the mixture containing the prepolymer. It is preferable to add it to the mixture containing the prepolymer when the polymerization reaction is stable to some extent or when it is desired to be stabilized.
  • the bluing agent examples include those having an absorption band in the orange to yellow wavelength range in the visible light region and having a function of adjusting the hue of an optical material made of resin. More specifically, the bluing agent contains a substance showing a blue color to a purple color.
  • UV absorbers used include 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-acryloyloxybenzophenone, 2-hydroxy-4-acryloyloxy-5-tert-butylbenzophenone, 2-hydroxy-.
  • Benzophenone-based UV absorbers such as 4-acryloyloxy-2', 4'-dichlorobenzophenone,
  • UV absorbers can be used alone or in combination of two or more.
  • the method for producing an optical material according to the first embodiment is an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material. Includes a curing step to obtain.
  • a cured product can be obtained by polymerizing a polymerizable composition for an optical material, and this cured product can be used as an optical material.
  • a polymerizable composition for an optical material is heated to generate a polymerization reaction.
  • the polymerizable composition for an optical material according to the first embodiment has a reaction heat (reaction heat) associated with the polymerization reaction. That is, by increasing the heat due to self-heating), the polymerization reaction of the monomer for optical materials in the polymerizable composition for optical materials can be promoted.
  • reaction heat reaction heat
  • the polymerizable composition for an optical material may be heated, but from the above viewpoint, the polymerizable composition for an optical material may not be heated. That is, in the curing step of the first embodiment, the polymerizable composition for optical materials can be cured by polymerization by allowing the polymerizable composition for optical materials to stand still.
  • the curing step may include a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand still.
  • the polymerizable composition for an optical material may be allowed to stand in a closed system space or in an open system space, but the closed system space may be allowed to stand still. It is preferable to leave it still inside.
  • the closed system space refers to an environment in which heat is retained inside and heat conduction between the inside and the outside is suppressed.
  • An environment in which heat conduction between the inside and the outside is suppressed means that when the polymerizable composition for an optical material is allowed to stand in the closed system space, the heat conductivity between the inside and the outside of the closed system space is high. It means an environment in which the polymerizable composition for an optical material can be cured.
  • Examples of the closed space include a heat insulating environment.
  • An open space means a space other than a closed space.
  • the curing step preferably includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand in a closed space.
  • the polymerization reaction of the polymerizable composition for optical materials is hindered by the reaction heat, or the polymerization reaction of the polymerizable composition for optical materials is excessively caused by heating from the outside. It is preferable to heat the adiabatic reaction tank to a constant temperature state (constant temperature reaction tank) within a range that does not promote it. As a result, the environmental temperature in the reaction vessel (constant temperature reaction vessel) in which the mold is placed can be kept warm or constant temperature according to the temperature rise state due to the self-heating of the monomer for optical material. The polymerization reaction can be promoted satisfactorily.
  • the adiabatic reaction tank or the constant temperature reaction tank as described above can be used.
  • adiabatic polymerization in an adiabatic environment using an adiabatic reaction vessel can be performed by the following procedure. can.
  • the inner surface of the vacuum vessel is covered with a member having heat insulating or heat-retaining properties such as urethane foam and cork, and the mold in which the monomer is injected is wrapped with a member such as a waste cloth as needed. Then, the mold in which the monomer is injected is allowed to stand in the vacuum container.
  • the curing step may include a step of curing the polymerizable composition for optical materials (that is, a non-heating step) by allowing the polymerizable composition for optical materials to stand without being heated from the outside.
  • a step of curing the polymerizable composition for optical materials that is, a non-heating step
  • heating of the polymerizable composition for optical materials may be performed, but heating of the polymerizable composition for optical materials is not always necessary.
  • an apparatus may be used, which may increase the burden economically.
  • the optical material can be manufactured by a simple method, so that the economic burden can be reduced.
  • the curing step preferably includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand for 2 to 10 hours.
  • the polymerization reaction is carried out over several hours to several tens of hours (for example, about 20 hours to 48 hours) while gradually raising the temperature by heating.
  • the time for carrying out the polymerization reaction is short, the polymerizable composition for an optical material is not completely cured, so that the optical material cannot be obtained, or the quality of the optical material is deteriorated.
  • the method for manufacturing an optical material of the first embodiment it is possible to manufacture the optical material in a short time while suppressing the pulse in the obtained optical material.
  • the optical material can be produced by allowing the polymerizable composition for an optical material to stand for 10 hours or less. From the above viewpoint, it is more preferable to allow the polymerizable composition for an optical material to stand for 8 hours or less in the curing step. Further, from the viewpoint of obtaining a well-cured optical material by carrying out a polymerization reaction, it is preferable to allow the polymerizable composition for an optical material to stand for 2 hours or more.
  • a microwave irradiation step of irradiating the polymerizable composition for an optical material with microwaves for a predetermined time may be provided.
  • Step a The polymerizable composition for an optical material is injected (casted) into a mold (inside the cavity of the mold).
  • Step b The mold in which the polymerizable composition for an optical material is injected is allowed to stand for a predetermined time to be cured.
  • Step a First, the polymerizable composition is injected into a molding mold (mold) held by a gasket, tape or the like. At this time, depending on the physical characteristics required for the obtained optical material, it is preferable to perform a degassing treatment under reduced pressure, a filtration treatment under pressure, a reduced pressure, or the like, if necessary.
  • Step b the mold in which the polymerizable composition for an optical material is injected may be allowed to stand in an open system space for a predetermined time for polymerization, or may be allowed to stand in a closed system space for adiabatic polymerization. You may.
  • the polymerization conditions are not limited, but are preferably adjusted appropriately depending on the composition of the polymerizable composition for optical materials, the type and amount of the catalyst used, the shape of the mold, and the like.
  • the mold in which the polymerizable composition for an optical material is injected may be allowed to stand in an adiabatic environment for 2 to 4 hours for polymerization.
  • a heating step may be added after the adiabatic polymerization process in which the mold in which the polymerizable composition for optical materials is injected is allowed to stand in an adiabatic environment for a certain period of time.
  • step b in parallel with the step of allowing the mold into which the polymerizable composition for an optical material is injected to stand in an adiabatic environment (adiabatic polymerization), if necessary, in the adiabatic polymerization process continuously or intermittently.
  • the mold in which the polymerizable composition for optical materials is injected is heated at a temperature not exceeding the self-heating generated by the polymerizable composition for optical materials, or the inside of the adiabatic reaction tank is heated to keep the environmental temperature in the adiabatic reaction tank warm. You may do it.
  • the curing step may include a step of heating and curing the polymerizable composition for an optical material (that is, a heating step).
  • a heating step As described above, in the method for producing an optical material of the first embodiment, heating of the polymerizable composition for an optical material is not always necessary, but the heating step may be included in the curing step. That is, the curing step in the first embodiment may be a combination of the non-heating step and the heating.
  • the heating step is preferably performed for a period of 1% to 40%, more preferably 1% to 35% with respect to the entire period of the curing step.
  • ⁇ Second prepolymerization step> In the method for producing an optical material of the first embodiment, in addition to the above-mentioned preparation step and prepolymerization step, the balance of the two or more different monomers for the optical material and the balance of the polymerization catalyst are further mixed.
  • a polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst by adding the mixture containing the second prepolymer to the mixture containing the prepolymer.
  • the method for producing an optical material according to the first embodiment includes the above-mentioned constitution, and is a mixture containing a prepolymer obtained by a prepolymerization step and a mixture containing a second prepolymer obtained by a second prepolymerization step. And can be obtained. As a result, the viscosities of the mixture containing the prepolymer and the mixture containing the second prepolymer can be brought close to each other, so that both can be mixed more easily.
  • two or more different monomers for optical materials, a polymerization catalyst, specific embodiments, preferred embodiments and the like are described as two or more different monomers for optical materials, polymerization catalysts, specific embodiments in the prepolymerization step. It is the same as the embodiment, the preferred embodiment and the like.
  • the step of producing a polymerizable composition for an optical material is a mixture containing the second prepolymer with respect to the mixture containing the prepolymer.
  • a step of obtaining a polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst is a step of producing a polymerizable composition for an optical material.
  • the mixture containing the prepolymer, specific embodiments, preferred embodiments and the like are the same as the above-mentioned specific embodiments and preferred embodiments in the above-mentioned ⁇ process for producing a polymerizable composition for optical materials>. Is.
  • the curing step cures the prepolymer and the second prepolymer in the polymerizable composition for an optical material.
  • the prepolymer, specific embodiments, preferred embodiments, etc. are the same as the specific embodiments, preferred embodiments, etc. in the above-mentioned ⁇ curing step>.
  • the method for producing an optical material according to the first embodiment may include an annealing step of annealing a cured polymerizable composition for an optical material, if necessary.
  • the temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
  • the optical material in the first embodiment is a cured product of a polymerizable composition for an optical material.
  • the optical material in the first embodiment is a high quality optical material with suppressed pulse.
  • the thicker the optical material the more likely it is that pulse will occur.
  • the optical material produced by using the method for producing an optical material according to the first embodiment can satisfactorily suppress pulse even if the thickness is relatively thick.
  • the optical material in the first embodiment may have a thickness of 1 mm to 20 mm or 4 mm to 16 mm.
  • the optical material in the first embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording board, a filter, a light emitting diode and the like.
  • the optical material in the first embodiment can be suitably used for a plastic lens, and can be more preferably used for a plastic lens for spectacles.
  • the method for producing an optical material according to the second embodiment is a method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
  • a raw material composition preparation step for preparing a first raw material composition and a second raw material composition, and a shearing force are applied to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material.
  • “Applying a stirring force to a polymerizable composition for an optical material” means that the polymerizable composition for an optical material is allowed to flow, and the flow direction is mainly (that is, the composition) with respect to the polymerizable composition for an optical material. Applying force in substantially parallel and opposite directions on the virtual line connecting the part (inlet) that enters the process of applying the stirring force (inlet) and the part (exit) that exits (the direction from the inlet to the outlet), or stopping the flow and the optics It means stirring the polymerizable composition for materials.
  • the method for producing an optical material according to the second embodiment can suppress U-shaped veins in the obtained optical material by including each of the above steps.
  • U-shaped veins are likely to occur after a certain amount of time has passed since the polymerizable composition for an optical material was cast into a mold.
  • the present inventors focused on the step of shearing and stirring the first raw material composition and the second raw material composition from the viewpoint of suppressing the U-shaped pulse. Further, as a result of continuing to study the mode and order of shearing and stirring, the optical material obtained by the method for producing the optical material of the second embodiment has the above-mentioned configuration including the above-mentioned shearing step and the above-mentioned stirring step.
  • the first raw material composition is formed by applying a force to the first raw material composition and the second raw material composition in a direction intersecting the flow direction while flowing the first raw material composition and the second raw material composition. And it is considered that orientation occurs as the second raw material composition is sheared. While flowing the obtained polymerizable composition for optical materials, a force is applied to the polymerizable composition for optical materials in substantially parallel and opposite directions in the flow direction to make the concentration unevenness uniform before and after the flow direction. At the same time, the orientation can be relaxed or made uniform. As a result, it is considered that the U-shaped pulse can be suppressed.
  • the polymerizable composition for an optical material in the second embodiment contains two or more different monomers for an optical material and a polymerization catalyst. Further, the polymerizable composition for an optical material is produced by applying a shearing force to the first raw material composition and the second raw material composition. Therefore, the first raw material composition and the second raw material composition include two or more different kinds of monomers for optical materials and a polymerization catalyst as a whole including the first raw material composition and the second raw material composition.
  • the first raw material composition and the second raw material composition may each contain different types of monomers for optical materials, and at least one of the first raw material composition and the second raw material composition may contain a polymerization catalyst. (See, for example, the section of examples).
  • the first raw material composition and the second raw material composition contains a mixture containing the prepolymer in the first embodiment.
  • an optical material is produced using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
  • a casting step of casting the polymerizable composition for an optical material into a mold After the stirring step, a casting step of casting the polymerizable composition for an optical material into a mold, and a casting step.
  • the raw material composition preparation step is a step of preparing the first raw material composition and the second raw material composition.
  • the first raw material composition and the second raw material composition are not particularly limited as long as they contain two or more different monomers for optical materials and a polymerization catalyst as a whole.
  • the first raw material composition and the second raw material composition ready-made products may be used, respectively, or a monomer for an optical material and a polymerization catalyst may be mixed and prepared.
  • the mixing method is not particularly limited, and a known method can be used.
  • the temperature at which each of the above components is mixed is not particularly limited, but is preferably 30 ° C. or lower, and more preferably room temperature (25 ° C.) or lower. From the viewpoint of the pot life of the prepared polymerizable composition for optical materials, it may be preferable to lower the temperature further than 25 ° C. However, if the solubility of the additive such as an internal mold release agent and each of the above-mentioned components is not good, the temperature of each of the above-mentioned components may be raised in advance to dissolve the above-mentioned additive in each of the above-mentioned components. ..
  • the polymerization catalyst may be mixed in advance with a part of two or more kinds of monomers for different optical materials, and then the rest of two or more kinds of monomers for different optical materials may be mixed in a single step. Well, it may be mixed in a plurality of times.
  • Specific embodiments of the raw material composition preparation step include, for example, the following embodiments.
  • a part of the monomer for optical material and an additive are charged to prepare a mixed solution.
  • This mixture is stirred at 25 ° C. for 1 hour to completely dissolve each component, and then a part of the rest of the monomer for optical material is further charged, and this is stirred to obtain a uniform solution.
  • Defoaming is performed on this solution to obtain a first raw material composition.
  • the rest of the monomer for the optical material and the catalyst are stirred at 25 ° C. for 30 minutes to completely dissolve them into a uniform solution. Defoaming is performed on this solution to obtain a second raw material composition.
  • the shearing step is a step of applying a shearing force to the first raw material composition and the second raw material composition to produce a polymerizable composition for an optical material.
  • the force applied in the direction intersecting the flow direction is also referred to as a shear force.
  • applying a force mainly in a direction intersecting the flow direction is also referred to as "shearing”.
  • “Floating” means that the composition can be made to flow by, for example, sending the composition from the tank to the power mixer, sending the composition from the power mixer to the stirring tank, and the like.
  • the flow rate of the first raw material composition and the second raw material composition should be 3 g / s or more from the viewpoint of increasing productivity while suppressing an increase in viscosity of the polymerizable composition for optical materials. It is more preferably 6 g / s or more, and even more preferably 9 g / s or more.
  • the flow rate of the first raw material composition and the second raw material composition is preferably 50 g / s or less from the viewpoint of suppressing the U-shaped vein of the polymerizable composition for optical materials. It is more preferably 45 g / s or less, and further preferably 40 g / s or less.
  • the rotation speed in the shearing step is preferably 200 rpm or more, more preferably 400 rpm or more, and even more preferably 500 rpm or more.
  • the rotation speed in the shearing step is preferably 3000 rpm or less, more preferably 2500 rpm or less, and even more preferably 2000 rpm or less.
  • the polymerizable composition for an optical material is produced by applying a shearing force to the first raw material composition and the second raw material composition.
  • the polymerizable composition for an optical material contains two or more different monomers for an optical material and a polymerization catalyst.
  • Polythiol compound having two or more mercapto groups Specific examples of the polythiol compound having two or more mercapto groups in the second embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having two or more mercapto groups in the first embodiment, preferable. It is the same as the details such as an aspect and a preferable content.
  • Hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups Specific examples, preferred embodiments, preferred contents and the like of the hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups in the second embodiment refer to the one or more mercapto groups in the first embodiment. It is the same as the details of the specific example, the preferable embodiment, the preferable content and the like of the hydroxythiol compound having one or more hydroxyl groups.
  • polyol compound having two or more hydroxyl groups Specific examples, preferred embodiments, preferred contents and the like of the polyol compound having two or more hydroxyl groups in the second embodiment are specific examples of the polyol compound having two or more hydroxyl groups in the first embodiment, preferred embodiments. It is the same as the details such as a preferable content.
  • organometallic catalyst (Organometallic catalyst)
  • the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the second embodiment are the same as the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the first embodiment.
  • the polymerization catalyst preferably satisfies the following condition 1.
  • -Ea / R is -7100 or more and -2900 or less.
  • Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).
  • the polymerization catalyst satisfies the condition 1
  • the variation in the polymerization rate can be suppressed in the process of polymerizing and curing the polymerizable composition, and as a result, the occurrence of optical strain and fringes is suppressed, and the appearance is excellent.
  • Optical materials can be obtained.
  • the value of Ea is calculated by the following method.
  • the composition 1 containing the polymerization-reactive compound and a predetermined amount of the polymerization catalyst is heated and kept at a plurality of temperatures, the physical property values 1a derived from the functional group of the polymerization-reactive compound before heating and A physical property acquisition step of acquiring a physical property value 1b derived from a residual functional group after heat retention for a predetermined time, and a physical property acquisition step.
  • the specific embodiment of the method for calculating the value of Ea and the method for determining whether or not the polymerization catalyst satisfies the condition 1 is the same as the specific embodiment described in International Publication No. 2020/256057.
  • the stirring step is a step of applying a stirring force to the polymerizable composition for an optical material.
  • the force applied in the direction substantially parallel to the flow direction is also referred to as a stirring force.
  • the preferable range of the flow rate of the polymerizable composition for optical material is the same as the preferable range of the flow rate of the polymerizable composition for optical material in the above-mentioned ⁇ shearing step>. Is.
  • the rotation speed in the stirring step is preferably 50 rpm or more, more preferably 100 rpm or more, and even more preferably 200 rpm or more.
  • the rotation speed in the stirring step is preferably 800 rpm or less, more preferably 700 rpm or less, and even more preferably 600 rpm or less.
  • the method for producing an optical material according to the second embodiment continuously comprises a uniform polymerizable composition for an optical material from the viewpoint of suppressing a U-shaped pulse in the obtained optical material by including a shearing step and a stirring step. Can be produced as an optical device.
  • the method for producing the optical material of the second embodiment preferably includes a shearing step and a stirring step in this order from the viewpoint of suppressing the U-shaped pulse in the obtained optical material. That is, the method for producing an optical material according to the second embodiment is a method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
  • the method for producing an optical material according to the second embodiment may further include a filtration step of filtering a polymerizable composition for an optical material.
  • the filtration step can be performed using a filter.
  • a filter for example, a capsule filter can be used.
  • the filtration accuracy of the filter is preferably 1.0 ⁇ m to 4.5 ⁇ m.
  • the method for producing an optical material of the second embodiment may further include a second stirring step of stirring the polymerizable composition for an optical material.
  • the second stirring step is a step for further stirring the polymerizable composition for an optical material in addition to the above-mentioned shearing step and stirring step.
  • the stirring step described in the above-mentioned ⁇ stirring step> is also referred to as a first stirring step.
  • a method of stirring the polymerizable composition for an optical material in the second stirring step for example, a method using a static mixer or the like can be mentioned.
  • the inner diameter ⁇ of the static mixer is preferably 5 to 8, more preferably 6 to 8.
  • the number of elements of the static mixer is preferably 16 to 48, more preferably 24 to 48.
  • the casting step is a step of casting the polymerizable composition for an optical material into a mold after the first or second stirring step.
  • the viscosity measured with a B-type viscometer of the polymerizable composition for optical materials in the casting step under the conditions of 25 ° C. and 60 rpm is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s.
  • the casting step is preferably a step of adjusting the viscosity of the polymerizable composition for an optical material measured at 25 ° C. and 60 rpm with a B-type viscometer to 10 mPa ⁇ s to 1000 mPa ⁇ s and casting into a mold. ..
  • the viscosity of the polymerizable composition for optical materials is kept within an appropriate range, and the pulse in the obtained optical material is suppressed. Can be done.
  • the viscosity of the polymerizable composition for an optical material in the casting step is preferably 10 mPa ⁇ s or more, more preferably 40 mPa ⁇ s or more, and further preferably 70 mPa ⁇ s or more. It is particularly preferable that it is 80 mPa ⁇ s or more, further preferably 100 mPa ⁇ s or more, and even more preferably 120 mPa ⁇ s or more.
  • the viscosity of the polymerizable composition for an optical material in the casting step is preferably 1000 mPa ⁇ s or less, preferably 700 mPa ⁇ s or less, from the viewpoint of maintaining good handleability when molding the optical material into a desired shape. It is more preferably present, and further preferably 400 mPa ⁇ s or less.
  • the method for adjusting the viscosity of the polymerizable composition for an optical material is not particularly limited.
  • the viscosity of the polymerizable composition for an optical material may be adjusted by a method such as addition of a high-viscosity compound, heating, or stirring.
  • the casting step may be a step of casting a polymerizable composition for an optical material into a mold by a multi-axis method. Further, it may be a step of casting the polymerizable composition for an optical material into a mold by a mixing method immediately before casting.
  • the casting method may be manual casting or automatic mechanical casting.
  • the method of automatic casting may be pressure feeding by nitrogen, or may be liquid feeding by a pump (diaphragm pump, gear pump, etc.).
  • the casting step it is preferable to apply pressure (for example, back pressure) to the polymerizable composition for optical materials using nitrogen or the like to cast the polymerizable composition for optical materials into a mold.
  • pressure for example, back pressure
  • the polymerizable composition for an optical material can be cast into a mold by a multi-axis method.
  • the curing step is a step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
  • the method for producing an optical material according to the second embodiment includes a curing step, the polymerizable composition for an optical material can be polymerized, and the optical material can be produced.
  • the method of polymerization is not particularly limited, but a known method may be used to generate a polymerization reaction by heating.
  • a method of injecting a polymerizable composition into a molding mold (mold) held by a gasket or tape and gradually raising the temperature while heating to accelerate the polymerization reaction may be used.
  • the polymerization method a method of carrying out a polymerization reaction without heating may be used. That is, in the curing step of the second embodiment, the polymerizable composition for optical materials may be cured by polymerization by allowing the polymerizable composition for optical materials to stand still.
  • the environment in which the curing step is performed is not particularly limited, and the mold can be cured by heating from the outside of the mold. It is preferable that the step is to cure the polymerizable composition for optical materials by allowing the polymerizable composition for materials to stand in a closed space.
  • the step is to cure the polymerizable composition for optical materials by allowing the polymerizable composition for materials to stand in a closed space.
  • the adiabatic environment refers to an environment in which heat is retained inside and heat conduction between the inside and the outside is suppressed.
  • An environment in which heat conduction between the inside and the outside is suppressed means that when the polymerizable composition for an optical material is allowed to stand in the closed system space, the heat conductivity between the inside and the outside of the closed system space is suppressed. It means an environment in which the polymerizable composition for an optical material can be cured.
  • the adiabatic environment can be formed, for example, using an adiabatic material. That is, by allowing the polymerizable composition for an optical material to stand in a heat insulating container made of a heat insulating material, heat can be retained inside the heat insulating container and heat conduction between the inside and the outside can be suppressed. ..
  • the thermal conductivity of the heat insulating material is preferably 0.50 W / mK or less, more preferably 0.10 W / mK or less, and even more preferably 0.05 W / mK or less.
  • the density of the heat insulating material is preferably 10 kg / m 3 or more, more preferably 15 kg / m 3 or more, and further preferably 20 kg / m 3 or more.
  • the polymerization reaction of the polymerizable composition for optical materials is hindered by the reaction heat, or the polymerization reaction of the polymerizable composition for optical materials is excessively caused by heating from the outside. It is preferable to heat the adiabatic reaction tank to a constant temperature state (constant temperature reaction tank) within a range that does not promote it. As a result, the environmental temperature in the reaction vessel (constant temperature reaction vessel) in which the mold is placed can be kept warm or constant temperature according to the temperature rise state due to the self-heating of the monomer for optical material. The polymerization reaction can be promoted satisfactorily.
  • the adiabatic reaction tank or the constant temperature reaction tank as described above can be used.
  • adiabatic polymerization in an adiabatic environment using an adiabatic reaction vessel can be performed by the following procedure. can.
  • the inner surface of the vacuum container is covered with a member having heat insulating and heat-retaining properties such as urethane foam and cork, and the mold in which the monomer is injected is wrapped with a member such as a waste cloth as needed. Then, the mold in which the monomer is injected is allowed to stand in the vacuum container.
  • the curing step may be a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand without being heated from the outside.
  • heating of the polymerizable composition for an optical material is not always required.
  • an apparatus may be used, which may increase the burden economically. If the method is not heated from the outside, the optical material can be manufactured by a simple method, so that the economic burden can be reduced.
  • the curing step is preferably a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand for 2 to 10 hours.
  • the polymerizable composition for an optical material is allowed to stand for 8 hours or less.
  • a microwave irradiation step of irradiating the polymerizable composition for an optical material with microwaves for a predetermined time may be provided.
  • the aspect described as one aspect of the curing step in the first embodiment can be mentioned.
  • the method for producing an optical material according to the second embodiment may include an annealing step of annealing a cured polymerizable composition for an optical material, if necessary.
  • the temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
  • the optical material produced by the method for producing an optical material according to the second embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording substrate, a filter, a light emitting diode, and the like.
  • the optical material can be suitably used for a plastic lens, and can be more preferably used for a plastic lens for spectacles.
  • the optical material manufacturing system of the second embodiment is a system for manufacturing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
  • a shearing portion that applies a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material, and a shearing portion.
  • a stirring unit that applies stirring force to the polymerizable composition for optical materials, and a stirring unit.
  • a cured portion that cures the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold. Includes a fixed-quantity liquid delivery unit.
  • a shearing force is applied to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material.
  • a method of applying a force in a direction intersecting the flow direction in the sheared portion for example, a method using a power mixer can be mentioned.
  • Preferred ranges such as the flow rate of the polymerizable composition for optical materials in the sheared portion and the rotation speed of the power mixer are the flow speed of the polymerizable composition for optical materials in the above-mentioned ⁇ shearing step>, the rotation speed of the power mixer, and the like. Similar to the preferred range.
  • a stirring force is applied to the polymerizable composition for optical materials.
  • a method of applying a force in the direction substantially parallel to the flow direction in the stirring unit for example, a method using a stirring tank containing a stirrer can be mentioned.
  • Preferred ranges such as the flow rate of the polymerizable composition for optical materials in the stirring section, the rotation speed of the stirring tank, and the like are the flow speed of the polymerizable composition for optical materials in the above-mentioned ⁇ stirring step>, the rotation speed of the stirring tank, and the like. Similar to the preferred range.
  • the polymerizable composition for an optical material is cast into a mold. Details such as the specific embodiment of the casting and the preferable range of the viscosity of the polymerizable composition for the optical material in the casting portion are described in the specific embodiment of the casting in the above-mentioned ⁇ casting step> and for the optical material in the casting portion. The same applies to the details such as the preferable range of the viscosity of the polymerizable composition.
  • the polymerizable composition for optical materials is cured by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
  • the details of the specific mode, the preferred mode, etc. in the cured portion are the same as the details of the specific mode, the preferred mode, etc. in the above-mentioned ⁇ curing step>.
  • ⁇ Quantitative liquid feeding unit> In the quantitative liquid feeding section, the first raw material composition and the second raw material composition are fed to the shearing section.
  • the fixed-quantity liquid feeding unit include pumps such as gear pumps and diaphragm pumps.
  • the speed at which the first raw material composition and the second raw material composition are fed to the shearing section may be appropriately adjusted.
  • the optical material manufacturing system of the second embodiment is obtained by further curing the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the polymerizable composition for optical material in the cured portion. From the feature quantity that correlates with the optical quality of the cured product and the viscosity (also simply referred to as viscosity in the present disclosure) measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials.
  • a viscosity control unit for controlling the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials in the stirring unit is provided according to at least one condition selected from the group. Is preferable.
  • the U-shaped pulse By controlling the viscosity of the polymerizable composition for optical materials in the stirring unit according to each of the above conditions, the U-shaped pulse can be suppressed more satisfactorily. In addition, the U-shaped pulsation can be better suppressed over a long period of time.
  • the optical material manufacturing system of the second embodiment is obtained by further curing the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the polymerizable composition for optical material in the cured portion. At least one condition selected from the group consisting of the optical quality of the cured product obtained and the characteristic amount that correlates with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials. Therefore, it is preferable to provide a temperature control unit that controls the temperature in the stirring unit.
  • the U-shaped pulse can be suppressed more satisfactorily.
  • the U-shaped pulsation can be better suppressed over a long period of time.
  • the viscosity control unit and the temperature control unit may determine whether or not the above conditions are satisfied inside the manufacturing apparatus, or may be performed online or the like outside the manufacturing apparatus. Further, it is also possible to determine whether or not each of the above conditions is satisfied by using a trained model generated in advance by statistical machine learning.
  • the viscosity control unit and the temperature control unit may control other than the viscosity and temperature.
  • the liquid level of the polymerizable composition for an optical material in the stirring unit may be controlled. That is, when the liquid level of the polymerizable composition for optical materials is lowered, the liquid level is raised by feeding the polymerizable composition for optical materials by a fixed quantity liquid feeding unit (for example, a pump).
  • FIG. 1 is a flowchart showing an example of a control routine when shear force information is acquired by a viscosity control unit and a temperature control unit.
  • FIG. 2 is a flowchart showing an example of a control routine when the viscosity control unit and the temperature control unit acquire temperature information of the polymerizable composition for an optical material in the stirring unit.
  • FIG. 3 is a flowchart showing an example of a control routine when the viscosity control unit and the temperature control unit acquire information on a feature amount that correlates with the viscosity of the polymerizable composition for optical materials.
  • FIG. 4 is a flowchart showing an example of a control routine when the viscosity control unit and the temperature control unit acquire optical quality information of the cured product.
  • the optical material manufacturing system of the second embodiment starts from the state of preparing the first raw material composition and the second raw material composition, and sends the prepared first raw material composition and the second raw material composition to the shearing portion. do.
  • the first raw material composition and the second raw material composition contain two or more different monomers for optical materials and a polymerization catalyst as a whole. While flowing the fed first raw material composition and the second raw material composition, a force is applied to the first raw material composition and the second raw material composition in a direction intersecting the flow direction.
  • the viscosity control unit and the temperature control unit acquire information on the shear force of the shear unit.
  • the acquired shear force information is determined in step 210.
  • the viscosity control unit and the temperature control unit determine whether or not the shear force of the shear unit is equal to or higher than a certain value.
  • control is executed in step 220.
  • the viscosity control unit reduces the viscosity of the polymerizable composition for optical materials in the stirring unit to an appropriate range.
  • the temperature control unit raises the temperature in the stirring unit to an appropriate range.
  • the viscosity control unit and the temperature control unit control the viscosity of the polymerizable composition for optical materials in the stirring unit, which will be described later, and the temperature in the stirring unit, according to the shearing force of the shearing unit. That is, in steps 200 to 220, it is determined whether or not the above conditions are satisfied, and if not, the viscosity control unit determines the viscosity of the polymerizable composition for optical material in the stirring unit by the temperature control unit. The temperature in the stirring unit is controlled within an appropriate range. After the steps 200 to 220 are completed, the sheared polymerizable composition for optical materials is sent to the stirring unit.
  • the stirring unit while the polymerizable composition for optical materials is being flowed, a force is applied to the polymerizable composition for optical materials in a direction substantially parallel to the flow direction to stir, or the flow is temporarily made. Stop and stir the polymerizable composition for optical materials.
  • the viscosity control unit and the temperature control unit acquire the temperature information of the polymerizable composition for an optical material in the stirring unit.
  • the acquired temperature information is determined in step 240.
  • the viscosity control unit and the temperature control unit determine whether or not the temperature of the polymerizable composition for an optical material in the stirring unit is equal to or higher than a certain value.
  • control is performed in step 250.
  • the viscosity control unit raises the viscosity of the polymerizable composition for optical materials in the stirring unit within an appropriate range.
  • the temperature control unit lowers the temperature in the stirring unit to an appropriate range.
  • steps 230 to 250 in the viscosity control unit and the temperature control unit, the viscosity of the polymerizable composition for optical material in the stirring unit and the temperature in the stirring unit are set according to the temperature of the polymerizable composition for optical material in the stirring unit. Control.
  • the viscosity control unit and the temperature control unit acquire information on the feature amount that correlates with the viscosity of the polymerizable composition for optical materials.
  • the acquired information on the feature amount is determined in step 270. Specifically, it is determined whether or not the feature amount that correlates with the viscosity of the polymerizable composition for optical materials deviates from a certain range.
  • the feature amounts that correlate with the viscosity of the polymerizable composition for optical materials are, for example, the resistance value of the polymerizable composition for optical materials in the stirring section, the refractive index of the polymerizable composition for optical materials in the stirring section, and the stirring section. Examples thereof include the electric conductivity of the polymerizable composition for optical materials in the above, and the optical spectrum of the polymerizable composition for optical materials in the stirring section.
  • the viscosity control unit and the temperature control unit execute control in step 280 when the feature amount that correlates with the viscosity of the polymerizable composition for optical materials deviates from a certain range.
  • the viscosity control unit and the temperature control unit may directly measure the viscosity of the polymerizable composition for optical materials in the stirring unit, or may calculate from the feature amount that correlates with the viscosity of the polymerizable composition for optical materials. good.
  • As a method of calculating the viscosity of the polymerizable composition for optical materials in the stirring section from the feature amount that correlates with the viscosity of the polymerizable composition for optical materials for example, the resistance of the polymerizable composition for optical materials in the stirring section.
  • a method of calculating the viscosity from the value can be mentioned.
  • control executed in step 280 is a viscosity control in order to control the viscosity calculated from the feature amount within a certain range, for example, when the feature amount deviates from a certain range.
  • the viscosity of the polymerizable composition for an optical material in the stirring unit is controlled by the unit, and the temperature in the stirring unit is controlled by the temperature control unit within an appropriate range.
  • the shearing force of the shearing portion is adjusted, the stirring force of the stirring portion is adjusted, and the polymerizable composition for an optical material is adjusted.
  • Examples include methods such as discarding a part of the object and renewing it, adjusting the liquid feeding speed of the fixed-quantity liquid feeding unit in the optical material manufacturing system, and the like.
  • the method of discarding and renewing a part of the polymerizable composition for optical materials is specifically, for example, discharging at least a part of the polymerizable composition for optical materials in the stirring part from the casting part and optical. It is a method of replacing at least a part of a polymerizable composition for a material.
  • Examples of the method of controlling the temperature in the stirring unit within an appropriate range include a method of controlling the rotation speed of stirring in the stirring unit, a method of controlling the temperature of the water bath in the stirring unit, and the like.
  • the polymerizable composition for optical materials is sent to the casting section.
  • the polymerizable composition for optical materials is cast into a mold.
  • the polymerizable composition for an optical material is sent to the cured portion.
  • the polymerizable composition for optical materials is cured by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
  • the viscosity control unit and the temperature control unit acquire the optical quality information of the cured product obtained by curing the polymerizable composition for an optical material in the cured unit.
  • the optical quality information of the cured product include information on whether or not a pulse is generated in the cured product.
  • the acquired optical quality information is determined in step 300. Specifically, for example, the viscosity control unit and the temperature control unit determine whether or not pulse is generated in the cured product. If the cured product has pulse, control is performed in step 310. Specifically, the viscosity control unit increases or decreases the viscosity of the polymerizable composition for optical materials in the stirring unit within an appropriate range.
  • the temperature control unit raises or lowers the temperature in the stirring unit within an appropriate range.
  • steps 290 to 310 it is determined whether or not pulse is generated in the cured product obtained by curing the polymerizable composition for an optical material in the cured portion, and when pulse is generated, it is determined. Increases or decreases the viscosity of the polymerizable composition for optical materials in the stirring unit by the viscosity control unit, and raises or lowers the temperature in the stirring unit by the temperature control unit. This routine is completed when step 310 is completed.
  • FIG. 5 is a schematic diagram for explaining an example of an optical material manufacturing system.
  • a first raw material composition and a second raw material composition for producing a polymerizable composition for an optical material are prepared.
  • the first raw material composition and the second raw material composition are stirred to become a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst. Therefore, the first raw material composition and the second raw material composition may become a polymerizable composition for an optical material when agitated, and there are two types of the first raw material composition and the second raw material composition as a whole. It suffices to include the above-mentioned different monomers for optical materials and a polymerization catalyst. Further, the first raw material composition and the second raw material composition may contain a prepolymer obtained by partially polymerizing two or more different monomers for optical materials.
  • the first raw material composition prepared above is placed in the liquid A tank 1, and the second raw material composition is placed in the liquid B tank 2. Then, while adjusting the liquid temperature with the chiller 3, the first raw material composition is transferred from the A liquid tank 1 to the A liquid measuring unit 4 (for example, a gear pump) and the second raw material composition is B liquid by using nitrogen back pressure or the like. Liquid is sent from the tank 2 to the liquid B measuring unit 6 (for example, a gear pump). At this time, the speeds of the liquid feeding of the liquid A measuring unit 4 and the liquid B measuring unit 6 may be the same or different.
  • the first raw material composition is sent from the liquid A measuring unit 4 via the flow rate sensor head 5 for the liquid A
  • the second raw material composition is sent from the liquid B measuring unit 6 via the flow rate sensor head 7 for the liquid B.
  • the liquid is sent to the upper power mixer 8 which is a shearing portion.
  • the first raw material composition and the second raw material composition are sheared by applying a force in a direction intersecting the flow direction by the upper power mixer 8 to obtain a polymerizable composition for an optical material.
  • the polymerizable composition for an optical material may be sheared by the upper power mixer 8, filtered by the capsule filter 10, and further sent to the lower power mixer 9 which is a sheared portion. Then, in the lower power mixer 9, the polymerizable composition for optical materials may be sheared. Further, the polymerizable composition for an optical material may be sheared by a plurality of power mixers as described above, or may be sheared by one power mixer. For example, the polymerizable composition for an optical material may be sheared only by the upper power mixer 8.
  • the polymerizable composition for an optical material is sheared by a lower power mixer 9, filtered by a capsule filter 10, and sent to a stirring tank 11 which is a stirring unit.
  • the stirring tank 11 includes a stirrer 12.
  • the polymerizable composition for optical materials is stirred by applying a force in substantially parallel and opposite directions in the flow direction. Then, the polymerizable composition for an optical material is further mixed or stirred with a static mixer 13, and then cast into a mold 14 which is a cured portion by a casting portion. Then, in the mold 14, two or more different monomers for optical materials in the polymerizable composition for optical materials are polymerized to cure the polymerizable composition for optical materials.
  • the control panel 15 in FIG. 5 is a viscosity control unit and a temperature control unit. In the control panel 15, it is determined whether or not each of the above conditions is satisfied, and the viscosity of the polymerizable composition for optical materials in the stirring unit is measured or calculated. Depending on the result, the viscosity and temperature can be controlled as described above. For example, by turning on the foot switch 16, at least a part of the polymerizable composition for optical materials in the stirring part is discharged from the casting part in order to replace at least a part of the polymerizable composition for optical materials. be able to.
  • FIG. 6 is a diagram showing a configuration example of a computer that realizes a viscosity control unit and a temperature control unit.
  • the viscosity control unit and the temperature control unit can be realized by, for example, a computer 60 as shown in FIG.
  • the computer 60 that realizes the viscosity control unit and the temperature control unit includes a central processing unit (CPU) 61, a memory 62 as a temporary storage area, and a non-volatile storage unit 63.
  • the computer has an input / output interface (I / F) 64 to which an input / output device or the like (not shown) is connected, and a read / write (R / W) unit 65 that controls reading and writing of data to the recording medium 68.
  • I / F input / output interface
  • R / W read / write
  • the computer includes a network I / F66 connected to a network such as the Internet.
  • the CPU 61, the memory 62, the storage unit 63, the input / output I / F64, the R / W unit 65, and the network I / F66 are connected to each other via the bus 67.
  • the storage unit 63 can be realized by a Hard Disk Drive (HDD), a Solid State Drive (SSD), a flash memory, or the like.
  • a program for operating the computer is stored in the storage unit 63 as a storage medium.
  • the CPU 61 reads the program from the storage unit 63, expands the program into the memory 62, and sequentially executes the processes included in the program. As a result, the control routines of FIGS. 1 to 4 are realized.
  • a film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film.
  • the film comprises a space forming step of forming a space, an injection step of injecting the polymerizable composition into the space, and a curing step of curing the polymerizable composition injected into the space to obtain a cured product.
  • the film is a film that is completely peeled off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C., and the film has a thermal deformation temperature of 70 ° C. or higher.
  • the curing time is preferably 10 hours or less.
  • the method for manufacturing an optical member according to the third embodiment can manufacture an optical member having a smooth outer peripheral surface by including the above configuration.
  • the outer peripheral surface is smooth means that, for example, the outer peripheral surface of the cured product is mirror-like, the intersection of one main surface and the outer peripheral surface, and the other main surface and the outer peripheral surface. It is preferable that the shape between the intersections with the surfaces is substantially straight.
  • the method for manufacturing an optical member according to the third embodiment it is possible to manufacture an optical member having a smooth outer peripheral surface without performing polishing work or with a small amount of polishing.
  • the film in the third embodiment is a film having a relatively weak static adhesive force. Therefore, when the polymerizable composition is cured and shrunk in the curing step, it can be moved to the mold substrate on the contact surface with the film. Therefore, it is possible to suppress phenomena such as the contact surface between the film and the polymerizable composition being dented or uneven on the inner side.
  • the pressure-sensitive adhesive in a film having a relatively weak static adhesive force may elute into the polymerizable composition.
  • the pressure-sensitive adhesive eluted in the polymerizable composition can cause cloudiness, voids, etc. in the obtained cured product.
  • the cloudiness, voids, and the like can be satisfactorily suppressed by combining the above configurations.
  • the curing step of the third embodiment when the curing time is 10 hours or less, the elution amount of the pressure-sensitive adhesive tends to be remarkably suppressed, and the white turbidity, voids and the like can be suppressed better. can.
  • the space forming step in the third embodiment is a step of attaching a film to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film. Is. An example of the space forming process will be described with reference to FIG. 7.
  • FIG. 7 is a schematic diagram for explaining the space forming process.
  • a lens casting polymerization type 110 is produced.
  • a first mold substrate 111 for forming a convex surface and a second mold substrate 112 for forming a concave surface made of glass are prepared.
  • the outer diameters of the molded substrates 111 and 112 may be the same as the finished outer diameter dimensions of the plastic lens.
  • the film (for example, adhesive tape) 113 is wound around the outer peripheral surfaces of the mold substrates 111 and 112 a little more than one round, and the mold substrates 111 and 112 are adhered. It is fixed with tape and closes the gap between the molded substrates 111 and 112.
  • the film 113 may be a heat-peeling type or a re-peeling type adhesive tape.
  • a mold is used.
  • a film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals, and the two mold substrates and the film are used.
  • the mold is for producing an optical member by forming an enclosed space, arranging the polymerizable composition in the space, and curing the polymerizable composition to obtain a cured product.
  • the mold in the third embodiment preferably has a main surface having a substantially diameter of 60 cm to 80 cm.
  • the method for manufacturing an optical member according to the third embodiment when used, it is possible to manufacture an optical member having a smooth outer peripheral surface without performing polishing work or with a small amount of polishing. Therefore, the substantially diameter of the main surface of the mold can be reduced by the amount that the polishing work is not performed.
  • the film (also referred to as a film for manufacturing an optical member) according to the third embodiment is used.
  • the film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and the space is formed. It is preferable that the film is for producing an optical member for producing an optical member by arranging the polymerizable composition in the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
  • the film (also referred to as a film for manufacturing an optical member) in the third embodiment preferably includes at least a base material layer and an adhesive layer.
  • the film in the third embodiment is a film that is completely peeled off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C.
  • the heat resistance index test can measure the static adhesive strength of the film.
  • the film in the third embodiment is a film that completely peels off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C., so that static adhesive force can be suppressed.
  • the film in the third embodiment is a film having a relatively weak static adhesive force.
  • the specific method of the heat resistance index test is as follows. (Method) At room temperature, of the exposed surface of the adhesive layer of the film having a width of 25 mm ⁇ 0.5 mm and a length of 80 mm ⁇ 0.5 mm, the part having an area of 625 mm 2 ⁇ 25 mm 2 was brought into close contact with the glass plate, and the load was 1 kg / cm 2 . Crimping. Then, a weight of 1 kg was attached to the end of the folded portion of the film which was not in close contact with the glass plate, and the glass plate was installed in a constant temperature bath at a temperature of 85 ° C. so as to be in the vertical direction. Thirty minutes after being placed in the constant temperature bath, the position of the upper end of the tape is measured, and the moving distance (mm) from the position immediately after attaching the 1 kg weight is calculated as the heat resistance index.
  • the heat resistance index is preferably 0.4 mm or less, and more preferably 0.3 mm or less.
  • the film can satisfactorily fix the molded substrate.
  • the film in the third embodiment may have a heat resistance index of 0 or more when the heat resistance index test is performed at 22 ° C.
  • the film in the third embodiment preferably has a heat distortion temperature of 70 ° C. or higher, and preferably a maximum temperature of the mold in the curing step.
  • the heat distortion temperature is 70 ° C. or higher, an optical member having a smooth outer peripheral surface can be manufactured.
  • the heat distortion temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, further preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher.
  • the heat distortion temperature may be 500 ° C. or lower, or 400 ° C. or lower.
  • the heat distortion temperature conforms to ASTM-D648-56 and is measured with a load of 4.6 kgf ⁇ cm 2 using a heat distortion temperature measuring device.
  • the film in the third embodiment preferably has a moving distance of the glass balls of 200 mm or less when the glass ball tack test is performed at 80 ° C.
  • the glass ball tack test can measure the dynamic adhesive strength of the film.
  • the film in the third embodiment is excellent in dynamic adhesive strength because the moving distance of the glass balls is 200 mm or less when the glass ball tack test is performed at 80 ° C. Thereby, the film in the third embodiment can better fix the molded substrate.
  • the glass ball tack test in the third embodiment is performed using a ball tack tester in accordance with JIS-Z0237.
  • the film in the third embodiment preferably has a moving distance of the glass balls of 200 mm or less when the glass ball tack test is performed at 25 ° C to 80 ° C. That is, when the glass ball tack test is performed at 25 ° C to 80 ° C, it is preferable that the moving distance of the glass ball is 200 mm or less in all the temperature ranges of 25 ° C to 80 ° C. It is also preferable that the film in the third embodiment has a moving distance of the glass balls of 200 mm or less when the glass ball tack test is performed at 120 ° C.
  • the film in the third embodiment preferably has a moving distance of the glass balls of 10 mm or more, more preferably 20 mm or more. It is more preferably 30 mm or more.
  • the moving distance of the glass balls is within the above range, the distance between the molded substrates becomes small at a suitable speed during curing, and leakage of the polymerizable composition is less likely to occur.
  • the problem that the adhesive layer of the tape remains on the outer peripheral surface of the cured product also referred to as adhesive residue
  • adhesive residue is less likely to occur.
  • the film in the third embodiment preferably has a storage elastic modulus at 80 ° C. of 1.0 ⁇ 10 10 Pa or more, more preferably 2.0 ⁇ 10 10 Pa or more, and more preferably 3.0 ⁇ 10 It is more preferably 10 Pa or more.
  • the film in the third embodiment preferably has a storage elastic modulus at 80 ° C. of 10.0 ⁇ 10 10 Pa or less, more preferably 8.0 ⁇ 10 10 Pa or less, and 6.0 ⁇ 10 It is more preferably 10 Pa or less.
  • Measurement method DMA single cantilever measurement / test model: DMA8000 ⁇ Test temperature: 0 to 120 ° C -Frequency: 1.0Hz ⁇ Temperature rise rate: 3 ° C / min ⁇ Measurement area: 1.2 (cm 2 ) ⁇ Distance between chucks: 12.5 mm
  • the injection step in the third embodiment is a step of injecting the polymerizable composition into the space.
  • An example of the injection process will be described with reference to FIG. FIG. 8 is a schematic view for explaining the injection process.
  • the adhesive tape 113 is peeled off to the extent that there is a gap in which the polymerizable composition can be injected into the cavity 114, the polymerizable composition 120 is injected into the cavity 114 through the gap, and the polymer composition 120 is injected again.
  • the gap is sealed with the adhesive tape 113.
  • the temperature in the injection step is preferably 30 ° C. or lower, more preferably 27 ° C. or lower, and even more preferably 25 ° C. or lower.
  • the temperature in the injection step is preferably 15 ° C. or higher, more preferably 18 ° C. or higher, and even more preferably 20 ° C. or higher.
  • the polymerizable composition in the third embodiment may be a polymerizable composition containing two or more different monomers for optical materials and a polymerization catalyst.
  • the slope of the thickening curve of the polymerizable composition at 25 ° C. is 0.4 or more, the time for contact between the relatively low-viscosity polymerizable composition and the film can be shortened.
  • the elution amount of the pressure-sensitive adhesive can be suppressed, and cloudiness, voids and the like can be suppressed more satisfactorily.
  • the slope of the thickening curve of the polymerizable composition is 0.5 or more, and further preferably 0.6 or more at 25 ° C.
  • the polymerizable composition according to the third embodiment is excellent in handleability of the polymerizable composition because the slope of the thickening curve is 8.0 or less at 25 ° C. From the same viewpoint as described above, it is more preferable that the slope of the thickening curve of the polymerizable composition is 7.0 or less, and further preferably 6.0 or less at 25 ° C.
  • the slope of the thickening curve at 25 ° C. of the polymerizable composition is measured by the following method.
  • the polymerizable composition is placed in a water bath temperature controlled at 25 ° C. and stirred. After that, the viscosity is measured at regular time intervals (for example, every 5 minutes, 1 hour, etc.) under the condition of 60 rpm with a B-type viscometer.
  • the polymerizable composition of the third embodiment contains two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials is It is preferably 0.010 part by mass to 2.0 parts by mass, and the viscosity measured with a B-type viscosity meter at 25 ° C. and 60 rpm is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s.
  • the polymerizable composition of the third embodiment may contain two or more different monomers for optical materials.
  • the monomer for an optical material may be any monomer used for optics and is not particularly limited. For example, it may be a monomer used for producing an optical material having any of the following properties.
  • the optical material obtained by using the monomer for an optical material may have a total light transmittance of 10% or more.
  • the total light transmittance of the optical material may be measured in accordance with JIS K 7631-1 (1997).
  • the optical material obtained by using the monomer for an optical material may have a haze (that is, total haze) of 10% or less, preferably 1% or less, and more preferably 0.5% or less.
  • the haze of the optical material is a value measured at 25 ° C. using a haze measuring machine [TC-HIII DPK, manufactured by Tokyo Denshoku Co., Ltd.] in accordance with JIS-K7105.
  • the optical material obtained by using the monomer for an optical material has a refractive index of preferably 1.58 or more.
  • the optical material obtained by using the monomer for an optical material may have a refractive index of 1.80 or less, or may be 1.75 or less.
  • the refractive index of the optical material may be measured according to JIS K7142 (2014).
  • the shape of the optical material obtained by using the monomer for the optical material is not particularly limited, and may be a plate shape, a columnar shape, a rectangular parallelepiped shape, or the like.
  • Examples of the monomer for an optical material include a polymerizable monomer that polymerizes when a polymerization catalyst described later is used.
  • the details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the third embodiment are the same as the details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the first embodiment. ..
  • isocyanate compound examples include an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound, and a heterocyclic isocyanate compound, and one type or a mixture of two or more types is used. These isocyanate compounds may include dimers, trimers and prepolymers. Examples of these isocyanate compounds include the compounds exemplified in International Publication No. 2011/0555540.
  • examples of the isocyanate compound include halogen-substituted products (for example, chlorine-substituted products, bromine-substituted products, etc.), alkyl-substituted products, alkoxy-substituted products, carbodiimide-modified products, urea-modified products, and burette-modified products of the above-mentioned compounds.
  • halogen-substituted products for example, chlorine-substituted products, bromine-substituted products, etc.
  • alkyl-substituted products for example, alkyl-substituted products, alkoxy-substituted products, carbodiimide-modified products, urea-modified products, and burette-modified products of the above-mentioned compounds.
  • the definitions of the alicyclic isocyanate compound, the aromatic isocyanate compound, the heterocyclic isocyanate compound and the aliphatic isocyanate compound in the third embodiment are defined as the alicyclic isocyanate compound, the aromatic isocyanate compound, the heterocyclic isocyanate compound and the alicyclic isocyanate compound in the first embodiment. Similar to the definition of aliphatic isocyanate compounds.
  • the isocyanate compound preferably contains at least one selected from the group consisting of an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound and a heterocyclic isocyanate compound.
  • At least one kind of the monomer for optical materials in the third embodiment may be an isocyanate compound having an aromatic ring.
  • the isocyanate compound having an aromatic ring include an aromatic isocyanate compound, more specifically, an isocyanate compound in which an isocyanate group is directly bonded to the aromatic ring, and an isocyanate compound at the benzyl position of the aromatic ring. Examples thereof include an isocyanate compound to which a group is bonded.
  • the monomer for an optical material may contain an isocyanate compound other than the isocyanate compound having an aromatic ring, that is, an isocyanate compound having no aromatic ring.
  • the isocyanate compound other than the isocyanate compound having an aromatic ring is not particularly limited, and examples thereof include an isocyanate compound having no aromatic ring.
  • the monomer for optical material contains an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring
  • the number of moles of the isocyanate group in the isocyanate compound having no aromatic ring is the isocyanate group in the isocyanate compound having an aromatic ring. It is preferably less than the number of moles of.
  • the isocyanate compound is isophorone diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2. 2.1] -Heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -Heptane, m-xylylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , Dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,6-hexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate.
  • Isophorone diisocyanate 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, m-xyli It may contain at least one selected from the group consisting of range isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, dicyclohexylmethane diisocyanate, and 1,3-bis (isosyanatomethyl) cyclohexane.
  • polythiol compound having two or more mercapto groups Specific examples of the polythiol compound having two or more mercapto groups in the third embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having two or more mercapto groups in the first embodiment, preferable. It is the same as the details such as an embodiment and a preferable content.
  • polythiol compound having 3 or more mercapto groups examples include polythiol compounds having three or more mercapto groups.
  • the polymerizable composition of the third embodiment contains a polythiol compound having three or more mercapto groups as the active hydrogen compound, the polymerizable composition is contained in the polythiol compound having three or more mercapto groups from the viewpoint of accelerating the polymerization reaction. It is preferable that at least one of the three or more mercapto groups is substituted with a group represented by the following formula (N1) (also referred to as compound (N1)).
  • the polymerizable composition of the third embodiment has a peak area of 100 of the polythiol compound having three or more mercapto groups when the peak area is measured by high performance liquid chromatography from the viewpoint that the polymerization reaction can be easily adjusted.
  • the peak area of the compound (N1) is preferably 3.0 or less, and more preferably 1.5 or less.
  • the peak area of the compound (N1) is from the viewpoint of accelerating the polymerization reaction with respect to the peak area 100 of the polythiol compound having three or more mercapto groups. , 0.01 or more is preferable.
  • the peak area by high performance liquid chromatography can be measured by the method described in paragraph 0146 of International Publication No. 2014/027665.
  • Hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups Specific examples, preferred embodiments, preferred contents and the like of the hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups in the third embodiment are described in detail with the one or more mercapto groups in the first embodiment. It is the same as the details of the specific example of the hydroxythiol compound having one or more hydroxyl groups, a preferable embodiment, a preferable content and the like.
  • polyol compound containing two or more hydroxyl groups Specific examples, preferred embodiments, preferred contents and the like of the polyol compound having two or more hydroxyl groups in the third embodiment are specific examples of the polyol compound having two or more hydroxyl groups in the first embodiment, preferred embodiments. It is the same as the details such as a preferable content.
  • the pKa value is preferably 1 or more, more preferably 3 or more, and further preferably 4 or more.
  • the pKa value is preferably 9 or less, more preferably 8 or less.
  • the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the third embodiment are the same as the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the first embodiment.
  • the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is 0.010 parts by mass or more, the polymerization reaction can be satisfactorily promoted, so that the polymerization reaction can be promoted in a short time. High quality optical materials can be obtained. Further, by satisfactorily promoting the polymerization reaction, it is possible to improve the releasability when the cured product is taken out from the mold. From the above viewpoint, the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is preferably 0.02 parts by mass or more, and preferably 0.03 parts by mass or more. Is more preferable.
  • the handleability when injecting a polymerizable composition into a mold can be improved.
  • the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is preferably 0.20 parts by mass or less, and preferably 0.10 parts by mass or less. Is more preferable, and it is further preferable that it is 0.09 part by mass or less.
  • the content of the polymerization catalyst may be appropriately set according to the type of the polymerization catalyst, the type and amount of the monomers (isocyanate compound, active hydrogen compound, other components, etc.) used, and the desired shape of the molded product. can.
  • the polymerization catalyst preferably satisfies the following condition 1.
  • -Ea / R is -7100 or more and -2900 or less.
  • Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).
  • the details of the significance of the condition 1 and the measurement method in the third embodiment are the same as the details of the significance of the condition 1 and the measurement method in the second embodiment.
  • the polymerizable composition of the third embodiment may contain any additive.
  • Optional additives include photochromic compounds, internal mold release agents, brewing agents, UV absorbers and the like. Details of specific examples of the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorber in the third embodiment, preferable embodiments, and the like are described in detail in the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorption in the first embodiment. The same applies to the details of specific examples of the agent, preferred embodiments, and the like.
  • the polymerizable composition of the third embodiment has a viscosity of 10 mPa ⁇ s or more measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer from the viewpoint of suppressing pulse and elution of the pressure-sensitive adhesive. It is preferably 40 mPa ⁇ s or more, more preferably 70 mPa ⁇ s or more, further preferably 80 mPa ⁇ s or more, particularly preferably 100 mPa ⁇ s or more, and 120 mPa ⁇ s or more. Is even more preferable.
  • the polymerizable composition of the third embodiment has a viscosity of 1000 mPa ⁇ s or less measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer from the viewpoint of maintaining good handleability when molding the optical material into a desired shape. It is preferably 700 mPa ⁇ s or less, and more preferably 400 mPa ⁇ s or less.
  • the viscosity of the polymerizable composition of the third embodiment may be adjusted depending on the intended use of the obtained cured product. For example, when a cured product is obtained by using a mold for a plus lens, the edge (or injection port) is narrow (for example, 1 mm to 3 mm), so that the polymerizable composition of the third embodiment is from the viewpoint of suppressing the viscosity.
  • the viscosity is preferably 10 mPa ⁇ s to 100 mPa ⁇ s.
  • the edge that is, the injection port
  • the edge is wide (for example, 5 mm to 15 mm), so that the polymerizable composition of the third embodiment has a pulse.
  • the viscosity is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s, and more preferably 100 mPa ⁇ s to 1000 mPa ⁇ s.
  • the viscosity of the polymerizable composition By increasing the viscosity of the polymerizable composition, it is possible to suppress heat convection due to the temperature difference between the inside and outside of the composition when heat is applied to the composition from the outside, and the pulse derived from heat convection can be suppressed. Can be reduced. However, if the amount of catalyst is small, the thickening rate at the time of polymerization is not sufficient, so that the viscosity does not increase to the extent that heat convection can be suppressed, and the temperature cannot be raised rapidly in a short time. In addition, the time required to complete the polymerization also increases.
  • the viscosity of the entire composition can be increased more quickly by increasing the amount of the catalyst within the optimum range in consideration of the reactivity of the isocyanate compound.
  • heat convection due to a rapid temperature rise can be suppressed while suppressing unevenness in polymerization, and polymerization can proceed in a short time.
  • the polymerizable composition of the third embodiment is a B-type viscometer when the temperature of the polymerizable composition reaches 40 ° C. after the start of polymerization from the viewpoint of suppressing pulse and elution of the pressure-sensitive adhesive.
  • the viscosity measured at 40 ° C. and 60 rpm is preferably 100 mPa ⁇ s or more, more preferably 200 mPa ⁇ s or more, and even more preferably 500 mPa ⁇ s or more.
  • the polymerizable composition of the third embodiment has a B-type viscosity when the temperature of the polymerizable composition reaches 40 ° C. after the start of polymerization, from the viewpoint of maintaining good handleability when the polymerizable composition is injected.
  • the viscosity measured under the condition of 40 ° C. and 60 rpm in total is preferably 2000 mPa ⁇ s or less, and more preferably 1500 mPa ⁇ s or less.
  • the polymerizable composition of the third embodiment includes two or more kinds of monomers for different optical materials, a polymerization catalyst, and a prepolymer which is a polymer of two or more kinds of monomers for different optical materials and has a polymerizable functional group. It is preferable to include.
  • the prepolymer is a polymer of two or more different monomers for optical materials and has a polymerizable functional group.
  • a cured product obtained by polymerizing a prepolymer and two or more different monomers for optical materials can be used as an optical material.
  • the prepolymer for example, a polymer in which two kinds of monomers for optical materials are not polymerized at an equivalent ratio of 1: 1 among the monomers for optical materials, and two kinds of monomers for optical materials among the monomers for optical materials are balanced.
  • examples thereof include a polymer which is polymerized at an equivalent ratio in which the material is broken.
  • the above-mentioned polymerizable functional group is a functional group that can be polymerized with another polymerizable functional group, and specific examples thereof include functional groups having active hydrogen such as an isocyanate group and a mercapto group described later. ..
  • Polymerizing at an equivalent ratio of 1: 1 means that, for example, when polymerizing using an isocyanate compound and a polythiol compound, the isocyanate group of the isocyanate compound and the mercapto group of the polythiol compound become 1: 1 in molar ratio. It is to polymerize by the amount.
  • the curing step in the third embodiment is a step of curing the polymerizable composition injected into the space to obtain a cured product.
  • the method for producing an optical member according to the third embodiment includes a curing step, the polymerizable composition can be polymerized, and an optical material can be produced.
  • the curing time is preferably 10 hours or less.
  • the elution amount of the pressure-sensitive adhesive tends to be remarkably suppressed, and the white turbidity, voids and the like can be suppressed better. can.
  • the curing time in the third embodiment means the time from the time when the temperature of the polymerizable composition reaches 30 ° C. to the time when the polymerizable composition is completely cured.
  • the curing time is more preferably 7 hours or less, and further preferably 5 hours or less.
  • the curing time is preferably 1 hour or longer, more preferably 3 hours or longer.
  • the maximum curing temperature in the curing step is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, further preferably 100 ° C. or lower, and particularly preferably 80 ° C. or lower.
  • the maximum curing temperature in the curing step is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher.
  • FIG. 9 is a schematic diagram for explaining the movement of the molded substrate in the curing step.
  • the polymerizable composition 120 in the cavity 114 is cured.
  • the polymerizable composition 120 is polymerized by, for example, heating, active energy rays, or the like, and polymerization shrinkage occurs.
  • the film (for example, adhesive tape) 113 has a reduced holding force for holding the molded substrate.
  • the position where the upper mold substrate is mainly fixed in the space forming step due to the stress and its own weight due to the polymerization shrinkage of the polymerizable composition 120 in the cavity 114 (FIG. 9). It slides down from the inner surface of the film 113 (indicated by the broken line) and approaches the lower mold substrate. At this time, the amount of movement of the molded substrate is substantially equal to the amount of polymerization shrinkage of the polymerizable composition 120.
  • the volumetric shrinkage of the polymerizable composition 120 can be absorbed by the movement of the mold substrates 111 and 112, and the film 113 can be prevented from being deformed.
  • the shape of the film 113 that has not been deformed is transferred to the side surface of the obtained cured product (plastic lens) 130, resulting in a good-looking shape. Therefore, the outer diameters of the molded substrates 111 and 112 may be the same as the finished outer diameter dimensions of the plastic lens. This eliminates the waste of the outer peripheral portion of several mm, which has been conventionally scraped by the polishing work. In the case of a lens having a thick outer peripheral portion, the amount of the polymerizable composition can be reduced by more than 10%. In addition, there is an advantage that polishing work becomes unnecessary.
  • the polymerizable composition when the polymerization reaction is carried out, the polymerizable composition is heated to generate the polymerization reaction.
  • the polymerizable composition according to the third embodiment promotes the polymerization reaction of the monomer for optical material in the polymerizable composition by generating the reaction heat (that is, the heat due to self-heating) associated with the polymerization reaction in a short time. You can also. Therefore, in the method for producing an optical member according to the third embodiment, heating of the polymerizable composition is not always necessary, but heating may be performed. That is, in the curing step of the third embodiment, the polymerizable composition can be cured by polymerization by allowing the polymerizable composition to stand still.
  • the reaction heat associated with the polymerization reaction (that is, the heat due to self-heating) is generated in a short time to accelerate the polymerization reaction of the monomer for optical material in the polymerizable composition
  • the polymerization time can be shortened. ..
  • the reaction heat associated with the polymerization reaction (that is, the heat due to self-heating) is generated in a short time to accelerate the polymerization reaction of the monomer for optical material in the polymerizable composition
  • the curing time is several hours. It is often completed in up to 20 hours.
  • the curing step it is preferable to cure the polymerizable composition by allowing the polymerizable composition injected into the space to stand in a closed space.
  • a cured product having an excellent edge condition can be obtained.
  • the polymerizable composition by allowing the polymerizable composition to stand in the closed space, it is possible to prevent the heat generated by the self-heating of the polymerizable composition from being released to the outside. As a result, the heat generated by self-heating can be retained in the closed system space, so that the polymerization reaction can be promoted more efficiently, and the optical material can be produced in a shorter time.
  • the closed space include a heat insulating environment.
  • the adiabatic environment refers to an environment in which heat is retained inside and heat conduction between the inside and the outside is suppressed.
  • An environment in which heat conduction between the inside and the outside is suppressed means that when the polymerizable composition is allowed to stand in the closed system space, the heat conduction between the inside and the outside of the closed system space is the polymerizable composition. It means an environment in which an object can be cured.
  • the adiabatic environment can be formed, for example, using an adiabatic material. That is, by allowing the polymerizable composition to stand in a heat insulating container made of a heat insulating material, heat can be retained inside the heat insulating container and heat conduction between the inside and the outside can be suppressed.
  • the thermal conductivity of the heat insulating material is preferably 0.50 W / mK or less, more preferably 0.10 W / mK or less, and even more preferably 0.05 W / mK or less.
  • the density of the heat insulating material is preferably 10 kg / m 3 or more, more preferably 15 kg / m 3 or more, and further preferably 20 kg / m 3 or more.
  • the adiabatic reaction tank it is preferable to heat the adiabatic reaction tank to bring it into a constant temperature state (constant temperature reaction tank).
  • the environmental temperature in the reaction vessel (constant temperature reaction vessel) in which the mold is placed can be kept warm or constant temperature according to the temperature rise state due to the self-heating of the monomer for optical material. The polymerization reaction can be promoted satisfactorily.
  • the adiabatic reaction tank or the constant temperature reaction tank as described above can be used.
  • adiabatic polymerization in an adiabatic environment using an adiabatic reaction vessel can be performed by the following procedure. can.
  • the inner surface of the vacuum vessel is covered with a member having heat insulating and heat-retaining properties such as urethane foam and cork, and the mold in which the monomer is injected is wrapped with a member such as a waste cloth as needed. Then, the mold in which the monomer is injected is allowed to stand in the vacuum container.
  • the curing step may be a step of curing the polymerizable composition by allowing the polymerizable composition to stand without being heated from the outside.
  • heating of the polymerizable composition is not always necessary.
  • an apparatus may be used, which may increase the burden economically.
  • the optical material can be manufactured by a simple method, so that the economic burden can be reduced.
  • the curing step is preferably a step of curing the polymerizable composition by allowing the polymerizable composition to stand for 2 to 10 hours.
  • the polymerization reaction is carried out over several hours to several tens of hours (for example, about 20 hours to 48 hours) while gradually raising the temperature by heating.
  • the time for carrying out the polymerization reaction is short, the optical material cannot be obtained because the polymerizable composition is not completely cured, or the quality of the optical material is deteriorated.
  • the optical material can be manufactured in a short time while maintaining the quality of the obtained optical material. Specifically, the optical material can be produced by allowing the polymerizable composition to stand for 10 hours or less.
  • the polymerizable composition it is more preferable to allow the polymerizable composition to stand for 8 hours or less in the curing step. Further, from the viewpoint of performing a polymerization reaction to obtain a well-cured optical material, it is preferable to allow the polymerizable composition to stand for 2 hours or more, and more preferably to allow it to stand for 5 hours or more.
  • a microwave irradiation step of irradiating the polymerizable composition with microwaves for a predetermined time may be provided.
  • the curing step in the third embodiment there is an aspect including the step b described as one aspect of the curing step in the first embodiment.
  • the cured product of the third embodiment is a cured product of the polymerizable composition of the third embodiment.
  • the cured product of the third embodiment preferably has an amine content of 0.03% by mass or more, preferably 0.05% by mass, from the viewpoint of reducing pulse. The above is more preferable, and 0.07% by mass or more is further preferable.
  • the cured product of the third embodiment preferably has an amine content of 2.5% by mass or less, preferably 2.0% by mass or less, from the viewpoint of improving the handleability of the polymerizable composition for optical materials. Is more preferable, and 1.5% by mass or less is further preferable.
  • the amine content is the amine content measured by gas chromatograph mass spectrometry from the dichloromethane composition in which the cured product is dispersed in dichloromethane and ultrasonically extracted.
  • the cured product of the third embodiment preferably has a tin content of 0.05% by mass or more, preferably 0.1% by mass or more, when an organotin catalyst is used. It is more preferably present, and more preferably 0.2% by mass or more. Further, the cured product of the third embodiment preferably has a tin content of 2.5% by mass or less, preferably 2.0% by mass or less, from the viewpoint of improving the handleability of the polymerizable composition for optical materials. Is more preferable, and 1.5% by mass or less is further preferable.
  • the cured product of the third embodiment preferably has, for example, an amine content measured by gas chromatograph mass spectrometry of 0.03% by mass or more and 2.5% by mass or less.
  • the method for measuring the amine content in the cured product is as follows. 200 mg of the cured product powdered with a metal file and 3 mL of dichloromethane are placed in a centrifuge tube (volume 10 mL), ultrasonically extracted for 10 minutes at room temperature using an ultrasonic washer (UCHI, US-4), and centrifuged. Centrifuge is performed at 4000 rpm for 10 minutes using a separator (KUBOTA, desktop small centrifuge 2410). The supernatant is collected, the residue is dispersed again in 3 mL of dichloromethane, the above ultrasonic extraction and centrifugation are performed, and the supernatant is collected (hereinafter, also referred to as “residue extraction”).
  • the above-mentioned amine means an amine compound that can be used as a polymerization catalyst, or an amine compound derived from the above-mentioned amine compound.
  • the cured product of the third embodiment preferably has a devitrification of less than 50, more preferably less than 35.
  • the devitrification is measured by the following method.
  • a light source in a dark place for example, Luminar Ace manufactured by Hayashi Repic Co., Ltd.
  • Light from LA-150A is transmitted.
  • the image of the light transmitted through the cured product is taken into an image processing device (for example, an image processing device manufactured by Ube Information Systems Co., Ltd.), the captured image is subjected to shading processing, and the degree of shading of the processed image is determined for each pixel.
  • the devitrification is the value calculated as the average value of the numerical values of the degree of shading of each pixel.
  • the cured product of the third embodiment preferably has no veins having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product, and is within or outside the range of a radius of 15 mm from the center of the cured product. It is more preferable that there is no radius of 1.0 mm or more.
  • the cured product of the third embodiment is a cured product of two or more different optical monomers, and at least one of the two or more different optical material monomers has an aromatic ring. It is an isocyanate compound that does not have a pulse with a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product, and the amine content measured by gas chromatograph mass analysis is 0.03% by mass or more. It may be a cured product having an amount of 2.5% by mass or less.
  • the cured product of the third embodiment is a cured product of two or more different optical monomers, and has no veins having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
  • the outer peripheral surface of the cured product is mirror-like, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is preferably a substantially straight line.
  • the cured product of the third embodiment preferably contains a protrusion substantially parallel to the outer peripheral surface at the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface. ..
  • a small gap is often provided in the mold at the intersection of the main surface of one mold and the film and the intersection of the main surface of the other mold and the film (also referred to as chamfering).
  • the protrusion is a portion formed by the polymerizable composition entering the gap and being cured.
  • the cured product of the third embodiment preferably contains at least one selected from the group consisting of urethane resin, thiourethane resin and episulfide resin, and more preferably contains thiourethane resin.
  • the method for producing an optical member according to the third embodiment may include an annealing step of annealing the cured polymerizable composition, if necessary.
  • the temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
  • the cured product in the third embodiment can be suitably used as an optical member.
  • the optical member in the third embodiment may have a thickness of 1 mm to 20 mm or 4 mm to 16 mm.
  • the optical member in the third embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording board, a filter, a light emitting diode and the like.
  • the optical member according to the third embodiment can be suitably used for a plastic lens, and can be preferably used for a plastic lens for spectacles.
  • a film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film.
  • the film comprises a space forming step of forming a space, an injection step of injecting the polymerizable composition into the space, and a curing step of curing the polymerizable composition injected into the space to obtain a cured product.
  • the heat resistance index is 1 mm or more (except when it is completely peeled off from the glass), and the film has a thermal deformation temperature of 120 ° C. or less. ..
  • the curing time is preferably 10 hours or less.
  • the polymerizable composition preferably has an inclination of a thickening curve of 0.4 or more at 25 ° C.
  • the method for manufacturing an optical member according to the fourth embodiment can manufacture an optical member having a smooth outer peripheral surface by including the above configuration.
  • the outer peripheral surface is smooth means that, for example, the outer peripheral surface of the cured product is mirror-like, the intersection of one main surface and the outer peripheral surface, and the other main surface and the outer peripheral surface. It is preferable that the shape between the intersections with the surface is a concave curve.
  • an optical member having a smooth outer peripheral surface without performing polishing work or with a small amount of polishing.
  • the polymerizable composition is cured and shrunk in the curing step, it is possible to prevent the molded substrate from moving on the contact surface with the film. Therefore, the contact surface between the film and the polymerizable composition can be recessed inward.
  • the pressure-sensitive adhesive in the film may elute into the polymerizable composition.
  • the pressure-sensitive adhesive eluted in the polymerizable composition can cause cloudiness, voids, etc. in the obtained cured product.
  • the cloudiness, voids, and the like can be satisfactorily suppressed by combining the above configurations.
  • the curing step of the fourth embodiment when the curing time is 10 hours or less and the viscosity of the polymerizable composition is a certain level or more as described later, the elution amount of the pressure-sensitive adhesive tends to be remarkably suppressed. It is possible to better suppress the above-mentioned wrinkles, cloudiness, voids and the like.
  • a mold is used.
  • the details of the specific embodiment, the preferred embodiment, etc. of the mold in the fourth embodiment are the same as the details of the specific embodiment, the preferred embodiment, etc. of the mold in the third embodiment.
  • the film (also referred to as a film for manufacturing an optical member) according to the fourth embodiment is used.
  • the film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and the space is formed. It is preferable that the film is for producing an optical member for producing an optical member by arranging the polymerizable composition in the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
  • the film (also referred to as a film for manufacturing an optical member) in the fourth embodiment preferably includes at least a base material layer and an adhesive layer.
  • the film in the fourth embodiment has a heat resistance index of 1 mm or more when it is attached to glass and subjected to a heat resistance index test at 85 ° C. (except when it is completely peeled off from the glass).
  • the heat resistance index test can measure the static adhesive strength of the film.
  • the film in the fourth embodiment is static because it has a heat resistance index of 1 mm or more (except when it is completely peeled off from the glass) when it is attached to glass and subjected to a heat resistance index test at 85 ° C.
  • the adhesive strength can be adjusted satisfactorily. That is, it is possible to prevent the molded substrate from moving on the contact surface with the film when the polymerizable composition is cured and shrunk in the curing step. Therefore, the contact surface between the film and the polymerizable composition can be recessed inward.
  • the heat resistance index is preferably 2 mm or more, and more preferably 3 mm or more.
  • the upper limit of the heat resistance index is not particularly limited as long as it does not completely peel off from the glass.
  • the heat resistance index is preferably 15 mm or less, more preferably 10 mm or less, and further preferably 7 mm or less.
  • the specific method of the heat resistance index test in the fourth embodiment is the same as the specific method of the heat resistance index test in the third embodiment.
  • Heat distortion temperature Details of the heat distortion temperature of the film, the preferred range of the glass ball tack test, the measurement method, etc. in the fourth embodiment are described in detail of the heat distortion temperature of the film, the preferred range of the glass ball tack test, the measurement method, etc. in the third embodiment. Is similar to.
  • the film in the fourth embodiment preferably has a storage elastic modulus at 80 ° C. of 3.0 ⁇ 10 10 Pa or more, more preferably 5.0 ⁇ 10 10 Pa or more, and 7.0 ⁇ 10 It is more preferably 10 Pa or more.
  • the film in the fourth embodiment preferably has a storage elastic modulus at 80 ° C. of 40.0 ⁇ 10 10 Pa or less, more preferably 30.0 ⁇ 10 10 Pa or less, and 20.0 ⁇ 10 It is more preferably 10 Pa or less.
  • the specific example of the detailed conditions of the storage elastic modulus measurement test in the fourth embodiment is the same as the specific example of the detailed conditions of the storage elastic modulus measurement test in the third embodiment.
  • the adhesive strength of the adhesive layer is preferably 1.0 N / 10 mm to 10.0 N / 10 mm, preferably 2.0 N / 10 mm to 7.0 N / 10 mm. Is more preferable, and 3.0N / 10mm to 5.0N / 10mm is even more preferable. Adhesive strength is measured according to JIS Z 0237: 2009.
  • the polymerizable composition of the fourth embodiment may be a polymerizable composition containing two or more different monomers for optical materials and a polymerization catalyst.
  • the polymerizable composition in the fourth embodiment preferably has a thickening curve with a slope of 0.4 or more at 25 ° C.
  • the preferred range of the slope of the thickening curve of the polymerizable composition at 25 ° C. in the fourth embodiment, the measurement method and the like are described in detail in the preferred range of the slope of the thickening curve of the polymerizable composition at 25 ° C. in the third embodiment. , The details of the measurement method, etc. are the same.
  • the polymerizable composition of the fourth embodiment contains two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials is It is preferably 0.010 part by mass to 2.0 parts by mass, and the viscosity measured with a B-type viscosity meter at 25 ° C. and 60 rpm is preferably 10 mPa ⁇ s to 1000 mPa ⁇ s.
  • the isocyanate compound preferably contains at least one selected from the group consisting of an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound and a heterocyclic isocyanate compound.
  • the isocyanate compound does not contain an aromatic isocyanate compound.
  • the monomer for an optical material contains an aromatic isocyanate compound and a polythiol compound having four or more functionalities from the same viewpoint as described above.
  • polythiol compound having two or more mercapto groups Specific examples of the polythiol compound having two or more mercapto groups in the fourth embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having two or more mercapto groups in the third embodiment, preferable. It is the same as the details such as an embodiment and a preferable content.
  • Polythiol compound having 3 or more mercapto groups Specific examples of the polythiol compound having three or more mercapto groups in the fourth embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having three or more mercapto groups in the third embodiment, preferable. It is the same as the details such as an embodiment and a preferable content.
  • Hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups Specific examples, preferred embodiments, preferred contents and the like of the hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups in the fourth embodiment refer to the one or more mercapto groups in the third embodiment. It is the same as the details of the specific example of the hydroxythiol compound having one or more hydroxyl groups, a preferable embodiment, a preferable content and the like.
  • polyol compound containing two or more hydroxyl groups Specific examples, preferred embodiments, preferred contents and the like of the polyol compound having two or more hydroxyl groups in the fourth embodiment are specific examples of the polyol compound having two or more hydroxyl groups in the third embodiment, preferred embodiments. It is the same as the details such as a preferable content.
  • organometallic catalyst (Organometallic catalyst)
  • the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the fourth embodiment are the same as the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the third embodiment.
  • the polymerizable composition of the fourth embodiment may contain any additive.
  • Optional additives include photochromic compounds, internal mold release agents, brewing agents, UV absorbers and the like. Details of specific examples of the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorber in the fourth embodiment, preferable embodiments, and the like are described in detail in the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorption in the third embodiment. The same applies to the details of specific examples of the agent, preferred embodiments, and the like.
  • FIG. 10 is a schematic diagram for explaining a change in the shape of the film in the curing step.
  • the polymerizable composition 120 in the cavity 114 is cured.
  • the polymerizable composition 120 is polymerized by, for example, heating, active energy rays, or the like, and polymerization shrinkage occurs.
  • this polymerization shrinkage occurs most violently, the shape-retaining force for holding the shape of the film (for example, adhesive tape) 113 decreases.
  • the stress associated with the polymerization shrinkage of the polymerizable composition 120 in the cavity 114 causes the intersection of one main surface and the outer peripheral surface and the other main surface and the outer peripheral surface.
  • the shape of the film between the intersections is transformed into a concave curve.
  • the amount of deformation of the film is substantially equal to the amount of polymerization shrinkage of the polymerizable composition 120.
  • the volumetric contraction of the polymerizable composition 120 is made into a concave curve in the shape of the film between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface. Can be absorbed.
  • the side surface of the obtained cured product 130 forms a concave curve. Therefore, the outer diameters of the molded substrates 111 and 112 may be the same as the finished outer diameter dimensions of the plastic lens. This eliminates the waste of the outer peripheral portion of several mm, which has been conventionally scraped by the polishing work. In the case of a lens having a thick outer peripheral portion, the amount of the polymerizable composition can be reduced by more than 10%. In addition, there is an advantage that polishing work becomes unnecessary.
  • the polymerizable composition when the polymerization reaction is carried out, the polymerizable composition is heated to generate the polymerization reaction.
  • the polymerizable composition according to the fourth embodiment promotes the polymerization reaction of the monomer for optical material in the polymerizable composition by generating the reaction heat (that is, the heat due to self-heating) associated with the polymerization reaction in a short time.
  • the reaction heat that is, the heat due to self-heating
  • a specific embodiment a preferred embodiment, a definition of a closed system space and an adiabatic environment, a thermal conductivity and density of an adiabatic material, and polymerization regarding accelerating the polymerization reaction by using the reaction heat associated with the polymerization reaction in the third embodiment. It is the same as the details such as time.
  • the curing step in the fourth embodiment there is an aspect including the step b described as one aspect of the curing step in the third embodiment.
  • the method for producing an optical member according to the fourth embodiment may include an annealing step of annealing the cured polymerizable composition, if necessary.
  • the temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
  • the cured product in the fourth embodiment can be suitably used as an optical member.
  • the optical member in the fourth embodiment may have a thickness of 1 mm to 20 mm or 4 mm to 16 mm.
  • the optical member in the fourth embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording board, a filter, a light emitting diode and the like.
  • the optical member according to the fourth embodiment can be suitably used for a plastic lens, and can be preferably used for a plastic lens for spectacles.
  • the first embodiment will be specifically described with reference to Examples, but the first embodiment is not limited to these Examples.
  • the method for measuring the viscosity in the examples is the same as the above-mentioned method.
  • the following evaluation was performed on the molded product obtained in each Example or Comparative Example.
  • the molded product was projected with an ultra-high pressure mercury lamp (light source model OPM-252HEG: manufactured by Ushio, Inc.), and the transmitted image was visually observed and evaluated according to the following criteria.
  • the obtained polymerizable composition for optical materials was sent to a casting mold (that is, a mold) while being remixed in a static mixer.
  • the viscosity (also referred to as casting viscosity) of the polymerizable composition for an optical material when the liquid was sent to a mold and cast was adjusted to the value shown in Table 1.
  • a 4-curve or 6-curve glass mold (upper mold) having a diameter of 78 mm and a glass mold (upper mold) having a diameter of 78 mm are used while filtering the polymerizable composition for optical materials with a 1 ⁇ m PTFE filter.
  • Examples 2 to 4 Except for changing the polymerization catalyst amount and stirring time of the first mixed solution in the prepolymerization step to the values shown in Table 1 and adjusting the casting viscosity of the polymerizable composition for optical materials to the values shown in Table 1.
  • a molded product (lens) was obtained by the same method as in Example 1.
  • the viscosities of the mixture containing the prepolymer are shown in Table 1. Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution. Pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical materials] 22.2 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] 23.7% by mass After charging the parts to prepare a mixed solution, the obtained mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution.
  • the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 1.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
  • the cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • Example 6 to 7 The contents of pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane in the prepolymerization step were changed to the values shown in Table 1 and polymerized for optical materials.
  • a molded product (lens) was obtained by the same method as in Example 5 except that the casting viscosity of the sex composition was adjusted to the values shown in Table 1.
  • Example 8 The cast was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization, and then the cast was taken out from the heat insulating container and released by the same method as in Example 7. I got a body (lens).
  • Example 9 A molded product (lens) was obtained by the same method as in Example 7 except that the cast product was heated from 30 ° C. to 120 ° C. over time without adiabatic polymerization and heat-polymerized over 3 hours.
  • Example 10 to 11 The contents of pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane in the prepolymerization step were changed to the values shown in Table 1 and polymerized for optical materials.
  • a molded product (lens) was obtained by the same method as in Example 5 except that the casting viscosity of the sex composition was adjusted to the values shown in Table 1.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting was not subjected to adiabatic polymerization, and the time was from 10 ° C to 120 ° C. And heat polymerization was carried out over 38 hours. Then, a molded product (lens) was obtained by the same method as in Example 1.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer.
  • a prepolymerization step of obtaining a mixture containing a prepolymer, and Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer.
  • a process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
  • Examples 2 to 4 and Examples 6 to 11 have a viscosity (that is, a casting viscosity) of the polymerizable composition for an optical material at the time of casting of 70 mPa ⁇ s or more. The optics could be suppressed better.
  • Example 12 JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.03 part by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical material] 40.
  • a mixed solution was prepared by stirring 7 parts by mass at 25 ° C. for 1 hour to completely dissolve the mixture, and then, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9 was added to the mixed solution.
  • the monomer for optical materials was polymerized while adjusting the viscosity to obtain a first mixed solution containing a prepolymer.
  • the viscosities of the mixture containing the prepolymer are shown in Table 2.
  • a mixed solution was prepared by charging 10 parts by mass of m-xylylene diisocyanate [monomer for optical material] and 0.01 part by mass of 3,5-lutidine [polymerization catalyst]. This mixture was stirred at 25 ° C. for 15 minutes to obtain a second mixture. Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 2.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. Then, a molded product (lens) was obtained by the same method as in Example 1.
  • Example 13 Except for changing the polymerization catalyst amount and stirring time of the first mixed solution in the prepolymerization step to the values shown in Table 2 and adjusting the casting viscosity of the polymerizable composition for optical materials to the values shown in Table 2.
  • a molded product (lens) was obtained by the same method as in Example 12.
  • Example 14 JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.03 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical materials] 50.7
  • a mixed solution was prepared by charging parts by mass. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the values shown in Table 2.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • Examples 15 to 19 Polymerization catalyst amount in the prepolymerization step, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto-3, Changed the content and stirring time of the mixture of 6,9-trichaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecan to the values shown in Table 2.
  • a molded body (lens) was obtained by the same method as in Example 14 except that the casting viscosity of the polymerizable composition for optical materials was adjusted to the values shown in Table 2.
  • Example 20 The cast was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization, and then the cast was taken out from the heat insulating container and released by the same method as in Example 19. I got a body (lens).
  • Example 21 A molded product (lens) was obtained by the same method as in Example 19 except that the cast product was heated from 30 ° C. to 120 ° C. over time without adiabatic polymerization and heat-polymerized over 3 hours.
  • the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the values shown in Table 2.
  • the cast material was not subjected to adiabatic polymerization, but was heated from 20 ° C. to 120 ° C. over time, and heat polymerization was carried out over 30 hours. Then, a molded product (lens) was obtained by the same method as in Example 1.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the values shown in Table 2.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • a prepolymerization step of obtaining a mixture containing a prepolymer, and Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer.
  • a process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
  • Examples 11 to 12 and Examples 14 to 21 have a viscosity (that is, a casting viscosity) of the polymerizable composition for an optical material at the time of casting of 120 mPa ⁇ s or more. , I was able to suppress the optics better.
  • JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.05 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical materials] 52 parts by mass.
  • a mixed solution The mixture was stirred at 25 ° C. for 1 hour to completely dissolve.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 3.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • Example 23 to 25 The content of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane in the prepolymerization step was changed to the value shown in Table 3, and the casting viscosity of the polymerizable composition for optical materials is shown in Table 3.
  • a molded product (lens) was obtained by the same method as in Example 22 except that the value was adjusted.
  • Example 26 The cast was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization, and then the cast was taken out from the heat insulating container and released by the same method as in Example 25. I got a body (lens).
  • Example 27 A molded product (lens) was obtained by the same method as in Example 25 except that the cast product was heated from 30 ° C. to 120 ° C. over time without adiabatic polymerization and heat-polymerized over 3 hours.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 3.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • a prepolymerization step of obtaining a mixture containing a prepolymer, and Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer.
  • a process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
  • Example 28 Dicyclohexylmethane diisocyanate [monomer for optical material] 58.9 parts by mass, Tinuvin329 [ultraviolet absorber] 1.5 parts by mass, Mitsui Chemicals Co., Ltd.
  • MR internal mold release agent internal mold release agent 0.1 parts by mass A mixed solution was prepared in. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 4.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 130 ° C. for 2 hours. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer.
  • a process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
  • Example 29 1,3-Bis (isocyanismethyl) cyclohexane [monomer for optical material] 48 parts by mass, Tinuvin329 [ultraviolet absorber] 1.5 parts by mass, JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.) 0.18 parts by mass A mixed solution was prepared in. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 4.0 parts by mass of pentaerythritol tetrakis (2-mercaptoacetate) and 3.9 parts by mass of 2,5-bis (mercaptomethyl) -1,4-dithiane were added to this mixed solution, and 25 parts by mass was charged.
  • the mixture was stirred at ° C. for 5 minutes to obtain a uniform solution. Further, 0.1 part by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 3 hours to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 5. Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • a process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
  • Examples 101 to 103 In the prepolymerization step, the isocyanate and thiol [monomer for optical material] shown in Table 6 are used in the amounts shown in Table 6, and 3,5-lutidine [polymerization catalyst] is used in the amounts shown in Table 6 to MR.
  • the internal mold release agent [release agent] was used in the amount shown in Table 6, and the amount of the monomer for the optical material added in the polymerizable composition for the optical material was adjusted as shown in Table 7, and the polymerization time was adjusted.
  • a molded body (lens) was obtained by the same method as in Example 5 except that the method was changed as shown in Table 6. The evaluation of the pulse is shown in Table 6.
  • Examples 104 to 105 In the prepolymerization step, the isocyanate and thiol [monomer for optical material] shown in Table 6 are used in the amounts shown in Table 6, and 3,5-lutidine [polymerization catalyst] is used in the amounts shown in Table 6, JP. -506H [mold release agent] was used in the amount shown in Table 6, and the amount of the monomer for the optical material added in the polymerizable composition for the optical material was adjusted as shown in Table 7, and the polymerization time and method were adjusted. A molded product (lens) was obtained in the same manner as in Example 22 except that the above was changed as shown in Table 6. The evaluation of the pulse is shown in Table 6.
  • Example 106 A mixed solution was prepared by charging 1.5 parts by mass of Tinuvin 329 [ultraviolet absorber] and 48.9 parts by mass of m-xylylene diisocyanate [monomer for optical material]. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 10.1 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] was added to this mixed solution, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. did.
  • a mixed solution was prepared by charging 37.9 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and 3.1 parts by mass of m-xylylene diisocyanate [monomer for optical material]. This was stirred at 25 ° C. for 5 minutes to give a uniform solution. Further, 0.005 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 1 hour to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 6.
  • This mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution. Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
  • the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 6.
  • the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
  • the evaluation of the pulse is shown in Table 6.
  • Example 107 to Example 108 In the prepolymerization step, the isocyanate and thiol [monomer for optical material] shown in Table 6 are used in the amounts shown in Table 6, and 3,5-lutidine [polymerization catalyst] is used in the amounts shown in Table 6, JP. -506H [mold release agent] was used in the amount shown in Table 6, and the amount of the monomer for the optical material added in the polymerizable composition for the optical material was adjusted as shown in Table 7, and the polymerization time and method were adjusted. A molded product (lens) was obtained in the same manner as in Example 14 except that the above was changed as shown in Table 6. The evaluation of the pulse is shown in Table 6.
  • the molded product was projected with an ultra-high pressure mercury lamp (light source model OPM-252HEG: manufactured by Ushio, Inc.), and the transmitted image was visually observed and evaluated according to the following criteria.
  • the monomer for optical material was polymerized while adjusting the viscosity to obtain a mixture containing a prepolymer. Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first raw material composition.
  • the viscosity Va of the first raw material composition is shown in Table 8.
  • a portion was charged, and the mixture was stirred at 25 ° C. for 15 minutes to prepare a uniform solution.
  • This mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second raw material composition.
  • the viscosity Vb of the second raw material composition is shown in Table 8.
  • the first raw material composition was placed in the first tank, and the second raw material composition was placed in the second tank. Using a gear pump, each composition was fed to a power mixer at the flow rates shown in Table 8. Next, after applying a shearing force to the first raw material composition and the second raw material composition sent by using a power mixer at the rotation speeds shown in Table 8, the filtration accuracy shown in Table 8 is obtained. It was passed through a capsule filter (manufactured by F-tech Inc.). The polymerizable composition for optical materials after passing through the filter is sent to a stirring tank and stirred in the stirring tank at the rotation speeds shown in Table 8 to obtain the polymerizable composition for optical materials.
  • a capsule filter manufactured by F-tech Inc.
  • the polymerization reaction was carried out by any of the following methods. -The mold after casting was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for heat insulating polymerization. Then, the cast material is taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour. -Using an oven, heat the cast mold from 30 ° C to 70 ° C over 1.5 hours, then heat from 70 ° C to 120 ° C over 0.5 hours, then heat the temperature for 1 hour. Heat polymerization is performed while maintaining the temperature at 120 ° C.
  • the mold was naturally cooled, the cured molded product was released from the mold, and further annealed at 120 ° C. for 2 hours to obtain a molded product (lens).
  • a raw material composition preparation step for preparing a second raw material composition for preparing a second raw material composition
  • a shearing step for producing a polymerizable composition for an optical material by applying a shearing force to the first raw material composition and the second raw material composition and polymerization for an optical material.
  • Examples using a curing step of curing a polymerizable composition for an optical material by polymerizing different monomers for an optical material and a method for producing an optical material including the above are excellent in evaluation of pulse and the optical material. I was able to suppress the U-shaped polymerization in.
  • the method for measuring the viscosity in the examples is the same as the above-mentioned method.
  • the method of the heat resistance index test in the examples is the same as the above-mentioned method.
  • the method for measuring the heat distortion temperature in the examples is the same as the above-mentioned method.
  • the method for measuring the storage elastic modulus in the examples is the same as the above-mentioned method.
  • the method of the glass ball tack test in the examples is the same as the above-mentioned method.
  • the method for measuring the adhesive strength in the examples is the same as the above-mentioned method.
  • the cured product (that is, the lens) obtained in each Example or Comparative Example was evaluated as follows. [Edge smoothness] The smoothness of the outer peripheral surface of the cured product was visually confirmed. The case where the outer peripheral surface has no unevenness with a depth of 1 mm or more was defined as A, and the case where the outer peripheral surface had irregularities with a depth of 1 mm or more was defined as B.
  • protrude It was visually confirmed whether or not the intersection of one main surface and the outer peripheral surface of the cured product and the intersection of the other main surface and the outer peripheral surface contained a protrusion substantially parallel to the outer peripheral surface. The case where the protrusion was confirmed was designated as A, and the case where the protrusion was not confirmed was designated as B.
  • the films used in this example are as follows. A: SLIONTEC # 6261 (manufactured by Maxell Co., Ltd.) B: Mending tape # 810 (manufactured by 3M Japan Ltd.) C: SLIONTEC 6263-73 (manufactured by Maxell Co., Ltd.) Details of each film are shown in Table 9.
  • Example 301 Mitsui Chemicals, Inc.
  • MR internal mold release agent 0.1 parts by mass
  • Tinuvin 329 0.1 parts by mass
  • 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane 50.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve.
  • Polymerization was carried out to obtain a mixture containing a prepolymer. Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution. Pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical materials] 20.8 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] 22.2% by mass After charging the parts to prepare a mixed solution, the obtained mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution. Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition. The obtained polymerizable composition had a thickening curve slope of 4.6822 at 25 ° C.
  • the films shown in Table 9 are attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film for casting. A mold was made.
  • the obtained polymerizable composition was remixed in a static mixer to form a 4-curve glass mold (upper mold) having a diameter of 80 mm and a 4-curve glass mold (lower mold) having a diameter of 80 mm. It was injected at a rate of 6 g / sec into the above space having a center thickness of 10 mm.
  • the viscosity (also referred to as casting viscosity) of the polymerizable composition when the liquid was sent to the mold and cast was adjusted to the value shown in Table 9.
  • the cast material was heated in an oven at the temperature and time shown in Table 9 to carry out polymerization.
  • the cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
  • Example 302 A lens was obtained in the same manner as in Example 301, except that the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for the curing time shown in Table 9 for heat insulating polymerization. The maximum curing temperature is shown in Table 9.
  • Example 303 JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.05 parts by mass, Tinuvin329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical material] 52.0
  • a mixed solution was prepared by charging parts by mass. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 12.0 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical material] was added to this mixed solution, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution.
  • the polymer catalysts shown in Table 9 are added to the obtained uniform solution so as to have the total amount shown in Table 9, and the mixture is stirred at 40 ° C. for 3 hours to prepare a monomer for an optical material while adjusting the viscosity. Polymerization was carried out to obtain a mixture containing a prepolymer. The viscosities of the mixture containing the prepolymer are shown in Table 9. Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
  • Example 304 A lens was obtained in the same manner as in Example 303, except that the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for the curing time shown in Table 9 for heat insulating polymerization. The maximum curing temperature is shown in Table 9.
  • Example 305 A lens was obtained in the same manner as in Example 303, except that JP-506H was charged in an amount of 0.1 parts by mass and the polymerization catalyst was charged in a total amount shown in Table 9. The maximum curing temperature is shown in Table 9. The obtained polymerizable composition had an inclination of the thickening curve of 0.9010 at 25 ° C.
  • the viscosity of the polymerizable composition measured at 40 ° C. and 60 rpm with a B-type viscometer when the temperature of the polymerizable composition reached 40 ° C. after the start of polymerization. It was 164 mPa ⁇ s.
  • Example 301 A lens was obtained in the same manner as in Example 301, except that the film was changed to the film shown in Table 9. The maximum curing temperature is shown in Table 9.
  • Example 302 A lens was obtained in the same manner as in Example 302, except that the film was changed to the film shown in Table 9. The maximum curing temperature is shown in Table 9.
  • the obtained solution was defoamed at 400 Pa for 1 hour, filtered through a 1 ⁇ m PTFE filter, and then sent to a casting mold by the same method as in Example 301, and the casting viscosity is shown in Table 9. Adjusted to the value.
  • the cast material was heated in an oven at the temperature and time shown in Table 9 to carry out polymerization.
  • the cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
  • the maximum curing temperature is shown in Table 9.
  • the film comprises an injection step of injecting the polymerizable composition into the space and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass.
  • the film has a thermal deformation temperature of 70 ° C. or higher and a curing time of 10 hours or less in the curing step.
  • Comparative Examples 304 to 306 using a film that does not completely peel off from the glass when attached to glass and subjected to a heat resistance index test at 85 ° C. are inferior in the evaluation of edge smoothness, and the outer peripheral surface is smooth. It was not possible to manufacture a certain optical member.
  • the method for measuring the viscosity in the examples is the same as the above-mentioned method.
  • the method of the heat resistance index test in the examples is the same as the above-mentioned method.
  • the method for measuring the heat distortion temperature in the examples is the same as the above-mentioned method.
  • the method for measuring the storage elastic modulus in the examples is the same as the above-mentioned method.
  • the method of the glass ball tack test in the examples is the same as the above-mentioned method.
  • the method for measuring the adhesive strength in the examples is the same as the above-mentioned method.
  • the cured product (that is, the lens) obtained in each Example or Comparative Example was evaluated as follows. [Edge smoothness] The smoothness of the outer peripheral surface of the cured product was visually confirmed. In the cured product, the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a concave curve, and the outer peripheral surface has no unevenness with a depth of 1 mm or more. year, In the cured product, the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is not a concave curve, or the outer peripheral surface has irregularities with a depth of 1 mm or more. Was set to B.
  • protrude It was visually confirmed whether or not the intersection of one main surface and the outer peripheral surface of the cured product and the intersection of the other main surface and the outer peripheral surface contained a protrusion substantially parallel to the outer peripheral surface. The case where the protrusion was confirmed was designated as A, and the case where the protrusion was not confirmed was designated as B.
  • the films used in this example are as follows.
  • D Cellotape (registered trademark) NO29NEW (manufactured by Nitto Denko KK)
  • Example 401 Mitsui Chemicals, Inc.
  • MR internal mold release agent 0.1 parts by mass
  • Tinuvin 329 0.1 parts by mass
  • 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane 50.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve.
  • the films shown in Table 10 are attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film for casting. A mold was made.
  • the obtained polymerizable composition was remixed in a static mixer to form a 4-curve glass mold (upper mold) having a diameter of 80 mm and a 4-curve glass mold (lower mold) having a diameter of 80 mm. It was injected at a rate of 6 g / sec into the above space having a center thickness of 10 mm.
  • the viscosity (also referred to as casting viscosity) of the polymerizable composition when the liquid was sent to the mold and cast was adjusted to the value shown in Table 10.
  • the cast product was heated in an oven at the temperature and time shown in Table 10 to carry out polymerization.
  • the cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
  • Example 402 A lens was obtained in the same manner as in Example 401, except that the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for the curing time shown in Table 10 for heat insulating polymerization. The maximum curing temperature is shown in Table 10.
  • the viscosity of the polymerizable composition measured at 40 ° C. and 60 rpm with a B-type viscometer when the temperature of the polymerizable composition reached 40 ° C. after the start of polymerization. It was 164 mPa ⁇ s.
  • Example 403 to Example 405 Comparative Example 402
  • a lens was obtained in the same manner as in Example 402, except that the film was changed to the film shown in Table 10.
  • the maximum curing temperature is shown in Table 10.
  • Example 401 A lens was obtained in the same manner as in Example 401, except that the film was changed to the film shown in Table 10.
  • the film comprises an injection step of injecting the polymerizable composition into the space and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass.
  • the heat resistance index test is performed at 85 ° C., the heat resistance index is 1 mm or more (except when it is completely peeled off from the glass), the film has a thermal deformation temperature of 120 ° C. or less, and the curing step.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

This method for producing an optical material uses a total of 100 parts by mass of two or more different monomers for an optical material and 0.010-2.0 parts by mass of a polymerization catalyst as raw materials to produce an optical material. The method includes: a preparation step for preparing a total of 100 parts by mass of two or more different monomers for an optical material and 0.010-2.0 parts by mass of a polymerization catalyst; and a prepolymerization step for mixing a part of the two or more different monomers for an optical material and at least a part of the polymerization catalyst, and polymerizing at least a part of the part of the two or more different monomers for an optical material so as to obtain a prepolymer, thereby obtaining a mixture containing the prepolymer.

Description

光学材料の製造方法、光学材料用重合性組成物、光学材料製造システム、光学部材の製造方法、光学部材製造用フィルム、光学部材製造用モールド及び硬化物Manufacturing method of optical material, polymerizable composition for optical material, optical material manufacturing system, manufacturing method of optical member, film for manufacturing optical member, mold and cured product for manufacturing optical member
 本開示は、光学材料の製造方法、光学材料用重合性組成物、光学材料製造システム、光学部材の製造方法、光学部材製造用フィルム、光学部材製造用モールド及び硬化物に関する。 The present disclosure relates to a method for manufacturing an optical material, a polymerizable composition for an optical material, an optical material manufacturing system, a method for manufacturing an optical member, a film for manufacturing an optical member, a mold for manufacturing an optical member, and a cured product.
 プラスチックレンズ向け光学材料に用いられる樹脂を製造する方法として、例えば、モノマーを含む重合性組成物をモールド(型)の中に注入して加熱硬化させる注型重合法が挙げられる。
 注型重合法は、重合性組成物を調合して脱気した後、モールド(型)に重合性組成物を注入し、加熱硬化(重合反応)を経て、モールドから生成物を取り出し(離型)、アニールを行うことにより、光学材料(例えば、レンズ、セミフィニッシュドブランク等)を得る。
 加熱硬化においては、光学材料の品質を高めるため、加熱により徐々に昇温しながら数時間から数十時間かけて重合反応を行うことが一般的であり、具体的には一般的に20時間~48時間程度を要する。また、製造プロセスの総時間の内、多くの時間(例えば、そう時間の内の9割)が重合するための時間に費やされることが知られている。
As a method for producing a resin used as an optical material for a plastic lens, for example, a casting polymerization method in which a polymerizable composition containing a monomer is injected into a mold and cured by heating can be mentioned.
In the casting polymerization method, a polymerizable composition is prepared and degassed, then the polymerizable composition is injected into a mold (mold), and after heat curing (polymerization reaction), the product is taken out from the mold (demolding). ), Annealing is performed to obtain an optical material (for example, a lens, a semi-finished blank, etc.).
In heat curing, in order to improve the quality of the optical material, it is common to carry out a polymerization reaction over several hours to several tens of hours while gradually raising the temperature by heating, and specifically, generally from 20 hours to 20 hours. It takes about 48 hours. Further, it is known that a large amount of time (for example, 90% of the total time) of the total time of the manufacturing process is spent for polymerization.
 特許文献1の実施例には、重合性組成物を注入されたモールドを、10℃~120℃まで徐々に昇温し、20時間で重合して成形体を得たことが記載されている。 In the examples of Patent Document 1, it is described that the mold into which the polymerizable composition is injected is gradually heated to 10 ° C to 120 ° C and polymerized in 20 hours to obtain a molded product.
 また、特許文献2の実施例には、重合性組成物を注入されたモールドを、25℃から16時間かけて少しずつ昇温し120℃まで上昇させ、120℃で4時間加熱して成形体を得たことが記載されている。 Further, in the examples of Patent Document 2, the mold in which the polymerizable composition is injected is gradually heated from 25 ° C. over 16 hours to 120 ° C. and heated at 120 ° C. for 4 hours to form a molded product. It is stated that it was obtained.
  特許文献1:国際公開第2014/027427号
  特許文献2:国際公開第2014/133111号
Patent Document 1: International Publication No. 2014/027427 Patent Document 2: International Publication No. 2014/133111
 上述の通り、従来は光学材料を製造する過程において、加熱により徐々に昇温しながら数時間から数十時間(例えば、20時間~48時間程度)かけて重合反応を行うことが一般的であった。
 一方で、従来通りの方法により光学材料を製造する際、加熱重合時間を短縮して重合反応を行う場合には、重合が不十分であることにより光学材料が硬化しない、硬化したとしても光学材料中に脈理が発生する等の不具合が生じ、光学材料の品質が低下すると考えられる。
 以上より、光学材料の製造において、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することが求められている。
As described above, conventionally, in the process of manufacturing an optical material, it is common to carry out a polymerization reaction over several hours to several tens of hours (for example, about 20 hours to 48 hours) while gradually raising the temperature by heating. rice field.
On the other hand, when the optical material is produced by the conventional method and the polymerization reaction is carried out by shortening the heat polymerization time, the optical material is not cured due to insufficient polymerization, and even if it is cured, the optical material is not cured. It is considered that the quality of the optical material deteriorates due to problems such as the occurrence of polymerization inside.
From the above, in the production of the optical material, it is required to suppress the pulse in the obtained optical material and to shorten the production time of the optical material.
 本開示の第1実施形態の一実施形態が解決しようとする課題は、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができる光学材料の製造方法、上記光学材料の製造方法に用いられる光学材料用重合性組成物を提供することである。
 本開示の第2実施形態の一実施形態が解決しようとする課題は、得られる光学材料におけるU字型の脈理を抑制することができる光学材料の製造方法及び光学材料製造システムを提供することである。
 本開示の第3実施形態の一実施形態が解決しようとする課題は、外周面が平滑である光学部材を製造することができる光学部材の製造方法、光学部材製造用フィルム、光学部材製造用モールド及び硬化物を提供することである。
 本開示の第4実施形態の一実施形態が解決しようとする課題は、外周面が平滑である光学部材を製造することができる光学部材の製造方法、光学部材製造用フィルム、光学部材製造用モールド及び硬化物を提供することである。
The problem to be solved by one embodiment of the first embodiment of the present disclosure is a method for manufacturing an optical material capable of suppressing pulse in the obtained optical material and shortening the manufacturing time of the optical material, described above. It is an object of the present invention to provide a polymerizable composition for an optical material used in a method for producing an optical material.
An object to be solved by one embodiment of the second embodiment of the present disclosure is to provide a method for manufacturing an optical material and an optical material manufacturing system capable of suppressing a U-shaped pulse in the obtained optical material. Is.
The problem to be solved by one embodiment of the third embodiment of the present disclosure is a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, and a mold for manufacturing the optical member. And to provide a cured product.
The problem to be solved by one embodiment of the fourth embodiment of the present disclosure is a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, and a mold for manufacturing the optical member. And to provide a cured product.
 前記課題を解決するための具体的手段は以下の態様を含む。
<1> 合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を原料として用いて光学材料を製造する方法であって、
 合計で100質量部の前記2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の前記重合触媒と、を準備する準備工程と、
 前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の少なくとも一部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得るプレポリマー化工程と、
を含む光学材料の製造方法。
<2> さらに、前記プレポリマーを含む混合物に対し、少なくとも、前記2種以上の異なる光学材料用モノマーの残部を添加することにより、前記2種以上の異なる光学材料用モノマーと、前記プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、を含む<1>に記載の光学材料の製造方法。
<3> 前記プレポリマー化工程が、前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の全部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得る工程である<2>に記載の光学材料の製造方法。
<4> 前記2種以上の異なる光学材料用モノマーの一部が、前記2種以上の異なる光学材料用モノマーの内の1種の光学材料用モノマーの全部と、前記1種の光学材料用モノマー以外の他の光学材料用モノマーの一部と、からなる<3>に記載の光学材料の製造方法。
<5> 前記プレポリマー化工程が、前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の一部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得る工程であり、
 前記光学材料用重合性組成物製造工程が、前記プレポリマーを含む混合物に対し、少なくとも、前記2種以上の異なる光学材料用モノマーの残部及び前記重合触媒の残部を添加することにより、前記2種以上の異なる光学材料用モノマーと、前記プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る工程である<2>に記載の光学材料の製造方法。
<6> 前記2種以上の異なる光学材料用モノマーがイソシアネート化合物(A)を含み、
 前記2種以上の異なる光学材料用モノマーの一部がイソシアネート化合物(A)の一部を含み、前記2種以上の異なる光学材料用モノマーの残部がイソシアネート化合物(A)の残部を含む<5>に記載の光学材料の製造方法。
<7> 前記重合触媒の一部は、前記重合触媒の100質量部の内の5質量部~80質量部である<5>又は<6>に記載の光学材料の製造方法。
<8> 前記2種以上の異なる光学材料用モノマーの一部は、前記2種以上の異なる光学材料用モノマーの100質量部の内の5質量部~95質量部である<2>~<7>のいずれか1つに記載の光学材料の製造方法。
<9> 前記プレポリマー化工程の後であって、前記光学材料用重合性組成物製造工程の前に、前記プレポリマーを含む混合物のB型粘度計で25℃ 60rpmの条件で測定した粘度を30mPa・s~2000mPa・sに調整する粘度調整工程をさらに含む<2>~<8>のいずれか1つに記載の光学材料の製造方法。
<10> さらに、前記2種以上の異なる光学材料用モノマーの残部と、前記重合触媒の残部と、を混合し、前記2種以上の異なる光学材料用モノマーの残部における少なくとも一部を重合させて第2プレポリマーを得ることにより、前記第2プレポリマーを含む混合物を得る第2プレポリマー化工程と、
 前記プレポリマーを含む混合物に対し、前記第2プレポリマーを含む混合物を添加することにより、前記プレポリマーと、前記第2プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 前記光学材料用重合性組成物中の前記プレポリマー及び前記第2プレポリマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
を含む<1>に記載の光学材料の製造方法。
<11> 前記光学材料用重合性組成物製造工程の後であって、前記硬化工程の前に、前記光学材料用重合性組成物を注型用鋳型に送液する送液工程をさらに含み、
 前記送液工程が、前記光学材料用重合性組成物を静止型混合器内にて再混合しながら注型用鋳型に送液する工程である<2>~<10>のいずれか1つに記載の光学材料の製造方法。
<12> 前記硬化工程が、前記光学材料用重合性組成物を静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む<2>~<11>のいずれか1つに記載の光学材料の製造方法。
<13> 前記硬化工程が、前記光学材料用重合性組成物を閉鎖系空間内にて静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む<2>~<12>のいずれか1つに記載の光学材料の製造方法。
<14> 前記硬化工程が、前記光学材料用重合性組成物を外部から加熱することなく静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む<2>~<13>のいずれか1つに記載の光学材料の製造方法。
<15> 前記硬化工程が、前記光学材料用重合性組成物を2時間~10時間静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む<2>~<14>のいずれか1つに記載の光学材料の製造方法。
<16> 前記2種以上の異なる光学材料用モノマーが、イソシアネート化合物(A)と、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物、2つ以上の水酸基を有するポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも一種である活性水素化合物(B)と、を含む<1>~<15>のいずれか1つに記載の光学材料の製造方法。
<17> 前記イソシアネート化合物(A)が、脂環族イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方を含む<16>に記載の光学材料の製造方法。
<18> 前記重合触媒が、pKa値が4~8である塩基性触媒、及び、有機金属系触媒からなる群から選択される少なくとも一種を含む<1>~<17>のいずれか1つに記載の光学材料の製造方法。
<19> 前記重合触媒が、アミン系触媒及び有機錫系触媒からなる群から選択される少なくとも一種を含む<1>~<18>のいずれか1つに記載の光学材料の製造方法。
<20> 前記重合触媒が、3,5-ルチジン、2,4,6-コリジン、トリエチレンジアミン、N,N-ジメチルエタノールアミン,トリエチルアミン、N-エチルモルホリン、ジブチルスズジクロリド、ジメチルスズジクロリド、ジブチルスズジラウレート及びジブチルスズジアセテートからなる群から選択される少なくとも一種を含む<1>~<19>のいずれか1つに記載の光学材料の製造方法。
<21> 2種以上の異なる光学材料用モノマーと、
 重合触媒と、
 前記2種以上の異なる光学材料用モノマーの内の少なくとも2種の光学材料用モノマーを重合させて得られるプレポリマーと、を含み、
 前記重合触媒の含有量が、前記2種以上の異なる光学材料用モノマー及び前記プレポリマーの合計100質量部に対して、0.010質量部~2.0質量部である光学材料用重合性組成物。
<22> B型粘度計で25℃ 60rpmの条件で測定した粘度が70mPa・s~1000mPa・sである<21>に記載の光学材料用重合性組成物。
<23> 2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造する方法であって、
 第1原料組成物及び第2原料組成物を準備する原料組成物準備工程と、
 前記第1原料組成物及び前記第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断工程と、
 前記光学材料用重合性組成物に撹拌力を加える撹拌工程と、
 前記撹拌工程の後、前記光学材料用重合性組成物をモールドに注型する注型工程と、
 前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化工程と、
を含み、
 前記第1原料組成物及び前記第2原料組成物の少なくとも一方が、前記プレポリマーを含む混合物を含む<1>~<20>のいずれか1つに記載の光学材料の製造方法。
<24> 前記第1原料組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度Vaと、
 前記第2原料組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度Vbと、の差の絶対値Vが、20mPa・s~1500mPa・sの範囲内である<23>に記載の光学材料の製造方法。
<25> 前記粘度Vaが10mPa・s~2000mPa・sの範囲内である<24>に記載の光学材料の製造方法。
<26> 前記第1原料組成物が、ポリイソシアネート化合物、エポキシ化合物及びエピチオ化合物からなる群から選択される少なくとも1種の化合物を含む<23>~<25>のいずれか1つに記載の光学材料の製造方法。
<27> 前記第2原料組成物が、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物、2つ以上の水酸基を含むポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも1種の活性水素化合物を含む<23>~<26>のいずれか1つに記載の光学材料の製造方法。
<28> 前記注型工程における前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sである<23>~<27>のいずれか1つに記載の光学材料の製造方法。
<29> 前記重合触媒は、下記条件1を満たす<23>~<28>のいずれか1つに記載の光学材料の製造方法。
[条件1]
 -Ea/Rが、-7100以上-2900以下である。
(Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
<30> 前記重合触媒は、pKa値が4~8である塩基性触媒、及び、有機金属系触媒からなる群から選択される少なくとも1種を含む<23>~<29>のいずれか1つに記載の光学材料の製造方法。
<31> 2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造するシステムであって、
 第1原料組成物及び第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断部と、
 前記光学材料用重合性組成物に撹拌力を加える撹拌部と、
 前記光学材料用重合性組成物をモールドに注型する注型部と、
 前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化部と、
 定量送液部と、
を含む光学材料製造システム。
<32> さらに、前記せん断部のせん断力、前記撹拌部における光学材料用重合性組成物の温度、前記硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質、及び、前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度と相関がある特徴量からなる群から選択される少なくとも1つの条件に応じて、前記撹拌部における前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度を制御する粘度制御部を備える<31>に記載の光学材料製造システム。
<33> さらに、前記せん断部のせん断力、前記撹拌部における光学材料用重合性組成物の温度、前記硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質、及び、前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度と相関がある特徴量からなる群から選択される少なくとも1つの条件に応じて、前記撹拌部における温度を制御する温度制御部を備える<31>又は<32>に記載の光学材料製造システム。
<34> 所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、前記空間に重合性組成物を注入する注入工程と、前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、を含み、前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、前記ガラスから完全に剥がれるフィルムであり、前記フィルムは、熱変形温度が70℃以上である光学部材の製造方法。
<35> 前記重合性組成物は、25℃において増粘曲線(y=aebx)の傾きが0.4以上である<34>に記載の光学部材の製造方法。
<36> 前記硬化工程において、硬化時間は10時間以下である<34>又は<35>に記載の光学部材の製造方法。
<37> 前記フィルムは、80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下である<34>~<36>のいずれか1つに記載の光学部材の製造方法。
<38> 前記硬化工程において、前記重合性組成物の硬化に伴い、前記2つのモールド基板の少なくとも一方が前記フィルムとの接触面上を移動し、前記モールド基板間の間隔が前記空間形成工程における前記モールド基板間の間隔よりも小さくなる<34>~<37>のいずれか1つに記載の光学部材の製造方法。
<39> 前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、を含み、前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が0.010質量部~2.0質量部であり、B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sである<34>~<38>のいずれか1つに記載の光学部材の製造方法。
<40> 前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、前記2種以上の異なる光学材料用モノマーの重合体であり重合性官能基を含むプレポリマーと、を含む<34>~<39>のいずれか1つに記載の光学部材の製造方法。
<41> 前記2種以上の異なる光学材料用モノマーが、2つ以上のメルカプト基を含むポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物、2つ以上の水酸基を含むポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも1つの活性水素化合物を含む<39>又は<40>に記載の光学部材の製造方法。
<42> 前記重合触媒は、下記条件1を満たす<39>~<41>のいずれか1つに記載の光学部材の製造方法。
[条件1]
-Ea/Rが、-7100以上-2900以下である。
(Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
<43> 前記重合触媒が、アミン系触媒及び有機錫系触媒からなる群から選択される少なくとも1つを含む<39>~<42>のいずれか1つに記載の光学部材の製造方法。
<44> 所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、10時間以下で前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するための光学部材製造用フィルムであって、
 少なくとも基材層及び粘着層を含み、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、前記ガラスから完全に剥がれる光学部材製造用フィルム。
<45> 所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するためのモールドであって、前記モールドの主面の略直径が60cm~80cmである光学部材製造用モールド。
<46> 2種以上の異なる光学用モノマーの硬化物であって、前記硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がなく、
 前記硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が略直線である硬化物。
<47> 前記一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含む<46>に記載の硬化物。
<48> ガスクロマトグラフ質量分析で測定されるアミンの含有量が、0.03質量%以上2.5質量%以下である<46>又は<47>に記載の硬化物。
<49> チオウレタン樹脂を含む<46>~<48>のいずれか1つに記載の硬化物。
<50> 所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、前記空間に重合性組成物を注入する注入工程と、前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、を含み、前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上であり(但し、前記ガラスから完全に剥がれる場合を除く)、前記フィルムは、熱変形温度が120℃以下である光学部材の製造方法。
<51> 前記重合性組成物は、25℃において増粘曲線の傾き(y=aebx)が0.4以上である<50>に記載の光学部材の製造方法。
<52> 前記硬化工程において、硬化時間は10時間以下である<50>又は<51>に記載の光学部材の製造方法。
<53> 前記フィルムは、80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下である<50>~<52>のいずれか1つに記載の光学部材の製造方法。
<54> 前記硬化工程において、前記空間に注入された前記重合性組成物を閉鎖系空間に静置することで前記重合性組成物を硬化させる<50>~<53>のいずれか1つに記載の光学部材の製造方法。
<55> 前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、を含み、前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が0.010質量部~2.0質量部であり、B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sである<50>~<54>のいずれか1つに記載の光学部材の製造方法。
<56> 前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、前記2種以上の異なる光学材料用モノマーの重合体であり重合性官能基を含むプレポリマーと、を含む<50>~<55>のいずれか1つに記載の光学部材の製造方法。
<57> 前記2種以上の異なる光学材料用モノマーが、2つ以上のメルカプト基を含むポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物、2つ以上の水酸基を含むポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも1つの活性水素化合物を含む<55>又は<56>に記載の光学部材の製造方法。
<58> 前記重合触媒は、下記条件1を満たす<55>~<57>のいずれか1つに記載の光学部材の製造方法。
[条件1]
-Ea/Rが、-7100以上-2900以下である。
(Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
<59> 前記重合触媒が、アミン系触媒及び有機錫系触媒からなる群から選択される少なくとも1つを含む<55>~<58>のいずれか1つに記載の光学部材の製造方法。
<60> 所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、10時間以下で前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するための光学部材製造用フィルムであって、
 少なくとも基材層及び粘着層を含み、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上である(但し、前記ガラスから完全に剥がれる場合を除く)光学部材製造用フィルム。
<61> 所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するためのモールドであって、前記モールドの主面の略直径が60cm~80cmである光学部材製造用モールド。
<62> 2種以上の異なる光学用モノマーの硬化物であって、前記硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がなく、
 前記硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が凹状の曲線である硬化物。
<63> 前記一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含む<62>に記載の硬化物。
<64> ガスクロマトグラフ質量分析で測定されるアミンの含有量が、0.03質量%以上2.5質量%以下である<62>又は<63>に記載の硬化物。
<65> チオウレタン樹脂を含む<62>~<64>のいずれか1つに記載の硬化物。
Specific means for solving the above-mentioned problems include the following aspects.
<1> A method for producing an optical material using a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass as raw materials. ,
A preparatory step for preparing a total of 100 parts by mass of the two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of the polymerization catalyst.
A part of the two or more different monomers for optical materials and at least a part of the polymerization catalyst are mixed, and at least a part of the two or more different monomers for optical materials is polymerized to prepolymerize. A prepolymerization step of obtaining a mixture containing the prepolymer by obtaining a polymer, and
A method for manufacturing an optical material including.
<2> Further, by adding at least the remainder of the two or more kinds of different optical material monomers to the mixture containing the prepolymer, the two or more kinds of different optical material monomers and the prepolymer can be obtained. , A step of producing a polymerizable composition for an optical material for obtaining a polymerizable composition for an optical material containing the above-mentioned polymerization catalyst, and the like.
A curing step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material is included. 1> The method for producing an optical material according to 1.
<3> In the prepolymerization step, a part of the two or more kinds of monomers for different optical materials and all of the polymerization catalysts are mixed, and the part of the monomers for different kinds of optical materials of two or more kinds is used. The method for producing an optical material according to <2>, which is a step of obtaining a mixture containing the prepolymer by polymerizing at least a part thereof to obtain a prepolymer.
<4> A part of the two or more different optical material monomers is all of one optical material monomer among the two or more different optical material monomers, and the one optical material monomer. The method for producing an optical material according to <3>, which comprises a part of a monomer for an optical material other than the above.
<5> In the prepolymerization step, a part of the two or more kinds of monomers for different optical materials and a part of the polymerization catalyst are mixed, and a part of the two or more kinds of monomers for different optical materials. A step of obtaining a mixture containing the prepolymer by polymerizing at least a part of the above.
In the process of producing a polymerizable composition for an optical material, at least the remainder of the two or more different monomers for an optical material and the balance of the polymerization catalyst are added to the mixture containing the prepolymer, whereby the two types are described. The method for producing an optical material according to <2>, which is a step of obtaining a polymerizable composition for an optical material containing the above-mentioned different monomers for an optical material, the prepolymer, and the polymerization catalyst.
<6> The two or more different monomers for optical materials contain an isocyanate compound (A).
A part of the two or more kinds of monomers for different optical materials contains a part of the isocyanate compound (A), and the balance of the two or more kinds of monomers for different optical materials contains the balance of the isocyanate compound (A) <5>. The method for manufacturing an optical material according to.
<7> The method for producing an optical material according to <5> or <6>, wherein a part of the polymerization catalyst is 5 parts by mass to 80 parts by mass in 100 parts by mass of the polymerization catalyst.
<8> A part of the two or more kinds of monomers for different optical materials is 5 parts by mass to 95 parts by mass out of 100 parts by mass of the two or more kinds of monomers for different optical materials <2> to <7. > The method for manufacturing an optical material according to any one of.
<9> After the prepolymerization step and before the step of producing the polymerizable composition for an optical material, the viscosity measured with a B-type viscosity meter of the mixture containing the prepolymer under the conditions of 25 ° C. and 60 rpm is measured. The method for producing an optical material according to any one of <2> to <8>, further comprising a viscosity adjusting step of adjusting to 30 mPa · s to 2000 mPa · s.
<10> Further, the remnants of the two or more kinds of monomers for different optical materials and the remnants of the polymerization catalyst are mixed, and at least a part of the remnants of the two or more kinds of monomers for different optical materials is polymerized. A second prepolymerization step of obtaining a mixture containing the second prepolymer by obtaining a second prepolymer, and a second prepolymerization step.
A polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst by adding the mixture containing the second prepolymer to the mixture containing the prepolymer. In the process of manufacturing a polymerizable composition for optical materials,
A curing step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material by curing the prepolymer and the second prepolymer in the polymerizable composition for an optical material.
The method for producing an optical material according to <1>.
<11> A liquid feeding step of feeding the polymerizable composition for optical materials to a casting mold after the step of manufacturing the polymerizable composition for optical materials and before the curing step is further included.
The liquid feeding step is one of <2> to <10>, which is a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it in a static mixer. The method for manufacturing an optical material according to the description.
<12> The curing step includes any one of <2> to <11> including a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand still. The method for manufacturing an optical material according to the description.
<13> The curing step includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand in a closed system space <2> to <12>. The method for manufacturing an optical material according to any one of the above.
<14> The curing step includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand without being heated from the outside <2> to <13>. The method for manufacturing an optical material according to any one of the above.
<15> The curing step of <2> to <14> includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand for 2 to 10 hours. The method for manufacturing an optical material according to any one of them.
<16> The two or more different monomers for optical materials are an isocyanate compound (A), a polythiol compound having two or more mercapto groups, and a hydroxythiol having one or more mercapto groups and one or more hydroxyl groups. One of <1> to <15> containing a compound, a polyol compound having two or more hydroxyl groups, and an active hydrogen compound (B) which is at least one selected from the group consisting of an amine compound. The method for manufacturing an optical material according to the description.
<17> The method for producing an optical material according to <16>, wherein the isocyanate compound (A) contains at least one of an alicyclic isocyanate compound and an aromatic isocyanate compound.
<18> The polymerization catalyst is one of <1> to <17>, which comprises at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst. The method for manufacturing an optical material according to the description.
<19> The method for producing an optical material according to any one of <1> to <18>, wherein the polymerization catalyst contains at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
<20> The polymerization catalyst is 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, N-ethylmorpholine, dibutyltin dichloride, dimethyltin dichloride, dibutyltin dilaurate and The method for producing an optical material according to any one of <1> to <19>, which comprises at least one selected from the group consisting of dibutyltindiacetate.
<21> Two or more different monomers for optical materials and
With a polymerization catalyst
A prepolymer obtained by polymerizing at least two kinds of monomers for optical materials among the two or more kinds of monomers for different optical materials, and the like.
The content of the polymerization catalyst is 0.010 parts by mass to 2.0 parts by mass with respect to 100 parts by mass in total of the two or more different monomers for optical materials and the prepolymer. thing.
<22> The polymerizable composition for an optical material according to <21>, wherein the viscosity measured with a B-type viscometer at 25 ° C. and 60 rpm is 70 mPa · s to 1000 mPa · s.
<23> A method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
The raw material composition preparation step for preparing the first raw material composition and the second raw material composition, and
A shearing step of applying a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material.
A stirring step of applying a stirring force to the polymerizable composition for an optical material, and a stirring step.
After the stirring step, a casting step of casting the polymerizable composition for an optical material into a mold, and a casting step.
A curing step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
Including
The method for producing an optical material according to any one of <1> to <20>, wherein at least one of the first raw material composition and the second raw material composition contains a mixture containing the prepolymer.
<24> Viscosity Va measured at 25 ° C. and 60 rpm with a B-type viscometer of the first raw material composition, and
2. The absolute value V of the difference between the viscosity Vb measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer of the second raw material composition is in the range of 20 mPa · s to 1500 mPa · s. Manufacturing method of optical material.
<25> The method for producing an optical material according to <24>, wherein the viscosity Va is in the range of 10 mPa · s to 2000 mPa · s.
<26> The optics according to any one of <23> to <25>, wherein the first raw material composition contains at least one compound selected from the group consisting of a polyisocyanate compound, an epoxy compound and an epithio compound. Material manufacturing method.
<27> The second raw material composition is a polythiol compound having two or more mercapto groups, a hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups, and a polyol compound containing two or more hydroxyl groups. The method for producing an optical material according to any one of <23> to <26>, which comprises at least one active hydrogen compound selected from the group consisting of amine compounds.
<28> Any of <23> to <27> in which the viscosity measured at 25 ° C. and 60 rpm with a B-type viscometer of the polymerizable composition for optical materials in the casting step is 10 mPa · s to 1000 mPa · s. The method for manufacturing an optical material according to one.
<29> The method for producing an optical material according to any one of <23> to <28>, wherein the polymerization catalyst satisfies the following condition 1.
[Condition 1]
-Ea / R is -7100 or more and -2900 or less.
(Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
<30> The polymerization catalyst is any one of <23> to <29>, which comprises at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst. The method for manufacturing an optical material according to.
<31> A system for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
A shearing portion that applies a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material, and a shearing portion.
A stirring unit that applies stirring force to the polymerizable composition for optical materials, and a stirring unit.
A casting portion for casting the polymerizable composition for an optical material into a mold, and a casting portion.
A cured portion that cures the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
The fixed quantity liquid delivery unit and
Optical material manufacturing system including.
<32> Further, the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the optical quality of the cured product obtained by curing the polymerizable composition for optical material in the cured portion. In addition, in the stirring unit, according to at least one condition selected from the group consisting of feature quantities correlating with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials. The optical material manufacturing system according to <31>, comprising a viscosity control unit for controlling the viscosity measured under the condition of 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials.
<33> Further, the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the optical quality of the cured product obtained by curing the polymerizable composition for optical material in the cured portion. And, according to at least one condition selected from the group consisting of feature quantities correlating with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials, in the stirring unit. The optical material manufacturing system according to <31> or <32>, which comprises a temperature control unit for controlling the temperature.
<34> A space forming step of attaching a film to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film, and a space forming step in the space. The film comprises an injection step of injecting a polymerizable composition and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass and heat-resistant at 85 ° C. A film that completely peels off from the glass when an exponential test is performed, and the film is a method for manufacturing an optical member having a thermal deformation temperature of 70 ° C. or higher.
<35> The method for producing an optical member according to <34>, wherein the polymerizable composition has an inclination of a thickening curve (y = ae bx ) of 0.4 or more at 25 ° C.
<36> The method for manufacturing an optical member according to <34> or <35>, wherein the curing time is 10 hours or less in the curing step.
<37> The method for manufacturing an optical member according to any one of <34> to <36>, wherein the film is subjected to a glass ball tack test at 80 ° C. and the moving distance of the glass balls is 200 mm or less. ..
<38> In the curing step, at least one of the two molded substrates moves on the contact surface with the film as the polymerizable composition is cured, and the distance between the molded substrates is the space forming step. The method for manufacturing an optical member according to any one of <34> to <37>, which is smaller than the distance between the molded substrates.
<39> The polymerizable composition comprises two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials. Is 0.010 part by mass to 2.0 parts by mass, and the viscosity measured with a B-type viscometer at 25 ° C. and 60 rpm is 10 mPa · s to 1000 mPa · s. The method for manufacturing an optical member according to the above.
<40> The polymerizable composition is a polymer of two or more kinds of monomers for different optical materials, a polymerization catalyst, and a prepolymer containing a polymerizable functional group, which is a polymer of the two or more kinds of monomers for different optical materials. The method for manufacturing an optical member according to any one of <34> to <39>.
<41> The two or more different monomers for optical materials are polythiol compounds containing two or more mercapto groups, hydroxythiol compounds containing one or more mercapto groups and one or more hydroxyl groups, and two or more hydroxyl groups. The method for producing an optical member according to <39> or <40>, which comprises at least one active hydrogen compound selected from the group consisting of a polyol compound containing a thiol compound and an amine compound.
<42> The method for manufacturing an optical member according to any one of <39> to <41>, wherein the polymerization catalyst satisfies the following condition 1.
[Condition 1]
-Ea / R is -7100 or more and -2900 or less.
(Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
<43> The method for producing an optical member according to any one of <39> to <42>, wherein the polymerization catalyst contains at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
<44> A film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film, and a polymerizable composition is formed in the space. Is a film for manufacturing an optical member for manufacturing an optical member by arranging the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
A film for manufacturing an optical member that includes at least a base material layer and an adhesive layer and is completely peeled off from the glass when the film is attached to glass and subjected to a heat resistance index test at 85 ° C.
<45> A film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and a polymerizable composition is formed in the space. Is a mold for manufacturing an optical member by arranging and curing the polymerizable composition to obtain a cured product, wherein the main surface of the mold has a substantially diameter of 60 cm to 80 cm. ..
<46> A cured product of two or more different optical monomers having no vein having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
The outer peripheral surface of the cured product is a mirror surface, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a substantially straight line.
<47> The cured product according to <46>, wherein the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface include a protrusion substantially parallel to the outer peripheral surface.
<48> The cured product according to <46> or <47>, wherein the amine content measured by gas chromatograph mass spectrometry is 0.03% by mass or more and 2.5% by mass or less.
<49> The cured product according to any one of <46> to <48>, which contains a thiourethane resin.
<50> A space forming step of attaching a film to the outer peripheral surfaces of two mold substrates arranged so as to face each other at a predetermined interval to form a space surrounded by the two mold substrates and the film, and a space forming step in the space. The film comprises an injection step of injecting a polymerizable composition and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass and heat-resistant at 85 ° C. A method for manufacturing an optical member having a heat resistance index of 1 mm or more (provided that it is completely peeled off from the glass) and a thermal deformation temperature of 120 ° C. or less when an exponential test is performed.
<51> The method for producing an optical member according to <50>, wherein the polymerizable composition has an inclination (y = ae bx ) of a thickening curve of 0.4 or more at 25 ° C.
<52> The method for manufacturing an optical member according to <50> or <51>, wherein the curing time is 10 hours or less in the curing step.
<53> The method for manufacturing an optical member according to any one of <50> to <52>, wherein the film is subjected to a glass ball tack test at 80 ° C. and the moving distance of the glass balls is 200 mm or less. ..
<54> In the curing step, the polymerizable composition injected into the space is allowed to stand in a closed space to cure the polymerizable composition to any one of <50> to <53>. The method for manufacturing an optical member according to the description.
<55> The polymerizable composition comprises two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials. 1 The method for manufacturing an optical member according to the above.
<56> The polymerizable composition is a polymer of two or more kinds of monomers for different optical materials, a polymerization catalyst, and a prepolymer containing a polymerizable functional group, which is a polymer of the two or more kinds of monomers for different optical materials. The method for manufacturing an optical member according to any one of <50> to <55>.
<57> The two or more different monomers for optical materials are a polythiol compound containing two or more mercapto groups, a hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups, and two or more hydroxyl groups. The method for producing an optical member according to <55> or <56>, which comprises at least one active hydrogen compound selected from the group consisting of a polyol compound containing a thiol compound and an amine compound.
<58> The method for manufacturing an optical member according to any one of <55> to <57>, wherein the polymerization catalyst satisfies the following condition 1.
[Condition 1]
-Ea / R is -7100 or more and -2900 or less.
(Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
<59> The method for producing an optical member according to any one of <55> to <58>, wherein the polymerization catalyst contains at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
<60> A film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film, and a polymerizable composition is formed in the space. Is a film for manufacturing an optical member for manufacturing an optical member by arranging the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
Manufacturing of optical members including at least a base material layer and an adhesive layer, and having a heat resistance index of 1 mm or more (except when completely peeling off from the glass) when attached to glass and subjected to a heat resistance index test at 85 ° C. Film for.
<61> A film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and a polymerizable composition is formed in the space. Is a mold for manufacturing an optical member by arranging and curing the polymerizable composition to obtain a cured product, wherein the main surface of the mold has a substantially diameter of 60 cm to 80 cm. ..
<62> A cured product of two or more different optical monomers having no vein having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
The outer peripheral surface of the cured product is a mirror surface, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a concave curve.
<63> The cured product according to <62>, wherein the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface include a protrusion substantially parallel to the outer peripheral surface.
<64> The cured product according to <62> or <63>, wherein the amine content measured by gas chromatograph mass spectrometry is 0.03% by mass or more and 2.5% by mass or less.
<65> The cured product according to any one of <62> to <64>, which contains a thiourethane resin.
 本開示の第1実施形態の一実施形態によれば、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができる光学材料の製造方法、上記光学材料の製造方法に用いられる光学材料用重合性組成物を提供することができる。
 本開示の第2実施形態の一実施形態によれば、得られる光学材料におけるU字型の脈理を抑制することができる光学材料の製造方法及び光学材料製造システムを提供することができる。
 本開示の第3実施形態の一実施形態によれば、外周面が平滑である光学部材を製造することができる光学部材の製造方法、光学部材製造用フィルム、光学部材製造用モールド及び硬化物を提供することができる。
 本開示の第4実施形態の一実施形態によれば、外周面が平滑である光学部材を製造することができる光学部材の製造方法、光学部材製造用フィルム、光学部材製造用モールド及び硬化物を提供することができる。
According to one embodiment of the first embodiment of the present disclosure, a method for producing an optical material capable of suppressing pulse in the obtained optical material and shortening the production time of the optical material, the production of the above-mentioned optical material. It is possible to provide a polymerizable composition for an optical material used in the method.
According to one embodiment of the second embodiment of the present disclosure, it is possible to provide a method for manufacturing an optical material and an optical material manufacturing system capable of suppressing a U-shaped pulse in the obtained optical material.
According to one embodiment of the third embodiment of the present disclosure, a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, a mold for manufacturing the optical member, and a cured product are provided. Can be provided.
According to one embodiment of the fourth embodiment of the present disclosure, a method for manufacturing an optical member capable of manufacturing an optical member having a smooth outer peripheral surface, a film for manufacturing the optical member, a mold for manufacturing the optical member, and a cured product are provided. Can be provided.
粘度制御部及び温度制御部によってせん断力情報を取得する場合の制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine when the shearing force information is acquired by a viscosity control unit and a temperature control unit. 粘度制御部及び温度制御部によって撹拌部における光学材料用重合性組成物の温度情報を取得する場合の制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine when the temperature information of the polymerizable composition for an optical material in a stirring part is acquired by a viscosity control part and a temperature control part. 粘度制御部及び温度制御部によって光学材料用重合性組成物の粘度と相関がある特徴量の情報を取得する場合の制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine when the viscosity control unit and the temperature control unit acquire the information of the feature amount which correlates with the viscosity of the polymerizable composition for an optical material. 粘度制御部及び温度制御部によって硬化物の光学品質情報を取得する場合の制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine when the optical quality information of a cured product is acquired by a viscosity control unit and a temperature control unit. 光学材料製造システムの一例を説明するための概略図である。It is a schematic diagram for demonstrating an example of an optical material manufacturing system. 粘度制御部及び温度制御部を実現するコンピュータの構成例を示す図である。It is a figure which shows the structural example of the computer which realizes a viscosity control part and a temperature control part. 空間形成工程を説明するための概略図である。It is a schematic diagram for demonstrating a space formation process. 注入工程を説明するための概略図である。It is a schematic diagram for demonstrating the injection process. 硬化工程におけるモールド基板の移動を説明するための概略図である。It is a schematic diagram for demonstrating the movement of a mold substrate in a curing process. 硬化工程におけるフィルムの形状変化を説明するための概略図である。It is a schematic diagram for demonstrating the shape change of a film in a curing process.
本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
In the present disclosure, the amount of each component in the composition is the total amount of the plurality of substances present in the composition, unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. means.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
 本開示は、以下の第1実施形態~第4実施形態を含む。各実施形態について詳細に説明する。 The present disclosure includes the following first to fourth embodiments. Each embodiment will be described in detail.
[第1実施形態]
≪光学材料の製造方法≫
 第1実施形態の光学材料の製造方法は、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を原料として用いて光学材料を製造する方法であって、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を準備する準備工程と、前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の少なくとも一部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得るプレポリマー化工程と、を含む。
[First Embodiment]
≪Manufacturing method of optical materials≫
The method for producing an optical material according to the first embodiment uses, in total, 100 parts by mass of two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of a polymerization catalyst as raw materials. A method for producing an optical material, which is a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for different optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass. A part of the two or more different monomers for optical materials and at least a part of the polymerization catalyst are mixed, and at least a part of the two or more different monomers for optical materials is polymerized to pre-polymerize. It comprises a prepolymerization step of obtaining a mixture containing the prepolymer by obtaining the polymer.
 第1実施形態の光学材料の製造方法は、準備工程と、プレポリマー化工程と、を含むことで、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができる。
 なお、第1実施形態において脈理とは、特定部分の屈折率が周囲の正常な屈折率と異なっている状態を指す。光学材料における脈理は、品質を劣化させる要因の1種である。
The method for producing an optical material according to the first embodiment includes a preparation step and a prepolymerization step, whereby the pulse in the obtained optical material can be suppressed and the production time of the optical material can be shortened. can.
In the first embodiment, the refractive index refers to a state in which the refractive index of a specific portion is different from the normal refractive index of the surroundings. Pulsation in optical materials is one of the factors that deteriorate quality.
 第1実施形態の光学材料の製造方法は、上述の準備工程及びプレポリマー化工程に加えて、さらに、前記プレポリマーを含む混合物に対し、少なくとも、前記2種以上の異なる光学材料用モノマーの残部を添加することにより、前記2種以上の異なる光学材料用モノマーと、前記プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、を含むことが好ましい。
In the method for producing an optical material according to the first embodiment, in addition to the preparation step and the prepolymerization step described above, at least the balance of the two or more different monomers for the optical material is added to the mixture containing the prepolymer. To obtain a polymerizable composition for an optical material containing the two or more different monomers for an optical material, the prepolymer, and the polymerization catalyst. ,
A curing step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material. Is preferable.
 第1実施形態の光学材料の製造方法は、準備工程及びプレポリマー化工程に加え、さらに、光学材料用重合性組成物製造工程と、硬化工程と、を含むことで、得られる光学材料における脈理をより良好に抑制し、かつ、光学材料の製造時間をより良好に短縮することができる。 The method for producing an optical material according to the first embodiment further includes, in addition to a preparation step and a prepolymerization step, a step of manufacturing a polymerizable composition for an optical material and a curing step, so that a pulse in the obtained optical material can be obtained. It is possible to suppress the process better and to shorten the manufacturing time of the optical material better.
 第1実施形態における準備工程において準備される光学材料用重合性組成物は、2種以上の異なる光学材料用モノマーの合計100質量部に対する重合触媒の含有量が、0.010質量部~2.0質量部である。この重合触媒の含有量は、従来の光学材料の製造方法と比較して、多量である。
 これによって、硬化工程において光学材料用重合性組成物中の光学材料用モノマーを重合させる際、光学材料用重合性組成物の反応熱(即ち、自己発熱による熱)を短時間に発生させることができる。
 上記反応熱を利用して、光学材料用重合性組成物中の光学材料用モノマーの重合反応を促進させることができるため、従来よりも短い時間で脈理が抑制された高品質な光学材料を得ることができる。
 従来では、重合反応を行う際、光学材料用重合性組成物を加熱して重合反応を発生させていたところ、第1実施形態の光学材料の製造方法において、光学材料用重合性組成物に対する加熱は必ずしも必要ではない。
 また、第1実施形態の光学材料の製造方法は、準備工程と、プレポリマー化工程と、光学材料用重合性組成物製造工程と、硬化工程と、を含むことで、重合反応が行われるモールド内における対流を抑制することができ、得られる硬化物における脈理の発生を抑制することができる。
 また、第1実施形態の光学材料の製造方法におけるプレポリマーは、保存安定性を良好に維持することができる。例えば、プレポリマーを一定期間保存した場合でも、プレポリマーの硬化を抑制することができる。即ち、長期のポットライフを確保することができる。
In the polymerizable composition for optical materials prepared in the preparation step of the first embodiment, the content of the polymerization catalyst with respect to a total of 100 parts by mass of two or more different monomers for optical materials is 0.010 parts by mass to 2. It is 0 parts by mass. The content of this polymerization catalyst is large as compared with the conventional method for producing an optical material.
As a result, when the monomer for optical material in the polymerizable composition for optical material is polymerized in the curing step, the reaction heat (that is, heat due to self-heating) of the polymerizable composition for optical material can be generated in a short time. can.
Since the above reaction heat can be used to accelerate the polymerization reaction of the monomer for optical material in the polymerizable composition for optical material, a high-quality optical material whose pulse is suppressed in a shorter time than before can be obtained. Obtainable.
Conventionally, when the polymerization reaction is carried out, the polymerizable composition for an optical material is heated to generate a polymerization reaction. However, in the method for producing an optical material of the first embodiment, the polymerizable composition for an optical material is heated. Is not always necessary.
Further, the method for producing an optical material according to the first embodiment includes a preparation step, a prepolymerization step, a polymerizable composition manufacturing step for an optical material, and a curing step, whereby a molding in which a polymerization reaction is carried out is performed. It is possible to suppress the convection in the inside, and it is possible to suppress the generation of pulsation in the obtained cured product.
In addition, the prepolymer in the method for producing an optical material according to the first embodiment can maintain good storage stability. For example, even when the prepolymer is stored for a certain period of time, the curing of the prepolymer can be suppressed. That is, a long-term pot life can be secured.
<準備工程>
 第1実施形態の光学材料の製造方法は、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を準備する準備工程を含む。
 2種以上の異なる光学材料用モノマーの種類は、例えば、5種以下でもよく、3種以下でもよい。
<Preparation process>
The method for producing an optical material according to the first embodiment is a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of a polymerization catalyst. including.
The types of two or more different types of monomers for optical materials may be, for example, five or less, or three or less.
(光学材料用モノマー)
 準備工程における2種以上の異なる光学材料用モノマーは、一部が後述のプレポリマー化工程におけるプレポリマーを得るために用いられる。
 また、2種以上の異なる光学材料用モノマーの残部は、後述の光学材料用重合性組成物製造工程において製造される光学材料用重合性組成物に含まれる。
(Monomer for optical materials)
Two or more different optical material monomers in the preparatory step are partially used to obtain the prepolymer in the prepolymerization step described below.
Further, the balance of two or more different monomers for optical materials is contained in the polymerizable composition for optical materials produced in the step of producing the polymerizable composition for optical materials described later.
 光学材料用モノマーとしては、イソシアネート化合物、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物、2つ以上の水酸基を有するポリオール化合物、アミン化合物等を挙げることができる。 Examples of the monomer for optical materials include isocyanate compounds, polythiol compounds having two or more mercapto groups, hydroxythiol compounds having one or more mercapto groups and one or more hydroxyl groups, and polyol compounds having two or more hydroxyl groups. Examples thereof include amine compounds.
 2種以上の異なる光学材料用モノマーは、イソシアネート化合物(A)と、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物、2つ以上の水酸基を有するポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも一種である活性水素化合物(B)と、を含むことが好ましい。 Two or more different monomers for optical materials are an isocyanate compound (A), a polythiol compound having two or more mercapto groups, and a hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups. It is preferable to contain the above-mentioned polyol compound having a hydroxyl group and the active hydrogen compound (B) which is at least one selected from the group consisting of amine compounds.
〔イソシアネート化合物(A)〕
 イソシアネート化合物(A)としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、芳香族イソシアネート化合物、複素環イソシアネート化合物等が挙げられ、1種または2種以上混合して用いられる。これらのイソシアネート化合物は、二量体、三量体、プレポリマーを含んでもよい。これらのイソシアネート化合物としては、国際公開第2011/055540号に例示された化合物を挙げることができる。
 なお、第1実施形態において、脂環族イソシアネート化合物は、脂環式構造を含み、かつ、複素環構造などの脂環式構造以外の構造を含んでもよいイソシアネート化合物を指す。
 芳香族イソシアネート化合物は、芳香族構造を含み、かつ、脂肪族構造、脂環式構造及び複素環構造のいずれか1つ又はこれらの組合せを含んでもよいイソシアネート化合物を指す。
 複素環イソシアネート化合物は、複素環構造を含み、かつ、脂環式構造及び芳香族構造を含まないイソシアネート化合物を指す。
 脂肪族イソシアネート化合物は、芳香族構造、脂環式構造及び複素環構造を含まないイソシアネート化合物を指す。
[Isocyanate compound (A)]
Examples of the isocyanate compound (A) include an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound, and a heterocyclic isocyanate compound, and one type or a mixture of two or more types is used. These isocyanate compounds may include dimers, trimers and prepolymers. Examples of these isocyanate compounds include the compounds exemplified in International Publication No. 2011/0555540.
In the first embodiment, the alicyclic isocyanate compound refers to an isocyanate compound containing an alicyclic structure and may contain a structure other than the alicyclic structure such as a heterocyclic structure.
The aromatic isocyanate compound refers to an isocyanate compound containing an aromatic structure and which may contain any one of an aliphatic structure, an alicyclic structure and a heterocyclic structure, or a combination thereof.
The heterocyclic isocyanate compound refers to an isocyanate compound containing a heterocyclic structure and not containing an alicyclic structure and an aromatic structure.
Aliphatic isocyanate compounds refer to isocyanate compounds that do not contain aromatic, alicyclic and heterocyclic structures.
 イソシアネート化合物(A)としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、芳香族イソシアネート化合物及び複素環イソシアネート化合物から選択される少なくとも一種を含むことが好ましく、脂環族イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方を含むことがより好ましい。 The isocyanate compound (A) preferably contains at least one selected from an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound and a heterocyclic isocyanate compound, and preferably contains an alicyclic isocyanate compound and an aromatic isocyanate compound. It is more preferable to include at least one of the above.
 第1実施形態において、光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮する観点から、イソシアネート化合物(A)は、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、イソホロンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、及び1,5-ペンタメチレンジイソシアネートから選択される少なくとも一種を含むことが好ましく、
 2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、及び1,3-ビス(イソシアナトメチル)シクロヘキサンから選択される少なくとも一種を含むことがより好ましく、
 m-キシリレンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、及び2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンから選択される少なくとも一種を含むことがさらに好ましい。
In the first embodiment, from the viewpoint of suppressing the pulse in the optical material and shortening the production time of the optical material, the isocyanate compound (A) is 2,5-bis (isocyanatomethyl) bicyclo- [2. 2.1] -Heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -Heptane, m-xylylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , Dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, isophorone diisocyanate, 1,6-hexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate. It is preferable to contain at least one of them.
2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, m-xylylene diisocyanate, More preferably, it contains at least one selected from dicyclohexylmethane diisocyanate and 1,3-bis (isocyanatomethyl) cyclohexane.
m-xylylene diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane It is more preferable to include at least one selected from.
〔活性水素化合物〕
 活性水素化合物としては、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物、2つ以上の水酸基を有するポリオール化合物、アミン化合物等を挙げることができる。
 活性水素化合物としては、上記活性水素化合物のオリゴマー、上記活性水素化合物のハロゲン置換体(例えば塩素置換体、臭素置換体等)を使用してもよい。
 また、活性水素化合物は、単独で用いてもよく、2種類以上を混合して用いてもよい。
[Active hydrogen compound]
Examples of the active hydrogen compound include polythiol compounds having two or more mercapto groups, hydroxythiol compounds having one or more mercapto groups and one or more hydroxyl groups, polyol compounds having two or more hydroxyl groups, amine compounds and the like. Can be mentioned.
As the active hydrogen compound, an oligomer of the active hydrogen compound or a halogen-substituted product of the active hydrogen compound (for example, a chlorine-substituted product, a bromine-substituted product, etc.) may be used.
Further, the active hydrogen compound may be used alone or in combination of two or more.
(2つ以上のメルカプト基を有するポリチオール化合物)
 ポリチオール化合物は、2つ以上のメルカプト基を有する化合物であり、国際公開第2016/125736号に例示された化合物を挙げることができる。
 第1実施形態において、光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮する観点から、ポリチオール化合物は、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ビス(メルカプトエチル)スルフィド、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、及び2-(2,2-ビス(メルカプトメチルチオ)エチル)-1,3-ジチエタンから選択される少なくとも一種を含むことが好ましく、
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン
、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(2-メルカプトアセテート)、及び2,5-ビス(メルカプトメチル)-1,4-ジチアンから選択される少なくとも一種を含むことがより好ましく、
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、及び、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)から選択される少なくとも一種を含むことがさらに好ましい。
(Polythiol compound having two or more mercapto groups)
The polythiol compound is a compound having two or more mercapto groups, and examples thereof include the compounds exemplified in International Publication No. 2016/125736.
In the first embodiment, from the viewpoint of suppressing the pulse in the optical material and shortening the production time of the optical material, the polythiol compound is 4-mercaptomethyl-1,8-dimercapto-3,6-dithiane octane, 5 , 7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiane undecane, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiane undecane, 4,8 -Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiandecan, pentaerythritol tetrakis (3-mercaptopropionate), bis (mercaptoethyl) sulfide, pentaerythritol tetrakis (2-mercaptoacetate), 2,5-bis (mercaptomethyl) -1,4-dithiane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 4,6-bis (mercaptomethylthio) -1,3-dithiane, and 2- It preferably contains at least one selected from (2,2-bis (mercaptomethylthio) ethyl) -1,3-dithietane.
4-Mercaptomethyl-1,8-Dimercapto-3,6-dithiaoctane, 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiaundecane, 4,7-Dimercaptomethyl-1 , 11-Dimercapto-3,6,9-Trithiandecan, 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, Pentaerythritol tetrakis (3-mercaptopropionate) , Pentaerythritol tetrakis (2-mercaptoacetate), and 2,5-bis (mercaptomethyl) -1,4-dithian, more preferably.
4-Mercaptomethyl-1,8-Dimercapto-3,6-dithiaoctane, 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiaundecane, 4,7-Dimercaptomethyl-1 , 11-Dimercapto-3,6,9-Trithiandecan, 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, and Pentaerythritol tetrakis (3-Mercaptopropio) It is more preferable to contain at least one selected from (nate).
(1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物)
 ヒドロキシ基を有するチオール化合物としては、例えば、2-メルカプトエタノール、3-メルカプト-1,2-プロパンジオール、グルセリンビス(メルカプトアセテート)、4-メルカプトフェノール、2,3-ジメルカプト-1-プロパノール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)等を挙げることができるが、これら例示化合物のみに限定されるものではない。
(Hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups)
Examples of the thiol compound having a hydroxy group include 2-mercaptoethanol, 3-mercapto-1,2-propanediol, glycerinbis (mercaptoacetate), 4-mercaptophenol, 2,3-dimercapto-1-propanol, and pentaerythritol. Tris (3-mercaptopropionate), pentaerythritol tris (thioglycolate) and the like can be mentioned, but are not limited to these exemplified compounds.
(2つ以上の水酸基を有するポリオール化合物)
 ポリオール化合物としては、1種以上の脂肪族または脂環族アルコールが挙げられる。具体的には、直鎖または分枝鎖の脂肪族アルコール、脂環族アルコール、これらのアルコールに、エチレンオキサイド、プロピレンオキサイド及びε-カプロラクトンからなる群から選択される少なくとも1種を付加させたアルコール等が挙げられる。より具体的には国際公開第2016/125736号に例示された化合物が挙げられる。
(Polyol compound having two or more hydroxyl groups)
Examples of the polyol compound include one or more aliphatic or alicyclic alcohols. Specifically, a linear or branched fatty alcohol, an alicyclic alcohol, or an alcohol obtained by adding at least one selected from the group consisting of ethylene oxide, propylene oxide, and ε-caprolactone to these alcohols. And so on. More specifically, the compounds exemplified in International Publication No. 2016/125736 can be mentioned.
 ポリオール化合物は、好ましくは、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,2-シクロペンタンジオール、1,3-シクロペンタンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオールから選択される少なくとも一種である。 The polyol compound is preferably ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,2-cyclopentanediol, 1,3-cyclopentanediol, 1,2-cyclohexanediol, 1 , 3-Cyclohexanediol, 1,4-Cyclohexanediol is at least one selected from.
(アミン化合物)
 アミン化合物としては、エチレンジアミン、1,2-又は1,3-ジアミノプロパン、1,2-、1,3-又は1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,10-ジアミノデカン、1,2-、1,3-又は1,4-ジアミノシクロヘキサン、o-、m-又はp-ジアミノベンゼン、3,4-又は4,4’-ジアミノベンゾフェノン、3,4-又は4,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルフィド、3,3’又は4,4’-ジアミノジフェニルスルフォン、2,7-ジアミノフルオレン、1,5-、1,8-又は2,3-ジアミノナフタレン、2,3-、2,6-又は3,4-ジアミノピリジン、2,4-又は2,6-ジアミノトルエン、m-又はp-キシリレンジアミン、イソホロンジアミン、ジアミノメチルビシクロヘプタン、1,3-又は1,4-ジアミノメチルシクロヘキサン、2-又は4-アミノピペリジン、2-又は4-アミノメチルピペリジン、2-又は4-アミノエチルピペリジン、N-アミノエチルモルホリン、N-アミノプロピルモルホリン等の1級ポリアミン化合物;
 ジエチルアミン、ジプロピルアミン、ジ-n-ブチルアミン、ジ-sec-ブチルアミン、ジイソブチルアミン、ジ-n-ペンチルアミン、ジ-3-ペンチルアミン、ジヘキシルアミン、ジオクチルアミン、ジ(2-エチルヘキシル)アミン、メチルヘキシルアミン、ジアリルアミン、N-メチルアリルアミン、ピペリジン、ピロリジン、ジフェニルアミ
ン、N-メチルアミン、N-エチルアミン、ジベンジルアミン、N-メチルベンジルアミン、N-エチルベンジルアミン、ジシクロヘキシルアミン、N-メチルアニリン、N-エチルアニリン、ジナフチルアミン、1-メチルピペラジン、モルホリン等の単官能2級アミン化合物;
 N,N’-ジメチルエチレンジアミン、N,N’-ジメチル-1,2-ジアミノプロパン、N,N’-ジメチル-1,3-ジアミノプロパン、N,N’-ジメチル-1,2-ジアミノブタン、N,N’-ジメチル-1,3-ジアミノブタン、N,N’-ジメチル-1,4-ジアミノブタン、N,N’-ジメチル-1,5-ジアミノペンタン、N,N’-ジメチル-1,6-ジアミノヘキサン、N,N’-ジメチル-1,7-ジアミノヘプタン、N,N’-ジエチルエチレンジアミン、N,N’-ジエチル-1,2-ジアミノプロパン、N,N’-ジエチル-1,3-ジアミノプロパン、N,N’-ジエチル-1,2-ジアミノブタン、N,N’-ジエチル-1,3-ジアミノブタン、N,N’-ジエチル-1,4-ジアミノブタン、N,N’-ジエチル-1,5-ジアミノペンタン、N,N’-ジエチル-1,6-ジアミノヘキサン、N,N’-ジエチル-1,7-ジアミノヘプタン、ピペラジン、2-メチルピペラジン、2,5-ジメチルピペラジン、2,6-ジメチルピペラジン、ホモピペラジン、1,1-ジ-(4-ピペリジル)メタン、1,2-ジ-(4-ピペリジル)エタン、1,3-ジ-(4-ピペリジル)プロパン、1,4-ジ-(4-ピペリジル)ブタン、テトラメチルグアニジン等の2級ポリアミン化合物;等が挙げられる。
(Amine compound)
Examples of the amine compound include ethylenediamine, 1,2- or 1,3-diaminopropane, 1,2-, 1,3- or 1,4-diaminobutane, 1,5-diaminopentane, and 1,6-diaminohexane. 1,7-diaminoheptane, 1,8-diaminooctane, 1,10-diaminodecane, 1,2-, 1,3- or 1,4-diaminocyclohexane, o-, m- or p-diaminobenzene, 3 , 4- or 4,4'-diaminobenzophenone, 3,4- or 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3,3'or 4,4 '-Diaminodiphenyl sulphon, 2,7-diaminofluorene, 1,5-, 1,8- or 2,3-diaminonaphthalene, 2,3-, 2,6- or 3,4-diaminopyridine, 2,4 -Or 2,6-diaminotoluene, m- or p-xylylene diamine, isophoronediamine, diaminomethylbicycloheptane, 1,3- or 1,4-diaminomethylcyclohexane, 2- or 4-aminopiperidin, 2-or Primary polyamine compounds such as 4-aminomethylpiperidin, 2- or 4-aminoethylpiperidine, N-aminoethylmorpholin, N-aminopropylmorpholin;
Diethylamine, dipropylamine, di-n-butylamine, di-sec-butylamine, diisobutylamine, di-n-pentylamine, di-3-pentylamine, dihexylamine, dioctylamine, di (2-ethylhexyl) amine, methyl Hexylamine, diallylamine, N-methylallylamine, piperidine, pyrrolidine, diphenylamine, N-methylamine, N-ethylamine, dibenzylamine, N-methylbenzylamine, N-ethylbenzylamine, dicyclohexylamine, N-methylaniline, N -Monofunctional secondary amine compounds such as ethylaniline, dinaphthylamine, 1-methylpiperazine, morpholin;
N, N'-dimethylethylenediamine, N, N'-dimethyl-1,2-diaminopropane, N, N'-dimethyl-1,3-diaminopropane, N, N'-dimethyl-1,2-diaminobutane, N, N'-dimethyl-1,3-diaminobutane, N, N'-dimethyl-1,4-diaminobutane, N, N'-dimethyl-1,5-diaminopentane, N, N'-dimethyl-1 , 6-Diaminohexane, N, N'-dimethyl-1,7-diaminoheptane, N, N'-diethylethylenediamine, N, N'-diethyl-1,2-diaminopropane, N, N'-diethyl-1 , 3-Diaminopropane, N, N'-diethyl-1,2-diaminobutane, N, N'-diethyl-1,3-diaminobutane, N, N'-diethyl-1,4-diaminobutane, N, N'-diethyl-1,5-diaminopentane, N, N'-diethyl-1,6-diaminohexane, N, N'-diethyl-1,7-diaminoheptane, piperazine, 2-methylpiperazine, 2,5 -Dimethylpiperazine, 2,6-dimethylpiperazine, homopiperazine, 1,1-di- (4-piperidyl) methane, 1,2-di- (4-piperidyl) ethane, 1,3-di- (4-piperidyl) ) Secondary polyamine compounds such as propane, 1,4-di- (4-piperidyl) butane, tetramethylguanidine; and the like.
 上記の中でも、活性水素化合物(B)は、2つ以上のメルカプト基を有するポリチオール化合物を含むことが好ましい。
 2つ以上のメルカプト基を有するポリチオール化合物の含有量は、活性水素化合物(B)の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。
Among the above, the active hydrogen compound (B) preferably contains a polythiol compound having two or more mercapto groups.
The content of the polythiol compound having two or more mercapto groups is preferably 60% by mass or more, more preferably 70% by mass or more, and more preferably 80% by mass, based on the total mass of the active hydrogen compound (B). It is more preferably mass% or more.
 また、第1実施形態における活性水素化合物(B)としては、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、及び、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)の合計含有量が、活性水素化合物(B)の全質量に対して、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 The total content of the active hydrogen compound (B) in the first embodiment is 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and pentaerythritol tetrakis (3-mercaptopropionate). However, it is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more with respect to the total mass of the active hydrogen compound (B).
 組成物において、イソシアネート化合物(A)中のイソシアネート基(NCO基)に対する、活性水素化合物中の水酸基(OH基)及びメルカプト基(SH基)の総和のモル比(NCO基/(OH基+SH基))は、0.8~1.2であることが好ましく、0.85~1.15であることがより好ましく、0.9~1.1であることがさらに好ましい。 In the composition, the molar ratio of the sum of the hydroxyl group (OH group) and the mercapto group (SH group) in the active hydrogen compound to the isocyanate group (NCO group) in the isocyanate compound (A) (NCO group / (OH group + SH group) )) Is preferably 0.8 to 1.2, more preferably 0.85 to 1.15, and even more preferably 0.9 to 1.1.
<重合触媒>
 準備工程における重合触媒は、少なくとも一部が後述のプレポリマー化工程におけるプレポリマーを得るために用いられる。
<Polymerization catalyst>
The polymerization catalyst in the preparatory step is used, at least in part, to obtain a prepolymer in the prepolymerization step described later.
 重合触媒としては、特に制限はないが、例えば、塩基性触媒、有機金属系触媒、亜鉛カルバミン酸塩、アンモニウム塩、スルホン酸等を用いることができる。
 上記重合触媒は、1種のみ用いてもよく、2種以上を適宜組み合わせて用いてもよい。
The polymerization catalyst is not particularly limited, and for example, a basic catalyst, an organic metal catalyst, a zinc carbamic acid salt, an ammonium salt, a sulfonic acid, or the like can be used.
The above-mentioned polymerization catalyst may be used alone or in combination of two or more as appropriate.
(塩基性触媒)
 塩基性触媒としては、アミン系触媒、イミダゾール系触媒等が挙げられる。
 具体的には、トリエチレンジアミン、N,N-ジメチルエタノールアミン,トリエチルアミン、N-エチルモルホリンなどの3級アミン系触媒,2-メチルピラジン、ピリジン、α-ピコリン、β-ピコリン、γ-ピコリン、2,6-ルチジン、3,5-ルチジン、
2,4,6-コリジン、3-クロルピリジン、N,N-ジエチルアニリン、N,N-ジメチルアニリン、ヘキサメチレンテトラミン、キノリン、イソキノリン、N,N-ジメチル-p-トルイジン、N,N-ジメチルピペラジン、キナルジン、4-メチルモルホリン、トリアリルアミン、トリオクチルアミン、1.2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール等が挙げられる。
(Basic catalyst)
Examples of the basic catalyst include an amine-based catalyst and an imidazole-based catalyst.
Specifically, tertiary amine-based catalysts such as triethylenediamine, N, N-dimethylethanolamine, triethylamine, and N-ethylmorpholin, 2-methylpyrazine, pyridine, α-picoline, β-picoline, γ-picoline, 2 , 6-Lutidine, 3,5-Lutidine,
2,4,6-cholidine, 3-chlorpyridine, N, N-diethylaniline, N, N-dimethylaniline, hexamethylenetetramine, quinoline, isoquinoline, N, N-dimethyl-p-toluidine, N, N-dimethyl Examples thereof include piperazine, quinaldine, 4-methylmorpholine, triallylamine, trioctylamine, 1.2-dimethylimidazole, 1-benzyl-2-methylimidazole and the like.
 上記の中でも、塩基性触媒としては、上記の中でもアミン系触媒が好ましい。
 アミン系触媒としては、例えば、3,5-ルチジン,2,4,6-コリジン,トリエチレンジアミン、N,N-ジメチルエタノールアミン,トリエチルアミン、N-エチルモルホリンなどの3級アミン系触媒等が挙げられる。
Among the above, as the basic catalyst, an amine-based catalyst is preferable among the above.
Examples of the amine-based catalyst include tertiary amine-based catalysts such as 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, and N-ethylmorpholine. ..
 アミン系触媒は、3,5-ルチジン、2,4,6-コリジン、トリエチレンジアミン、N,N-ジメチルエタノールアミン,トリエチルアミン及びN-エチルモルホリンから選択される少なくとも一種を含むことが好ましい。 The amine-based catalyst preferably contains at least one selected from 3,5-lutidine, 2,4,6-colysine, triethylenediamine, N, N-dimethylethanolamine, triethylamine and N-ethylmorpholine.
 塩基性触媒は、下記一般式(2)で表される化合物、及び/又は、下記一般式(3)で表される化合物を含むことも好ましい。 The basic catalyst preferably contains a compound represented by the following general formula (2) and / or a compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000001

 
 
Figure JPOXMLDOC01-appb-C000001

 
 
 一般式(2)中、Rは炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20のシクロアルキル基、またはハロゲン原子を示し、複数存在するRは同一でも異なっていてもよい。Qは炭素原子または窒素原子を示す。mは0~5の整数を示す。 In the general formula (2), R 1 represents a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or a halogen atom, and there are a plurality of them. R 1 may be the same or different. Q indicates a carbon atom or a nitrogen atom. m represents an integer from 0 to 5.
Figure JPOXMLDOC01-appb-C000002

 
 
Figure JPOXMLDOC01-appb-C000002

 
 
 一般式(3)中、R、R及びRは、それぞれ独立に、炭素数1~20の直鎖アルキル基、炭素数3~20の分岐アルキル基、炭素数3~20のシクロアルキル基、又は、アリル基を示す In the general formula (3), R 2 , R 3 and R 4 are independently each of a linear alkyl group having 1 to 20 carbon atoms, a branched alkyl group having 3 to 20 carbon atoms, and a cycloalkyl group having 3 to 20 carbon atoms. Indicates a group or an allyl group
 塩基性触媒としては、pKa値が1~9であることが好ましく、3~8であることがより好ましく、4~8であることがさらに好ましい。 As the basic catalyst, the pKa value is preferably 1 to 9, more preferably 3 to 8, and even more preferably 4 to 8.
 pKa値(酸解離指数)は、例えば、(a)The Journal of Physical Chemistry vol.68, number6, page1560(1964)記載の方法、(b)京都電子工業株式会社製の電位差自動滴定装置(AT-610(商品名)等)を用いる方法等により測定することができ、また、(c)日本化学会編の化学便覧(改訂3版、昭和59年6月25日、丸善株式会社発行)に記載の酸解離指数等を利用することができる。 The pKa value (acid dissociation index) is, for example, (a) The Journal of Physical Chemistry vol. It can be measured by the method described in 68, number 6, page 1560 (1964), (b) a method using an automatic potential difference titrator (AT-610 (trade name), etc.) manufactured by Kyoto Electronics Manufacturing Co., Ltd., and ( c) The acid dissociation index, etc. described in the Chemistry Handbook edited by the Chemical Society of Japan (Revised 3rd Edition, June 25, 1984, published by Maruzen Co., Ltd.) can be used.
(有機金属系触媒)
 有機金属系触媒としては、有機錫系触媒;鉄、ニッケル、亜鉛などの有機酸塩類;アセチルアセトナート錯体;カルボン酸金属化合物及び4級アンモニウム塩化合物からなる触媒組成物;2環式第3級アミン化合物及び4級アンモニウム塩化合物からなる触媒組成物;チタン又はアルミニウムにアルコキシ基、カルボキシ基などが配位している金属触媒;等が挙げられる。
 有機金属系触媒としては、上記の中でも有機錫系触媒が好ましい。
 有機錫系触媒としては、ジブチルスズジクロリド(DBC)、ジメチルスズジクロリド(DMC)、ジブチルスズジラウレート(DBTDL)、ジブチルスズジアセテート等が挙げられる。
(Organometallic catalyst)
The organometallic catalyst includes an organotin-based catalyst; organic acid salts such as iron, nickel, and zinc; an acetylacetonate complex; a catalyst composition composed of a carboxylate metal compound and a quaternary ammonium salt compound; Examples thereof include a catalyst composition composed of an amine compound and a quaternary ammonium salt compound; a metal catalyst in which an alkoxy group, a carboxy group or the like is coordinated with titanium or aluminum; and the like.
Among the above, the organometallic catalyst is preferable as the organometallic catalyst.
Examples of the organotin catalyst include dibutyltin dichloride (DBC), dimethyltindichloride (DMC), dibutyltin dilaurate (DBTDL), dibutyltin diacetate and the like.
 有機錫系触媒が、ジブチルスズジクロリド、ジメチルスズジクロリド、ジブチルスズジラウレート及びジブチルスズジアセテートから選択される少なくとも一種を含むことが好ましい。 It is preferable that the organotin catalyst contains at least one selected from dibutyltin dichloride, dimethyltindichloride, dibutyltin dilaurate and dibutyltin diacetate.
 重合触媒としては、pKa値が4~8である塩基性触媒、及び、有機金属系触媒からな
る群から選択される少なくとも一種を含むことが好ましい。
The polymerization catalyst preferably contains at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst.
 重合触媒としては、アミン系触媒及び有機錫系触媒から選択される少なくとも一種を含むことも好ましい。 It is also preferable that the polymerization catalyst contains at least one selected from an amine-based catalyst and an organic tin-based catalyst.
 重合触媒としては、3,5-ルチジン、2,4,6-コリジン、トリエチレンジアミン、N,N-ジメチルエタノールアミン,トリエチルアミン、N-エチルモルホリン、ジブチルスズジクロリド、ジメチルスズジクロリド、ジブチルスズジラウレート及びジブチルスズジアセテートからなる群から選択される少なくとも一種を含むことも好ましい。 Polymerization catalysts include 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, N-ethylmorpholine, dibutyltin dichloride, dimethyltin dichloride, dibutyltin dilaurate and dibutyltin diacetate. It is also preferred to include at least one selected from the group consisting of.
 準備工程において、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を準備する。
 即ち、第1実施形態の光学材料の製造方法は、2種以上の異なる光学材料用モノマーの合計100質量部に対して、0.010質量部~2.0質量部の重合触媒を用いる。
 上述の通り、第1実施形態における重合触媒の使用量は、従来の光学材料の製造方法と比較して、多量である。
 これによって、硬化工程において光学材料用重合性組成物中の光学材料用モノマーを重合させる際、光学材料用重合性組成物の反応熱を短時間に発生させることができる。この反応熱をさらに重合に利用することにより、重合反応を良好に促進させることができ、従来よりも短い時間で脈理が抑制された高品質な光学材料を得ることができる。
In the preparation step, a total of 100 parts by mass of two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of a polymerization catalyst are prepared.
That is, in the method for producing an optical material of the first embodiment, a polymerization catalyst of 0.010 part by mass to 2.0 parts by mass is used with respect to a total of 100 parts by mass of two or more different monomers for optical materials.
As described above, the amount of the polymerization catalyst used in the first embodiment is large as compared with the conventional method for producing an optical material.
Thereby, when the monomer for the optical material in the polymerizable composition for the optical material is polymerized in the curing step, the reaction heat of the polymerizable composition for the optical material can be generated in a short time. By further utilizing this heat of reaction for polymerization, the polymerization reaction can be satisfactorily promoted, and a high-quality optical material in which pulse is suppressed can be obtained in a shorter time than before.
 2種以上の異なる光学材料用モノマー100質量部に対して、0.010質量部以上の重合触媒を用いることで、良好に重合反応を促進することができるため、短い時間で脈理が抑制された高品質な光学材料を得ることができる。また、良好に重合反応を促進することで、硬化物をモールドから取り出す際の離型性を向上させることができる。
 上記の観点から、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、0.015質量部以上を用いることが好ましく、0.038質量部以上を用いることがより好ましく、0.10質量部以上を用いることがさらに好ましく、0.17質量部以上を用いることが特に好ましい。
By using a polymerization catalyst of 0.010 parts by mass or more with respect to 100 parts by mass of two or more different monomers for optical materials, the polymerization reaction can be satisfactorily promoted, so that the pulse is suppressed in a short time. High quality optical material can be obtained. Further, by satisfactorily promoting the polymerization reaction, it is possible to improve the releasability when the cured product is taken out from the mold.
From the above viewpoint, the polymerization catalyst preferably uses 0.015 parts by mass or more, more preferably 0.038 parts by mass or more, with respect to 100 parts by mass of two or more different monomers for optical materials. It is more preferable to use 0.10 parts by mass or more, and it is particularly preferable to use 0.17 parts by mass or more.
 上述した重合触媒の含有量の範囲は、光学材料用モノマー及び重合触媒の種類によって、適宜変更してもよい。
 例えば、光学材料用モノマーが2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含み、重合触媒が3,5-ルチジンを含む場合、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、0.10質量部以上を用いることが好ましく、0.17質量部以上を用いることがより好ましい。
The range of the content of the above-mentioned polymerization catalyst may be appropriately changed depending on the type of the monomer for optical materials and the polymerization catalyst.
For example, the monomers for optical materials are 2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane, pentaerythritol tetrakis (3-mercaptopropionate), and 4-mercaptomethyl. When -1,8-dimercapto-3,6-dithiaoctane is contained and the polymerization catalyst contains 3,5-lutidine, the polymerization catalyst is 0.10 with respect to 100 parts by mass of two or more different monomers for optical materials. It is preferable to use parts by mass or more, and it is more preferable to use parts by mass or more of 0.17.
 例えば、光学材料用モノマーが、m-キシリレンジイソシアネート、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、及び4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンを含み、重合触媒が3,5-ルチジンを含む場合、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、0.015質量部以上を用いることが好ましく、0.020質量部以上を用いることがより好ましい。 For example, the monomers for optical materials are m-xylylene diisocyanate, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-. When dimercapto-3,6,9-trichiaundecan and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane are contained and the polymerization catalyst contains 3,5-lutidine. The polymerization catalyst preferably uses 0.015 parts by mass or more, and more preferably 0.020 parts by mass or more, with respect to 100 parts by mass of two or more different monomers for optical materials.
 例えば、光学材料用モノマーが、m-キシリレンジイソシアネート及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを含み、重合触媒が3,5-ルチジンを含む場合、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対
して、0.010質量部以上を用いることが好ましく、0.015質量部以上を用いることがより好ましい。
For example, if the monomer for optical materials contains m-xylylene diisocyanate and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and the polymerization catalyst contains 3,5-lutidine, the polymerization catalyst is 2. It is preferable to use 0.010 parts by mass or more, and more preferably 0.015 parts by mass or more with respect to 100 parts by mass of the monomers for different types of optical materials.
 例えば、光学材料用モノマーが、ジシクロヘキシルメタンジイソシアネート及び5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物を含み、重合触媒が3,5-ルチジンを含む場合、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、1.0質量部以上を用いることが好ましく、1.5質量部以上を用いることがより好ましい。 For example, the monomers for optical materials are dicyclohexylmethanediisocyanate and 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto. Containing a mixture of -3,6,9-trithiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, the polymerization catalyst is 3,5-lutidine. When it is contained, the polymerization catalyst preferably uses 1.0 part by mass or more, and more preferably 1.5 parts by mass or more with respect to 100 parts by mass of two or more different monomers for optical materials.
 例えば、光学材料用モノマーが、1,3-ビス(イソシアネートメチル)シクロヘキサン、ペンタエリスリトールテトラキス(2-メルカプトアセテート)及び2,5-ビス(メルカプトメチル)-1,4-ジチアンを含み、重合触媒が3,5-ルチジンを含む場合、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、0.03質量部以上を用いることが好ましく、0.07質量部以上を用いることがより好ましい。 For example, the monomer for optical materials contains 1,3-bis (isocyanismethyl) cyclohexane, pentaerythritol tetrakis (2-mercaptoacetate) and 2,5-bis (mercaptomethyl) -1,4-dithian, and the polymerization catalyst is When 3,5-lutidine is contained, it is preferable to use 0.03 parts by mass or more, and 0.07 parts by mass or more of the polymerization catalyst with respect to 100 parts by mass of two or more different monomers for optical materials. Is more preferable.
 2種以上の異なる光学材料用モノマー100質量部に対して、2.0質量部以下の重合触媒を用いることで、例えば光学材料用重合性組成物をモールドへ注入する際のハンドリング性を向上させることができる。
 上記の観点から、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、1.5質量部以下用いることが好ましい。
 また、光学材料用モノマー及び重合触媒の種類によって、重合触媒は、2種以上の異なる光学材料用モノマー100質量部に対して、1.0質量部以下用いてもよく、0.3質量部以下用いてもよく、0.15質量部以下用いてもよい。
By using a polymerization catalyst of 2.0 parts by mass or less with respect to 100 parts by mass of two or more different monomers for optical materials, for example, the handleability when injecting a polymerizable composition for optical materials into a mold is improved. be able to.
From the above viewpoint, it is preferable to use 1.5 parts by mass or less of the polymerization catalyst with respect to 100 parts by mass of two or more different monomers for optical materials.
Further, depending on the type of the monomer for optical material and the polymerization catalyst, the polymerization catalyst may be used in an amount of 1.0 part by mass or less, and 0.3 part by mass or less, based on 100 parts by mass of two or more different monomers for optical material. It may be used, or 0.15 part by mass or less may be used.
 なお、上記重合触媒の量は、重合触媒の種類、使用するモノマー類(イソシアネート化合物、活性水素化合物、その他の成分等)の種類及び使用量、所望の成形体の形状により適宜設定することができる。 The amount of the polymerization catalyst can be appropriately set depending on the type of the polymerization catalyst, the type and amount of the monomers (isocyanate compound, active hydrogen compound, other components, etc.) used, and the desired shape of the molded product. ..
<プレポリマー化工程>
 第1実施形態の光学材料の製造方法は、2種以上の異なる光学材料用モノマーの一部と、重合触媒の少なくとも一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得るプレポリマー化工程を含む。
<Prepolymerization process>
The method for producing an optical material according to the first embodiment is a method of mixing a part of two or more kinds of monomers for different optical materials and at least a part of a polymerization catalyst, and a part of two or more kinds of monomers for different optical materials. Including a prepolymerization step of obtaining a mixture containing a prepolymer by polymerizing at least a part of the above to obtain a prepolymer.
 本発明者らは、重合反応が行われるモールド内の温度分布が不均一であることにより対流が生じることが、得られる硬化物において脈理を発生させる原因の一つであると考えた。
 そこで、本発明者らは、光学材料用モノマーの一部を予め重合させてプレポリマーを製造し、光学材料用重合性組成物がプレポリマーを含むことで、光学材料用重合性組成物の粘度を高めることに着目した。これによって、モールド内の対流を抑制することができる。
 また、第1実施形態の光学材料の製造方法は、自己発熱を外部に逃がさないようにすることでモールド内部と外周の温度差を生じにくくすることができる。
 以上の観点が相まって、第1実施形態の光学材料の製造方法は、得られる硬化物の脈理を抑制することができると推測される。
The present inventors considered that the occurrence of convection due to the non-uniform temperature distribution in the mold in which the polymerization reaction is carried out is one of the causes of the occurrence of pulse in the obtained cured product.
Therefore, the present inventors have produced a prepolymer by prepolymerizing a part of the monomer for an optical material, and the polymerizable composition for an optical material contains the prepolymer, so that the viscosity of the polymerizable composition for an optical material is high. Focused on increasing. This makes it possible to suppress convection in the mold.
Further, in the method for manufacturing an optical material of the first embodiment, it is possible to prevent a temperature difference between the inside and the outside of the mold from being generated by preventing the self-heating from escaping to the outside.
Combined with the above viewpoints, it is presumed that the method for producing the optical material of the first embodiment can suppress the pulsation of the obtained cured product.
  第1実施形態の光学材料の製造方法は、プレポリマー化工程において、2種以上の異なる光学材料用モノマーの内の1種の光学材料用モノマーの全部と、前記1種の光学材料用モノマー以外の他の光学材料用モノマーの一部と、重合触媒の全部もしくは一部を含むことによって、ポットライフに優れるプレポリマーを得ることができる。 In the prepolymerization step, the method for producing an optical material according to the first embodiment includes all of the monomers for one type of optical material among two or more different monomers for optical material, and the monomer for one type of optical material other than the above-mentioned monomer for optical material. By including a part of other monomers for optical materials and all or part of the polymerization catalyst, a prepolymer having excellent pot life can be obtained.
 「2種以上の異なる光学材料用モノマーの一部」の態様としては、特に制限はない。
 例えば、「2種以上の異なる光学材料用モノマーの一部」は、2種以上の異なる光学材料用モノマーのそれぞれの一部の量であってもよい。
 また、「2種以上の異なる光学材料用モノマーの一部」は、2種以上の異なる光学材料用モノマーの内の1種又は複数種の光学材料用モノマーの全部であってもよい。
The embodiment of "a part of two or more kinds of monomers for different optical materials" is not particularly limited.
For example, "a part of two or more kinds of monomers for different optical materials" may be an amount of a part of each of two or more kinds of monomers for different optical materials.
Further, "a part of two or more kinds of monomers for different optical materials" may be all of one or more kinds of monomers for optical materials among two or more kinds of monomers for different optical materials.
 プレポリマー化工程において、重合触媒は、一部を用いてもよく、全部を用いてもよい。
 重合触媒として一部を用いる場合、「2種以上の異なる光学材料用モノマーの一部」と同様に、「重合触媒の一部」の態様についても、特に制限はない。
 例えば、「重合触媒の一部」は、重合触媒の一部の量であってもよい。
In the prepolymerization step, a part of the polymerization catalyst may be used or the whole may be used.
When a part is used as the polymerization catalyst, there is no particular limitation on the aspect of "a part of the polymerization catalyst" as well as "a part of two or more kinds of monomers for different optical materials".
For example, "a part of the polymerization catalyst" may be a part of the amount of the polymerization catalyst.
 重合触媒として一部を用いる場合、重合触媒の一部は、長期のポットライフを確保する観点から、重合触媒の100質量部の内の5質量部~80質量部であることが好ましく、10質量部~60質量部であることがより好ましく、15質量部~50質量部であることがさらに好ましい。 When a part of the polymerization catalyst is used, the part of the polymerization catalyst is preferably 5 parts by mass to 80 parts by mass out of 100 parts by mass of the polymerization catalyst from the viewpoint of ensuring a long-term pot life, preferably 10 parts by mass. It is more preferably parts to 60 parts by mass, and even more preferably 15 parts by mass to 50 parts by mass.
 2種以上の異なる光学材料用モノマーの一部は、長期のポットライフを確保する観点から、2種以上の異なる光学材料用モノマーの100質量部の内の5質量部~95質量部であることが好ましく、20質量部~80質量部であることがより好ましく、30質量部~70質量部であることがさらに好ましい。 A part of two or more kinds of monomers for different optical materials shall be 5 parts by mass to 95 parts by mass out of 100 parts by mass of two or more kinds of monomers for different optical materials from the viewpoint of ensuring a long-term pot life. It is more preferable, it is more preferably 20 parts by mass to 80 parts by mass, and further preferably 30 parts by mass to 70 parts by mass.
 プレポリマー化工程の具体的態様の例を以下に示すが、第1実施形態におけるプレポリマー化工程は以下の態様に制限されない。 An example of a specific embodiment of the prepolymerization step is shown below, but the prepolymerization step in the first embodiment is not limited to the following embodiments.
(態様a)
 態様aのプレポリマー化工程は、2種以上の異なる光学材料用モノマーの一部と、重合触媒の全部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得る工程である。
(Aspect a)
In the prepolymerization step of embodiment a, a part of two or more kinds of monomers for different optical materials and all of the polymerization catalysts are mixed, and at least a part of two or more kinds of monomers for different optical materials is mixed. This is a step of obtaining a mixture containing a prepolymer by polymerizing to obtain a prepolymer.
 態様aにおいて、2種以上の異なる光学材料用モノマーの一部が、2種以上の異なる光学材料用モノマーの内の1種の光学材料用モノマーの全部と、1種の光学材料用モノマー以外の他の光学材料用モノマーの一部と、からなることが好ましい。 In aspect a, a part of two or more different optical material monomers is all of one optical material monomer among two or more different optical material monomers, and other than one optical material monomer. It is preferably composed of a part of a monomer for other optical materials.
(態様b)
 態様bのプレポリマー化工程は、2種以上の異なる光学材料用モノマーの一部と、重合触媒の一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得る工程である。
 第1実施形態の光学材料の製造方法が態様bのプレポリマー化工程を含む場合、後述の光学材料用重合性組成物製造工程は、プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部及び重合触媒の残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る工程である。
(Aspect b)
The prepolymerization step of embodiment b is a mixture of a part of two or more different monomers for optical materials and a part of a polymerization catalyst, and at least a part of a part of two or more different monomers for optical materials. Is a step of obtaining a mixture containing a prepolymer by polymerizing the above to obtain a prepolymer.
When the method for producing an optical material of the first embodiment includes the prepolymerization step of embodiment b, the step of producing a polymerizable composition for an optical material, which will be described later, differs from the mixture containing the prepolymer by at least two or more kinds. In the step of obtaining a polymerizable composition for an optical material containing two or more different monomers for an optical material, a prepolymer, and a polymerization catalyst by adding a residue of a monomer for an optical material and a residue of a polymerization catalyst. be.
 態様bにおいて、2種以上の異なる光学材料用モノマーがイソシアネート化合物(A)
を含み、2種以上の異なる光学材料用モノマーの一部がイソシアネート化合物(A)の一部を含み、2種以上の異なる光学材料用モノマーの残部がイソシアネート化合物(A)の残部を含むことが好ましい。
In aspect b, two or more different monomers for optical materials are isocyanate compounds (A).
The residue of two or more different optical material monomers may contain a portion of the isocyanate compound (A), and the balance of the two or more different optical material monomers may contain the remainder of the isocyanate compound (A). preferable.
<粘度調整工程>
 第1実施形態の光学材料の製造方法は、プレポリマー化工程の後であって、光学材料用重合性組成物製造工程の前に、プレポリマーを含む混合物のB型粘度計で25℃ 60rpmの条件で測定した粘度(本開示において、単に粘度ともいう)を30mPa・s~2000mPa・sに調整する粘度調整工程をさらに含むことが好ましい。
 プレポリマーを含む混合物の粘度が上記範囲内であることで、得られる光学材料における脈理を抑制する観点から、光学材料用重合性組成物製造工程において製造される光学材料用重合性組成物の粘度を適切な範囲内とすることができる。結果として、得られる光学材料における脈理を抑制できる。
<Viscosity adjustment process>
The method for producing the optical material of the first embodiment is after the prepolymerization step and before the step of producing the polymerizable composition for the optical material, using a B-type viscometer of the mixture containing the prepolymer at 25 ° C. and 60 rpm. It is preferable to further include a viscosity adjusting step of adjusting the viscosity measured under the conditions (also simply referred to as viscosity in the present disclosure) to 30 mPa · s to 2000 mPa · s.
When the viscosity of the mixture containing the prepolymer is within the above range, the polymerizable composition for optical materials produced in the process for producing the polymerizable composition for optical materials is produced from the viewpoint of suppressing the pulse in the obtained optical material. The viscosity can be within an appropriate range. As a result, the pulse in the obtained optical material can be suppressed.
 上記の観点から、プレポリマーを含む混合物の粘度は、40mPa・s~2000mPa・sであることが好ましく、50mPa・s~1800mPa・sであることがより好ましい。
 なお、粘度は、25℃、60rpm(revolutions per minute)の条件下、B型粘度計を用いて測定する。
From the above viewpoint, the viscosity of the mixture containing the prepolymer is preferably 40 mPa · s to 2000 mPa · s, and more preferably 50 mPa · s to 1800 mPa · s.
The viscosity is measured using a B-type viscometer under the conditions of 25 ° C. and 60 rpm (revolutions per minute).
 プレポリマーを含む混合物の粘度を調整する方法としては、特に制限はない。
 例えば、加熱、撹拌等の方法によりプレポリマーを含む混合物の粘度を調整してもよい。
The method for adjusting the viscosity of the mixture containing the prepolymer is not particularly limited.
For example, the viscosity of the mixture containing the prepolymer may be adjusted by a method such as heating or stirring.
 プレポリマーを含む混合物を調製する際の温度としては、重合反応によりプレポリマーを得られる温度であれば特に制限はない。例えば、20℃~50℃でもよく、25℃~45℃でもよい。
 プレポリマーを含む混合物を調製する際の撹拌時間としては、重合反応によりプレポリマーを得られる撹拌時間であれば特に制限はない。例えば30分~5時間でもよく、1時間~5時間でもよい。
The temperature at which the mixture containing the prepolymer is prepared is not particularly limited as long as the temperature at which the prepolymer can be obtained by the polymerization reaction. For example, it may be 20 ° C to 50 ° C or 25 ° C to 45 ° C.
The stirring time for preparing the mixture containing the prepolymer is not particularly limited as long as the stirring time is such that the prepolymer can be obtained by the polymerization reaction. For example, it may be 30 minutes to 5 hours, or 1 hour to 5 hours.
 プレポリマーを含む混合物を調製する方法としては、具体的には、40℃、3時間の条件で撹拌することで、粘度を調整しながらプレポリマーを含む混合物を調製する方法であってもよい。 As a method for preparing a mixture containing a prepolymer, specifically, a method for preparing a mixture containing a prepolymer while adjusting the viscosity by stirring at 40 ° C. for 3 hours may be used.
<光学材料用重合性組成物製造工程>
 第1実施形態の光学材料の製造方法は、プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程を含む。
<Manufacturing process of polymerizable composition for optical materials>
The method for producing an optical material according to the first embodiment is to add at least the balance of two or more different optical material monomers to a mixture containing a prepolymer to obtain two or more different optical material monomers. It comprises a step of manufacturing a polymerizable composition for an optical material for obtaining a polymerizable composition for an optical material containing a prepolymer and a polymerization catalyst.
 光学材料用重合性組成物製造工程は、プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る工程である。
 これによって、プレポリマーを含む混合物と、上記2種以上の異なる光学材料用モノマーの残部と、を混合する際まで、プレポリマーと上記2種以上の異なる光学材料用モノマーの残部との重合の発生を防ぐことができる。
 従って、光学材料用重合性組成物製造工程を適切な時期に行うことで、例えば光学材料用重合性組成物をモールドへ注入する際のハンドリング性を向上させることができる。
 光学材料用重合性組成物製造工程において、プレポリマーを含む混合物に対して少なく
とも2種以上の異なる光学材料用モノマーの残部を添加する際、2種以上の異なる光学材料用モノマーの残部を、単回にて混合してもよく、複数回に分けて混合してもよい。
In the process of producing a polymerizable composition for an optical material, a mixture containing a prepolymer is prepared with two or more different monomers for an optical material by adding at least the balance of two or more different monomers for the optical material. This is a step of obtaining a polymerizable composition for an optical material containing a polymer and a polymerization catalyst.
This causes polymerization of the prepolymer with the remnants of the two or more different optical material monomers until the mixture is mixed with the mixture containing the prepolymer and the remnants of the two or more different optical material monomers. Can be prevented.
Therefore, by performing the step of producing the polymerizable composition for optical materials at an appropriate time, it is possible to improve the handleability when, for example, the polymerizable composition for optical materials is injected into a mold.
In the process of manufacturing a polymerizable composition for an optical material, when the remnants of at least two or more different monomers for an optical material are added to a mixture containing a prepolymer, the remnants of two or more different monomers for an optical material are simply added. It may be mixed in multiple times, or it may be mixed in a plurality of times.
 上記の各成分を混合する際の温度としては、特に制限はないが、30℃以下であることが好ましく、室温(25℃)以下であることがより好ましい。
 各成分を混合する際の温度は、25℃よりもさらに低温にすることが好ましい場合がある。但し、内部離型剤等の添加剤と上記の各成分との溶解性が良好でない場合は、予め上記の各成分を昇温して、上記添加剤を上記の各成分に溶解させてもよい。
The temperature at which each of the above components is mixed is not particularly limited, but is preferably 30 ° C. or lower, and more preferably room temperature (25 ° C.) or lower.
It may be preferable that the temperature at which each component is mixed is lower than 25 ° C. However, if the solubility of the additive such as an internal mold release agent and each of the above-mentioned components is not good, the temperature of each of the above-mentioned components may be raised in advance to dissolve the above-mentioned additive in each of the above-mentioned components. ..
 光学材料用重合性組成物製造工程の具体的態様としては、例えば以下の態様が挙げられる。 Specific embodiments of the process for producing a polymerizable composition for an optical material include, for example, the following embodiments.
 まず、プレポリマーを含む混合物に対して添加剤(例えば内部離型剤)を仕込んで混合液を作製する。この混合液を25℃で1時間撹拌して各成分を完全に溶解させた後、脱気を行い、第1混合液を得る。
 また、光学材料用モノマーの残部と必要に応じて重合触媒の残部とを25℃で30分撹拌して完全に溶解させ第2混合液を得る。
 そして、第1混合液と第2混合液とを混合して撹拌後脱気し、均一な溶液として光学材料用重合性組成物を得る。
First, an additive (for example, an internal mold release agent) is added to the mixture containing the prepolymer to prepare a mixed solution. This mixture is stirred at 25 ° C. for 1 hour to completely dissolve each component, and then degassed to obtain a first mixture.
Further, the balance of the monomer for the optical material and the balance of the polymerization catalyst, if necessary, are stirred at 25 ° C. for 30 minutes to completely dissolve them to obtain a second mixed solution.
Then, the first mixture and the second mixture are mixed, stirred and then degassed to obtain a polymerizable composition for an optical material as a uniform solution.
<送液工程>
 第1実施形態の光学材料の製造方法は、光学材料用重合性組成物製造工程の後であって、硬化工程の前に、光学材料用重合性組成物を注型用鋳型に送液する送液工程をさらに含んでもよい。
 送液工程は、光学材料用重合性組成物を静止型混合器内にて再混合しながら注型用鋳型に送液する工程であってもよい。
 送液工程は、光学材料用重合性組成物をダイナミックミキサーによって再混合しながら注型用鋳型に送液する工程であってもよい。
 これによって、光学材料用重合性組成物を鋳型に送液する間に、光学材料用重合性組成物の分布の不均一性を解消することができるため、得られる硬化物の脈理を抑制することができる。
<Liquid transfer process>
The method for producing an optical material according to the first embodiment is to feed the polymerizable composition for an optical material into a casting mold after the step of producing the polymerizable composition for the optical material and before the curing step. It may further include a liquid step.
The liquid feeding step may be a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it in a static mixer.
The liquid feeding step may be a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it with a dynamic mixer.
As a result, the non-uniformity of the distribution of the polymerizable composition for optical materials can be eliminated while the polymerizable composition for optical materials is sent to the mold, so that the pulse of the obtained cured product is suppressed. be able to.
<光学材料用重合性組成物>
 第1実施形態の光学材料用重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、2種以上の異なる光学材料用モノマーの内の少なくとも2種の光学材料用モノマーを重合させて得られるプレポリマーと、を含み、重合触媒の含有量が、2種以上の異なる光学材料用モノマー及びプレポリマーの合計100質量部に対して、0.010質量部~2.0質量部である。
 これによって、光学材料用重合性組成物中の光学材料用モノマーを重合させる際、光学材料用重合性組成物の反応熱(即ち、自己発熱による熱)を増大させることができる。
 上記反応発熱を利用して、光学材料用重合性組成物中の光学材料用モノマーの重合反応を促進させることができ、従来よりも短い時間で脈理が抑制された高品質な光学材料を得ることができる。
 また、第1実施形態の光学材料用重合性組成物は、上記の構成を有することによって、重合反応が行われるモールド内における対流を抑制することができ、得られる硬化物における脈理の発生を抑制することができる。
<Polymerizable composition for optical materials>
The polymerizable composition for an optical material of the first embodiment comprises two or more kinds of monomers for different optical materials, a polymerization catalyst, and at least two kinds of monomers for optical materials among two or more kinds of monomers for different optical materials. The content of the polymerization catalyst includes the prepolymer obtained by polymerization, and the content of the polymerization catalyst is 0.010 parts by mass to 2.0 parts by mass with respect to 100 parts by mass in total of the monomers and prepolymers for two or more different kinds of different optical materials. It is a department.
Thereby, when the monomer for optical material in the polymerizable composition for optical material is polymerized, the reaction heat (that is, the heat due to self-heating) of the polymerizable composition for optical material can be increased.
By utilizing the above reaction heat generation, the polymerization reaction of the monomer for optical material in the polymerizable composition for optical material can be promoted, and a high-quality optical material in which pulse is suppressed can be obtained in a shorter time than before. be able to.
Further, the polymerizable composition for an optical material of the first embodiment has the above-mentioned structure, so that convection in the mold in which the polymerization reaction is carried out can be suppressed, and the generation of veins in the obtained cured product can be suppressed. It can be suppressed.
 第1実施形態の光学材料用重合性組成物において、重合触媒の含有量は、2種以上の異なる光学材料用モノマー及びプレポリマーの合計100質量部に対して、0.015質量部以上であることが好ましく、0.038質量部以上であることがより好ましく、0.10質量
部以上であることがさらに好ましく、0.17質量部以上であることが特に好ましい。
In the polymerizable composition for optical materials of the first embodiment, the content of the polymerization catalyst is 0.015 parts by mass or more with respect to 100 parts by mass in total of the two or more different monomers and prepolymers for optical materials. It is preferably 0.038 parts by mass or more, further preferably 0.10 parts by mass or more, and particularly preferably 0.17 parts by mass or more.
 第1実施形態の光学材料用重合性組成物において、重合触媒の含有量は、2種以上の異なる光学材料用モノマー及びプレポリマーの合計100質量部に対して、1.5質量部以下であることが好ましく、1.0質量部以下であることがより好ましい。 In the polymerizable composition for optical materials of the first embodiment, the content of the polymerization catalyst is 1.5 parts by mass or less with respect to 100 parts by mass in total of the two or more different monomers and prepolymers for optical materials. It is preferably 1.0 part by mass or less, and more preferably 1.0 part by mass or less.
 第1実施形態の光学材料用重合性組成物は、脈理を抑制する観点から、B型粘度計で25℃ 60rpmの条件で測定した粘度(本開示において、単に粘度ともいう)が70mPa・s以上であることが好ましく、80mPa・s以上であることがより好ましく、100mPa・s以上であることがさらに好ましく、120mPa・s以上であることが特に好ましい。
 第1実施形態の光学材料用重合性組成物は、光学材料を所望の形状に成形する際のハンドリング性を良好に保つ観点から、粘度が1000mPa・s以下であることが好ましく、700mPa・s以下であることがより好ましく、400mPa・s以下であることがさらに好ましい。
 なお、粘度の測定法は上述の通りである。
The polymerizable composition for optical materials of the first embodiment has a viscosity (also simply referred to as viscosity in the present disclosure) of 70 mPa · s measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer from the viewpoint of suppressing pulse. The above is preferable, 80 mPa · s or more is more preferable, 100 mPa · s or more is further preferable, and 120 mPa · s or more is particularly preferable.
The polymerizable composition for an optical material of the first embodiment preferably has a viscosity of 1000 mPa · s or less, preferably 700 mPa · s or less, from the viewpoint of maintaining good handleability when molding the optical material into a desired shape. It is more preferably 400 mPa · s or less, and further preferably 400 mPa · s or less.
The method for measuring the viscosity is as described above.
(他の添加剤)
 第1実施形態の光学材料用重合性組成物は、任意の添加剤を含んでもよい。
 任意の添加剤として、フォトクロミック化合物、内部離型剤、ブルーイング剤、紫外線吸収剤などを挙げることができる。
(Other additives)
The polymerizable composition for an optical material of the first embodiment may contain any additive.
Optional additives include photochromic compounds, internal mold release agents, brewing agents, UV absorbers and the like.
(フォトクロミック化合物)
 フォトクロミック化合物は特定波長の光照射により、分子構造が可逆的に変化し、それに伴って吸光特性(吸収スペクトル)が変化する化合物である。
 第1実施形態で用いるフォトクロミック化合物としては、特定の波長の光に対して吸光特性(吸収スペクトル)が変化する化合物が挙げられる。
(Photochromic compound)
A photochromic compound is a compound in which the molecular structure is reversibly changed by irradiation with light of a specific wavelength, and the absorption characteristics (absorption spectrum) are changed accordingly.
Examples of the photochromic compound used in the first embodiment include compounds whose absorption characteristics (absorption spectrum) change with respect to light having a specific wavelength.
 第1実施形態において、フォトクロミック化合物としては、特に制限はなく、フォトクロミックレンズに使用しうる従来公知の化合物の中から、任意のものを適宜選択して用いることができる。例えば、スピロピラン系化合物、スピロオキサジン系化合物、フルギド系化合物、ナフトピラン系化合物、ビスイミダゾール化合物等から所望の着色に応じて、1種または2種以上を用いることができる。 In the first embodiment, the photochromic compound is not particularly limited, and any conventionally known compound that can be used for a photochromic lens can be appropriately selected and used. For example, one or more of spiropyran compounds, spirooxazine compounds, flugide compounds, naphthopyran compounds, bisimidazole compounds and the like can be used depending on the desired coloring.
 第1実施形態におけるフォトクロミック化合物としては、Vivimed社のReversacol Humber Blue(ポリジメチルシロキサン鎖、ナフトピラン系発色団、Reversacol Calder Blue(ポリジメチルシロキサン鎖、ナフトピラン系発色団、Reversacol Trent Blue(ポリジメチルシロキサン鎖、ナフトピラン系発色団、Reversacol Pennine Green(ポリジメチルシロキサン鎖、ナフトピラン系発色団、Reversacol Heath Green(ポリオキシアルキレン鎖、ナフトピラン系発色団、Reversacol Chilli Red(ポリジメチルシロキサン鎖、ナフトピラン系発色団、Reversacol Wembley Grey(ポリオキシアルキレン鎖、ナフトピラン系発色団、Reversacol Cayenne Red(ポリオキシアルキレン鎖、ナフトピラン系発色団、Peacock Blue(ポリオキシアルキレン鎖、ナフトピラン系発色団、Jalapeno Red(ポリオキシアルキレン鎖、ナフトピラン系発色団等が挙げられ、1種または2種以上組み合わせて用いることができる。 As the photochromic compound in the first embodiment, Vivid's Reversacol Huber Blue (polydimethylsiloxane chain, naphthopylan-based chromophore, Reversacol Calder Blue (polydimethylsiloxane chain, naphthopylan-based chromophore, Reversalcol Trent Blue). Naftpyran chromophore, Reversacol Pennine Green (polydimethylsiloxane chain, naphthopylan chromophore, Reversacol Heat Green (polyoxyalkylene chain, naphthopylan chromophore, Reversacol Chillili Red (polydimethylsiloxane chain, Naftpyran chromophore)) (Polyoxyalkylene chain, naphthopylan chromophore, Riversacol Cayenne Red (polyoxyalkylene chain, naphthopylan chromophore, Peacock Blue (polyoxyalkylene chain, naphthopylan chromophore, Jalapeno Red (polyoxyalkylene chain, naphthopylan chromophore) Etc., and one type or a combination of two or more types can be used.
 内部離型剤としては、酸性リン酸エステルが挙げられる。酸性リン酸エステルとしては、リン酸モノエステル、リン酸ジエステルを挙げることができ、それぞれ単独または2種類以上混合して使用することできる。 Examples of the internal mold release agent include acidic phosphoric acid esters. Examples of the acidic phosphoric acid ester include a phosphoric acid monoester and a phosphoric acid diester, which can be used alone or in combination of two or more.
 なお、光学材料用モノマーとして、重合性が高い光学材料用モノマーを用いる場合には、離型性が比較的低い内部離型剤を用いることが好ましい。重合性が高い光学材料用モノマーとしては、例えば、芳香環を備えるイソシアネート化合物、3官能のポリチオール化合物(具体的には、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンなど)等が挙げられる。これらの重合性が高い光学材料用モノマーは、想定される時期よりもより早期(例えば光学用モノマーの重合中)にモールドから剥離してしまう現象(アーリーリリースとも称される)が生じやすい。そのため、重合性が高い光学材料用モノマーを用いる場合には、離型性が比較的低い内部離型剤を用いることで、上記アーリーリリースの発生を抑制することができる。
 離型性が比較的低い内部離型剤としては、例えば、離型性が比較的低い酸性リン酸エステルが好ましく、具体的にはJP-506H(城北化学工業株式会社製)がより好ましい。
 また、アーリーリリースの発生を抑制する観点から、内部離型剤の添加量を調整することで光学材料用モノマーの離型性を下げることも好ましい。
 具体的には、アーリーリリースの発生を抑制する観点から、内部離型剤の含有量は、1000質量ppm以下であることが好ましい。
When a monomer for an optical material having a high polymerizability is used as the monomer for an optical material, it is preferable to use an internal mold release agent having a relatively low releasability. Examples of the monomer for optical materials having high polymerizable properties include an isocyanate compound having an aromatic ring, a trifunctional polythiol compound (specifically, 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane, etc.) and the like. Can be mentioned. These highly polymerizable monomers for optical materials are likely to be exfoliated from the mold earlier than expected (for example, during the polymerization of the optical monomers) (also referred to as early release). Therefore, when a monomer for an optical material having high polymerizable property is used, the occurrence of the early release can be suppressed by using an internal mold release agent having a relatively low mold release property.
As the internal mold release agent having a relatively low releasability, for example, an acidic phosphoric acid ester having a relatively low releasability is preferable, and specifically, JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.) is more preferable.
Further, from the viewpoint of suppressing the occurrence of early release, it is also preferable to reduce the releasability of the monomer for optical materials by adjusting the amount of the internal release agent added.
Specifically, from the viewpoint of suppressing the occurrence of early release, the content of the internal release agent is preferably 1000 mass ppm or less.
 また、内部離型剤を、プレポリマーを含む混合物、光学材料用重合性組成物等に添加する時期は、特に限定されない。
 内部離型剤は、プレポリマー化工程中に添加してもよく、プレポリマー化工程後のプレポリマーを含む混合物に添加してもよく、プレポリマーを含む混合物に対して添加される2種以上の異なる光学材料用モノマーの残部に添加してもよい。
Further, the timing of adding the internal mold release agent to the mixture containing the prepolymer, the polymerizable composition for optical materials, and the like is not particularly limited.
The internal mold release agent may be added during the prepolymerization step, may be added to the mixture containing the prepolymer after the prepolymerization step, and two or more kinds may be added to the mixture containing the prepolymer. It may be added to the rest of the polymers for different optical materials.
 内部離型剤として、重合触媒と塩を形成する可能性がある酸性リン酸エステルなどの内部離型剤を用いる場合、上記塩が形成されることで重合触媒の触媒活性が低下し、反応時間が長くなる場合がある。
 そのため、プレポリマー化工程における重合反応の時間の延長を抑制する観点から、内部離型剤は、プレポリマー化工程で重合反応が進行している段階では添加しないことが好ましい。
 プレポリマー化工程における重合反応の時間を短縮する観点から、内部離型剤は、重合反応がある程度進行した後の安定した状態におけるプレポリマーを含む混合物、又は2種以上の異なる光学材料用モノマーの残部に添加することが好ましい。
When an internal mold release agent such as an acidic phosphoric acid ester that may form a salt with the polymerization catalyst is used as the internal mold release agent, the catalytic activity of the polymerization catalyst decreases due to the formation of the salt, and the reaction time. May be longer.
Therefore, from the viewpoint of suppressing the extension of the polymerization reaction time in the prepolymerization step, it is preferable not to add the internal mold release agent at the stage where the polymerization reaction is in progress in the prepolymerization step.
From the viewpoint of shortening the time of the polymerization reaction in the prepolymerization step, the internal mold release agent is a mixture containing the prepolymer in a stable state after the polymerization reaction has progressed to some extent, or a monomer for two or more different optical materials. It is preferable to add it to the balance.
 また、プレポリマーの安定性を高める(例えばポットライフを向上させる)観点からは、プレポリマーを含む混合物中の重合触媒の活性を抑制する目的で、内部離型剤は、プレポリマー化工程中の重合反応がある程度安定した状態又は安定させたい時期に、プレポリマーを含む混合物に添加することが好ましい。 Further, from the viewpoint of enhancing the stability of the prepolymer (for example, improving the pot life), the internal release agent is used in the prepolymerization step for the purpose of suppressing the activity of the polymerization catalyst in the mixture containing the prepolymer. It is preferable to add it to the mixture containing the prepolymer when the polymerization reaction is stable to some extent or when it is desired to be stabilized.
 ブルーイング剤としては、可視光領域のうち橙色から黄色の波長域に吸収帯を有し、樹脂からなる光学材料の色相を調整する機能を有するものが挙げられる。ブルーイング剤は、さらに具体的には、青色から紫色を示す物質を含む。 Examples of the bluing agent include those having an absorption band in the orange to yellow wavelength range in the visible light region and having a function of adjusting the hue of an optical material made of resin. More specifically, the bluing agent contains a substance showing a blue color to a purple color.
 用いられる紫外線吸収剤としては、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-5-tert-ブチルベンゾフェノン、2-ヒドロキシ-4-アクリロイルオキシ-2’,4’-ジクロロベンゾフェノン等のベンゾフェノン系紫外線吸収剤、 UV absorbers used include 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-acryloyloxybenzophenone, 2-hydroxy-4-acryloyloxy-5-tert-butylbenzophenone, 2-hydroxy-. Benzophenone-based UV absorbers such as 4-acryloyloxy-2', 4'-dichlorobenzophenone,
 2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロ
キシフェニル]4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシ-4-ブチルオキシフェニル)-6-(2,4-ビス-ブチルオキシフェニル)-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン等のトリアジン系紫外線吸収剤、
2- [4-[(2-Hydroxy-3-dodecyloxypropyl) oxy] -2-hydroxyphenyl] 4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2-[ 4- (2-Hydroxy-3-tridecyloxypropyl) oxy] -2-hydroxyphenyl] -4,6-bis (2,4dimethylphenyl) -1,3,5-triazine, 2- [4- [ (2-Hydroxy-3- (2'-ethyl) hexyl) Oxy] -2-Hydroxyphenyl] -4,6-bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4- Bis (2-hydroxy-4-butyloxyphenyl) -6- (2,4-bis-butyloxyphenyl) -1,3,5-triazine, 2- (2-hydroxy-4- [1-octyloxycarbonyl) Ethoxy] Phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine and other triazine-based UV absorbers,
 2-(2H-ベンゾトリアゾール-2-イル)-4-メチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ジ-tert-ペンチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノール、2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-2,4-tert-ブチルフェノール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-(1,1,3,3-テトラメチルブチル)フェノール]等のベンゾトリアゾール系紫外線吸収剤などが挙げられるが、好ましくは2-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノールや2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-4-メチル-6-tert-ブチルフェノールのベンゾトリアゾール系紫外線吸収剤が挙げられる。これらの紫外線吸収剤は単独でも2種以上を併用することもできる。 2- (2H-benzotriazole-2-yl) -4-methylphenol, 2- (2H-benzotriazole-2-yl) -4-tert-octylphenol, 2- (2H-benzotriazole-2-yl)- 4,6-bis (1-methyl-1-phenylethyl) phenol, 2- (2H-benzotriazole-2-yl) -4,6-di-tert-pentylphenol, 2- (5-chloro-2H-) Benzotriazole-2-yl) -4-methyl-6-tert-butylphenol, 2- (5-chloro-2H-benzotriazole-2-yl) -2,4-tert-butylphenol, 2,2'-methylenebis [ Examples thereof include benzotriazole-based ultraviolet absorbers such as 6- (2H-benzotriazole-2-yl) -4- (1,1,3,3-tetramethylbutyl) phenol], and 2- (2H) is preferable. -Benzotriazole-2-yl) -4-tert-octylphenol and 2- (5-chloro-2H-benzotriazole-2-yl) -4-methyl-6-tert-butylphenol benzotriazole-based ultraviolet absorbers are mentioned. Be done. These UV absorbers can be used alone or in combination of two or more.
<硬化工程>
 第1実施形態の光学材料の製造方法は、光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを硬化させることにより、光学材料用重合性組成物の硬化物である光学材料を得る硬化工程を含む。
 第1実施形態の光学材料の製造方法が、硬化工程を含むことで、光学材料用重合性組成物を重合させて硬化物を得ることができ、この硬化物を光学材料として用いることができる。
 従来では、重合反応を行う際、光学材料用重合性組成物を加熱して重合反応を発生させていたところ、第1実施形態における光学材料用重合性組成物は、重合反応に伴う反応熱(即ち自己発熱による熱)を増大させることで、光学材料用重合性組成物中の光学材料用モノマーの重合反応を促進させることができる。
 第1実施形態の光学材料の製造方法において、光学材料用重合性組成物に対する加熱を行ってもよいが、上記の観点から、光学材料用重合性組成物に対する加熱は行わなくてもよい。
 即ち、第1実施形態における硬化工程において、光学材料用重合性組成物を静置することで、光学材料用重合性組成物を重合により硬化させることができる。
<Curing process>
The method for producing an optical material according to the first embodiment is an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material. Includes a curing step to obtain.
When the method for producing an optical material of the first embodiment includes a curing step, a cured product can be obtained by polymerizing a polymerizable composition for an optical material, and this cured product can be used as an optical material.
Conventionally, when a polymerization reaction is carried out, a polymerizable composition for an optical material is heated to generate a polymerization reaction. However, the polymerizable composition for an optical material according to the first embodiment has a reaction heat (reaction heat) associated with the polymerization reaction. That is, by increasing the heat due to self-heating), the polymerization reaction of the monomer for optical materials in the polymerizable composition for optical materials can be promoted.
In the method for producing an optical material of the first embodiment, the polymerizable composition for an optical material may be heated, but from the above viewpoint, the polymerizable composition for an optical material may not be heated.
That is, in the curing step of the first embodiment, the polymerizable composition for optical materials can be cured by polymerization by allowing the polymerizable composition for optical materials to stand still.
 上述の通り、硬化工程は、光学材料用重合性組成物を静置することにより、光学材料用重合性組成物を硬化させる工程を含んでもよい。
 また、硬化性の観点からは、硬化工程において、光学材料用重合性組成物を閉鎖系空間内にて静置してもよく開放系空間内にて静置してもよいが、閉鎖系空間内にて静置することが好ましい。
 閉鎖系空間とは、内部に熱を保持し、内部と外部との熱の伝導が抑制された環境を指す。内部と外部との熱の伝導が抑制された環境とは、光学材料用重合性組成物を閉鎖系空間内にて静置した場合において、閉鎖系空間の内部と外部との熱の伝導性が光学材料用重合性組成物を硬化させることができる程度である環境を意味する。
 閉鎖系空間としては、例えば、断熱環境が挙げられる。
 開放系空間とは、閉鎖系空間以外の空間を意味する。
As described above, the curing step may include a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand still.
Further, from the viewpoint of curability, in the curing step, the polymerizable composition for an optical material may be allowed to stand in a closed system space or in an open system space, but the closed system space may be allowed to stand still. It is preferable to leave it still inside.
The closed system space refers to an environment in which heat is retained inside and heat conduction between the inside and the outside is suppressed. An environment in which heat conduction between the inside and the outside is suppressed means that when the polymerizable composition for an optical material is allowed to stand in the closed system space, the heat conductivity between the inside and the outside of the closed system space is high. It means an environment in which the polymerizable composition for an optical material can be cured.
Examples of the closed space include a heat insulating environment.
An open space means a space other than a closed space.
 硬化工程は、光学材料用重合性組成物を閉鎖系空間内にて静置することにより、光学材料用重合性組成物を硬化させる工程を含むことが好ましい。
 光学材料用重合性組成物を閉鎖系空間内にて静置することで、光学材料用重合性組成物の自己発熱によって発生した熱が、外部に放出することを防ぐことができる。これによって、閉鎖系空間内に自己発熱によって発生した熱を保持することができるため、より効率的に重合反応を促進させることができ、より短い時間で光学材料を製造することができる。
The curing step preferably includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand in a closed space.
By allowing the polymerizable composition for optical materials to stand in a closed space, it is possible to prevent the heat generated by the self-heating of the polymerizable composition for optical materials from being released to the outside. As a result, the heat generated by self-heating can be retained in the closed system space, so that the polymerization reaction can be promoted more efficiently, and the optical material can be manufactured in a shorter time.
 第1実施形態における「断熱」又は「断熱環境」において、光学材料用重合性組成物の反応熱による重合反応を妨げたり、外部からの加熱によって光学材料用重合性組成物の重合反応を過度に促進したりしない範囲内で、断熱反応槽を恒温状態(恒温反応槽)とするための加熱を行うことが好ましい。
 これによって、光学材料用モノマーの自己発熱による昇温状態等に応じて、モールドが静置された反応槽内(恒温反応槽)の環境温度を保温状態又は恒温状態とすることができるため、より良好に重合反応を促進することができる。
In the "insulation" or "insulation environment" of the first embodiment, the polymerization reaction of the polymerizable composition for optical materials is hindered by the reaction heat, or the polymerization reaction of the polymerizable composition for optical materials is excessively caused by heating from the outside. It is preferable to heat the adiabatic reaction tank to a constant temperature state (constant temperature reaction tank) within a range that does not promote it.
As a result, the environmental temperature in the reaction vessel (constant temperature reaction vessel) in which the mold is placed can be kept warm or constant temperature according to the temperature rise state due to the self-heating of the monomer for optical material. The polymerization reaction can be promoted satisfactorily.
 断熱環境としては、例えば、上述のような断熱反応槽又は恒温反応槽を用いることができる。
 例えば、モノマーが注入されたモールドを断熱反応槽である真空容器内に静置する場合において、断熱反応槽(恒温反応槽)を用いた断熱環境下における断熱重合は、以下の手順で行うことができる。
 真空容器の内側面をウレタンフォーム、コルク等の断熱性又は保温性を有する部材で覆い、モノマーが注入されたモールドを必要に応じてウェス等の部材で包む。そして、上記真空容器内にモノマーが注入されたモールドを静置する。
As the adiabatic environment, for example, the adiabatic reaction tank or the constant temperature reaction tank as described above can be used.
For example, when a mold in which a monomer is injected is allowed to stand in a vacuum vessel which is an adiabatic reaction vessel, adiabatic polymerization in an adiabatic environment using an adiabatic reaction vessel (constant temperature reaction vessel) can be performed by the following procedure. can.
The inner surface of the vacuum vessel is covered with a member having heat insulating or heat-retaining properties such as urethane foam and cork, and the mold in which the monomer is injected is wrapped with a member such as a waste cloth as needed. Then, the mold in which the monomer is injected is allowed to stand in the vacuum container.
 硬化工程は、光学材料用重合性組成物を外部から加熱することなく静置することにより、光学材料用重合性組成物を硬化させる工程(即ち非加熱工程)を含んでもよい。
 上述の通り、第1実施形態の光学材料の製造方法において、光学材料用重合性組成物に対する加熱を行ってもよいが、光学材料用重合性組成物に対する加熱は必ずしも必要としない。
 外部から加熱するためには、装置を用いる場合もあり、経済的に負担が増大する場合がある。第1実施形態の光学材料の製造方法であれば、簡便な方法で光学材料を製造できるため、経済的な負担を軽減することができる。
The curing step may include a step of curing the polymerizable composition for optical materials (that is, a non-heating step) by allowing the polymerizable composition for optical materials to stand without being heated from the outside.
As described above, in the method for producing an optical material of the first embodiment, heating of the polymerizable composition for optical materials may be performed, but heating of the polymerizable composition for optical materials is not always necessary.
In order to heat from the outside, an apparatus may be used, which may increase the burden economically. According to the method for manufacturing an optical material according to the first embodiment, the optical material can be manufactured by a simple method, so that the economic burden can be reduced.
 硬化工程は、光学材料用重合性組成物を2時間~10時間静置することにより、光学材料用重合性組成物を硬化させる工程を含むことが好ましい。
 従来の方法によれば、一般に、加熱により徐々に昇温しながら数時間から数十時間(例えば、20時間~48時間程度)かけて重合反応を行う。
 重合反応を行う時間が短い場合には、光学材料用重合性組成物が完全に硬化しないために光学材料を得ることができない、又は、光学材料の品質が低下する。
 しかし、第1実施形態の光学材料の製造方法によれば、得られる光学材料における脈理を抑制しつつ、短時間にて光学材料を製造することができる。具体的には、光学材料用重合性組成物を10時間以下静置することによって光学材料を製造することができる。
 上記の観点から、硬化工程において、光学材料用重合性組成物を8時間以下静置することがより好ましい。
 また、重合反応を行い良好に硬化した光学材料を得る観点から、光学材料用重合性組成物を、2時間以上静置することが好ましい。
The curing step preferably includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand for 2 to 10 hours.
According to the conventional method, generally, the polymerization reaction is carried out over several hours to several tens of hours (for example, about 20 hours to 48 hours) while gradually raising the temperature by heating.
When the time for carrying out the polymerization reaction is short, the polymerizable composition for an optical material is not completely cured, so that the optical material cannot be obtained, or the quality of the optical material is deteriorated.
However, according to the method for manufacturing an optical material of the first embodiment, it is possible to manufacture the optical material in a short time while suppressing the pulse in the obtained optical material. Specifically, the optical material can be produced by allowing the polymerizable composition for an optical material to stand for 10 hours or less.
From the above viewpoint, it is more preferable to allow the polymerizable composition for an optical material to stand for 8 hours or less in the curing step.
Further, from the viewpoint of obtaining a well-cured optical material by carrying out a polymerization reaction, it is preferable to allow the polymerizable composition for an optical material to stand for 2 hours or more.
 硬化工程において、必要に応じて、光学材料用重合性組成物に対してマイクロ波を所定時間照射するマイクロ波照射工程を設けてもよい。 In the curing step, if necessary, a microwave irradiation step of irradiating the polymerizable composition for an optical material with microwaves for a predetermined time may be provided.
 硬化工程の一態様としては、以下の工程a及び工程bを含む態様が挙げられる。
工程a:光学材料用重合性組成物を鋳型内(モールドのキャビティ内)に注入(注型)する。
工程b:光学材料用重合性組成物を注入したモールドを所定時間、静置することにより硬化させる。
As one aspect of the curing step, an aspect including the following steps a and b can be mentioned.
Step a: The polymerizable composition for an optical material is injected (casted) into a mold (inside the cavity of the mold).
Step b: The mold in which the polymerizable composition for an optical material is injected is allowed to stand for a predetermined time to be cured.
(工程a)
 まず、ガスケットまたはテープ等で保持された成型モールド(鋳型)内に重合性組成物を注入する。この際、得られる光学材料に要求される物性によっては、必要に応じて、減圧下での脱気処理や、加圧下、減圧下等での濾過処理等を行うことが好ましい。
(Step a)
First, the polymerizable composition is injected into a molding mold (mold) held by a gasket, tape or the like. At this time, depending on the physical characteristics required for the obtained optical material, it is preferable to perform a degassing treatment under reduced pressure, a filtration treatment under pressure, a reduced pressure, or the like, if necessary.
(工程b)
 上述の通り、工程bにおいて、光学材料用重合性組成物を注入したモールドを所定時間、開放系空間内にて静置して重合してもよく、閉鎖系空間内に静置して断熱重合してもよい。
(Step b)
As described above, in step b, the mold in which the polymerizable composition for an optical material is injected may be allowed to stand in an open system space for a predetermined time for polymerization, or may be allowed to stand in a closed system space for adiabatic polymerization. You may.
 重合条件については、限定されるものではないが、光学材料用重合性組成物の組成、触媒の種類と使用量、モールドの形状等によって適宜調整することが好ましい。
 光学材料用重合性組成物を注入したモールドを2時間から4時間の間、断熱環境下に静置して重合してもよい。
The polymerization conditions are not limited, but are preferably adjusted appropriately depending on the composition of the polymerizable composition for optical materials, the type and amount of the catalyst used, the shape of the mold, and the like.
The mold in which the polymerizable composition for an optical material is injected may be allowed to stand in an adiabatic environment for 2 to 4 hours for polymerization.
 工程bにおいて、必要に応じて、光学材料用重合性組成物を注入したモールドを断熱環境下に一定時間静置した断熱重合プロセスの後に、加熱工程を追加してもよい。
 工程bにおいて、必要に応じて、光学材料用重合性組成物を注入したモールドを断熱環境下に静置する(断熱重合する)工程と並行して、連続的又は断続的に、断熱重合プロセスにおいて光学材料用重合性組成物により発せられる自己発熱を超えない温度で光学材料用重合性組成物を注入したモールドを加熱したり、断熱反応槽内を加熱して断熱反応槽内の環境温度を保温したりしてもよい。
In step b, if necessary, a heating step may be added after the adiabatic polymerization process in which the mold in which the polymerizable composition for optical materials is injected is allowed to stand in an adiabatic environment for a certain period of time.
In step b, in parallel with the step of allowing the mold into which the polymerizable composition for an optical material is injected to stand in an adiabatic environment (adiabatic polymerization), if necessary, in the adiabatic polymerization process continuously or intermittently. The mold in which the polymerizable composition for optical materials is injected is heated at a temperature not exceeding the self-heating generated by the polymerizable composition for optical materials, or the inside of the adiabatic reaction tank is heated to keep the environmental temperature in the adiabatic reaction tank warm. You may do it.
 硬化工程は、光学材料用重合性組成物を加熱して硬化させる工程(即ち加熱工程)を含んでもよい。
 上述の通り、第1実施形態の光学材料の製造方法において、光学材料用重合性組成物に対する加熱は必ずしも必要としないが、硬化工程において上記加熱工程を含んでもよい。
 即ち、第1実施形態における硬化工程は、非加熱工程と加熱とを組み合わせてもよい。
The curing step may include a step of heating and curing the polymerizable composition for an optical material (that is, a heating step).
As described above, in the method for producing an optical material of the first embodiment, heating of the polymerizable composition for an optical material is not always necessary, but the heating step may be included in the curing step.
That is, the curing step in the first embodiment may be a combination of the non-heating step and the heating.
 硬化工程が加熱工程を含む場合、加熱工程は、硬化工程の全期間に対して、1%~40%の期間行うことが好ましく、1%~35%の期間行うことがより好ましい。 When the curing step includes a heating step, the heating step is preferably performed for a period of 1% to 40%, more preferably 1% to 35% with respect to the entire period of the curing step.
<第2プレポリマー化工程>
 第1実施形態の光学材料の製造方法は、上述の準備工程及びプレポリマー化工程に加えて、さらに、前記2種以上の異なる光学材料用モノマーの残部と、前記重合触媒の残部と、を混合し、前記2種以上の異なる光学材料用モノマーの残部における少なくとも一部を重合させて第2プレポリマーを得ることにより、前記第2プレポリマーを含む混合物を得る第2プレポリマー化工程と、
 前記プレポリマーを含む混合物に対し、前記第2プレポリマーを含む混合物を添加することにより、前記プレポリマーと、前記第2プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 前記光学材料用重合性組成物中の前記プレポリマー及び前記第2プレポリマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と
、を含んでもよい。
<Second prepolymerization step>
In the method for producing an optical material of the first embodiment, in addition to the above-mentioned preparation step and prepolymerization step, the balance of the two or more different monomers for the optical material and the balance of the polymerization catalyst are further mixed. A second prepolymerization step of obtaining a mixture containing the second prepolymer by polymerizing at least a part of the remainder of the two or more different monomers for optical materials to obtain a second prepolymer.
A polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst by adding the mixture containing the second prepolymer to the mixture containing the prepolymer. In the process of manufacturing a polymerizable composition for optical materials,
It may include a curing step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material by curing the prepolymer and the second prepolymer in the polymerizable composition for an optical material. ..
 第1実施形態の光学材料の製造方法は、上記の構成を含むことで、プレポリマー化工程によって得られるプレポリマーを含む混合物と、第2プレポリマー化工程によって得られる第2プレポリマーを含む混合物と、を得ることができる。
 これによって、プレポリマーを含む混合物と第2プレポリマーを含む混合物との粘度を近づけることができるため、両者をより容易に混合することができる。
The method for producing an optical material according to the first embodiment includes the above-mentioned constitution, and is a mixture containing a prepolymer obtained by a prepolymerization step and a mixture containing a second prepolymer obtained by a second prepolymerization step. And can be obtained.
As a result, the viscosities of the mixture containing the prepolymer and the mixture containing the second prepolymer can be brought close to each other, so that both can be mixed more easily.
 第2プレポリマー化工程において、2種以上の異なる光学材料用モノマー、重合触媒、具体的態様、好ましい態様等は、プレポリマー化工程における2種以上の異なる光学材料用モノマー、重合触媒、具体的態様、好ましい態様等と同様である。 In the second prepolymerization step, two or more different monomers for optical materials, a polymerization catalyst, specific embodiments, preferred embodiments and the like are described as two or more different monomers for optical materials, polymerization catalysts, specific embodiments in the prepolymerization step. It is the same as the embodiment, the preferred embodiment and the like.
 第1実施形態の光学材料の製造方法は、第2プレポリマー化工程を含む場合、光学材料用重合性組成物製造工程が、前記プレポリマーを含む混合物に対し、前記第2プレポリマーを含む混合物を添加することにより、前記プレポリマーと、前記第2プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る工程である。
 上記光学材料用重合性組成物製造工程において、プレポリマーを含む混合物、具体的態様、好ましい態様等は、上述の<光学材料用重合性組成物製造工程>における具体的態様、好ましい態様等と同様である。
When the method for producing an optical material of the first embodiment includes a second prepolymerization step, the step of producing a polymerizable composition for an optical material is a mixture containing the second prepolymer with respect to the mixture containing the prepolymer. Is a step of obtaining a polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst.
In the above-mentioned step of producing a polymerizable composition for an optical material, the mixture containing the prepolymer, specific embodiments, preferred embodiments and the like are the same as the above-mentioned specific embodiments and preferred embodiments in the above-mentioned <process for producing a polymerizable composition for optical materials>. Is.
 第1実施形態の光学材料の製造方法は、第2プレポリマー化工程を含む場合、硬化工程が、前記光学材料用重合性組成物中の前記プレポリマー及び前記第2プレポリマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る工程である。
 上記硬化工程において、プレポリマー、具体的態様、好ましい態様等は、上述の<硬化工程>における具体的態様、好ましい態様等と同様である。
When the method for producing an optical material according to the first embodiment includes a second prepolymerization step, the curing step cures the prepolymer and the second prepolymer in the polymerizable composition for an optical material. This is a step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material.
In the curing step, the prepolymer, specific embodiments, preferred embodiments, etc. are the same as the specific embodiments, preferred embodiments, etc. in the above-mentioned <curing step>.
<アニール工程>
 第1実施形態の光学材料の製造方法は、必要に応じて、硬化した光学材料用重合性組成物をアニール処理するアニール工程を含んでもよい。
 アニール処理を行う際の温度は、通常50~150℃で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
<Annealing process>
The method for producing an optical material according to the first embodiment may include an annealing step of annealing a cured polymerizable composition for an optical material, if necessary.
The temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
<光学材料>
 第1実施形態における光学材料は、光学材料用重合性組成物の硬化物である。
 第1実施形態における光学材料は、脈理を抑制された高品質の光学材料である。
<Optical material>
The optical material in the first embodiment is a cured product of a polymerizable composition for an optical material.
The optical material in the first embodiment is a high quality optical material with suppressed pulse.
 一般に、光学材料の厚みが厚くなるほど脈理が発生しやすい傾向にある。
 第1実施形態の光学材料の製造方法を用いて製造される光学材料は、厚みが比較的厚くても、良好に脈理を抑制することができる。
 例えば、第1実施形態における光学材料は、厚みが、1mm~20mmであってもよく、4mm~16mmであってもよい。
In general, the thicker the optical material, the more likely it is that pulse will occur.
The optical material produced by using the method for producing an optical material according to the first embodiment can satisfactorily suppress pulse even if the thickness is relatively thick.
For example, the optical material in the first embodiment may have a thickness of 1 mm to 20 mm or 4 mm to 16 mm.
<光学材料の用途>
 第1実施形態における光学材料は、プラスチックレンズ、プリズム、光ファイバー、情報記録基板、フィルター、発光ダイオード等に用いることができる。
 上記の中でも、第1実施形態における光学材料は、プラスチックレンズに好適に用いることができ、眼鏡用プラスチックレンズにより好適に用いることができる。
<Use of optical materials>
The optical material in the first embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording board, a filter, a light emitting diode and the like.
Among the above, the optical material in the first embodiment can be suitably used for a plastic lens, and can be more preferably used for a plastic lens for spectacles.
[第2実施形態]
≪光学材料の製造方法≫
 第2実施形態の光学材料の製造方法は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造する方法であって、第1原料組成物及び第2原料組成物を準備する原料組成物準備工程と、前記第1原料組成物及び前記第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断工程と、前記光学材料用重合性組成物に撹拌力を加える撹拌工程と、前記撹拌工程の後、前記光学材料用重合性組成物をモールドに注型する注型工程と、前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化工程と、を含む。
 「第1原料組成物及び第2原料組成物にせん断力を加える」とは、第1原料組成物及び第2原料組成物を流動させながら、第1原料組成物及び第2原料組成物に対して、主に流動方向に交差する方向に力を加えることを意味する。
 「光学材料用重合性組成物に撹拌力を加える」とは、光学材料用重合性組成物を流動させながら、前記光学材料用重合性組成物に対して、主に流動方向(即ち前記組成物が撹拌力を加える工程に入る部位(入口)と出る部位(出口)とを結ぶ仮想線上における入口から出口への方向)の略平行逆方向に力を加えること、又は、流動を止めて前記光学材料用重合性組成物を撹拌することを意味する。
[Second Embodiment]
≪Manufacturing method of optical materials≫
The method for producing an optical material according to the second embodiment is a method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst. A raw material composition preparation step for preparing a first raw material composition and a second raw material composition, and a shearing force are applied to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material. A shearing step, a stirring step of applying a stirring force to the polymerizable composition for an optical material, a casting step of casting the polymerizable composition for an optical material into a mold after the stirring step, and a casting step in the mold. The present invention comprises a curing step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials.
"Applying a shearing force to the first raw material composition and the second raw material composition" means to the first raw material composition and the second raw material composition while flowing the first raw material composition and the second raw material composition. It means that the force is mainly applied in the direction intersecting the flow direction.
"Applying a stirring force to a polymerizable composition for an optical material" means that the polymerizable composition for an optical material is allowed to flow, and the flow direction is mainly (that is, the composition) with respect to the polymerizable composition for an optical material. Applying force in substantially parallel and opposite directions on the virtual line connecting the part (inlet) that enters the process of applying the stirring force (inlet) and the part (exit) that exits (the direction from the inlet to the outlet), or stopping the flow and the optics It means stirring the polymerizable composition for materials.
 第2実施形態の光学材料の製造方法は、上記の各工程を含むことで、得られる光学材料におけるU字型の脈理を抑制することができる。
 U字型の脈理は、光学材料用重合性組成物をモールドに注型してから一定程度時間が経過した後に、発生しやすい。
 本発明者らは、U字型の脈理を抑制する観点から、第1原料組成物及び第2原料組成物をせん断及び撹拌する工程に着目した。
 さらに、せん断及び撹拌の態様、順序などを検討し続けた結果、第2実施形態の光学材料の製造方法が、上記せん断工程と上記撹拌工程とを含む上述の構成であることで、得られる光学材料におけるU字型の脈理を抑制することができることを見出した。
 この理由は以下の通りに推測される。
 第1原料組成物及び第2原料組成物を流動させながら、前記第1原料組成物及び前記第2原料組成物に対して、流動方向に交差する方向に力を加えることで第1原料組成物及び第2原料組成物がせん断されるとともに、配向が生じると考えられる。得られた光学材料用重合性組成物を流動させながら、前記光学材料用重合性組成物に対して、流動方向の略平行逆方向に力を加えることで流動方向の前後で濃度ムラの均一化が可能になるとともに、上記配向を緩和又は均一化させることができる。その結果、U字型脈理を抑制することができると考えられる。
The method for producing an optical material according to the second embodiment can suppress U-shaped veins in the obtained optical material by including each of the above steps.
U-shaped veins are likely to occur after a certain amount of time has passed since the polymerizable composition for an optical material was cast into a mold.
The present inventors focused on the step of shearing and stirring the first raw material composition and the second raw material composition from the viewpoint of suppressing the U-shaped pulse.
Further, as a result of continuing to study the mode and order of shearing and stirring, the optical material obtained by the method for producing the optical material of the second embodiment has the above-mentioned configuration including the above-mentioned shearing step and the above-mentioned stirring step. It has been found that U-shaped optics in the material can be suppressed.
The reason for this is presumed as follows.
The first raw material composition is formed by applying a force to the first raw material composition and the second raw material composition in a direction intersecting the flow direction while flowing the first raw material composition and the second raw material composition. And it is considered that orientation occurs as the second raw material composition is sheared. While flowing the obtained polymerizable composition for optical materials, a force is applied to the polymerizable composition for optical materials in substantially parallel and opposite directions in the flow direction to make the concentration unevenness uniform before and after the flow direction. At the same time, the orientation can be relaxed or made uniform. As a result, it is considered that the U-shaped pulse can be suppressed.
 第2実施形態における光学材料用重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する。
 また、光学材料用重合性組成物は、第1原料組成物及び第2原料組成物にせん断力を加えて製造する。
 そのため、第1原料組成物及び第2原料組成物は、第1原料組成物及び第2原料組成物を合わせた全体として、2種以上の異なる光学材料用モノマーと、重合触媒と、を含む。
 例えば、第1原料組成物及び第2原料組成物がそれぞれ異なる種類の光学材料用モノマーを含み、第1原料組成物及び第2原料組成物の少なくとも一方が重合触媒を含む形態であってもよい(例えば実施例の項を参照)。
The polymerizable composition for an optical material in the second embodiment contains two or more different monomers for an optical material and a polymerization catalyst.
Further, the polymerizable composition for an optical material is produced by applying a shearing force to the first raw material composition and the second raw material composition.
Therefore, the first raw material composition and the second raw material composition include two or more different kinds of monomers for optical materials and a polymerization catalyst as a whole including the first raw material composition and the second raw material composition.
For example, the first raw material composition and the second raw material composition may each contain different types of monomers for optical materials, and at least one of the first raw material composition and the second raw material composition may contain a polymerization catalyst. (See, for example, the section of examples).
 第2実施形態において、前記第1原料組成物及び前記第2原料組成物の少なくとも一方が、第1実施形態におけるプレポリマーを含む混合物を含むことが好ましい。
 より具体的には、第2実施形態の光学材料の製造方法は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造する方法であって、
 第1原料組成物及び第2原料組成物を準備する原料組成物準備工程と、
 前記第1原料組成物及び前記第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断工程と、
 前記光学材料用重合性組成物に撹拌力を加える撹拌工程と、
 前記撹拌工程の後、前記光学材料用重合性組成物をモールドに注型する注型工程と、
 前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化工程と、
を含み、
 前記第1原料組成物及び前記第2原料組成物の少なくとも一方が、第1実施形態におけるプレポリマーを含む混合物を含むことが好ましい。
In the second embodiment, it is preferable that at least one of the first raw material composition and the second raw material composition contains a mixture containing the prepolymer in the first embodiment.
More specifically, in the method for producing an optical material according to the second embodiment, an optical material is produced using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst. How to do
The raw material composition preparation step for preparing the first raw material composition and the second raw material composition, and
A shearing step of applying a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material.
A stirring step of applying a stirring force to the polymerizable composition for an optical material, and a stirring step.
After the stirring step, a casting step of casting the polymerizable composition for an optical material into a mold, and a casting step.
A curing step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
Including
It is preferable that at least one of the first raw material composition and the second raw material composition contains a mixture containing the prepolymer in the first embodiment.
<原料組成物準備工程>
 原料組成物準備工程は、第1原料組成物及び第2原料組成物を準備する工程である。
<Raw material composition preparation process>
The raw material composition preparation step is a step of preparing the first raw material composition and the second raw material composition.
 原料組成物準備工程において、第1原料組成物及び第2原料組成物は、全体として、2種以上の異なる光学材料用モノマーと、重合触媒と、を含んでいれば特に制限はない。
 第1原料組成物及び第2原料組成物は、それぞれ既製品を用いてもよく、光学材料用モノマーと、重合触媒と、を混合して準備してもよい。
 上記混合の方法としては、特に制限はなく、公知の方法を用いることができる。
In the raw material composition preparation step, the first raw material composition and the second raw material composition are not particularly limited as long as they contain two or more different monomers for optical materials and a polymerization catalyst as a whole.
As the first raw material composition and the second raw material composition, ready-made products may be used, respectively, or a monomer for an optical material and a polymerization catalyst may be mixed and prepared.
The mixing method is not particularly limited, and a known method can be used.
 上記の各成分を混合する際の温度としては、特に制限はないが、30℃以下であることが好ましく、室温(25℃)以下であることがより好ましい。
 準備される光学材料用重合性組成物のポットライフの観点からは、25℃よりもさらに低温にすることが好ましい場合がある。但し、内部離型剤等の添加剤と上記の各成分との溶解性が良好でない場合は、予め上記の各成分を昇温して、上記添加剤を上記の各成分に溶解させてもよい。
The temperature at which each of the above components is mixed is not particularly limited, but is preferably 30 ° C. or lower, and more preferably room temperature (25 ° C.) or lower.
From the viewpoint of the pot life of the prepared polymerizable composition for optical materials, it may be preferable to lower the temperature further than 25 ° C. However, if the solubility of the additive such as an internal mold release agent and each of the above-mentioned components is not good, the temperature of each of the above-mentioned components may be raised in advance to dissolve the above-mentioned additive in each of the above-mentioned components. ..
 上記の各成分を混合する際は、光学材料用重合性組成物への水分の混入を防ぐため、乾燥不活性ガス下で行うことが好ましい。 When mixing each of the above components, it is preferable to carry out under a dry inert gas in order to prevent water from being mixed into the polymerizable composition for optical materials.
 原料組成物準備工程において、2種以上の異なる光学材料用モノマーの一部に、重合触媒を予め混合した後、2種以上の異なる光学材料用モノマーの残部を、単回にて混合してもよく、複数回に分けて混合してもよい。
 原料組成物準備工程の具体的態様としては、例えば以下の態様が挙げられる。
In the raw material composition preparation step, the polymerization catalyst may be mixed in advance with a part of two or more kinds of monomers for different optical materials, and then the rest of two or more kinds of monomers for different optical materials may be mixed in a single step. Well, it may be mixed in a plurality of times.
Specific embodiments of the raw material composition preparation step include, for example, the following embodiments.
 まず、光学材料用モノマーの一部と、添加剤(例えば内部離型剤)を仕込んで混合液を作製する。この混合液を25℃で1時間撹拌して各成分を完全に溶解させた後、さらに光学材料用モノマーの残部の一部を仕込み、これを撹拌して均一溶液とする。この溶液に対して脱泡を行い、第1原料組成物を得る。
 そして、光学材料用モノマーの残部と、触媒と、を25℃で30分撹拌して完全に溶解させ均一溶液とする。この溶液に対して脱泡を行い、第2原料組成物を得る。
First, a part of the monomer for optical material and an additive (for example, an internal mold release agent) are charged to prepare a mixed solution. This mixture is stirred at 25 ° C. for 1 hour to completely dissolve each component, and then a part of the rest of the monomer for optical material is further charged, and this is stirred to obtain a uniform solution. Defoaming is performed on this solution to obtain a first raw material composition.
Then, the rest of the monomer for the optical material and the catalyst are stirred at 25 ° C. for 30 minutes to completely dissolve them into a uniform solution. Defoaming is performed on this solution to obtain a second raw material composition.
<せん断工程>
 せん断工程は、第1原料組成物及び第2原料組成物にせん断力を加えて光学材料用重合性組成物を製造する工程である。
 第2実施形態において、流動方向に交差する方向に加える力をせん断力とも称する。
 第2実施形態において、主に流動方向に交差する方向に力を加えることを、「せん断する」とも称する。
<Shearing process>
The shearing step is a step of applying a shearing force to the first raw material composition and the second raw material composition to produce a polymerizable composition for an optical material.
In the second embodiment, the force applied in the direction intersecting the flow direction is also referred to as a shear force.
In the second embodiment, applying a force mainly in a direction intersecting the flow direction is also referred to as "shearing".
 「流動させる」とは、例えば、タンクからパワーミキサーへの組成物の送液、パワーミキサーから撹拌槽への組成物の送液等を行うことで、組成物を流動させることができる。 "Floating" means that the composition can be made to flow by, for example, sending the composition from the tank to the power mixer, sending the composition from the power mixer to the stirring tank, and the like.
 せん断する際、第1原料組成物及び第2原料組成物の流動速度は、光学材料用重合性組成物の粘度の上昇を抑制しつつ生産性を上げる観点から、3g/s以上であることが好ましく、6g/s以上であることがより好ましく、9g/s以上であることがさらに好ましい。
 せん断する際、第1原料組成物及び第2原料組成物の流動速度は、光学材料用重合性組成物のU字型の脈理を抑制する観点から、50g/s以下であることが好ましく、45g/s以下であることがより好ましく、40g/s以下であることがさらに好ましい。
When shearing, the flow rate of the first raw material composition and the second raw material composition should be 3 g / s or more from the viewpoint of increasing productivity while suppressing an increase in viscosity of the polymerizable composition for optical materials. It is more preferably 6 g / s or more, and even more preferably 9 g / s or more.
When shearing, the flow rate of the first raw material composition and the second raw material composition is preferably 50 g / s or less from the viewpoint of suppressing the U-shaped vein of the polymerizable composition for optical materials. It is more preferably 45 g / s or less, and further preferably 40 g / s or less.
 第1原料組成物及び第2原料組成物に対して、流動方向に交差する方向に力を加える方法としては、特に制限はない。上記方法としては、例えば、パワーミキサーを用いる方法が挙げられる。 There is no particular limitation on the method of applying a force to the first raw material composition and the second raw material composition in the direction intersecting the flow direction. Examples of the above method include a method using a power mixer.
 せん断工程における回転数としては、200rpm以上であることが好ましく、400rpm以上であることがより好ましく、500rpm以上であることがさらに好ましい。
 せん断工程における回転数としては、3000rpm以下であることが好ましく、2500rpm以下であることがより好ましく、2000rpm以下であることがさらに好ましい。
The rotation speed in the shearing step is preferably 200 rpm or more, more preferably 400 rpm or more, and even more preferably 500 rpm or more.
The rotation speed in the shearing step is preferably 3000 rpm or less, more preferably 2500 rpm or less, and even more preferably 2000 rpm or less.
<光学材料用重合性組成物>
 光学材料用重合性組成物は、第1原料組成物及び第2原料組成物にせん断力を加えて製造される。
 光学材料用重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する。
<Polymerizable composition for optical materials>
The polymerizable composition for an optical material is produced by applying a shearing force to the first raw material composition and the second raw material composition.
The polymerizable composition for an optical material contains two or more different monomers for an optical material and a polymerization catalyst.
(光学材料用モノマー)
 第2実施形態における光学材料用モノマーの具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における光学材料用モノマーの具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Monomer for optical materials)
The details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the second embodiment are the same as the details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the first embodiment. ..
〔イソシアネート化合物(A)〕
 第2実施形態におけるイソシアネート化合物(A)の具体例、好ましい態様、好ましい含有量、定義等の詳細は、第1実施形態におけるイソシアネート化合物(A)の具体例、好ましい態様、好ましい含有量、定義等の詳細と同様である。
[Isocyanate compound (A)]
Details of the specific example, preferred embodiment, preferred content, definition and the like of the isocyanate compound (A) in the second embodiment are described in detail in the specific example, preferred embodiment, preferred content, definition and the like of the isocyanate compound (A) in the first embodiment. Similar to the details of.
〔活性水素化合物〕
 第2実施形態における活性水素化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における活性水素化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
[Active hydrogen compound]
The details of the specific example, preferred embodiment, preferred content, etc. of the active hydrogen compound in the second embodiment are the same as the details of the specific example, preferred embodiment, preferred content, etc. of the active hydrogen compound in the first embodiment.
(2つ以上のメルカプト基を有するポリチオール化合物)
 第2実施形態における2つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における2つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polythiol compound having two or more mercapto groups)
Specific examples of the polythiol compound having two or more mercapto groups in the second embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having two or more mercapto groups in the first embodiment, preferable. It is the same as the details such as an aspect and a preferable content.
(1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物)
 第2実施形態における1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups)
Specific examples, preferred embodiments, preferred contents and the like of the hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups in the second embodiment refer to the one or more mercapto groups in the first embodiment. It is the same as the details of the specific example, the preferable embodiment, the preferable content and the like of the hydroxythiol compound having one or more hydroxyl groups.
(2つ以上の水酸基を有するポリオール化合物)
 第2実施形態における2つ以上の水酸基を有するポリオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における2つ以上の水酸基を有するポリオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polyol compound having two or more hydroxyl groups)
Specific examples, preferred embodiments, preferred contents and the like of the polyol compound having two or more hydroxyl groups in the second embodiment are specific examples of the polyol compound having two or more hydroxyl groups in the first embodiment, preferred embodiments. It is the same as the details such as a preferable content.
(アミン化合物)
 第2実施形態におけるアミン化合物の具体例、好ましい態様、好ましい含有量、(NCO基/(OH基+SH基))、粘度Va、粘度差V等の詳細は、第1実施形態におけるアミン化合物の具体例、好ましい態様、好ましい含有量、(NCO基/(OH基+SH基))、粘度Va、粘度差V等の詳細と同様である。
(Amine compound)
Specific examples of the amine compound in the second embodiment, preferred embodiments, preferred contents, (NCO group / (OH group + SH group)), viscosity Va, viscosity difference V and the like are details of the amine compound in the first embodiment. Examples, preferred embodiments, preferred contents, (NCO group / (OH group + SH group)), viscosity Va, viscosity difference V and the like are the same.
<重合触媒>
 第2実施形態における重合触媒の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における重合触媒の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
<Polymerization catalyst>
The details of the specific examples, preferred embodiments, preferred contents, etc. of the polymerization catalyst in the second embodiment are the same as the details of the specific examples, preferred embodiments, preferred contents, etc. of the polymerization catalyst in the first embodiment.
(塩基性触媒)
 第2実施形態における塩基性触の具体例、好ましい態様、好ましいpKa等の詳細は、第1実施形態における塩基性触の具体例、好ましい態様、好ましいpKa等の詳細と同様である。
(Basic catalyst)
The details of the specific example, preferred embodiment, preferred pKa, etc. of the basic touch in the second embodiment are the same as the details of the specific example, preferred embodiment, preferred pKa, etc. of the basic touch in the first embodiment.
(有機金属系触媒)
 第2実施形態における有機金属系触媒の具体例、好ましい態様等の詳細は、第1実施形態における有機金属系触媒の具体例、好ましい態様等の詳細と同様である。
(Organometallic catalyst)
The details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the second embodiment are the same as the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the first embodiment.
 重合触媒は、下記条件1を満たすことが好ましい。
[条件1]
 -Ea/Rが、-7100以上-2900以下である。
(Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
The polymerization catalyst preferably satisfies the following condition 1.
[Condition 1]
-Ea / R is -7100 or more and -2900 or less.
(Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
 重合触媒が条件1を満たすことで、重合性組成物が重合硬化する過程で、重合速度のばらつきを抑制することができ、その結果として光学歪み及び脈理の発生が抑制され、外観に優れた光学材料を得ることができる。 When the polymerization catalyst satisfies the condition 1, the variation in the polymerization rate can be suppressed in the process of polymerizing and curing the polymerizable composition, and as a result, the occurrence of optical strain and fringes is suppressed, and the appearance is excellent. Optical materials can be obtained.
 Eaの値は、以下の方法により算出する。
 重合反応性化合物と、所定量の重合触媒と、を含む組成物1を加温し、複数の温度で保温した場合における、該重合反応性化合物の加温前の官能基由来の物性値1aおよび所定時間保温した後の残存官能基由来の物性値1bを取得する物性取得工程と、
 物性値1aおよび物性値1bから、複数の前記温度における残存官能基率1を算出する残存官能基率算出工程と、
 残存官能基率1から、反応速度式に基づいて複数の前記温度における反応速度定数1を算出する反応速度定数算出工程と、
 複数の前記温度における反応速度定数1から、アレニウスプロットにより活性化エネルギーEa1と頻度因子A1とを算出するフィッティング工程と、
を行うことで、Eaの値を算出する。
 算出したEaを用いて、重合触媒が条件1を満たすか否か判別する。
 Eaの値の算出方法及び重合触媒が条件1を満たすか否か判別する方法の具体的な態様は、国際公開第2020/256057号に記載の具体的態様と同様である。
The value of Ea is calculated by the following method.
When the composition 1 containing the polymerization-reactive compound and a predetermined amount of the polymerization catalyst is heated and kept at a plurality of temperatures, the physical property values 1a derived from the functional group of the polymerization-reactive compound before heating and A physical property acquisition step of acquiring a physical property value 1b derived from a residual functional group after heat retention for a predetermined time, and a physical property acquisition step.
A residual functional group rate calculation step of calculating the residual functional group rate 1 at a plurality of the temperatures from the physical property value 1a and the physical property value 1b, and
A reaction rate constant calculation step of calculating the reaction rate constants 1 at a plurality of the temperatures from the residual functional group 1 based on the reaction rate equation, and a reaction rate constant calculation step.
A fitting step of calculating the activation energy Ea1 and the frequency factor A1 by the Arrhenius plot from the reaction rate constants 1 at the plurality of temperatures.
To calculate the value of Ea.
Using the calculated Ea, it is determined whether or not the polymerization catalyst satisfies the condition 1.
The specific embodiment of the method for calculating the value of Ea and the method for determining whether or not the polymerization catalyst satisfies the condition 1 is the same as the specific embodiment described in International Publication No. 2020/256057.
<撹拌工程>
 撹拌工程は、前記光学材料用重合性組成物に撹拌力を加える工程である。
 第2実施形態において、流動方向の略平行逆方向に加える力を撹拌力とも称する。
<Stirring process>
The stirring step is a step of applying a stirring force to the polymerizable composition for an optical material.
In the second embodiment, the force applied in the direction substantially parallel to the flow direction is also referred to as a stirring force.
 流動方向の略平行逆方向に力を加える際、光学材料用重合性組成物の流動速度の好ましい範囲は、上述の<せん断工程>における光学材料用重合性組成物の流動速度の好ましい範囲と同様である。 When a force is applied in substantially parallel and opposite directions of the flow direction, the preferable range of the flow rate of the polymerizable composition for optical material is the same as the preferable range of the flow rate of the polymerizable composition for optical material in the above-mentioned <shearing step>. Is.
 光学材料用重合性組成物に対して、流動方向の略平行逆方向に力を加える方法としては、特に制限はない。上記方法としては、例えば、撹拌子を含む撹拌槽を用いる方法が挙げられる。 There is no particular limitation on the method of applying a force to the polymerizable composition for an optical material in a direction substantially parallel to the flow direction. Examples of the above method include a method using a stirring tank containing a stirrer.
 撹拌工程における回転数としては、50rpm以上であることが好ましく、100rpm以上であることがより好ましく、200rpm以上であることがさらに好ましい。
 撹拌工程における回転数としては、800rpm以下であることが好ましく、700rpm以下であることがより好ましく、600rpm以下であることがさらに好ましい。
The rotation speed in the stirring step is preferably 50 rpm or more, more preferably 100 rpm or more, and even more preferably 200 rpm or more.
The rotation speed in the stirring step is preferably 800 rpm or less, more preferably 700 rpm or less, and even more preferably 600 rpm or less.
 第2実施形態の光学材料の製造方法は、せん断工程及び撹拌工程を含むことで、得られる光学材料におけるU字型の脈理を抑制する観点から、均一な光学材料用重合性組成物を連続的に作製することができる。 The method for producing an optical material according to the second embodiment continuously comprises a uniform polymerizable composition for an optical material from the viewpoint of suppressing a U-shaped pulse in the obtained optical material by including a shearing step and a stirring step. Can be produced as an optical device.
 第2実施形態の光学材料の製造方法は、得られる光学材料におけるU字型の脈理を抑制する観点から、せん断工程と撹拌工程とを、この順に含むことが好ましい。
 即ち、第2実施形態の光学材料の製造方法は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造する方法であって、第1原料組成物及び第2原料組成物を準備する原料組成物準備工程と、前記第1原料組成物及び前記第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断工程と、前記光学材料用重合性組成物に撹拌力を加える撹拌工程と、前記撹拌工程の後、前記光学材料用重合性組成物をモールドに注型する注型工程と、前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化工程と、をこの順に含むことが好ましい。
The method for producing the optical material of the second embodiment preferably includes a shearing step and a stirring step in this order from the viewpoint of suppressing the U-shaped pulse in the obtained optical material.
That is, the method for producing an optical material according to the second embodiment is a method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst. The raw material composition preparation step for preparing the first raw material composition and the second raw material composition, and the polymerizable composition for optical materials by applying a shearing force to the first raw material composition and the second raw material composition. A shearing step for producing the above, a stirring step for applying a stirring force to the polymerizable composition for an optical material, a casting step for casting the polymerizable composition for an optical material into a mold after the stirring step, and the above-mentioned. It is preferable to include a curing step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold in this order. ..
<ろ過工程>
 第2実施形態の光学材料の製造方法は、さらに光学材料用重合性組成物をろ過するろ過工程を含んでもよい。
 ろ過工程は、フィルターを用いて行うことができる。
 フィルターとしては、例えばカプセルフィルターを用いることができる。
 フィルターのろ過精度としては、1.0μm~4.5μmであることが好ましい。
<Filtration process>
The method for producing an optical material according to the second embodiment may further include a filtration step of filtering a polymerizable composition for an optical material.
The filtration step can be performed using a filter.
As the filter, for example, a capsule filter can be used.
The filtration accuracy of the filter is preferably 1.0 μm to 4.5 μm.
<第二撹拌工程>
 第2実施形態の光学材料の製造方法は、上記の工程以外に、さらに光学材料用重合性組成物を撹拌する第二撹拌工程を含んでもよい。
 第二撹拌工程は、上述のせん断工程及び撹拌工程に加えて、さらに光学材料用重合性組成物を撹拌するための工程である。
 第二撹拌工程を行う場合、上述の<撹拌工程>に記載の撹拌工程は第一撹拌工程ともいう。
 第二撹拌工程において、光学材料用重合性組成物を撹拌する方法としては、例えば、スタティックミキサー等を用いる方法が挙げられる。
<Second stirring step>
In addition to the above steps, the method for producing an optical material of the second embodiment may further include a second stirring step of stirring the polymerizable composition for an optical material.
The second stirring step is a step for further stirring the polymerizable composition for an optical material in addition to the above-mentioned shearing step and stirring step.
When the second stirring step is performed, the stirring step described in the above-mentioned <stirring step> is also referred to as a first stirring step.
As a method of stirring the polymerizable composition for an optical material in the second stirring step, for example, a method using a static mixer or the like can be mentioned.
 スタティックミキサーを用いる場合、スタティックミキサーの内径φは、5~8であることが好ましく、6~8であることがより好ましい。
 スタティックミキサーを用いる場合、スタティックミキサーのエレメント数は、16~48が好ましく、24~48がより好ましい。
When a static mixer is used, the inner diameter φ of the static mixer is preferably 5 to 8, more preferably 6 to 8.
When a static mixer is used, the number of elements of the static mixer is preferably 16 to 48, more preferably 24 to 48.
<注型工程>
 注型工程は、前記第一又は第二撹拌工程の後、前記光学材料用重合性組成物をモールドに注型する工程である。
 注型工程における前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度は、10mPa・s~1000mPa・sであることが好ましい。
 注型工程は、B型粘度計で25℃ 60rpmの条件で測定した前記光学材料用重合性組成物の粘度を10mPa・s~1000mPa・sに調整しモールドに注型する工程であることが好ましい。
 光学材料用重合性組成物の粘度を上記範囲内に調整して注型することで、光学材料用重合性組成物の粘度を適切な範囲内として、得られる光学材料における脈理を抑制することができる。
<Casting process>
The casting step is a step of casting the polymerizable composition for an optical material into a mold after the first or second stirring step.
The viscosity measured with a B-type viscometer of the polymerizable composition for optical materials in the casting step under the conditions of 25 ° C. and 60 rpm is preferably 10 mPa · s to 1000 mPa · s.
The casting step is preferably a step of adjusting the viscosity of the polymerizable composition for an optical material measured at 25 ° C. and 60 rpm with a B-type viscometer to 10 mPa · s to 1000 mPa · s and casting into a mold. ..
By adjusting the viscosity of the polymerizable composition for optical materials within the above range and casting, the viscosity of the polymerizable composition for optical materials is kept within an appropriate range, and the pulse in the obtained optical material is suppressed. Can be done.
 上記の観点から、注型工程における光学材料用重合性組成物の粘度は、10mPa・s以上であることが好ましく、40mPa・s以上であることがより好ましく、70mPa・s以上であることがさらに好ましく、80mPa・s以上であることが特に好ましく、100mPa・s以上であることがより一層好ましく、120mPa・s以上であることがさらに一層好ましい。
 注型工程における光学材料用重合性組成物の粘度は、光学材料を所望の形状に成形する際のハンドリング性を良好に保つ観点から、1000mPa・s以下であることが好ましく、700mPa・s以下であることがより好ましく、400mPa・s以下であることがさらに好ましい。
From the above viewpoint, the viscosity of the polymerizable composition for an optical material in the casting step is preferably 10 mPa · s or more, more preferably 40 mPa · s or more, and further preferably 70 mPa · s or more. It is particularly preferable that it is 80 mPa · s or more, further preferably 100 mPa · s or more, and even more preferably 120 mPa · s or more.
The viscosity of the polymerizable composition for an optical material in the casting step is preferably 1000 mPa · s or less, preferably 700 mPa · s or less, from the viewpoint of maintaining good handleability when molding the optical material into a desired shape. It is more preferably present, and further preferably 400 mPa · s or less.
 光学材料用重合性組成物の粘度を調整する方法としては、特に制限はない。
 例えば、高粘度の化合物の添加、加熱、撹拌等の方法により光学材料用重合性組成物の粘度を調整してもよい。
The method for adjusting the viscosity of the polymerizable composition for an optical material is not particularly limited.
For example, the viscosity of the polymerizable composition for an optical material may be adjusted by a method such as addition of a high-viscosity compound, heating, or stirring.
 注型工程は、多軸方式により光学材料用重合性組成物をモールドに注型する工程であってもよい。また、注型直前混合方式により光学材料用重合性組成物をモールドに注型する工程であってもよい。 The casting step may be a step of casting a polymerizable composition for an optical material into a mold by a multi-axis method. Further, it may be a step of casting the polymerizable composition for an optical material into a mold by a mixing method immediately before casting.
 注型工程において、注型の方法は、手動注型であってもよく、機械による自動注型であってもよい。
 自動注型の方法は、窒素による圧送であってもよいが、ポンプ(ダイヤフラムポンプ、ギヤポンプなど)による送液であってもよい。
In the casting process, the casting method may be manual casting or automatic mechanical casting.
The method of automatic casting may be pressure feeding by nitrogen, or may be liquid feeding by a pump (diaphragm pump, gear pump, etc.).
 注型工程では、窒素等を用いて光学材料用重合性組成物に圧力(例えば背圧)を加えて光学材料用重合性組成物をモールドに注型することが好ましい。
 これによって、より好ましく、多軸方式により光学材料用重合性組成物をモールドに注型することができる。
In the casting step, it is preferable to apply pressure (for example, back pressure) to the polymerizable composition for optical materials using nitrogen or the like to cast the polymerizable composition for optical materials into a mold.
Thereby, more preferably, the polymerizable composition for an optical material can be cast into a mold by a multi-axis method.
<硬化工程>
 硬化工程は、前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる工程である。
 第2実施形態の光学材料の製造方法が硬化工程を含むことで、前記光学材料用重合性組成物を重合させることができ、光学材料を製造することができる。
<Curing process>
The curing step is a step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
When the method for producing an optical material according to the second embodiment includes a curing step, the polymerizable composition for an optical material can be polymerized, and the optical material can be produced.
 重合の方法としては特に制限はないが、公知の方法により、加熱して重合反応を発生させる方法でもよい。
 例えば、ガスケットまたはテープ等で保持された成型モールド(鋳型)内に重合性組成物を注入し、加熱しながら徐々に昇温して重合反応を促進させる方法でもよい。この際、得られる光学材料に要求される物性によっては、必要に応じて、減圧下での脱泡処理や、加圧下、減圧下等での濾過処理等を行うことが好ましい。
The method of polymerization is not particularly limited, but a known method may be used to generate a polymerization reaction by heating.
For example, a method of injecting a polymerizable composition into a molding mold (mold) held by a gasket or tape and gradually raising the temperature while heating to accelerate the polymerization reaction may be used. At this time, depending on the physical characteristics required for the obtained optical material, it is preferable to perform a defoaming treatment under reduced pressure, a filtration treatment under pressure, a reduced pressure, or the like, if necessary.
 重合の方法としては、加熱することなく重合反応を行う方法でもよい。
 即ち、第2実施形態における硬化工程において、光学材料用重合性組成物を静置することで、光学材料用重合性組成物を重合により硬化させてもよい。
As the polymerization method, a method of carrying out a polymerization reaction without heating may be used.
That is, in the curing step of the second embodiment, the polymerizable composition for optical materials may be cured by polymerization by allowing the polymerizable composition for optical materials to stand still.
 硬化工程が行われる環境は特に制限されず、モールドをモールド外部から加熱し硬化することもできるが、脈理などの光学的な品質を高めつつ、短時間で重合するという観点からは、前記光学材料用重合性組成物を閉鎖系空間内にて静置することにより、前記光学材料用重合性組成物を硬化させる工程であることが好ましい。
 光学材料用重合性組成物を閉鎖系空間内にて静置することで、光学材料用重合性組成物の自己発熱によって発生した熱が、外部に放出することを防ぐことができる。これによって、閉鎖系空間内に自己発熱によって発生した熱を保持することができるため、より効率的に重合反応を促進させることができ、より短い時間で光学材料を製造することができる。
 閉鎖系空間としては、例えば、断熱環境が挙げられる。
 断熱環境とは、内部に熱を保持し、内部と外部との熱の伝導が抑制された環境を指す。内部と外部との熱の伝導が抑制された環境とは、光学材料用重合性組成物を閉鎖系空間内にて静置した場合に、閉鎖系空間の内部と外部との熱の伝導性が光学材料用重合性組成物を硬化させることができる程度である環境を意味する。
The environment in which the curing step is performed is not particularly limited, and the mold can be cured by heating from the outside of the mold. It is preferable that the step is to cure the polymerizable composition for optical materials by allowing the polymerizable composition for materials to stand in a closed space.
By allowing the polymerizable composition for optical materials to stand in a closed space, it is possible to prevent the heat generated by the self-heating of the polymerizable composition for optical materials from being released to the outside. As a result, the heat generated by self-heating can be retained in the closed system space, so that the polymerization reaction can be promoted more efficiently, and the optical material can be manufactured in a shorter time.
Examples of the closed space include a heat insulating environment.
The adiabatic environment refers to an environment in which heat is retained inside and heat conduction between the inside and the outside is suppressed. An environment in which heat conduction between the inside and the outside is suppressed means that when the polymerizable composition for an optical material is allowed to stand in the closed system space, the heat conductivity between the inside and the outside of the closed system space is suppressed. It means an environment in which the polymerizable composition for an optical material can be cured.
 断熱環境は、例えば、断熱材料を用いて形成することができる。
 即ち、光学材料用重合性組成物を、断熱材料からなる断熱容器内にて静置することで、断熱容器の内部に熱を保持し、内部と外部との熱の伝導を抑制することができる。
The adiabatic environment can be formed, for example, using an adiabatic material.
That is, by allowing the polymerizable composition for an optical material to stand in a heat insulating container made of a heat insulating material, heat can be retained inside the heat insulating container and heat conduction between the inside and the outside can be suppressed. ..
 断熱材料の熱伝導率は、0.50W/mK以下であることが好ましく、0.10W/mK以下であることがより好ましく、0.05W/mK以下であることがさらに好ましい。 The thermal conductivity of the heat insulating material is preferably 0.50 W / mK or less, more preferably 0.10 W / mK or less, and even more preferably 0.05 W / mK or less.
 断熱材料の密度は、10kg/m以上であることが好ましく、15kg/m以上であることがより好ましく、20kg/m以上であることがさらに好ましい。 The density of the heat insulating material is preferably 10 kg / m 3 or more, more preferably 15 kg / m 3 or more, and further preferably 20 kg / m 3 or more.
 第2実施形態における「断熱」又は「断熱環境」において、光学材料用重合性組成物の反応熱による重合反応を妨げたり、外部からの加熱によって光学材料用重合性組成物の重合反応を過度に促進したりしない範囲内で、断熱反応槽を恒温状態(恒温反応槽)とするための加熱を行うことが好ましい。
 これによって、光学材料用モノマーの自己発熱による昇温状態等に応じて、モールドが静置された反応槽内(恒温反応槽)の環境温度を保温状態又は恒温状態とすることができるため、より良好に重合反応を促進することができる。
In the "insulation" or "insulation environment" of the second embodiment, the polymerization reaction of the polymerizable composition for optical materials is hindered by the reaction heat, or the polymerization reaction of the polymerizable composition for optical materials is excessively caused by heating from the outside. It is preferable to heat the adiabatic reaction tank to a constant temperature state (constant temperature reaction tank) within a range that does not promote it.
As a result, the environmental temperature in the reaction vessel (constant temperature reaction vessel) in which the mold is placed can be kept warm or constant temperature according to the temperature rise state due to the self-heating of the monomer for optical material. The polymerization reaction can be promoted satisfactorily.
 断熱環境としては、例えば、上述のような断熱反応槽又は恒温反応槽を用いることができる。
 例えば、モノマーが注入されたモールドを断熱反応槽である真空容器内に静置する場合において、断熱反応槽(恒温反応槽)を用いた断熱環境下における断熱重合は、以下の手順で行うことができる。
 真空容器の内側面をウレタンフォーム、コルク等の断熱性・保温性を有する部材で覆い、モノマーが注入されたモールドを必要に応じてウェス等の部材で包む。そして、上記真空容器内にモノマーが注入されたモールドを静置する。
As the adiabatic environment, for example, the adiabatic reaction tank or the constant temperature reaction tank as described above can be used.
For example, when a mold in which a monomer is injected is allowed to stand in a vacuum vessel which is an adiabatic reaction vessel, adiabatic polymerization in an adiabatic environment using an adiabatic reaction vessel (constant temperature reaction vessel) can be performed by the following procedure. can.
The inner surface of the vacuum container is covered with a member having heat insulating and heat-retaining properties such as urethane foam and cork, and the mold in which the monomer is injected is wrapped with a member such as a waste cloth as needed. Then, the mold in which the monomer is injected is allowed to stand in the vacuum container.
 前記硬化工程は、前記光学材料用重合性組成物を外部から加熱することなく静置することにより、前記光学材料用重合性組成物を硬化させる工程であってもよい。
 上述の通り、第2実施形態において、光学材料用重合性組成物に対する加熱は必ずしも必要としない。
 外部から加熱するためには、装置を用いる場合もあり、経済的に負担が増大する場合がある。外部から加熱しない方法であれば、簡便な方法で光学材料を製造できるため、経済的な負担を軽減することができる。
The curing step may be a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand without being heated from the outside.
As described above, in the second embodiment, heating of the polymerizable composition for an optical material is not always required.
In order to heat from the outside, an apparatus may be used, which may increase the burden economically. If the method is not heated from the outside, the optical material can be manufactured by a simple method, so that the economic burden can be reduced.
 前記硬化工程は、前記光学材料用重合性組成物を2時間~10時間静置することにより、前記光学材料用重合性組成物を硬化させる工程であることが好ましい。
 前記硬化工程において、前記光学材料用重合性組成物を8時間以下静置することがより好ましい。
 また、重合反応を行い良好に硬化した光学材料を得る観点から、前記光学材料用重合性組成物を、2時間以上静置することが好ましく、3時間以上静置することがより好ましい。
The curing step is preferably a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand for 2 to 10 hours.
In the curing step, it is more preferable that the polymerizable composition for an optical material is allowed to stand for 8 hours or less.
Further, from the viewpoint of obtaining a satisfactorily cured optical material by carrying out a polymerization reaction, it is preferable to allow the polymerizable composition for an optical material to stand for 2 hours or more, and more preferably to allow it to stand for 3 hours or more.
 前記硬化工程において、必要に応じて、光学材料用重合性組成物に対してマイクロ波を所定時間照射するマイクロ波照射工程を設けてもよい。 In the curing step, if necessary, a microwave irradiation step of irradiating the polymerizable composition for an optical material with microwaves for a predetermined time may be provided.
 第2実施形態における硬化工程の一態様としては、第1実施形態における硬化工程の一態様として記載した態様が挙げられる。 As one aspect of the curing step in the second embodiment, the aspect described as one aspect of the curing step in the first embodiment can be mentioned.
<アニール工程>
 第2実施形態の光学材料の製造方法は、必要に応じて、硬化した光学材料用重合性組成物をアニール処理するアニール工程を含んでもよい。
 アニール処理を行う際の温度は、通常50~150℃で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
<Annealing process>
The method for producing an optical material according to the second embodiment may include an annealing step of annealing a cured polymerizable composition for an optical material, if necessary.
The temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
<光学材料の用途>
 第2実施形態の光学材料の製造方法によって製造される光学材料は、プラスチックレンズ、プリズム、光ファイバー、情報記録基板、フィルター、発光ダイオード等に用いることができる。
 上記の中でも、光学材料は、プラスチックレンズに好適に用いることができ、眼鏡用プラスチックレンズにより好適に用いることができる。
<Use of optical materials>
The optical material produced by the method for producing an optical material according to the second embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording substrate, a filter, a light emitting diode, and the like.
Among the above, the optical material can be suitably used for a plastic lens, and can be more preferably used for a plastic lens for spectacles.
≪光学材料製造システム≫
 第2実施形態の光学材料製造システムは、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造するシステムであって、
 第1原料組成物及び第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断部と、
 前記光学材料用重合性組成物に撹拌力を加える撹拌部と、
 前記光学材料用重合性組成物をモールドに注型する注型部と、
 前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化部と、
 定量送液部と、を含む。
≪Optical material manufacturing system≫
The optical material manufacturing system of the second embodiment is a system for manufacturing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
A shearing portion that applies a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material, and a shearing portion.
A stirring unit that applies stirring force to the polymerizable composition for optical materials, and a stirring unit.
A casting portion for casting the polymerizable composition for an optical material into a mold, and a casting portion.
A cured portion that cures the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
Includes a fixed-quantity liquid delivery unit.
<せん断部>
 せん断部では、第1原料組成物及び第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造する。
 せん断部において、流動方向に交差する方向に力を加える方法としては、例えば、パワーミキサーを用いる方法が挙げられる。
 せん断部における光学材料用重合性組成物の流動速度、パワーミキサーの回転数等の好ましい範囲は、上述の<せん断工程>における光学材料用重合性組成物の流動速度、パワーミキサーの回転数等の好ましい範囲と同様である。
<Shearing part>
In the shearing section, a shearing force is applied to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material.
As a method of applying a force in a direction intersecting the flow direction in the sheared portion, for example, a method using a power mixer can be mentioned.
Preferred ranges such as the flow rate of the polymerizable composition for optical materials in the sheared portion and the rotation speed of the power mixer are the flow speed of the polymerizable composition for optical materials in the above-mentioned <shearing step>, the rotation speed of the power mixer, and the like. Similar to the preferred range.
<撹拌部>
 撹拌部では、光学材料用重合性組成物に撹拌力を加える。
 撹拌部において、流動方向の略平行逆方向に力を加える方法としては、例えば、撹拌子を含む撹拌槽を用いる方法が挙げられる。
 撹拌部における光学材料用重合性組成物の流動速度、撹拌槽の回転数等の好ましい範囲は、上述の<撹拌工程>における光学材料用重合性組成物の流動速度、撹拌槽の回転数等の好ましい範囲と同様である。
<Agitator>
In the stirring section, a stirring force is applied to the polymerizable composition for optical materials.
As a method of applying a force in the direction substantially parallel to the flow direction in the stirring unit, for example, a method using a stirring tank containing a stirrer can be mentioned.
Preferred ranges such as the flow rate of the polymerizable composition for optical materials in the stirring section, the rotation speed of the stirring tank, and the like are the flow speed of the polymerizable composition for optical materials in the above-mentioned <stirring step>, the rotation speed of the stirring tank, and the like. Similar to the preferred range.
<注型部>
 注型部では、光学材料用重合性組成物をモールドに注型する。
 注型の具体的態様、注型部における光学材料用重合性組成物の粘度の好ましい範囲等の詳細は、上述の<注型工程>における注型の具体的態様、注型部における光学材料用重合性組成物の粘度の好ましい範囲等の詳細と同様である。
<Casting part>
In the casting section, the polymerizable composition for an optical material is cast into a mold.
Details such as the specific embodiment of the casting and the preferable range of the viscosity of the polymerizable composition for the optical material in the casting portion are described in the specific embodiment of the casting in the above-mentioned <casting step> and for the optical material in the casting portion. The same applies to the details such as the preferable range of the viscosity of the polymerizable composition.
<硬化部>
 硬化部では、モールド中の光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを重合させることにより光学材料用重合性組成物を硬化させる。
 硬化部における具体的態様、好ましい態様等の詳細は、上述の<硬化工程>における具体的態様、好ましい態様等の詳細と同様である。
<Hardened part>
In the cured portion, the polymerizable composition for optical materials is cured by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
The details of the specific mode, the preferred mode, etc. in the cured portion are the same as the details of the specific mode, the preferred mode, etc. in the above-mentioned <curing step>.
<定量送液部>
 定量送液部では、第1原料組成物及び第2原料組成物をせん断部へ送液する。
 定量送液部の具体例としては、ギヤポンプ、ダイヤフラムポンプ等のポンプが挙げられる。
 定量送液部では、第1原料組成物及び第2原料組成物をせん断部へ送液する速度を適宜調整してもよい。
<Quantitative liquid feeding unit>
In the quantitative liquid feeding section, the first raw material composition and the second raw material composition are fed to the shearing section.
Specific examples of the fixed-quantity liquid feeding unit include pumps such as gear pumps and diaphragm pumps.
In the quantitative liquid feeding section, the speed at which the first raw material composition and the second raw material composition are fed to the shearing section may be appropriately adjusted.
<粘度制御部>
 第2実施形態の光学材料製造システムは、さらに、前記せん断部のせん断力、前記撹拌部における光学材料用重合性組成物の温度、前記硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質、及び、前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度(本開示において、単に粘度ともいう)と相関がある特徴量からなる群から選択される少なくとも1つの条件に応じて、前記撹拌部における前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度を制御する粘度制御部を備えることが好ましい。
<Viscosity control unit>
The optical material manufacturing system of the second embodiment is obtained by further curing the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the polymerizable composition for optical material in the cured portion. From the feature quantity that correlates with the optical quality of the cured product and the viscosity (also simply referred to as viscosity in the present disclosure) measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials. A viscosity control unit for controlling the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials in the stirring unit is provided according to at least one condition selected from the group. Is preferable.
 上記各条件に応じて撹拌部における光学材料用重合性組成物の粘度を制御することで、より良好にU字型脈理を抑制することができる。また、長時間にわたって、より良好にU字型脈理を抑制することができる。 By controlling the viscosity of the polymerizable composition for optical materials in the stirring unit according to each of the above conditions, the U-shaped pulse can be suppressed more satisfactorily. In addition, the U-shaped pulsation can be better suppressed over a long period of time.
 第2実施形態の光学材料製造システムは、さらに、前記せん断部のせん断力、前記撹拌部における光学材料用重合性組成物の温度、前記硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質、及び、前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度と相関がある特徴量からなる群から選択される少なくとも1つの条件に応じて、前記撹拌部における温度を制御する温度制御部を備えることが好ましい。 The optical material manufacturing system of the second embodiment is obtained by further curing the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, and the polymerizable composition for optical material in the cured portion. At least one condition selected from the group consisting of the optical quality of the cured product obtained and the characteristic amount that correlates with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials. Therefore, it is preferable to provide a temperature control unit that controls the temperature in the stirring unit.
 上記各条件に応じて撹拌部における温度を制御することで、より良好にU字型脈理を抑制することができる。また、長時間にわたって、より良好にU字型脈理を抑制することができる。 By controlling the temperature in the stirring unit according to each of the above conditions, the U-shaped pulse can be suppressed more satisfactorily. In addition, the U-shaped pulsation can be better suppressed over a long period of time.
 粘度制御部及び温度制御部において、上記条件を満たすか否かの判断は、製造装置内で実施してもよく、オンライン等により製造装置外で実施してもよい。
 また、上述の各条件を満たすか否かの判定は、統計的機械学習により予め生成された学習済みモデルにより行うこともできる。
The viscosity control unit and the temperature control unit may determine whether or not the above conditions are satisfied inside the manufacturing apparatus, or may be performed online or the like outside the manufacturing apparatus.
Further, it is also possible to determine whether or not each of the above conditions is satisfied by using a trained model generated in advance by statistical machine learning.
 粘度制御部及び温度制御部において、粘度及び温度以外の制御を行ってもよい。
 例えば、撹拌部の光学材料用重合性組成物の液面を制御してもよい。即ち、光学材料用重合性組成物の液面が下がった場合、定量送液部(例えばポンプ)によって光学材料用重合性組成物を送液することで液面を上昇させる。
The viscosity control unit and the temperature control unit may control other than the viscosity and temperature.
For example, the liquid level of the polymerizable composition for an optical material in the stirring unit may be controlled. That is, when the liquid level of the polymerizable composition for optical materials is lowered, the liquid level is raised by feeding the polymerizable composition for optical materials by a fixed quantity liquid feeding unit (for example, a pump).
 以下に、図1~図4を用いて、粘度制御部及び温度制御部による制御ルーチンの一例を説明する。
 図1は、粘度制御部及び温度制御部によってせん断力情報を取得する場合の制御ルーチンの一例を示すフローチャートである。
 図2は、粘度制御部及び温度制御部によって撹拌部における光学材料用重合性組成物の温度情報を取得する場合の制御ルーチンの一例を示すフローチャートである。
 図3は、粘度制御部及び温度制御部によって光学材料用重合性組成物の粘度と相関がある特徴量の情報を取得する場合の制御ルーチンの一例を示すフローチャートである。
 図4は、粘度制御部及び温度制御部によって硬化物の光学品質情報を取得する場合の制御ルーチンの一例を示すフローチャートである。
Hereinafter, an example of a control routine by the viscosity control unit and the temperature control unit will be described with reference to FIGS. 1 to 4.
FIG. 1 is a flowchart showing an example of a control routine when shear force information is acquired by a viscosity control unit and a temperature control unit.
FIG. 2 is a flowchart showing an example of a control routine when the viscosity control unit and the temperature control unit acquire temperature information of the polymerizable composition for an optical material in the stirring unit.
FIG. 3 is a flowchart showing an example of a control routine when the viscosity control unit and the temperature control unit acquire information on a feature amount that correlates with the viscosity of the polymerizable composition for optical materials.
FIG. 4 is a flowchart showing an example of a control routine when the viscosity control unit and the temperature control unit acquire optical quality information of the cured product.
 第2実施形態の光学材料製造システムは、まず、第1原料組成物及び第2原料組成物を準備する状態から始まり、準備した第1原料組成物及び第2原料組成物をせん断部に送液する。なお、第1原料組成物及び第2原料組成物は、全体として2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する。
 送液された第1原料組成物及び第2原料組成物を流動させながら、第1原料組成物及び第2原料組成物に対して、流動方向に交差する方向に力を加える。
The optical material manufacturing system of the second embodiment starts from the state of preparing the first raw material composition and the second raw material composition, and sends the prepared first raw material composition and the second raw material composition to the shearing portion. do. The first raw material composition and the second raw material composition contain two or more different monomers for optical materials and a polymerization catalyst as a whole.
While flowing the fed first raw material composition and the second raw material composition, a force is applied to the first raw material composition and the second raw material composition in a direction intersecting the flow direction.
 ここで、図1のステップ200では、粘度制御部及び温度制御部は、せん断部のせん断力の情報を取得する。取得したせん断力の情報を、ステップ210で判定する。具体的には、例えば、粘度制御部及び温度制御部は、せん断部のせん断力が一定値以上であるか否かを判定する。
 せん断部のせん断力が一定値以上である場合、ステップ220で、制御を実行する。
 具体的には、粘度制御部によって撹拌部における光学材料用重合性組成物の粘度を適切な範囲内に下げる。また、温度制御部によって撹拌部における温度を適切な範囲内に上げる。
Here, in step 200 of FIG. 1, the viscosity control unit and the temperature control unit acquire information on the shear force of the shear unit. The acquired shear force information is determined in step 210. Specifically, for example, the viscosity control unit and the temperature control unit determine whether or not the shear force of the shear unit is equal to or higher than a certain value.
When the shearing force of the sheared portion is equal to or higher than a certain value, control is executed in step 220.
Specifically, the viscosity control unit reduces the viscosity of the polymerizable composition for optical materials in the stirring unit to an appropriate range. In addition, the temperature control unit raises the temperature in the stirring unit to an appropriate range.
 ステップ200~ステップ220では、粘度制御部及び温度制御部において、せん断部のせん断力に応じて、後述の撹拌部における光学材料用重合性組成物の粘度及び撹拌部における温度を制御する。
 即ち、ステップ200~ステップ220では、上記条件を満たしているか否かを判定し、満たしていない場合には、粘度制御部によって撹拌部における光学材料用重合性組成物の粘度を、温度制御部によって撹拌部における温度を、それぞれ適切な範囲内に制御する。
 ステップ200~ステップ220が完了した後、せん断された光学材料用重合性組成物を撹拌部に送液する。
In steps 200 to 220, the viscosity control unit and the temperature control unit control the viscosity of the polymerizable composition for optical materials in the stirring unit, which will be described later, and the temperature in the stirring unit, according to the shearing force of the shearing unit.
That is, in steps 200 to 220, it is determined whether or not the above conditions are satisfied, and if not, the viscosity control unit determines the viscosity of the polymerizable composition for optical material in the stirring unit by the temperature control unit. The temperature in the stirring unit is controlled within an appropriate range.
After the steps 200 to 220 are completed, the sheared polymerizable composition for optical materials is sent to the stirring unit.
 撹拌部では、光学材料用重合性組成物を流動させながら、光学材料用重合性組成物に対して、流動方向の略平行逆方向に力を加えて撹拌するか、又は、流動を一時的に停止して光学材料用重合性組成物を撹拌する。 In the stirring unit, while the polymerizable composition for optical materials is being flowed, a force is applied to the polymerizable composition for optical materials in a direction substantially parallel to the flow direction to stir, or the flow is temporarily made. Stop and stir the polymerizable composition for optical materials.
 ここで、図2のステップ230では、粘度制御部及び温度制御部は、撹拌部における光学材料用重合性組成物の温度情報を取得する。取得した温度情報を、ステップ240で判定する。具体的には、例えば、粘度制御部及び温度制御部は、撹拌部における光学材料用重合性組成物の温度が一定値以上であるか否かを判定する。
 撹拌部における光学材料用重合性組成物の温度が一定値以上である場合、ステップ250で、制御を実行する。
 具体的には、粘度制御部によって撹拌部における光学材料用重合性組成物の粘度を適切な範囲内に上げる。また、温度制御部によって撹拌部における温度を適切な範囲内に下げる。
 上記の制御を行うことで光学材料用重合性組成物の温度上昇を抑制することができる。また、上記の際に、せん断部の回転数を小さくすることで発熱を抑制することもできる。
Here, in step 230 of FIG. 2, the viscosity control unit and the temperature control unit acquire the temperature information of the polymerizable composition for an optical material in the stirring unit. The acquired temperature information is determined in step 240. Specifically, for example, the viscosity control unit and the temperature control unit determine whether or not the temperature of the polymerizable composition for an optical material in the stirring unit is equal to or higher than a certain value.
When the temperature of the polymerizable composition for optical materials in the stirring unit is above a certain value, control is performed in step 250.
Specifically, the viscosity control unit raises the viscosity of the polymerizable composition for optical materials in the stirring unit within an appropriate range. In addition, the temperature control unit lowers the temperature in the stirring unit to an appropriate range.
By performing the above control, it is possible to suppress an increase in temperature of the polymerizable composition for an optical material. Further, in the above case, heat generation can be suppressed by reducing the rotation speed of the sheared portion.
 ステップ230~ステップ250では、粘度制御部及び温度制御部において、撹拌部における光学材料用重合性組成物の温度に応じて、撹拌部における光学材料用重合性組成物の粘度及び撹拌部における温度を制御する。 In steps 230 to 250, in the viscosity control unit and the temperature control unit, the viscosity of the polymerizable composition for optical material in the stirring unit and the temperature in the stirring unit are set according to the temperature of the polymerizable composition for optical material in the stirring unit. Control.
 ここで、図3のステップ260では、粘度制御部及び温度制御部は、光学材料用重合性組成物の粘度と相関がある特徴量の情報を取得する。取得した上記特徴量の情報を、ステップ270で判定する。
 具体的には、光学材料用重合性組成物の粘度と相関がある特徴量が一定の範囲から逸脱しているか否かを判定する。
Here, in step 260 of FIG. 3, the viscosity control unit and the temperature control unit acquire information on the feature amount that correlates with the viscosity of the polymerizable composition for optical materials. The acquired information on the feature amount is determined in step 270.
Specifically, it is determined whether or not the feature amount that correlates with the viscosity of the polymerizable composition for optical materials deviates from a certain range.
 光学材料用重合性組成物の粘度と相関がある特徴量とは、例えば、撹拌部における光学材料用重合性組成物の抵抗値、撹拌部における光学材料用重合性組成物の屈折率、撹拌部における光学材料用重合性組成物の電気伝導率、撹拌部における光学材料用重合性組成物の光学スペクトル等が挙げられる。 The feature amounts that correlate with the viscosity of the polymerizable composition for optical materials are, for example, the resistance value of the polymerizable composition for optical materials in the stirring section, the refractive index of the polymerizable composition for optical materials in the stirring section, and the stirring section. Examples thereof include the electric conductivity of the polymerizable composition for optical materials in the above, and the optical spectrum of the polymerizable composition for optical materials in the stirring section.
 粘度制御部及び温度制御部は、光学材料用重合性組成物の粘度と相関がある特徴量が一定の範囲から逸脱している場合、ステップ280で、制御を実行する。 The viscosity control unit and the temperature control unit execute control in step 280 when the feature amount that correlates with the viscosity of the polymerizable composition for optical materials deviates from a certain range.
 粘度制御部及び温度制御部において、撹拌部における光学材料用重合性組成物の粘度を直接測定してもよいが、光学材料用重合性組成物の粘度と相関がある特徴量から算出してもよい。
 撹拌部における光学材料用重合性組成物の粘度を光学材料用重合性組成物の粘度と相関がある特徴量から算出する方法しては、例えば、撹拌部における光学材料用重合性組成物の抵抗値から粘度を算出する方法が挙げられる。
 具体的には、テスターで光学材料用重合性組成物中に電気を流し、その抵抗値と粘度の検量線を作製して、上記抵抗値から粘度を算出する。なお、硬化反応が進行することでポリマー化が進行し、上記抵抗値は大きくなる。
 同様に、例えば、撹拌部における光学材料用重合性組成物の屈折率、撹拌部における光学材料用重合性組成物の電気伝導率、撹拌部における光学材料用重合性組成物の光学スペクトル等から粘度を算出する方法も用いることができる。
The viscosity control unit and the temperature control unit may directly measure the viscosity of the polymerizable composition for optical materials in the stirring unit, or may calculate from the feature amount that correlates with the viscosity of the polymerizable composition for optical materials. good.
As a method of calculating the viscosity of the polymerizable composition for optical materials in the stirring section from the feature amount that correlates with the viscosity of the polymerizable composition for optical materials, for example, the resistance of the polymerizable composition for optical materials in the stirring section. A method of calculating the viscosity from the value can be mentioned.
Specifically, electricity is passed through the polymerizable composition for an optical material with a tester, a calibration curve having a resistance value and a viscosity thereof is prepared, and the viscosity is calculated from the resistance value. As the curing reaction progresses, polymerization proceeds and the resistance value increases.
Similarly, for example, the viscosity from the refractive index of the polymerizable composition for optical materials in the stirring section, the electrical conductivity of the polymerizable composition for optical materials in the stirring section, the optical spectrum of the polymerizable composition for optical materials in the stirring section, and the like. Can also be used to calculate.
 ステップ280で実行される制御は、具体的には、例えば、上記特徴量が一定の範囲から逸脱している場合、特徴量から算出される粘度を一定の範囲内に制御するために、粘度制御部によって撹拌部における光学材料用重合性組成物の粘度を、温度制御部によって撹拌部における温度を、それぞれ適切な範囲内に制御する。 Specifically, the control executed in step 280 is a viscosity control in order to control the viscosity calculated from the feature amount within a certain range, for example, when the feature amount deviates from a certain range. The viscosity of the polymerizable composition for an optical material in the stirring unit is controlled by the unit, and the temperature in the stirring unit is controlled by the temperature control unit within an appropriate range.
 撹拌部における光学材料用重合性組成物の粘度を適切な範囲内に制御する方法としては、例えば、せん断部のせん断力を調整する、撹拌部の撹拌力を調整する、光学材料用重合性組成物の一部を廃棄して刷新する、光学材料製造システムにおける定量送液部の送液速度を調整する等の方法が挙げられる。
 光学材料用重合性組成物の一部を廃棄して刷新する方法は、具体的には、例えば、撹拌部中の光学材料用重合性組成物の少なくとも一部を注型部から排出し、光学材料用重合性組成物の少なくとも一部を入れ替える方法である。
As a method of controlling the viscosity of the polymerizable composition for an optical material in the stirring portion within an appropriate range, for example, the shearing force of the shearing portion is adjusted, the stirring force of the stirring portion is adjusted, and the polymerizable composition for an optical material is adjusted. Examples include methods such as discarding a part of the object and renewing it, adjusting the liquid feeding speed of the fixed-quantity liquid feeding unit in the optical material manufacturing system, and the like.
The method of discarding and renewing a part of the polymerizable composition for optical materials is specifically, for example, discharging at least a part of the polymerizable composition for optical materials in the stirring part from the casting part and optical. It is a method of replacing at least a part of a polymerizable composition for a material.
 撹拌部における温度を適切な範囲内に制御する方法としては、例えば、撹拌部における撹拌の回転数を制御する方法、撹拌部の水浴の温度を制御する方法等が挙げられる。 Examples of the method of controlling the temperature in the stirring unit within an appropriate range include a method of controlling the rotation speed of stirring in the stirring unit, a method of controlling the temperature of the water bath in the stirring unit, and the like.
 撹拌部において、ステップ260~ステップ280が完了した後、光学材料用重合性組成物を注型部に送液する。 In the stirring section, after steps 260 to 280 are completed, the polymerizable composition for optical materials is sent to the casting section.
 注型部において、光学材料用重合性組成物をモールドに注型する。注型が完了した場合に、光学材料用重合性組成物を硬化部に送液する。
 硬化部において、モールド中の光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを重合させることにより光学材料用重合性組成物を硬化させる。
In the casting section, the polymerizable composition for optical materials is cast into a mold. When the casting is completed, the polymerizable composition for an optical material is sent to the cured portion.
In the cured portion, the polymerizable composition for optical materials is cured by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
 ここで、図4のステップ290では、粘度制御部及び温度制御部は、硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質情報を取得する。
 硬化物の光学品質情報としては、例えば、硬化物に脈理が発生しているか否かの情報が挙げられる。
 取得した上記光学品質情報を、ステップ300で判定する。
 具体的には、例えば、粘度制御部及び温度制御部は、硬化物に脈理が発生しているか否かを判定する。
 硬化物に脈理が発生している場合、ステップ310で、制御を実行する。
 具体的には、粘度制御部によって撹拌部における光学材料用重合性組成物の粘度を適切な範囲内に増減させる。また、温度制御部によって撹拌部における温度を適切な範囲内に上下させる。
 ステップ290~ステップ310では、硬化部で光学材料用重合性組成物を硬化させて得られた硬化物において、脈理が発生しているか否かを判定し、脈理が発生している場合には、粘度制御部によって撹拌部における光学材料用重合性組成物の粘度を増減させ、温度制御部によって撹拌部における温度を上下させる。
 ステップ310が完了することで、本ルーチンは完了する。
Here, in step 290 of FIG. 4, the viscosity control unit and the temperature control unit acquire the optical quality information of the cured product obtained by curing the polymerizable composition for an optical material in the cured unit.
Examples of the optical quality information of the cured product include information on whether or not a pulse is generated in the cured product.
The acquired optical quality information is determined in step 300.
Specifically, for example, the viscosity control unit and the temperature control unit determine whether or not pulse is generated in the cured product.
If the cured product has pulse, control is performed in step 310.
Specifically, the viscosity control unit increases or decreases the viscosity of the polymerizable composition for optical materials in the stirring unit within an appropriate range. In addition, the temperature control unit raises or lowers the temperature in the stirring unit within an appropriate range.
In steps 290 to 310, it is determined whether or not pulse is generated in the cured product obtained by curing the polymerizable composition for an optical material in the cured portion, and when pulse is generated, it is determined. Increases or decreases the viscosity of the polymerizable composition for optical materials in the stirring unit by the viscosity control unit, and raises or lowers the temperature in the stirring unit by the temperature control unit.
This routine is completed when step 310 is completed.
 図5は、光学材料製造システムの一例を説明するための概略図である。
 図5において、光学材料用重合性組成物を製造するための第1原料組成物及び第2原料組成物を準備する。第1原料組成物及び第2原料組成物は、撹拌されることで、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物となる。そのため、第1原料組成物及び第2原料組成物は、撹拌された場合に、光学材料用重合性組成物となればよく、第1原料組成物及び第2原料組成物の全体として、2種以上の異なる光学材料用モノマーと、重合触媒と、を含んでいればよい。
 また、第1原料組成物及び第2原料組成物は、2種以上の異なる光学材料用モノマーを一部重合させたプレポリマーを含んでいてもよい。
FIG. 5 is a schematic diagram for explaining an example of an optical material manufacturing system.
In FIG. 5, a first raw material composition and a second raw material composition for producing a polymerizable composition for an optical material are prepared. The first raw material composition and the second raw material composition are stirred to become a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst. Therefore, the first raw material composition and the second raw material composition may become a polymerizable composition for an optical material when agitated, and there are two types of the first raw material composition and the second raw material composition as a whole. It suffices to include the above-mentioned different monomers for optical materials and a polymerization catalyst.
Further, the first raw material composition and the second raw material composition may contain a prepolymer obtained by partially polymerizing two or more different monomers for optical materials.
 上記で準備した第1原料組成物をA液タンク1に、第2原料組成物をB液タンク2にそれぞれ入れる。そして、チラー3により液温を調節しながら、窒素背圧等を用いて、第1原料組成物をA液タンク1からA液計量部4(例えばギヤポンプ)に、第2原料組成物をB液タンク2からB液計量部6(例えばギヤポンプ)に、それぞれ送液する。この際、A液計量部4及びB液計量部6の送液の速度は、同じであっても異なっていてもよい。
 その後、第1原料組成物はA液用流量センサヘッド5を経由してA液計量部4から、第2原料組成物はB液用流量センサヘッド7を経由してB液計量部6から、それぞれせん断部である上位パワーミキサー8に送液される。
 この段階で、第1原料組成物及び第2原料組成物は、上位パワーミキサー8により流動方向に交差する方向に力を加えることでせん断されて光学材料用重合性組成物が得られる。
The first raw material composition prepared above is placed in the liquid A tank 1, and the second raw material composition is placed in the liquid B tank 2. Then, while adjusting the liquid temperature with the chiller 3, the first raw material composition is transferred from the A liquid tank 1 to the A liquid measuring unit 4 (for example, a gear pump) and the second raw material composition is B liquid by using nitrogen back pressure or the like. Liquid is sent from the tank 2 to the liquid B measuring unit 6 (for example, a gear pump). At this time, the speeds of the liquid feeding of the liquid A measuring unit 4 and the liquid B measuring unit 6 may be the same or different.
After that, the first raw material composition is sent from the liquid A measuring unit 4 via the flow rate sensor head 5 for the liquid A, and the second raw material composition is sent from the liquid B measuring unit 6 via the flow rate sensor head 7 for the liquid B. The liquid is sent to the upper power mixer 8 which is a shearing portion.
At this stage, the first raw material composition and the second raw material composition are sheared by applying a force in a direction intersecting the flow direction by the upper power mixer 8 to obtain a polymerizable composition for an optical material.
 光学材料用重合性組成物は、上位パワーミキサー8によりせん断された後、カプセルフィルター10によりろ過されて、さらにせん断部である下位パワーミキサー9に送液されてもよい。その後、下位パワーミキサー9で、光学材料用重合性組成物は、せん断されてもよい。
 また、光学材料用重合性組成物は、上記のように、複数のパワーミキサーによりせん断されてもよいが、1つのパワーミキサーによりせん断されてもよい。
 例えば、光学材料用重合性組成物は、上位パワーミキサー8のみによりせん断されてもよい。
 光学材料用重合性組成物は、下位パワーミキサー9によりせん断された後、カプセルフィルター10によりろ過されて、撹拌部である撹拌槽11に送液される。撹拌槽11はスターラー12を含む。
 撹拌槽11では、光学材料用重合性組成物は、流動方向の略平行逆方向に力を加えることで撹拌される。
 その後、光学材料用重合性組成物は、さらにスタティックミキサー13でさらに混合又は撹拌された後、注型部により硬化部であるモールド14に注型される。
 そして、モールド14にて、光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを重合させることにより光学材料用重合性組成物を硬化させる。
The polymerizable composition for an optical material may be sheared by the upper power mixer 8, filtered by the capsule filter 10, and further sent to the lower power mixer 9 which is a sheared portion. Then, in the lower power mixer 9, the polymerizable composition for optical materials may be sheared.
Further, the polymerizable composition for an optical material may be sheared by a plurality of power mixers as described above, or may be sheared by one power mixer.
For example, the polymerizable composition for an optical material may be sheared only by the upper power mixer 8.
The polymerizable composition for an optical material is sheared by a lower power mixer 9, filtered by a capsule filter 10, and sent to a stirring tank 11 which is a stirring unit. The stirring tank 11 includes a stirrer 12.
In the stirring tank 11, the polymerizable composition for optical materials is stirred by applying a force in substantially parallel and opposite directions in the flow direction.
Then, the polymerizable composition for an optical material is further mixed or stirred with a static mixer 13, and then cast into a mold 14 which is a cured portion by a casting portion.
Then, in the mold 14, two or more different monomers for optical materials in the polymerizable composition for optical materials are polymerized to cure the polymerizable composition for optical materials.
 図5における制御盤15は、粘度制御部及び温度制御部である。
 制御盤15において、上述の各条件を満たすか否かの判定、撹拌部における光学材料用重合性組成物の粘度を測定又は算出する。その結果次第で、上述の通りに、粘度及び温度を制御することができる。
 例えば、フットスイッチ16をONにすることで、光学材料用重合性組成物の少なくとも一部を入れ替えるために、撹拌部中の光学材料用重合性組成物の少なくとも一部を注型部から排出することができる。
The control panel 15 in FIG. 5 is a viscosity control unit and a temperature control unit.
In the control panel 15, it is determined whether or not each of the above conditions is satisfied, and the viscosity of the polymerizable composition for optical materials in the stirring unit is measured or calculated. Depending on the result, the viscosity and temperature can be controlled as described above.
For example, by turning on the foot switch 16, at least a part of the polymerizable composition for optical materials in the stirring part is discharged from the casting part in order to replace at least a part of the polymerizable composition for optical materials. be able to.
 図6は、粘度制御部及び温度制御部を実現するコンピュータの構成例を示す図である。
 粘度制御部及び温度制御部は、例えば、図6に示すようなコンピュータ60によって実現することができる。粘度制御部及び温度制御部を実現するコンピュータ60は、Central Processing Unit(CPU)61、一時記憶領域としてのメモリ62、及び不揮発性の記憶部63を備える。また、コンピュータは、入出力装置等(図示省略)が接続される入出力interface(I/F)64、及び記録媒体68に対するデータの読み込み及び書き込みを制御するread/write(R/W)部65を備える。また、コンピュータは、インターネット等のネットワークに接続されるネットワークI/F66を備える。CPU61、メモリ62、記憶部63、入出力I/F64、R/W部65、及びネットワークI/F66は、バス67を介して互いに接続される。記憶部63は、Hard Disk Drive(HDD)、Solid State Drive(SSD)、フラッシュメモリ等によって実現できる。記憶媒体としての記憶部63には、コンピュータを機能させるためのプログラムが記憶されている。CPU61は、プログラムを記憶部63から読み出してメモリ62に展開し、プログラムが有するプロセスを順次実行する。これにより、上記図1~図4の各制御ルーチンが実現される。
FIG. 6 is a diagram showing a configuration example of a computer that realizes a viscosity control unit and a temperature control unit.
The viscosity control unit and the temperature control unit can be realized by, for example, a computer 60 as shown in FIG. The computer 60 that realizes the viscosity control unit and the temperature control unit includes a central processing unit (CPU) 61, a memory 62 as a temporary storage area, and a non-volatile storage unit 63. Further, the computer has an input / output interface (I / F) 64 to which an input / output device or the like (not shown) is connected, and a read / write (R / W) unit 65 that controls reading and writing of data to the recording medium 68. To prepare for. Further, the computer includes a network I / F66 connected to a network such as the Internet. The CPU 61, the memory 62, the storage unit 63, the input / output I / F64, the R / W unit 65, and the network I / F66 are connected to each other via the bus 67. The storage unit 63 can be realized by a Hard Disk Drive (HDD), a Solid State Drive (SSD), a flash memory, or the like. A program for operating the computer is stored in the storage unit 63 as a storage medium. The CPU 61 reads the program from the storage unit 63, expands the program into the memory 62, and sequentially executes the processes included in the program. As a result, the control routines of FIGS. 1 to 4 are realized.
[第3実施形態]
≪光学部材の製造方法≫
 第3実施形態の光学部材の製造方法は、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、前記空間に重合性組成物を注入する注入工程と、前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、を含み、前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、前記ガラスから完全に剥がれるフィルムであり、前記フィルムは、熱変形温度が70℃以上である。また、前記硬化工程において、硬化時間は好適には10時間以下である。また、前記重合性組成物は、好適には25℃において増粘曲線(y=aebx)の傾きが0.4以上である。
[Third Embodiment]
≪Manufacturing method of optical members≫
In the method for manufacturing an optical member according to a third embodiment, a film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film. The film comprises a space forming step of forming a space, an injection step of injecting the polymerizable composition into the space, and a curing step of curing the polymerizable composition injected into the space to obtain a cured product. It is a film that is completely peeled off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C., and the film has a thermal deformation temperature of 70 ° C. or higher. Further, in the curing step, the curing time is preferably 10 hours or less. Further, the polymerizable composition preferably has a thickening curve (y = ae bx ) with a slope of 0.4 or more at 25 ° C.
 第3実施形態の光学部材の製造方法は、上記構成を含むことで、外周面が平滑である光学部材を製造することができる。
 第3実施形態において、「外周面が平滑である」とは、例えば、硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が略直線であることが好ましい。
The method for manufacturing an optical member according to the third embodiment can manufacture an optical member having a smooth outer peripheral surface by including the above configuration.
In the third embodiment, "the outer peripheral surface is smooth" means that, for example, the outer peripheral surface of the cured product is mirror-like, the intersection of one main surface and the outer peripheral surface, and the other main surface and the outer peripheral surface. It is preferable that the shape between the intersections with the surfaces is substantially straight.
 また、第3実施形態の光学部材の製造方法は、研磨作業を行うことなく、又は少ない研磨量で、外周面が平滑である光学部材を製造することができる。
 第3実施形態におけるフィルムは、静的な粘着力が比較的弱いフィルムである。これによって、硬化工程において重合性組成物を硬化させて収縮させる際に、モールド基板にフィルムとの接触面上を移動させることができる。そのため、フィルムと重合性組成物との接触面が内部側に凹む、凸凹する等の現象を抑制することができる。
Further, in the method for manufacturing an optical member according to the third embodiment, it is possible to manufacture an optical member having a smooth outer peripheral surface without performing polishing work or with a small amount of polishing.
The film in the third embodiment is a film having a relatively weak static adhesive force. Thereby, when the polymerizable composition is cured and shrunk in the curing step, it can be moved to the mold substrate on the contact surface with the film. Therefore, it is possible to suppress phenomena such as the contact surface between the film and the polymerizable composition being dented or uneven on the inner side.
 また、静的な粘着力が比較的弱いフィルムにおける粘着剤は、重合性組成物に溶出する場合がある。重合性組成物に溶出した粘着剤は、得られる硬化物における白濁、ボイド等の原因となり得る。
 第3実施形態の光学部材の製造方法は、上記構成の組み合わせにより、上記白濁、ボイド等も良好に抑制することができる。
 特に、第3実施形態における硬化工程において、硬化時間が10時間以下である場合には、粘着剤の溶出量が著しく抑えられる傾向があり、より良好に、上記白濁、ボイド等を抑制することができる。
In addition, the pressure-sensitive adhesive in a film having a relatively weak static adhesive force may elute into the polymerizable composition. The pressure-sensitive adhesive eluted in the polymerizable composition can cause cloudiness, voids, etc. in the obtained cured product.
In the method for manufacturing an optical member according to the third embodiment, the cloudiness, voids, and the like can be satisfactorily suppressed by combining the above configurations.
In particular, in the curing step of the third embodiment, when the curing time is 10 hours or less, the elution amount of the pressure-sensitive adhesive tends to be remarkably suppressed, and the white turbidity, voids and the like can be suppressed better. can.
<空間形成工程>
 第3実施形態における空間形成工程は、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する工程である。
 空間形成工程の一例について、図7を用いて説明する。
 図7は、空間形成工程を説明するための概略図である。
<Space formation process>
The space forming step in the third embodiment is a step of attaching a film to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film. Is.
An example of the space forming process will be described with reference to FIG. 7.
FIG. 7 is a schematic diagram for explaining the space forming process.
 まず、図7に示すように、レンズ注型重合型110を作製する。例えばガラス製の凸面形成用の第1モールド基板111、凹面形成用の第2モールド基板112を準備する。モールド基板111及び112の外径は、プラスチックレンズの仕上り外径寸法と同じであってもよい。
 モールド基板111及び112を所定の間隔で対向するように配置した状態で、モールド基板111及び112の外周面にフィルム(例えば粘着テープ)113を1周より少し多く巻き付け、モールド基板111及び112を粘着テープで固定すると共に、モールド基板111及び112間の間隙を閉塞する。これによって、2つのモールド基板及び前記フィルムで囲まれた空間(即ちレンズを成形するキャビティ114)を形成する。フィルム113は、熱剥離型又は再剥離型の粘着テープであってもよい。
First, as shown in FIG. 7, a lens casting polymerization type 110 is produced. For example, a first mold substrate 111 for forming a convex surface and a second mold substrate 112 for forming a concave surface made of glass are prepared. The outer diameters of the molded substrates 111 and 112 may be the same as the finished outer diameter dimensions of the plastic lens.
With the mold substrates 111 and 112 arranged so as to face each other at predetermined intervals, the film (for example, adhesive tape) 113 is wound around the outer peripheral surfaces of the mold substrates 111 and 112 a little more than one round, and the mold substrates 111 and 112 are adhered. It is fixed with tape and closes the gap between the molded substrates 111 and 112. As a result, a space surrounded by the two molded substrates and the film (that is, the cavity 114 for forming the lens) is formed. The film 113 may be a heat-peeling type or a re-peeling type adhesive tape.
 第3実施形態の光学部材の製造方法では、モールドを用いる。
 第3実施形態におけるモールド(光学部材製造用モールドともいう。)は、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するためのモールドであることが好ましい。
 第3実施形態におけるモールドは、主面の略直径が60cm~80cmであることが好ましい。
 上述の通り、第3実施形態の光学部材の製造方法を用いる場合には、研磨作業を行うことなく、又は少ない研磨量で、外周面が平滑である光学部材を製造することができる。
 そのため、モールドの主面の略直径は、研磨作業を行わない分だけ小さくすることができる。
In the method for manufacturing an optical member according to the third embodiment, a mold is used.
In the mold (also referred to as a mold for manufacturing an optical member) in the third embodiment, a film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals, and the two mold substrates and the film are used. It is preferable that the mold is for producing an optical member by forming an enclosed space, arranging the polymerizable composition in the space, and curing the polymerizable composition to obtain a cured product.
The mold in the third embodiment preferably has a main surface having a substantially diameter of 60 cm to 80 cm.
As described above, when the method for manufacturing an optical member according to the third embodiment is used, it is possible to manufacture an optical member having a smooth outer peripheral surface without performing polishing work or with a small amount of polishing.
Therefore, the substantially diameter of the main surface of the mold can be reduced by the amount that the polishing work is not performed.
<フィルム>
 第3実施形態の光学部材の製造方法は、第3実施形態におけるフィルム(光学部材製造用フィルムともいう。)を用いる。
 第3実施形態におけるフィルムは、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、10時間以下で前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するための光学部材製造用フィルムであることが好ましい。
 第3実施形態におけるフィルム(光学部材製造用フィルムともいう。)は、少なくとも基材層及び粘着層を含むことが好ましい。
<Film>
As a method for manufacturing an optical member according to the third embodiment, the film (also referred to as a film for manufacturing an optical member) according to the third embodiment is used.
In the film of the third embodiment, the film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and the space is formed. It is preferable that the film is for producing an optical member for producing an optical member by arranging the polymerizable composition in the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
The film (also referred to as a film for manufacturing an optical member) in the third embodiment preferably includes at least a base material layer and an adhesive layer.
〔耐熱指数試験〕
 第3実施形態におけるフィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、ガラスから完全に剥がれるフィルムである。
 耐熱指数試験によって、フィルムの静的な粘着力を測定することができる。
 第3実施形態におけるフィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、ガラスから完全に剥がれるフィルムであることで、静的な粘着力を抑えることができる。
 第3実施形態におけるフィルムは、静的な粘着力が比較的弱いフィルムである。これによって、硬化工程において重合性組成物を硬化させて収縮させる際に、モールド基板にフィルムとの接触面上を移動させることができる。そのため、フィルムと重合性組成物との接触面が内部側に凹む、凸凹する等の現象を抑制することができる。
[Heat index test]
The film in the third embodiment is a film that is completely peeled off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C.
The heat resistance index test can measure the static adhesive strength of the film.
The film in the third embodiment is a film that completely peels off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C., so that static adhesive force can be suppressed.
The film in the third embodiment is a film having a relatively weak static adhesive force. Thereby, when the polymerizable composition is cured and shrunk in the curing step, it can be moved to the mold substrate on the contact surface with the film. Therefore, it is possible to suppress phenomena such as the contact surface between the film and the polymerizable composition being dented or uneven on the inner side.
 耐熱指数試験の具体的な方法は下記の通りである。
(方法)
 室温下で、幅25mm±0.5mm、長さ80mm±0.5mmのフィルムの接着層の露出面のうち、面積625mm±25mmの部分をガラス板に密着させ、荷重1kg/cmで圧着する。そして、上記ガラス板に密着していない上記フィルムの折り重ねた部分の端に、1kgのおもりを取り付けるとともに、温度85℃の恒温槽にガラス板が鉛直方向になるように設置した。恒温槽に入れてから30分後に、上記テープの上端の位置
を測定し、1kgのおもりを取り付けた直後の位置からの移動距離(mm)を耐熱指数として算出する。
The specific method of the heat resistance index test is as follows.
(Method)
At room temperature, of the exposed surface of the adhesive layer of the film having a width of 25 mm ± 0.5 mm and a length of 80 mm ± 0.5 mm, the part having an area of 625 mm 2 ± 25 mm 2 was brought into close contact with the glass plate, and the load was 1 kg / cm 2 . Crimping. Then, a weight of 1 kg was attached to the end of the folded portion of the film which was not in close contact with the glass plate, and the glass plate was installed in a constant temperature bath at a temperature of 85 ° C. so as to be in the vertical direction. Thirty minutes after being placed in the constant temperature bath, the position of the upper end of the tape is measured, and the moving distance (mm) from the position immediately after attaching the 1 kg weight is calculated as the heat resistance index.
 「ガラスに貼り付けて耐熱指数試験を行った場合に、ガラスから完全に剥がれる」とは、上記耐熱指数試験を行った場合に、ガラス板に密着させたフィルムが、恒温槽に入れてから30分以内に、ガラス板から離れ、ガラス板と密着している部分がなくなることを意味する。 "When the film is attached to glass and subjected to a heat resistance index test, it completely peels off from the glass" means that when the above heat resistance index test is performed, the film adhered to the glass plate is placed in a constant temperature bath and then 30. Within minutes, it means that there is no part that is in close contact with the glass plate away from the glass plate.
 第3実施形態におけるフィルムは、ガラスに貼り付けて22℃で耐熱指数試験を行った場合に、耐熱指数が0.4mm以下であることが好ましく、0.3mm以下であることがより好ましい。
 耐熱指数が上記範囲を満たすことで、フィルムがモールド基板を良好に固定することができる。また、重合性組成物を注入する際に空間からの重合性組成物の漏れを抑制することができる。
 第3実施形態におけるフィルムは、22℃で耐熱指数試験を行った場合に、耐熱指数が0以上であってもよい。
When the film in the third embodiment is attached to glass and subjected to a heat resistance index test at 22 ° C., the heat resistance index is preferably 0.4 mm or less, and more preferably 0.3 mm or less.
When the heat resistance index satisfies the above range, the film can satisfactorily fix the molded substrate. In addition, it is possible to suppress leakage of the polymerizable composition from the space when injecting the polymerizable composition.
The film in the third embodiment may have a heat resistance index of 0 or more when the heat resistance index test is performed at 22 ° C.
〔熱変形温度〕
 第3実施形態におけるフィルムは、熱変形温度が、70℃以上であることが好ましく、硬化工程におけるモールドの最高温度以上であることも好ましい。
 熱変形温度が70℃以上であることで、外周面が平滑である光学部材を製造することができる。
 上記同様の観点から、熱変形温度が80℃以上であることが好ましく、90℃以上であることがより好ましく、120℃以上であることがさらに好ましく、150℃以上であることが特に好ましい。
 熱変形温度は、500℃以下であってもよく、400℃以下であってもよい。
[Heat distortion temperature]
The film in the third embodiment preferably has a heat distortion temperature of 70 ° C. or higher, and preferably a maximum temperature of the mold in the curing step.
When the heat distortion temperature is 70 ° C. or higher, an optical member having a smooth outer peripheral surface can be manufactured.
From the same viewpoint as described above, the heat distortion temperature is preferably 80 ° C. or higher, more preferably 90 ° C. or higher, further preferably 120 ° C. or higher, and particularly preferably 150 ° C. or higher.
The heat distortion temperature may be 500 ° C. or lower, or 400 ° C. or lower.
 熱変形温度は、ASTM-D648-56に準拠し、熱変形温度測定装置を使用して、荷重4.6kgf・cmにて測定する。 The heat distortion temperature conforms to ASTM-D648-56 and is measured with a load of 4.6 kgf · cm 2 using a heat distortion temperature measuring device.
 第3実施形態におけるフィルムは、80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下であることが好ましい。
 ガラスボールタック試験によって、フィルムの動的な粘着力を測定することができる。
 第3実施形態におけるフィルムは、80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下であることで、動的な粘着力に優れる。
 これによって、第3実施形態におけるフィルムは、モールド基板をより良好に固定することができる。
The film in the third embodiment preferably has a moving distance of the glass balls of 200 mm or less when the glass ball tack test is performed at 80 ° C.
The glass ball tack test can measure the dynamic adhesive strength of the film.
The film in the third embodiment is excellent in dynamic adhesive strength because the moving distance of the glass balls is 200 mm or less when the glass ball tack test is performed at 80 ° C.
Thereby, the film in the third embodiment can better fix the molded substrate.
 第3実施形態におけるガラスボールタック試験は、JIS-Z0237に準拠して、ボールタック試験機を使用して行う。
 まず、フィルムが表面に配置された板を準備する。準備した板を、フィルムの粘着面が上面に配置されるようにして30°に傾斜させる。
 次に、所定の温度下で、フィルムの所定の位置から、測定用のガラスボール(4.65±0.03g)を転がし、ガラスボールが停止するまでの移動距離を測定する。
The glass ball tack test in the third embodiment is performed using a ball tack tester in accordance with JIS-Z0237.
First, prepare a plate on which the film is placed on the surface. The prepared plate is tilted at 30 ° so that the adhesive surface of the film is placed on the upper surface.
Next, under a predetermined temperature, a glass ball for measurement (4.65 ± 0.03 g) is rolled from a predetermined position on the film, and the moving distance until the glass ball stops is measured.
 第3実施形態におけるフィルムは、25℃~80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下であることが好ましい。
 即ち、25℃~80℃でガラスボールタック試験を行った場合に、25℃~80℃のすべての温度域において、ガラスボールの移動距離が200mm以下であることが好ましい。
 第3実施形態におけるフィルムは、120℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下であることも好ましい。
The film in the third embodiment preferably has a moving distance of the glass balls of 200 mm or less when the glass ball tack test is performed at 25 ° C to 80 ° C.
That is, when the glass ball tack test is performed at 25 ° C to 80 ° C, it is preferable that the moving distance of the glass ball is 200 mm or less in all the temperature ranges of 25 ° C to 80 ° C.
It is also preferable that the film in the third embodiment has a moving distance of the glass balls of 200 mm or less when the glass ball tack test is performed at 120 ° C.
 第3実施形態におけるフィルムは、25℃、80℃又は120℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が10mm以上であることが好ましく、20mm以上であることがより好ましく、30mm以上であることがさらに好ましい。
 ガラスボールの移動距離が上記の範囲にあることで、硬化の際モールド基板間の間隔が好適な速度で小さくなり、重合性組成物の漏れなどが生じにくくなる。また、テープの粘着層が硬化物の外周面に残る不具合(糊残りとも称される)が生じにくくなる。
When the glass ball tack test is performed at 25 ° C., 80 ° C. or 120 ° C., the film in the third embodiment preferably has a moving distance of the glass balls of 10 mm or more, more preferably 20 mm or more. It is more preferably 30 mm or more.
When the moving distance of the glass balls is within the above range, the distance between the molded substrates becomes small at a suitable speed during curing, and leakage of the polymerizable composition is less likely to occur. In addition, the problem that the adhesive layer of the tape remains on the outer peripheral surface of the cured product (also referred to as adhesive residue) is less likely to occur.
 第3実施形態におけるフィルムは、80℃における貯蔵弾性率が、1.0×1010Pa以上であることが好ましく、2.0×1010Pa以上であることがより好ましく、3.0×1010Pa以上であることがさらに好ましい。
 第3実施形態におけるフィルムは、80℃における貯蔵弾性率が、10.0×1010Pa以下であることが好ましく、8.0×1010Pa以下であることがより好ましく、6.0×1010Pa以下であることがさらに好ましい。
The film in the third embodiment preferably has a storage elastic modulus at 80 ° C. of 1.0 × 10 10 Pa or more, more preferably 2.0 × 10 10 Pa or more, and more preferably 3.0 × 10 It is more preferably 10 Pa or more.
The film in the third embodiment preferably has a storage elastic modulus at 80 ° C. of 10.0 × 10 10 Pa or less, more preferably 8.0 × 10 10 Pa or less, and 6.0 × 10 It is more preferably 10 Pa or less.
 貯蔵弾性率測定試験の詳細条件の具体例としては、下記が挙げられる。
測定方法:DMAシングルカンチレバー測定
・試験機種:DMA8000
・試験温度:0~120℃
・周波数:1.0Hz
・昇温速度:3℃/min
・測定面積:1.2(cm
・チャック間距離:12.5mm
Specific examples of the detailed conditions of the storage elastic modulus measurement test include the following.
Measurement method: DMA single cantilever measurement / test model: DMA8000
・ Test temperature: 0 to 120 ° C
-Frequency: 1.0Hz
・ Temperature rise rate: 3 ° C / min
・ Measurement area: 1.2 (cm 2 )
・ Distance between chucks: 12.5 mm
<注入工程>
 第3実施形態における注入工程は、前記空間に重合性組成物を注入する工程である。
 注入工程の一例について、図8を用いて説明する。
 図8は、注入工程を説明するための概略図である。
<Injection process>
The injection step in the third embodiment is a step of injecting the polymerizable composition into the space.
An example of the injection process will be described with reference to FIG.
FIG. 8 is a schematic view for explaining the injection process.
 図8に示すように、注入工程では、キャビティ114に重合性組成物を注入できる隙間が空く程度まで粘着テープ113を引き剥がし、上記隙間からキャビティ114中に重合性組成物120を注入し、再び粘着テープ113で上記隙間を封止する。 As shown in FIG. 8, in the injection step, the adhesive tape 113 is peeled off to the extent that there is a gap in which the polymerizable composition can be injected into the cavity 114, the polymerizable composition 120 is injected into the cavity 114 through the gap, and the polymer composition 120 is injected again. The gap is sealed with the adhesive tape 113.
 注入工程における温度は、30℃以下であることが好ましく、27℃以下であることがより好ましく、25℃以下であることがさらに好ましい。
 注入工程における温度は、15℃以上であることが好ましく、18℃以上であることがより好ましく、20℃以上であることがさらに好ましい。
The temperature in the injection step is preferably 30 ° C. or lower, more preferably 27 ° C. or lower, and even more preferably 25 ° C. or lower.
The temperature in the injection step is preferably 15 ° C. or higher, more preferably 18 ° C. or higher, and even more preferably 20 ° C. or higher.
<重合性組成物>
 第3実施形態における重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含む重合性組成物であってもよい。
<Polymerizable composition>
The polymerizable composition in the third embodiment may be a polymerizable composition containing two or more different monomers for optical materials and a polymerization catalyst.
 第3実施形態における重合性組成物は、25℃において増粘曲線の傾き(y=aebx)が0.4以上であることが好ましい。
 重合性組成物の25℃における増粘曲線の傾きが0.4以上であることで、比較的低粘度の重合性組成物とフィルムとが接触する時間を短くすることができる。その結果、粘着剤の溶出量を抑えることができ、より良好に白濁、ボイド等を抑制することができる。
 上記同様の観点から、重合性組成物は、25℃において増粘曲線の傾きが0.5以上であることがより好ましく、0.6以上であることがさらに好ましい。
 第3実施形態における重合性組成物は、25℃において増粘曲線の傾きが8.0以下であることで、重合性組成物のハンドリング性に優れる。
 上記同様の観点から、重合性組成物は、25℃において増粘曲線の傾きが7.0以下であることがより好ましく、6.0以下であることがさらに好ましい。
 y=aebxにおける各記号の説明は以下の通りである。
y:粘度
a:切片
e:ネイピア数
b:傾き
x:時間
The polymerizable composition in the third embodiment preferably has a thickening curve slope (y = ae bx ) of 0.4 or more at 25 ° C.
When the slope of the thickening curve of the polymerizable composition at 25 ° C. is 0.4 or more, the time for contact between the relatively low-viscosity polymerizable composition and the film can be shortened. As a result, the elution amount of the pressure-sensitive adhesive can be suppressed, and cloudiness, voids and the like can be suppressed more satisfactorily.
From the same viewpoint as described above, it is more preferable that the slope of the thickening curve of the polymerizable composition is 0.5 or more, and further preferably 0.6 or more at 25 ° C.
The polymerizable composition according to the third embodiment is excellent in handleability of the polymerizable composition because the slope of the thickening curve is 8.0 or less at 25 ° C.
From the same viewpoint as described above, it is more preferable that the slope of the thickening curve of the polymerizable composition is 7.0 or less, and further preferably 6.0 or less at 25 ° C.
The explanation of each symbol in y = ae bx is as follows.
y: Viscosity a: Intercept e: Napier number b: Slope x: Time
 重合性組成物の25℃における増粘曲線の傾きは以下の方法により測定する。
 重合性組成物を25℃に温調した水浴に入れ、撹拌する。その後、一定時間間隔で(例えば5分間隔、1時間間隔等)、B型粘度計で60rpmの条件で粘度を測定する。測定して得られた値について、粘度(単位/mPa・s)を縦軸、時間(単位/h)を横軸として増粘曲線(y=aebx)を作製し、傾きを算出する。
The slope of the thickening curve at 25 ° C. of the polymerizable composition is measured by the following method.
The polymerizable composition is placed in a water bath temperature controlled at 25 ° C. and stirred. After that, the viscosity is measured at regular time intervals (for example, every 5 minutes, 1 hour, etc.) under the condition of 60 rpm with a B-type viscometer. For the values obtained by measurement, a thickening curve (y = ae bx ) is prepared with the viscosity (unit / mPa · s) as the vertical axis and the time (unit / h) as the horizontal axis, and the slope is calculated.
 第3実施形態の重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含み、2種以上の異なる光学材料用モノマーの合計100質量部に対する重合触媒の含有量が0.010質量部~2.0質量部であり、B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sであることが好ましい。 The polymerizable composition of the third embodiment contains two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials is It is preferably 0.010 part by mass to 2.0 parts by mass, and the viscosity measured with a B-type viscosity meter at 25 ° C. and 60 rpm is preferably 10 mPa · s to 1000 mPa · s.
(光学材料用モノマー)
 第3実施形態の重合性組成物は、2種以上の異なる光学材料用モノマーを含んでもよい。
 光学材料用モノマーとしては、光学用に使用されるモノマーであればよく、特に限定されない。
 例えば、下記のいずれかの性質を備える光学材料を製造するために用いられるモノマーであってもよい。
 光学材料用モノマーを用いて得られる光学材料は、全光線透過率が10%以上であってもよい。上記光学材料の全光線透過率は、JIS K 7361-1(1997)に準拠して測定すればよい。
 光学材料用モノマーを用いて得られる光学材料は、ヘイズ(即ち全ヘイズ)が、10%以下であり、好ましくは1%以下であり、さらに好ましくは0.5%以下であってもよい。光学材料のヘイズは、JIS-K7105に準拠して、ヘイズ測定機〔(有)東京電色社製、TC-HIII DPK〕を用いて25℃で測定した値である。
 光学材料用モノマーを用いて得られる光学材料は、屈折率が、好ましくは1.58以上である。 光学材料用モノマーを用いて得られる光学材料は、屈折率が、1.80以下であってもよく、1.75以下であってもよい。光学材料の屈折率は、JIS K7142(2014)に準拠して測定すればよい。
(Monomer for optical materials)
The polymerizable composition of the third embodiment may contain two or more different monomers for optical materials.
The monomer for an optical material may be any monomer used for optics and is not particularly limited.
For example, it may be a monomer used for producing an optical material having any of the following properties.
The optical material obtained by using the monomer for an optical material may have a total light transmittance of 10% or more. The total light transmittance of the optical material may be measured in accordance with JIS K 7631-1 (1997).
The optical material obtained by using the monomer for an optical material may have a haze (that is, total haze) of 10% or less, preferably 1% or less, and more preferably 0.5% or less. The haze of the optical material is a value measured at 25 ° C. using a haze measuring machine [TC-HIII DPK, manufactured by Tokyo Denshoku Co., Ltd.] in accordance with JIS-K7105.
The optical material obtained by using the monomer for an optical material has a refractive index of preferably 1.58 or more. The optical material obtained by using the monomer for an optical material may have a refractive index of 1.80 or less, or may be 1.75 or less. The refractive index of the optical material may be measured according to JIS K7142 (2014).
 光学材料用モノマーを用いて得られる光学材料の形状は、特に限定されず、板状、円柱状、直方体状等であってもよい。 The shape of the optical material obtained by using the monomer for the optical material is not particularly limited, and may be a plate shape, a columnar shape, a rectangular parallelepiped shape, or the like.
 光学材料用モノマーとしては、後述する重合触媒を用いた場合に重合する重合性モノマーが挙げられる。
 第3実施形態における光学材料用モノマーの具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における光学材料用モノマーの具体例、好ましい態様、好ましい含有量等の詳細と同様である。
Examples of the monomer for an optical material include a polymerizable monomer that polymerizes when a polymerization catalyst described later is used.
The details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the third embodiment are the same as the details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the first embodiment. ..
〔イソシアネート化合物〕
 イソシアネート化合物としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、芳香族イソシアネート化合物、複素環イソシアネート化合物等が挙げられ、1種または2種以上混合して用いられる。これらのイソシアネート化合物は、二量体、三量体、プレポリマーを含んでもよい。これらのイソシアネート化合物としては、国際公開第2011/055540号に例示された化合物を挙げることができる。
 さらに、イソシアネート化合物としては、上記した化合物の、ハロゲン置換体(例えば、塩素置換体、臭素置換体など)、アルキル置換体、アルコキシ置換体、カルボジイミド変性体、ウレア変性体、ビュレット変性体、
上記した化合物とニトロ置換体、多価アルコールなどとのプレポリマー型変性体、
上記した化合物のダイマー化又はトリマー化反応生成物等も使用できる。
 これらの化合物は単独または2種以上を混合して使用してもよい。
[Isocyanate compound]
Examples of the isocyanate compound include an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound, and a heterocyclic isocyanate compound, and one type or a mixture of two or more types is used. These isocyanate compounds may include dimers, trimers and prepolymers. Examples of these isocyanate compounds include the compounds exemplified in International Publication No. 2011/0555540.
Further, examples of the isocyanate compound include halogen-substituted products (for example, chlorine-substituted products, bromine-substituted products, etc.), alkyl-substituted products, alkoxy-substituted products, carbodiimide-modified products, urea-modified products, and burette-modified products of the above-mentioned compounds.
Prepolymer-type modified products of the above compounds and nitro-substituted products, polyhydric alcohols, etc.
Dimerization or trimmerization reaction products of the above compounds can also be used.
These compounds may be used alone or in admixture of two or more.
 第3実施形態における脂環族イソシアネート化合物、芳香族イソシアネート化合物、複素環イソシアネート化合物及び脂肪族イソシアネート化合物の定義は、第1実施形態における脂環族イソシアネート化合物、芳香族イソシアネート化合物、複素環イソシアネート化合物及び脂肪族イソシアネート化合物の定義と同様である。 The definitions of the alicyclic isocyanate compound, the aromatic isocyanate compound, the heterocyclic isocyanate compound and the aliphatic isocyanate compound in the third embodiment are defined as the alicyclic isocyanate compound, the aromatic isocyanate compound, the heterocyclic isocyanate compound and the alicyclic isocyanate compound in the first embodiment. Similar to the definition of aliphatic isocyanate compounds.
 前記イソシアネート化合物としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、芳香族イソシアネート化合物及び複素環イソシアネート化合物からなる群から選択される少なくとも1つを含むことが好ましい。 The isocyanate compound preferably contains at least one selected from the group consisting of an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound and a heterocyclic isocyanate compound.
 第3実施形態における光学材料用モノマーの少なくとも1種は、芳香環を有するイソシアネート化合物であってもよい。芳香環を有するイソシアネート化合物としては、具体的には、芳香族イソシアネート化合物が挙げられ、より具体的には芳香環に直接イソシアナート基が結合しているイソシアネート化合物、芳香環のベンジル位にイソシアナート基が結合しているイソシアネート化合物等が挙げられる。
 光学材料用モノマーは、芳香環を有するイソシアネート化合物以外のイソシアネート化合物、即ち芳香環を有さないイソシアネート化合物を含んでいてもよい。
At least one kind of the monomer for optical materials in the third embodiment may be an isocyanate compound having an aromatic ring. Specific examples of the isocyanate compound having an aromatic ring include an aromatic isocyanate compound, more specifically, an isocyanate compound in which an isocyanate group is directly bonded to the aromatic ring, and an isocyanate compound at the benzyl position of the aromatic ring. Examples thereof include an isocyanate compound to which a group is bonded.
The monomer for an optical material may contain an isocyanate compound other than the isocyanate compound having an aromatic ring, that is, an isocyanate compound having no aromatic ring.
 芳香環を有するイソシアネート化合物以外のイソシアネート化合物としては、特に制限はないが、例えば、芳香環を有さないイソシアネート化合物が挙げられる。光学材料用モノマーが芳香環を有さないイソシアネート化合物及び芳香環を有するイソシアネート化合物を含む場合、芳香環を有さないイソシアネート化合物におけるイソシアナート基のモル数が芳香環を有するイソシアネート化合物におけるイソシアナート基のモル数よりも少ないことが好ましい。 The isocyanate compound other than the isocyanate compound having an aromatic ring is not particularly limited, and examples thereof include an isocyanate compound having no aromatic ring. When the monomer for optical material contains an isocyanate compound having no aromatic ring and an isocyanate compound having an aromatic ring, the number of moles of the isocyanate group in the isocyanate compound having no aromatic ring is the isocyanate group in the isocyanate compound having an aromatic ring. It is preferably less than the number of moles of.
 第3実施形態において、光学材料の品質を維持し、かつ、光学材料の製造時間を短縮する観点から、前記イソシアネート化合物は、イソホロンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、1,6-ヘキサメチレンジイソシアネート、および1,5-ペンタメチレンジイソシアネートからなる群から選択される少なくとも1つを含むことが好ましく、
 イソホロンジイソシアネート、2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、および1,3-ビス(イソシアナトメチル)シクロヘキサンからなる群から選択される少なくとも1つを含むことがより好ましく、
 2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、及び2,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタン、m-キシリレンジイソシアネートからなる群から選択される少なくとも1つを含むことがさらに好ましい。
In the third embodiment, from the viewpoint of maintaining the quality of the optical material and shortening the production time of the optical material, the isocyanate compound is isophorone diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2. 2.1] -Heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -Heptane, m-xylylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate , Dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, 1,6-hexamethylene diisocyanate, and 1,5-pentamethylene diisocyanate. It is preferable to include at least one of the above.
Isophorone diisocyanate, 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, m-xyli It may contain at least one selected from the group consisting of range isocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, dicyclohexylmethane diisocyanate, and 1,3-bis (isosyanatomethyl) cyclohexane. Preferably
2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, and 2,6-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane, m-xylylene diisocyanate It is further preferred to include at least one selected from the group consisting of.
〔活性水素化合物〕
 第3実施形態における活性水素化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における活性水素化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
[Active hydrogen compound]
The details of the specific example, preferred embodiment, preferred content, etc. of the active hydrogen compound in the third embodiment are the same as the details of the specific example, preferred embodiment, preferred content, etc. of the active hydrogen compound in the first embodiment.
(2つ以上のメルカプト基を有するポリチオール化合物)
 第3実施形態における2つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における2つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polythiol compound having two or more mercapto groups)
Specific examples of the polythiol compound having two or more mercapto groups in the third embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having two or more mercapto groups in the first embodiment, preferable. It is the same as the details such as an embodiment and a preferable content.
(3つ以上のメルカプト基を有するポリチオール化合物)
 活性水素化合物としては、3つ以上のメルカプト基を有するポリチオール化合物も挙げられる。
 第3実施形態の重合性組成物は、活性水素化合物として3つ以上のメルカプト基を有するポリチオール化合物を含む場合、重合反応を促進する観点から、前記3つ以上のメルカプト基を有するポリチオール化合物に含まれる3つ以上のメルカプト基のうちの少なくとも1つのメルカプト基が下記式(N1)で表される基に置換された化合物(化合物(N1)ともいう)を含むことが好ましい。
(Polythiol compound having 3 or more mercapto groups)
Examples of the active hydrogen compound include polythiol compounds having three or more mercapto groups.
When the polymerizable composition of the third embodiment contains a polythiol compound having three or more mercapto groups as the active hydrogen compound, the polymerizable composition is contained in the polythiol compound having three or more mercapto groups from the viewpoint of accelerating the polymerization reaction. It is preferable that at least one of the three or more mercapto groups is substituted with a group represented by the following formula (N1) (also referred to as compound (N1)).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(N1)中、*は結合位置を表す。 In equation (N1), * represents the bond position.
  第3実施形態の重合性組成物は、重合反応の調整が容易である観点から、高速液体クロマトグラフィーでピーク面積を測定した場合に、前記3つ以上のメルカプト基を有するポリチオール化合物のピーク面積100に対して、化合物(N1)のピーク面積が、3.0以下であることが好ましく、1.5以下であることがより好ましい。
 なお、高速液体クロマトグラフィーでピーク面積を測定した場合に、前記3つ以上のメルカプト基を有するポリチオール化合物のピーク面積100に対して、化合物(N1)のピーク面積は、重合反応を促進する観点から、0.01以上であることが好ましい。
 なお、高速液体クロマトグラフィーによるピーク面積は、国際公開第2014/027665号の段落0146等に記載の方法で測定することができる。
The polymerizable composition of the third embodiment has a peak area of 100 of the polythiol compound having three or more mercapto groups when the peak area is measured by high performance liquid chromatography from the viewpoint that the polymerization reaction can be easily adjusted. On the other hand, the peak area of the compound (N1) is preferably 3.0 or less, and more preferably 1.5 or less.
When the peak area is measured by high performance liquid chromatography, the peak area of the compound (N1) is from the viewpoint of accelerating the polymerization reaction with respect to the peak area 100 of the polythiol compound having three or more mercapto groups. , 0.01 or more is preferable.
The peak area by high performance liquid chromatography can be measured by the method described in paragraph 0146 of International Publication No. 2014/027665.
(1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物)
 第3実施形態における1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups)
Specific examples, preferred embodiments, preferred contents and the like of the hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups in the third embodiment are described in detail with the one or more mercapto groups in the first embodiment. It is the same as the details of the specific example of the hydroxythiol compound having one or more hydroxyl groups, a preferable embodiment, a preferable content and the like.
(2つ以上の水酸基を含むポリオール化合物)
 第3実施形態における2つ以上の水酸基を有するポリオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における2つ以上の水酸基を有するポリオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polyol compound containing two or more hydroxyl groups)
Specific examples, preferred embodiments, preferred contents and the like of the polyol compound having two or more hydroxyl groups in the third embodiment are specific examples of the polyol compound having two or more hydroxyl groups in the first embodiment, preferred embodiments. It is the same as the details such as a preferable content.
(アミン化合物)
 第2実施形態におけるアミン化合物の具体例、好ましい態様、好ましい含有量、(NCO基/(OH基+SH基))、粘度Va、粘度差V等の詳細は、第1実施形態におけるアミン化合物の具体例、好ましい態様、好ましい含有量、(NCO基/(OH基+SH基))、粘度Va、粘度差V等の詳細と同様である。
(Amine compound)
Specific examples of the amine compound in the second embodiment, preferred embodiments, preferred contents, (NCO group / (OH group + SH group)), viscosity Va, viscosity difference V and the like are details of the amine compound in the first embodiment. Examples, preferred embodiments, preferred contents, (NCO group / (OH group + SH group)), viscosity Va, viscosity difference V and the like are the same.
<重合触媒>
 第3実施形態における重合触媒の具体例、好ましい態様、好ましい含有量等の詳細は、第1実施形態における重合触媒の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
<Polymerization catalyst>
The details of the specific example, preferred embodiment, preferred content, etc. of the polymerization catalyst in the third embodiment are the same as the details of the specific example, preferred embodiment, preferred content, etc. of the polymerization catalyst in the first embodiment.
(塩基性触媒)
 第3実施形態における塩基性触の具体例、好ましい態様、好ましいpKa等の詳細は、第1実施形態における塩基性触の具体例、好ましい態様、好ましいpKa等の詳細と同様である。
(Basic catalyst)
The details of the specific example, preferred embodiment, preferred pKa, etc. of the basic touch in the third embodiment are the same as the details of the specific example, preferred embodiment, preferred pKa, etc. of the basic touch in the first embodiment.
 塩基性触媒としては、pKa値が1以上であることが好ましく、3以上であることがより好ましく、4以上であることがさらに好ましい。
 塩基性触媒としては、pKa値が9以下であることが好ましく、8以下であることがより好ましい。
As the basic catalyst, the pKa value is preferably 1 or more, more preferably 3 or more, and further preferably 4 or more.
As the basic catalyst, the pKa value is preferably 9 or less, more preferably 8 or less.
(有機金属系触媒)
 第3実施形態における有機金属系触媒の具体例、好ましい態様等の詳細は、第1実施形態における有機金属系触媒の具体例、好ましい態様等の詳細と同様である。
 前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が、0.010質量部以上であることで、良好に重合反応を促進することができるため、短い時間で高品質な光学材料を得ることができる。また、良好に重合反応を促進することで、硬化物をモールドから取り出す際の離型性を向上させることができる。
 上記の観点から、前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が、0.02質量部以上であることが好ましく、0.03質量部以上であることがより好ましい。
(Organometallic catalyst)
The details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the third embodiment are the same as the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the first embodiment.
When the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is 0.010 parts by mass or more, the polymerization reaction can be satisfactorily promoted, so that the polymerization reaction can be promoted in a short time. High quality optical materials can be obtained. Further, by satisfactorily promoting the polymerization reaction, it is possible to improve the releasability when the cured product is taken out from the mold.
From the above viewpoint, the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is preferably 0.02 parts by mass or more, and preferably 0.03 parts by mass or more. Is more preferable.
 前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が、2.0質量部以下であることで、例えば重合性組成物をモールドへ注入する際のハンドリング性を向上させることができる。
 上記の観点から、前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が、0.20質量部以下であることが好ましく、0.10質量部以下であることがより好ましく、0.09質量部以下であることがさらに好ましい。
 なお、上記重合触媒の含有量は、重合触媒の種類、使用するモノマー類(イソシアネート化合物、活性水素化合物、その他の成分等)の種類及び使用量、所望の成形体の形状により適宜設定することができる。
When the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is 2.0 parts by mass or less, for example, the handleability when injecting a polymerizable composition into a mold can be improved. Can be improved.
From the above viewpoint, the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is preferably 0.20 parts by mass or less, and preferably 0.10 parts by mass or less. Is more preferable, and it is further preferable that it is 0.09 part by mass or less.
The content of the polymerization catalyst may be appropriately set according to the type of the polymerization catalyst, the type and amount of the monomers (isocyanate compound, active hydrogen compound, other components, etc.) used, and the desired shape of the molded product. can.
 重合触媒は、下記条件1を満たすことが好ましい。
[条件1]
-Ea/Rが、-7100以上-2900以下である。
(Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
The polymerization catalyst preferably satisfies the following condition 1.
[Condition 1]
-Ea / R is -7100 or more and -2900 or less.
(Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
 第3実施形態における条件1の意義、測定方法等の詳細は、第2実施形態における条件1の意義、測定方法等の詳細と同様である。 The details of the significance of the condition 1 and the measurement method in the third embodiment are the same as the details of the significance of the condition 1 and the measurement method in the second embodiment.
(他の添加剤)
 第3実施形態の重合性組成物は、任意の添加剤を含んでもよい。
 任意の添加剤として、フォトクロミック化合物、内部離型剤、ブルーイング剤、紫外線吸収剤などを挙げることができる。
 第3実施形態におけるフォトクロミック化合物、内部離型剤、ブルーイング剤及び紫外線吸収剤の具体例、好ましい態様等の詳細は、第1実施形態におけるフォトクロミック化合物、内部離型剤、ブルーイング剤及び紫外線吸収剤の具体例、好ましい態様等の詳細と同様である。
(Other additives)
The polymerizable composition of the third embodiment may contain any additive.
Optional additives include photochromic compounds, internal mold release agents, brewing agents, UV absorbers and the like.
Details of specific examples of the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorber in the third embodiment, preferable embodiments, and the like are described in detail in the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorption in the first embodiment. The same applies to the details of specific examples of the agent, preferred embodiments, and the like.
(粘度)
 第3実施形態の重合性組成物は、脈理を抑制する観点及び粘着剤の溶出を抑制する観点から、B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s以上であり、40mPa・s以上であることが好ましく、70mPa・s以上であることがより好ましく、80mPa・s以上であることがさらに好ましく、100mPa・s以上であることが特に好ましく、120mPa・s以上であることがより一層好ましい。
 第3実施形態の重合性組成物は、光学材料を所望の形状に成形する際のハンドリング性を良好に保つ観点から、B型粘度計で25℃ 60rpmの条件で測定した粘度が1000mPa・s以下であり、700mPa・s以下であることが好ましく、400mPa・s以下であることがより好ましい。
(viscosity)
The polymerizable composition of the third embodiment has a viscosity of 10 mPa · s or more measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer from the viewpoint of suppressing pulse and elution of the pressure-sensitive adhesive. It is preferably 40 mPa · s or more, more preferably 70 mPa · s or more, further preferably 80 mPa · s or more, particularly preferably 100 mPa · s or more, and 120 mPa · s or more. Is even more preferable.
The polymerizable composition of the third embodiment has a viscosity of 1000 mPa · s or less measured under the condition of 25 ° C. and 60 rpm with a B-type viscometer from the viewpoint of maintaining good handleability when molding the optical material into a desired shape. It is preferably 700 mPa · s or less, and more preferably 400 mPa · s or less.
 第3実施形態の重合性組成物における粘度は、得られる硬化物の使用用途によって調整してもよい。
 例えば、プラスレンズ用のモールドを用いて硬化物を得る場合はコバ(又は注入口)が狭い(例えば1mm~3mm)ため、第3実施形態の重合性組成物は、脈理を抑制する観点から、上記粘度が10mPa・s~100mPa・sであることが好ましい。
 一方、プラスレンズ以外の通常のレンズ用のモールドを用いて硬化物を得る場合は、コバ(即ち注入口)が広い(例えば5mm~15mm)ため、第3実施形態の重合性組成物は、脈理を抑制する観点から、上記粘度が10mPa・s~1000mPa・sであることが好ましく、より好ましくは100mPa・s~1000mPa・sである。
The viscosity of the polymerizable composition of the third embodiment may be adjusted depending on the intended use of the obtained cured product.
For example, when a cured product is obtained by using a mold for a plus lens, the edge (or injection port) is narrow (for example, 1 mm to 3 mm), so that the polymerizable composition of the third embodiment is from the viewpoint of suppressing the viscosity. The viscosity is preferably 10 mPa · s to 100 mPa · s.
On the other hand, when a cured product is obtained by using a mold for a normal lens other than a plus lens, the edge (that is, the injection port) is wide (for example, 5 mm to 15 mm), so that the polymerizable composition of the third embodiment has a pulse. From the viewpoint of suppressing the reasoning, the viscosity is preferably 10 mPa · s to 1000 mPa · s, and more preferably 100 mPa · s to 1000 mPa · s.
 重合性組成物の粘度を高めることで、外部から上記組成物に熱が加えられた場合に組成物の内部と外部との温度差による熱対流を抑制することができ、熱対流由来の脈理を低減させることができる。
 しかし、触媒量が少ないと重合時の増粘速度が充分でないため、熱対流を抑制することができる程度に粘度が大きくならず、短時間で急激に温度を上昇させることができない。さらに、重合を完結させるまでに必要な時間も長くなる。
 一方、第3実施形態により、イソシアネート化合物の反応性を考慮し、触媒量を最適な範囲内まで増やすことで、上記組成物全体の粘度をより速く高めることができる。これにより、重合のムラを抑制しつつ急激な温度上昇による熱対流を抑制でき、短時間で重合を進めることができる。
By increasing the viscosity of the polymerizable composition, it is possible to suppress heat convection due to the temperature difference between the inside and outside of the composition when heat is applied to the composition from the outside, and the pulse derived from heat convection can be suppressed. Can be reduced.
However, if the amount of catalyst is small, the thickening rate at the time of polymerization is not sufficient, so that the viscosity does not increase to the extent that heat convection can be suppressed, and the temperature cannot be raised rapidly in a short time. In addition, the time required to complete the polymerization also increases.
On the other hand, according to the third embodiment, the viscosity of the entire composition can be increased more quickly by increasing the amount of the catalyst within the optimum range in consideration of the reactivity of the isocyanate compound. As a result, heat convection due to a rapid temperature rise can be suppressed while suppressing unevenness in polymerization, and polymerization can proceed in a short time.
 第3実施形態の重合性組成物は、脈理を抑制する観点及び粘着剤の溶出を抑制する観点から、重合開始後重合性組成物の温度が40℃に到達した時点において、B型粘度計で40℃ 60rpmの条件で測定した粘度が100mPa・s以上であることが好ましく、200mPa・s以上であることがより好ましく、500mPa・s以上であることがさらに好ましい。
 第3実施形態の重合性組成物は、重合性組成物を注入する際のハンドリング性を良好に保つ観点から、重合開始後重合性組成物の温度が40℃に到達した時点において、B型粘度計で40℃ 60rpmの条件で測定した粘度が2000mPa・s以下であることが好ましく、1500mPa・s以下であることがより好ましい。
The polymerizable composition of the third embodiment is a B-type viscometer when the temperature of the polymerizable composition reaches 40 ° C. after the start of polymerization from the viewpoint of suppressing pulse and elution of the pressure-sensitive adhesive. The viscosity measured at 40 ° C. and 60 rpm is preferably 100 mPa · s or more, more preferably 200 mPa · s or more, and even more preferably 500 mPa · s or more.
The polymerizable composition of the third embodiment has a B-type viscosity when the temperature of the polymerizable composition reaches 40 ° C. after the start of polymerization, from the viewpoint of maintaining good handleability when the polymerizable composition is injected. The viscosity measured under the condition of 40 ° C. and 60 rpm in total is preferably 2000 mPa · s or less, and more preferably 1500 mPa · s or less.
 第3実施形態の重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、2種以上の異なる光学材料用モノマーの重合体であり重合性官能基を有するプレポリマーと、を含むことが好ましい。
 プレポリマーとは、2種以上の異なる光学材料用モノマーの重合体であり重合性官能基を有するポリマーである。
 プレポリマーと2種以上の異なる光学材料用モノマーとを重合させて得られる硬化物は、光学材料として用いることができる。
 プレポリマーとしては、例えば、光学材料用モノマーの内の2種の光学材料用モノマーを当量比1:1で重合させていないポリマー、光学材料用モノマーの内の2種の光学材料用モノマーをバランスが崩れた当量比で重合させているポリマーなどが挙げられる。
 なお、上記重合性官能基とは、他の重合性官能基と重合することができる官能基であり、具体的には後述するイソシアナート基、メルカプト基などの活性水素を有する官能基が挙げられる。
 当量比1:1で重合させるとは、例えば、イソシアネート化合物及びポリチオール化合物を用いて重合させる際に、イソシアネート化合物が有するイソシアナート基とポリチオール化合物が有するメルカプト基とがモル比で1:1になる量にて重合させることである。
The polymerizable composition of the third embodiment includes two or more kinds of monomers for different optical materials, a polymerization catalyst, and a prepolymer which is a polymer of two or more kinds of monomers for different optical materials and has a polymerizable functional group. It is preferable to include.
The prepolymer is a polymer of two or more different monomers for optical materials and has a polymerizable functional group.
A cured product obtained by polymerizing a prepolymer and two or more different monomers for optical materials can be used as an optical material.
As the prepolymer, for example, a polymer in which two kinds of monomers for optical materials are not polymerized at an equivalent ratio of 1: 1 among the monomers for optical materials, and two kinds of monomers for optical materials among the monomers for optical materials are balanced. Examples thereof include a polymer which is polymerized at an equivalent ratio in which the material is broken.
The above-mentioned polymerizable functional group is a functional group that can be polymerized with another polymerizable functional group, and specific examples thereof include functional groups having active hydrogen such as an isocyanate group and a mercapto group described later. ..
Polymerizing at an equivalent ratio of 1: 1 means that, for example, when polymerizing using an isocyanate compound and a polythiol compound, the isocyanate group of the isocyanate compound and the mercapto group of the polythiol compound become 1: 1 in molar ratio. It is to polymerize by the amount.
<硬化工程>
 第3実施形態における硬化工程は、空間に注入された重合性組成物を硬化させて硬化物を得る工程である。
 第3実施形態の光学部材の製造方法が、硬化工程を含むことで、前記重合性組成物を重合させることができ、光学材料を製造することができる。
<Curing process>
The curing step in the third embodiment is a step of curing the polymerizable composition injected into the space to obtain a cured product.
When the method for producing an optical member according to the third embodiment includes a curing step, the polymerizable composition can be polymerized, and an optical material can be produced.
 硬化工程において、硬化時間は好適には10時間以下である。
 特に、第3実施形態における硬化工程において、硬化時間が10時間以下である場合には、粘着剤の溶出量が著しく抑えられる傾向があり、より良好に、上記白濁、ボイド等を抑制することができる。
In the curing step, the curing time is preferably 10 hours or less.
In particular, in the curing step of the third embodiment, when the curing time is 10 hours or less, the elution amount of the pressure-sensitive adhesive tends to be remarkably suppressed, and the white turbidity, voids and the like can be suppressed better. can.
 第3実施形態における硬化時間は、重合性組成物の温度が30℃に到達した時点から重合性組成物が完全に硬化するまでの時間を意味する。 The curing time in the third embodiment means the time from the time when the temperature of the polymerizable composition reaches 30 ° C. to the time when the polymerizable composition is completely cured.
 上記の観点から、硬化時間は7時間以下であることがより好ましく、5時間以下であることがさらに好ましい。 From the above viewpoint, the curing time is more preferably 7 hours or less, and further preferably 5 hours or less.
 重合性組成物の硬化性の観点から、硬化時間は1時間以上であることが好ましく、3時間以上であることがより好ましい。 From the viewpoint of curability of the polymerizable composition, the curing time is preferably 1 hour or longer, more preferably 3 hours or longer.
 硬化工程における最大硬化温度は、150℃以下であることが好ましく、130℃以下であることがより好ましく、100℃以下であることがさらに好ましく、80℃以下であることが特に好ましい。
 硬化工程における最大硬化温度は、50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましい。
The maximum curing temperature in the curing step is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, further preferably 100 ° C. or lower, and particularly preferably 80 ° C. or lower.
The maximum curing temperature in the curing step is preferably 50 ° C. or higher, more preferably 60 ° C. or higher, and even more preferably 70 ° C. or higher.
 硬化工程において、前記重合性組成物の硬化に伴い、前記2つのモールド基板の少なくとも一方が前記フィルムとの接触面上を移動し、前記モールド基板間の間隔が前記空間形成工程における前記モールド基板間の間隔よりも小さくなることが好ましい。
 上記の点について、図9を用いて詳細に説明する。
 図9は、硬化工程におけるモールド基板の移動を説明するための概略図である。
In the curing step, as the polymerizable composition is cured, at least one of the two mold substrates moves on the contact surface with the film, and the distance between the mold substrates is between the mold substrates in the space forming step. It is preferable that the interval is smaller than the interval between.
The above points will be described in detail with reference to FIG.
FIG. 9 is a schematic diagram for explaining the movement of the molded substrate in the curing step.
 図9に示すように、硬化工程では、キャビティ114中の重合性組成物120を硬化させる。重合性組成物120は、例えば加熱、活性エネルギー線等により重合し、重合収縮が生じる。この重合収縮が最も激しく起こる際に、フィルム(例えば粘着テープ)113は、モールド基板を保持する保持力が低下する。 As shown in FIG. 9, in the curing step, the polymerizable composition 120 in the cavity 114 is cured. The polymerizable composition 120 is polymerized by, for example, heating, active energy rays, or the like, and polymerization shrinkage occurs. When this polymerization shrinkage occurs most severely, the film (for example, adhesive tape) 113 has a reduced holding force for holding the molded substrate.
 フィルム113の保持力や粘着力が低下する結果、キャビティ114の中の重合性組成物120の重合収縮に伴う応力及び自重により、主として上側のモールド基板が、空間形成工程で固定した位置(図9の破線で示す)からフィルム113内面を摺動して降下し、下側のモールド基板に接近する。この際、モールド基板の移動量は、重合性組成物120の重合収縮量にほぼ等しくなる。 As a result of the decrease in the holding force and the adhesive force of the film 113, the position where the upper mold substrate is mainly fixed in the space forming step due to the stress and its own weight due to the polymerization shrinkage of the polymerizable composition 120 in the cavity 114 (FIG. 9). It slides down from the inner surface of the film 113 (indicated by the broken line) and approaches the lower mold substrate. At this time, the amount of movement of the molded substrate is substantially equal to the amount of polymerization shrinkage of the polymerizable composition 120.
 これにより、重合性組成物120の容積収縮をモールド基板111及び112の移動によって吸収し、フィルム113が変形することを防止することができる。得られた硬化物(プラスチックレンズ)130の側面は、変形しなかったフィルム113の形状が転写され、見栄えがよい形状となる。
 そのため、モールド基板111及び112の外径は、プラスチックレンズの仕上り外径寸法と同じでよい。これによって、従来、研磨作業で削っていた数mm分の外周部分の無駄がなくなる。外周部分が厚いレンズの場合、10%強の重合性組成物の節減になる。また、研磨作業が不要になるメリットもある。
Thereby, the volumetric shrinkage of the polymerizable composition 120 can be absorbed by the movement of the mold substrates 111 and 112, and the film 113 can be prevented from being deformed. The shape of the film 113 that has not been deformed is transferred to the side surface of the obtained cured product (plastic lens) 130, resulting in a good-looking shape.
Therefore, the outer diameters of the molded substrates 111 and 112 may be the same as the finished outer diameter dimensions of the plastic lens. This eliminates the waste of the outer peripheral portion of several mm, which has been conventionally scraped by the polishing work. In the case of a lens having a thick outer peripheral portion, the amount of the polymerizable composition can be reduced by more than 10%. In addition, there is an advantage that polishing work becomes unnecessary.
 従来では、重合反応を行う際、重合性組成物を加熱して重合反応を発生させていた。
 第3実施形態における重合性組成物は、重合反応に伴う反応熱(即ち自己発熱による熱)を短時間で発生させることで、重合性組成物中の光学材料用モノマーの重合反応を促進させることもできる。
 そのため、第3実施形態の光学部材の製造方法において、重合性組成物に対する加熱は必ずしも必要としないが、加熱してもよい。
 即ち、第3実施形態における硬化工程において、重合性組成物を静置することで、重合性組成物を重合により硬化させることができる。
Conventionally, when the polymerization reaction is carried out, the polymerizable composition is heated to generate the polymerization reaction.
The polymerizable composition according to the third embodiment promotes the polymerization reaction of the monomer for optical material in the polymerizable composition by generating the reaction heat (that is, the heat due to self-heating) associated with the polymerization reaction in a short time. You can also.
Therefore, in the method for producing an optical member according to the third embodiment, heating of the polymerizable composition is not always necessary, but heating may be performed.
That is, in the curing step of the third embodiment, the polymerizable composition can be cured by polymerization by allowing the polymerizable composition to stand still.
 重合反応に伴う反応熱(即ち自己発熱による熱)を短時間で発生させることで、重合性組成物中の光学材料用モノマーの重合反応を促進させる場合には、重合時間を短縮することができる。
 従来では、加熱硬化においては、光学材料の品質を高めるため、加熱により徐々に昇温しながら数時間から数十時間かけて重合反応を行うことが一般的であり、具体的には一般的に20時間~48時間程度を要する。
 上述のように、重合反応に伴う反応熱(即ち自己発熱による熱)を短時間に発生させることで、重合性組成物中の光学材料用モノマーの重合反応を促進させる場合、硬化時間は数時間~20時間で完了する場合が多い。
When the reaction heat associated with the polymerization reaction (that is, the heat due to self-heating) is generated in a short time to accelerate the polymerization reaction of the monomer for optical material in the polymerizable composition, the polymerization time can be shortened. ..
Conventionally, in heat curing, in order to improve the quality of the optical material, it is common to carry out a polymerization reaction over several hours to several tens of hours while gradually raising the temperature by heating. It takes about 20 to 48 hours.
As described above, when the reaction heat associated with the polymerization reaction (that is, the heat due to self-heating) is generated in a short time to accelerate the polymerization reaction of the monomer for optical material in the polymerizable composition, the curing time is several hours. It is often completed in up to 20 hours.
 硬化工程において、空間に注入された重合性組成物を閉鎖系空間に静置することで重合性組成物を硬化させることが好ましい。これによって、コバの状態に優れる硬化物を得ることができる。
 また、重合性組成物を閉鎖系空間内にて静置することで、重合性組成物の自己発熱によって発生した熱が、外部に放出することを防ぐことができる。これによって、閉鎖系空間内に自己発熱によって発生した熱を保持することができるため、より効率的に重合反応を促進させることができ、より短い時間で光学材料を製造することができる。
 閉鎖系空間としては、例えば、断熱環境が挙げられる。
 断熱環境とは、内部に熱を保持し、内部と外部との熱の伝導が抑制された環境を指す。内部と外部との熱の伝導が抑制された環境とは、重合性組成物を閉鎖系空間内にて静置した場合に、閉鎖系空間の内部と外部との熱の伝導性が重合性組成物を硬化させることがで
きる程度である環境を意味する。
In the curing step, it is preferable to cure the polymerizable composition by allowing the polymerizable composition injected into the space to stand in a closed space. As a result, a cured product having an excellent edge condition can be obtained.
Further, by allowing the polymerizable composition to stand in the closed space, it is possible to prevent the heat generated by the self-heating of the polymerizable composition from being released to the outside. As a result, the heat generated by self-heating can be retained in the closed system space, so that the polymerization reaction can be promoted more efficiently, and the optical material can be produced in a shorter time.
Examples of the closed space include a heat insulating environment.
The adiabatic environment refers to an environment in which heat is retained inside and heat conduction between the inside and the outside is suppressed. An environment in which heat conduction between the inside and the outside is suppressed means that when the polymerizable composition is allowed to stand in the closed system space, the heat conduction between the inside and the outside of the closed system space is the polymerizable composition. It means an environment in which an object can be cured.
 断熱環境は、例えば、断熱材料を用いて形成することができる。
 即ち、重合性組成物を、断熱材料からなる断熱容器内にて静置することで、断熱容器の内部に熱を保持し、内部と外部との熱の伝導を抑制することができる。
The adiabatic environment can be formed, for example, using an adiabatic material.
That is, by allowing the polymerizable composition to stand in a heat insulating container made of a heat insulating material, heat can be retained inside the heat insulating container and heat conduction between the inside and the outside can be suppressed.
 断熱材料の熱伝導率は、0.50W/mK以下であることが好ましく、0.10W/mK以下であることがより好ましく、0.05W/mK以下であることがさらに好ましい。 The thermal conductivity of the heat insulating material is preferably 0.50 W / mK or less, more preferably 0.10 W / mK or less, and even more preferably 0.05 W / mK or less.
 断熱材料の密度は、10kg/m以上であることが好ましく、15kg/m以上であることがより好ましく、20kg/m以上であることがさらに好ましい。 The density of the heat insulating material is preferably 10 kg / m 3 or more, more preferably 15 kg / m 3 or more, and further preferably 20 kg / m 3 or more.
 第3実施形態における「断熱」又は「断熱環境」において、重合性組成物の反応熱による重合反応を妨げたり、外部からの加熱によって重合性組成物の重合反応を過度に促進したりしない範囲内で、断熱反応槽を恒温状態(恒温反応槽)とするための加熱を行うことが好ましい。
 これによって、光学材料用モノマーの自己発熱による昇温状態等に応じて、モールドが静置された反応槽内(恒温反応槽)の環境温度を保温状態又は恒温状態とすることができるため、より良好に重合反応を促進することができる。
Within the range that does not hinder the polymerization reaction due to the reaction heat of the polymerizable composition or excessively promote the polymerization reaction of the polymerizable composition by heating from the outside in the "insulation" or "insulation environment" in the third embodiment. Therefore, it is preferable to heat the adiabatic reaction tank to bring it into a constant temperature state (constant temperature reaction tank).
As a result, the environmental temperature in the reaction vessel (constant temperature reaction vessel) in which the mold is placed can be kept warm or constant temperature according to the temperature rise state due to the self-heating of the monomer for optical material. The polymerization reaction can be promoted satisfactorily.
 断熱環境としては、例えば、上述のような断熱反応槽又は恒温反応槽を用いることができる。
 例えば、モノマーが注入されたモールドを断熱反応槽である真空容器内に静置する場合において、断熱反応槽(恒温反応槽)を用いた断熱環境下における断熱重合は、以下の手順で行うことができる。
 真空容器の内側面をウレタンフォーム、コルク等の断熱性及び保温性を有する部材で覆い、モノマーが注入されたモールドを必要に応じてウェス等の部材で包む。そして、上記真空容器内にモノマーが注入されたモールドを静置する。
As the adiabatic environment, for example, the adiabatic reaction tank or the constant temperature reaction tank as described above can be used.
For example, when a mold in which a monomer is injected is allowed to stand in a vacuum vessel which is an adiabatic reaction vessel, adiabatic polymerization in an adiabatic environment using an adiabatic reaction vessel (constant temperature reaction vessel) can be performed by the following procedure. can.
The inner surface of the vacuum vessel is covered with a member having heat insulating and heat-retaining properties such as urethane foam and cork, and the mold in which the monomer is injected is wrapped with a member such as a waste cloth as needed. Then, the mold in which the monomer is injected is allowed to stand in the vacuum container.
 硬化工程は、重合性組成物を外部から加熱することなく静置することにより、重合性組成物を硬化させる工程であってもよい。
 上述の通り、第3実施形態において、重合性組成物に対する加熱は必ずしも必要としない。
 外部から加熱するためには、装置を用いる場合もあり、経済的に負担が増大する場合がある。第3実施形態の光学部材の製造方法であれば、簡便な方法で光学材料を製造できるため、経済的な負担を軽減することができる。
The curing step may be a step of curing the polymerizable composition by allowing the polymerizable composition to stand without being heated from the outside.
As described above, in the third embodiment, heating of the polymerizable composition is not always necessary.
In order to heat from the outside, an apparatus may be used, which may increase the burden economically. According to the method for manufacturing the optical member according to the third embodiment, the optical material can be manufactured by a simple method, so that the economic burden can be reduced.
 硬化工程は、重合性組成物を2時間~10時間静置することにより、重合性組成物を硬化させる工程であることが好ましい。
 従来の方法によれば、一般に、加熱により徐々に昇温しながら数時間から数十時間(例えば、20時間~48時間程度)かけて重合反応を行う。
 重合反応を行う時間が短い場合には、重合性組成物が完全に硬化しないために光学材料を得ることができない、又は、光学材料の品質が低下する。
 しかし、第3実施形態によれば、得られる光学材料の品質を維持しつつ、短時間にて光学材料を製造することができる。具体的には、重合性組成物を10時間以下静置することによって光学材料を製造することができる。
 上記の観点から、硬化工程において、重合性組成物を8時間以下静置することがより好ましい。
 また、重合反応を行い良好に硬化した光学材料を得る観点から、重合性組成物を、2時間以上静置することが好ましく、5時間以上静置することがより好ましい。
The curing step is preferably a step of curing the polymerizable composition by allowing the polymerizable composition to stand for 2 to 10 hours.
According to the conventional method, generally, the polymerization reaction is carried out over several hours to several tens of hours (for example, about 20 hours to 48 hours) while gradually raising the temperature by heating.
When the time for carrying out the polymerization reaction is short, the optical material cannot be obtained because the polymerizable composition is not completely cured, or the quality of the optical material is deteriorated.
However, according to the third embodiment, the optical material can be manufactured in a short time while maintaining the quality of the obtained optical material. Specifically, the optical material can be produced by allowing the polymerizable composition to stand for 10 hours or less.
From the above viewpoint, it is more preferable to allow the polymerizable composition to stand for 8 hours or less in the curing step.
Further, from the viewpoint of performing a polymerization reaction to obtain a well-cured optical material, it is preferable to allow the polymerizable composition to stand for 2 hours or more, and more preferably to allow it to stand for 5 hours or more.
 硬化工程において、必要に応じて、重合性組成物に対してマイクロ波を所定時間照射するマイクロ波照射工程を設けてもよい。 In the curing step, if necessary, a microwave irradiation step of irradiating the polymerizable composition with microwaves for a predetermined time may be provided.
 第3実施形態における硬化工程の一態様としては、第1実施形態における硬化工程の一態様として記載した工程bを含む態様が挙げられる。 As one aspect of the curing step in the third embodiment, there is an aspect including the step b described as one aspect of the curing step in the first embodiment.
(硬化物)
 第3実施形態の硬化物は、第3実施形態の重合性組成物の硬化物である。
 第3実施形態の硬化物は、脈理を低減する観点から、アミン系触媒を重合触媒として用いる場合は、アミンの含有量が0.03質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、0.07質量%以上であることがさらに好ましい。
 また、第3実施形態の硬化物は、光学材料用重合性組成物のハンドリング性を向上させる観点から、アミンの含有量が2.5質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。
 なお、上記アミンの含有量は、硬化物をジクロロメタンに分散し超音波抽出したジクロロメタン組成物から、ガスクロマトグラフ質量分析で測定されるアミンの含有量である。
(Cursed product)
The cured product of the third embodiment is a cured product of the polymerizable composition of the third embodiment.
When an amine-based catalyst is used as the polymerization catalyst, the cured product of the third embodiment preferably has an amine content of 0.03% by mass or more, preferably 0.05% by mass, from the viewpoint of reducing pulse. The above is more preferable, and 0.07% by mass or more is further preferable.
Further, the cured product of the third embodiment preferably has an amine content of 2.5% by mass or less, preferably 2.0% by mass or less, from the viewpoint of improving the handleability of the polymerizable composition for optical materials. Is more preferable, and 1.5% by mass or less is further preferable.
The amine content is the amine content measured by gas chromatograph mass spectrometry from the dichloromethane composition in which the cured product is dispersed in dichloromethane and ultrasonically extracted.
 第3実施形態の硬化物は、脈理を低減する観点から、有機錫系触媒を用いる場合は、スズの含有量が0.05質量%以上であることが好ましく、0.1質量%以上であることがより好ましく、0.2質量%以上であることがさらに好ましい。
 また、第3実施形態の硬化物は、光学材料用重合性組成物のハンドリング性を向上させる観点から、スズの含有量が2.5質量%以下であることが好ましく、2.0質量%以下であることがより好ましく、1.5質量%以下であることがさらに好ましい。
From the viewpoint of reducing striae, the cured product of the third embodiment preferably has a tin content of 0.05% by mass or more, preferably 0.1% by mass or more, when an organotin catalyst is used. It is more preferably present, and more preferably 0.2% by mass or more.
Further, the cured product of the third embodiment preferably has a tin content of 2.5% by mass or less, preferably 2.0% by mass or less, from the viewpoint of improving the handleability of the polymerizable composition for optical materials. Is more preferable, and 1.5% by mass or less is further preferable.
 第3実施形態の硬化物は、例えば、ガスクロマトグラフ質量分析で測定されるアミンの含有量が、0.03質量%以上2.5質量%以下であることが好ましい。 The cured product of the third embodiment preferably has, for example, an amine content measured by gas chromatograph mass spectrometry of 0.03% by mass or more and 2.5% by mass or less.
 硬化物中のアミンの含有量の測定方法は以下の通りである。
 金属ヤスリにて粉状にした硬化物200mgとジクロロメタン3mLを遠沈管(容積10mL)に入れ、超音波洗浄機(IUCHI社製、US-4)を用いて室温で10分間超音波抽出し、遠心分離機(KUBOTA社製、卓上小型遠心機2410)を用いて4000rpmで10分間、遠心分離を行う。
 上澄みを採取し、残渣を再びジクロロメタン3mLに分散し上記超音波抽出と遠心分離を行い、上澄みを採取する(以下、「残渣抽出」ともいう)。
 上記残渣抽出をさらに2回行った後、得られた上澄み液に対して、合計量が10mLに
なるようにジクロロメタンを加えた。
 得られた10mLの上澄み液を濾過し、ガスクロマトグラフ質量分析(GC-MSとも称する。)(GC-MS装置:Agilent社製、6890GC/5973N MSD、カラム:CP-Sil 8 CB for Amine(0.25mmID×30m F.T=0.25μm))で分析して、アミン由来のピーク面積値を得る。得られたアミン由来のピーク面積値及びアミン量の検量線を作製して、硬化物中のアミンの含有量を測定する。
The method for measuring the amine content in the cured product is as follows.
200 mg of the cured product powdered with a metal file and 3 mL of dichloromethane are placed in a centrifuge tube (volume 10 mL), ultrasonically extracted for 10 minutes at room temperature using an ultrasonic washer (UCHI, US-4), and centrifuged. Centrifuge is performed at 4000 rpm for 10 minutes using a separator (KUBOTA, desktop small centrifuge 2410).
The supernatant is collected, the residue is dispersed again in 3 mL of dichloromethane, the above ultrasonic extraction and centrifugation are performed, and the supernatant is collected (hereinafter, also referred to as “residue extraction”).
After performing the above residue extraction twice more, dichloromethane was added to the obtained supernatant so that the total amount was 10 mL.
The obtained 10 mL supernatant was filtered and gas chromatograph mass spectrometry (also referred to as GC-MS) (GC-MS apparatus: 6890GC / 5973N MSD, column: CP-Sil 8 CB for Amine (0. 25 mm ID × 30 m FT = 0.25 μm))) to obtain a peak area value derived from amine. A calibration curve of the peak area value and the amount of amine derived from the obtained amine is prepared, and the content of amine in the cured product is measured.
 なお、上記アミンとは、重合触媒として用いることができるアミン化合物、又は上記アミン化合物に由来するアミン化合物を意味する。 The above-mentioned amine means an amine compound that can be used as a polymerization catalyst, or an amine compound derived from the above-mentioned amine compound.
 特に光透過性が要求される光学用途において、第3実施形態の硬化物は、失透度が50未満であることが好ましく、35未満であることがより好ましい。
 失透度は、以下の方法により測定される。
 硬化物に対して、暗所にて光源(例えば、ハヤシレピック社製Luminar Ace
 LA-150A)からの光を透過させる。硬化物を透過した光の画像を画像処理装置(例えば、宇部情報システム社製の画像処理装置)に取り込み、取り込んだ画像に対して濃淡処理を行い、処理後の画像の濃淡の度合いを画素毎に数値化し、各画素の濃淡の度合いの数値の平均値として計算される値を失透度とする。
Particularly in optical applications where light transmission is required, the cured product of the third embodiment preferably has a devitrification of less than 50, more preferably less than 35.
The devitrification is measured by the following method.
For the cured product, a light source in a dark place (for example, Luminar Ace manufactured by Hayashi Repic Co., Ltd.)
Light from LA-150A) is transmitted. The image of the light transmitted through the cured product is taken into an image processing device (for example, an image processing device manufactured by Ube Information Systems Co., Ltd.), the captured image is subjected to shading processing, and the degree of shading of the processed image is determined for each pixel. The devitrification is the value calculated as the average value of the numerical values of the degree of shading of each pixel.
 第3実施形態の硬化物は、硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がないことが好ましく、硬化物の中心から半径15mmの範囲内及び範囲外に1.0mm以上の長さの脈理がないことがより好ましい。 The cured product of the third embodiment preferably has no veins having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product, and is within or outside the range of a radius of 15 mm from the center of the cured product. It is more preferable that there is no radius of 1.0 mm or more.
 第3実施形態の硬化物は、より具体的には、2種以上の異なる光学用モノマーの硬化物であって、前記2種以上の異なる光学材料用モノマーの少なくとも1種が芳香環を有さないイソシアネート化合物であり、硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がなく、ガスクロマトグラフ質量分析で測定されるアミンの含有量が、0.03質量%以上2.5質量%以下である硬化物であってもよい。 More specifically, the cured product of the third embodiment is a cured product of two or more different optical monomers, and at least one of the two or more different optical material monomers has an aromatic ring. It is an isocyanate compound that does not have a pulse with a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product, and the amine content measured by gas chromatograph mass analysis is 0.03% by mass or more. It may be a cured product having an amount of 2.5% by mass or less.
 第3実施形態の硬化物は、2種以上の異なる光学用モノマーの硬化物であって、前記硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がなく、
 硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が略直線であることが好ましい。
The cured product of the third embodiment is a cured product of two or more different optical monomers, and has no veins having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
The outer peripheral surface of the cured product is mirror-like, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is preferably a substantially straight line.
 第3実施形態の硬化物は、前記一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含むことが好ましい。
 重合性組成物を硬化させる際、モールドにおいて、一方のモールドの主面とフィルムとの交点及び前記他方のモールドの主面とフィルムとの交点に、しばしば、小さい隙間が設けられる(面取りとも称する)。
 上記突起部は、上記の隙間に重合性組成物が入り込み、硬化されることで形成される部分である。
The cured product of the third embodiment preferably contains a protrusion substantially parallel to the outer peripheral surface at the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface. ..
When the polymerizable composition is cured, a small gap is often provided in the mold at the intersection of the main surface of one mold and the film and the intersection of the main surface of the other mold and the film (also referred to as chamfering). ..
The protrusion is a portion formed by the polymerizable composition entering the gap and being cured.
 第3実施形態の硬化物は、ウレタン樹脂、チオウレタン樹脂及びエピスルフィド樹脂からなる群から選択される少なくとも1つを含むことが好ましく、チオウレタン樹脂を含むことがより好ましい。 The cured product of the third embodiment preferably contains at least one selected from the group consisting of urethane resin, thiourethane resin and episulfide resin, and more preferably contains thiourethane resin.
<アニール工程>
 第3実施形態の光学部材の製造方法は、必要に応じて、硬化した重合性組成物をアニール処理するアニール工程を含んでもよい。
 アニール処理を行う際の温度は、通常50~150℃で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
<Annealing process>
The method for producing an optical member according to the third embodiment may include an annealing step of annealing the cured polymerizable composition, if necessary.
The temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
<光学部材>
 第3実施形態における硬化物は、光学部材として好適に用いることができる。
 例えば、第3実施形態における光学部材は、厚みが、1mm~20mmであってもよく、4mm~16mmであってもよい。
<Optical member>
The cured product in the third embodiment can be suitably used as an optical member.
For example, the optical member in the third embodiment may have a thickness of 1 mm to 20 mm or 4 mm to 16 mm.
<光学部材の用途>
 第3実施形態における光学部材は、プラスチックレンズ、プリズム、光ファイバー、情報記録基板、フィルター、発光ダイオード等に用いることができる。
 上記の中でも、第3実施形態における光学部材は、プラスチックレンズに好適に用いることができ、眼鏡用プラスチックレンズにより好適に用いることができる。
<Use of optical members>
The optical member in the third embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording board, a filter, a light emitting diode and the like.
Among the above, the optical member according to the third embodiment can be suitably used for a plastic lens, and can be preferably used for a plastic lens for spectacles.
[第4実施形態]
≪光学部材の製造方法≫
 第4実施形態の光学部材の製造方法は、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、前記空間に重合性組成物を注入する注入工程と、前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、を含み、前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上であり(但し、ガラスから完全に剥がれる場合を除く)、前記フィルムは、熱変形温度が120℃以下である。また、前記硬化工程において、硬化時間は好適には10時間以下である。また、前記重合性組成物は、好適には25℃において増粘曲線の傾きが0.4以上である。
[Fourth Embodiment]
≪Manufacturing method of optical members≫
In the method for manufacturing an optical member according to a fourth embodiment, a film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film. The film comprises a space forming step of forming a space, an injection step of injecting the polymerizable composition into the space, and a curing step of curing the polymerizable composition injected into the space to obtain a cured product. When the film is attached to glass and subjected to a heat resistance index test at 85 ° C., the heat resistance index is 1 mm or more (except when it is completely peeled off from the glass), and the film has a thermal deformation temperature of 120 ° C. or less. .. Further, in the curing step, the curing time is preferably 10 hours or less. Further, the polymerizable composition preferably has an inclination of a thickening curve of 0.4 or more at 25 ° C.
 第4実施形態の光学部材の製造方法は、上記構成を含むことで、外周面が平滑である光学部材を製造することができる。
 第4実施形態において、「外周面が平滑である」とは、例えば、硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が凹状の曲線であることが好ましい。
The method for manufacturing an optical member according to the fourth embodiment can manufacture an optical member having a smooth outer peripheral surface by including the above configuration.
In the fourth embodiment, "the outer peripheral surface is smooth" means that, for example, the outer peripheral surface of the cured product is mirror-like, the intersection of one main surface and the outer peripheral surface, and the other main surface and the outer peripheral surface. It is preferable that the shape between the intersections with the surface is a concave curve.
 また、第4実施形態の光学部材の製造方法は、研磨作業を行うことなく、又は少ない研磨量で、外周面が平滑である光学部材を製造することができる。
 硬化工程において重合性組成物を硬化させて収縮させる際に、モールド基板がフィルムとの接触面上を移動することを抑制できる。そのため、フィルムと重合性組成物との接触面を内部側に凹ませることができる。
Further, in the method for manufacturing an optical member according to the fourth embodiment, it is possible to manufacture an optical member having a smooth outer peripheral surface without performing polishing work or with a small amount of polishing.
When the polymerizable composition is cured and shrunk in the curing step, it is possible to prevent the molded substrate from moving on the contact surface with the film. Therefore, the contact surface between the film and the polymerizable composition can be recessed inward.
 また、フィルムにおける粘着剤は、重合性組成物に溶出する場合がある。重合性組成物に溶出した粘着剤は、得られる硬化物における白濁、ボイド等の原因となり得る。
 第4実施形態の光学部材の製造方法は、上記構成の組み合わせにより、上記白濁、ボイド等も良好に抑制することができる。
 特に、第4実施形態における硬化工程において、硬化時間が10時間以下である場合、後述するように重合性組成物の粘度が一定以上である場合には、粘着剤の溶出量が著しく抑えられる傾向があり、より良好に、上記しわ、白濁、ボイド等を抑制することができる。
In addition, the pressure-sensitive adhesive in the film may elute into the polymerizable composition. The pressure-sensitive adhesive eluted in the polymerizable composition can cause cloudiness, voids, etc. in the obtained cured product.
In the method for manufacturing an optical member according to the fourth embodiment, the cloudiness, voids, and the like can be satisfactorily suppressed by combining the above configurations.
In particular, in the curing step of the fourth embodiment, when the curing time is 10 hours or less and the viscosity of the polymerizable composition is a certain level or more as described later, the elution amount of the pressure-sensitive adhesive tends to be remarkably suppressed. It is possible to better suppress the above-mentioned wrinkles, cloudiness, voids and the like.
<空間形成工程>
 第4実施形態における空間形成工程の具体的態様、好ましい態様等の詳細は、第3実施形態における空間形成工程の具体的態様、好ましい態様等の詳細と同様である。
<Space formation process>
The details of the specific mode, the preferred mode, and the like of the space forming step in the fourth embodiment are the same as the details of the specific mode, the preferred mode, and the like of the space forming step in the third embodiment.
 第4実施形態の光学部材の製造方法では、モールドを用いる。
 第4実施形態におけるモールドの具体的態様、好ましい態様等の詳細は、第3実施形態におけるモールドの具体的態様、好ましい態様等の詳細と同様である。
In the method for manufacturing an optical member according to the fourth embodiment, a mold is used.
The details of the specific embodiment, the preferred embodiment, etc. of the mold in the fourth embodiment are the same as the details of the specific embodiment, the preferred embodiment, etc. of the mold in the third embodiment.
<フィルム>
 第4実施形態の光学部材の製造方法は、第4実施形態におけるフィルム(光学部材製造用フィルムともいう。)を用いる。
 第4実施形態におけるフィルムは、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、10時間以下で前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するための光学部材製造用フィルムであることが好ましい。
 第4実施形態におけるフィルム(光学部材製造用フィルムともいう。)は、少なくとも基材層及び粘着層を含むことが好ましい。
<Film>
As the method for manufacturing an optical member according to the fourth embodiment, the film (also referred to as a film for manufacturing an optical member) according to the fourth embodiment is used.
In the film of the fourth embodiment, the film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and the space is formed. It is preferable that the film is for producing an optical member for producing an optical member by arranging the polymerizable composition in the film and curing the polymerizable composition in 10 hours or less to obtain a cured product.
The film (also referred to as a film for manufacturing an optical member) in the fourth embodiment preferably includes at least a base material layer and an adhesive layer.
〔耐熱指数試験〕
 第4実施形態におけるフィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上である(但し、ガラスから完全に剥がれる場合を除く)。
 耐熱指数試験によって、フィルムの静的な粘着力を測定することができる。
 第4実施形態におけるフィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上である(但し、ガラスから完全に剥がれる場合を除く)ことで、静的な粘着力を良好に調整することができる。
 即ち、硬化工程において重合性組成物を硬化させて収縮させる際に、モールド基板がフィルムとの接触面上を移動することを抑制できる。そのため、フィルムと重合性組成物との接触面を内部側に凹ませることができる。
[Heat index test]
The film in the fourth embodiment has a heat resistance index of 1 mm or more when it is attached to glass and subjected to a heat resistance index test at 85 ° C. (except when it is completely peeled off from the glass).
The heat resistance index test can measure the static adhesive strength of the film.
The film in the fourth embodiment is static because it has a heat resistance index of 1 mm or more (except when it is completely peeled off from the glass) when it is attached to glass and subjected to a heat resistance index test at 85 ° C. The adhesive strength can be adjusted satisfactorily.
That is, it is possible to prevent the molded substrate from moving on the contact surface with the film when the polymerizable composition is cured and shrunk in the curing step. Therefore, the contact surface between the film and the polymerizable composition can be recessed inward.
 上記の観点から、耐熱指数が2mm以上であることが好ましく、3mm以上であることがより好ましい。
 第4実施形態におけるフィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、ガラスから完全に剥がれなければ、耐熱指数の上限値に特に制限はない。
 例えば、耐熱指数は、耐熱指数が15mm以下であることが好ましく、10mm以下であることがより好ましく、7mm以下であることがさらに好ましい。
 耐熱指数が上記範囲を満たすことで、重合性組成物を注入する際に空間からの重合性組成物の漏れを抑制することができる。重合性組成物を硬化させて2つのモールド基板の少なくとも一方がフィルムとの接触面上を移動する際にモールド基板がずれること(つまり
空間が変形すること)を抑制することができる。
From the above viewpoint, the heat resistance index is preferably 2 mm or more, and more preferably 3 mm or more.
When the film in the fourth embodiment is attached to glass and subjected to a heat resistance index test at 85 ° C., the upper limit of the heat resistance index is not particularly limited as long as it does not completely peel off from the glass.
For example, the heat resistance index is preferably 15 mm or less, more preferably 10 mm or less, and further preferably 7 mm or less.
When the heat resistance index satisfies the above range, leakage of the polymerizable composition from the space can be suppressed when the polymerizable composition is injected. By curing the polymerizable composition, it is possible to prevent the molded substrate from shifting (that is, deforming the space) when at least one of the two molded substrates moves on the contact surface with the film.
 第4実施形態における耐熱指数試験の具体的な方法は、第3実施形態における耐熱指数試験の具体的な方法と同様である。 The specific method of the heat resistance index test in the fourth embodiment is the same as the specific method of the heat resistance index test in the third embodiment.
〔熱変形温度〕
 第4実施形態におけるフィルムの熱変形温度及びガラスボールタック試験の好ましい範囲、測定方法等の詳細は、第3実施形態におけるフィルムの熱変形温度及びガラスボールタック試験の好ましい範囲、測定方法等の詳細と同様である。
[Heat distortion temperature]
Details of the heat distortion temperature of the film, the preferred range of the glass ball tack test, the measurement method, etc. in the fourth embodiment are described in detail of the heat distortion temperature of the film, the preferred range of the glass ball tack test, the measurement method, etc. in the third embodiment. Is similar to.
 第4実施形態におけるフィルムは、80℃における貯蔵弾性率が、3.0×1010Pa以上であることが好ましく、5.0×1010Pa以上であることがより好ましく、7.0×1010Pa以上であることがさらに好ましい。
 第4実施形態におけるフィルムは、80℃における貯蔵弾性率が、40.0×1010Pa以下であることが好ましく、30.0×1010Pa以下であることがより好ましく、20.0×1010Pa以下であることがさらに好ましい。
The film in the fourth embodiment preferably has a storage elastic modulus at 80 ° C. of 3.0 × 10 10 Pa or more, more preferably 5.0 × 10 10 Pa or more, and 7.0 × 10 It is more preferably 10 Pa or more.
The film in the fourth embodiment preferably has a storage elastic modulus at 80 ° C. of 40.0 × 10 10 Pa or less, more preferably 30.0 × 10 10 Pa or less, and 20.0 × 10 It is more preferably 10 Pa or less.
 第4実施形態における貯蔵弾性率測定試験の詳細条件の具体例は、第3実施形態における貯蔵弾性率測定試験の詳細条件の具体例と同様である。 The specific example of the detailed conditions of the storage elastic modulus measurement test in the fourth embodiment is the same as the specific example of the detailed conditions of the storage elastic modulus measurement test in the third embodiment.
〔粘着力〕
 第4実施形態におけるフィルムが少なくとも基材層及び粘着層を含む場合、粘着層の粘着力は、1.0N/10mm~10.0N/10mmが好ましく、2.0N/10mm~7.0N/10mmがより好ましく、3.0N/10mm~5.0N/10mmがさらに好ましい。
 粘着力は、JIS Z 0237:2009に準拠して測定する。
〔Adhesive force〕
When the film in the fourth embodiment contains at least a base material layer and an adhesive layer, the adhesive strength of the adhesive layer is preferably 1.0 N / 10 mm to 10.0 N / 10 mm, preferably 2.0 N / 10 mm to 7.0 N / 10 mm. Is more preferable, and 3.0N / 10mm to 5.0N / 10mm is even more preferable.
Adhesive strength is measured according to JIS Z 0237: 2009.
<注入工程>
 第4実施形態における注入工程の具体的態様、好ましい態様等の詳細は、第3実施形態における注入工程の具体的態様、好ましい態様等の詳細と同様である。
<Injection process>
The details of the specific embodiment, the preferred embodiment, etc. of the injection step in the fourth embodiment are the same as the details of the specific embodiment, the preferred embodiment, etc. of the injection step in the third embodiment.
<重合性組成物>
 第4実施形態の重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含む重合性組成物であってもよい。
<Polymerizable composition>
The polymerizable composition of the fourth embodiment may be a polymerizable composition containing two or more different monomers for optical materials and a polymerization catalyst.
 第4実施形態における重合性組成物は、25℃において増粘曲線の傾きが0.4以上であることが好ましい。
 第4実施形態における重合性組成物の25℃における増粘曲線の傾きの好ましい範囲、測定方法等の詳細は、第3実施形態における重合性組成物の25℃における増粘曲線の傾きの好ましい範囲、測定方法等の詳細と同様である。
The polymerizable composition in the fourth embodiment preferably has a thickening curve with a slope of 0.4 or more at 25 ° C.
The preferred range of the slope of the thickening curve of the polymerizable composition at 25 ° C. in the fourth embodiment, the measurement method and the like are described in detail in the preferred range of the slope of the thickening curve of the polymerizable composition at 25 ° C. in the third embodiment. , The details of the measurement method, etc. are the same.
 第4実施形態の重合性組成物は、2種以上の異なる光学材料用モノマーと、重合触媒と、を含み、2種以上の異なる光学材料用モノマーの合計100質量部に対する重合触媒の含有量が0.010質量部~2.0質量部であり、B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sであることが好ましい。 The polymerizable composition of the fourth embodiment contains two or more kinds of monomers for different optical materials and a polymerization catalyst, and the content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more kinds of monomers for different optical materials is It is preferably 0.010 part by mass to 2.0 parts by mass, and the viscosity measured with a B-type viscosity meter at 25 ° C. and 60 rpm is preferably 10 mPa · s to 1000 mPa · s.
(光学材料用モノマー)
 第4実施形態における光学材料用モノマーの具体例、好ましい態様、好ましい含有量等の詳細は、第3実施形態における光学材料用モノマーの具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Monomer for optical materials)
The details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the fourth embodiment are the same as the details of the specific example, preferred embodiment, preferable content, etc. of the monomer for optical material in the third embodiment. ..
〔イソシアネート化合物〕
 第4実施形態におけるイソシアネート化合物の具体例、好ましい態様、好ましい含有量、定義等の詳細は、第3実施形態におけるイソシアネート化合物の具体例、好ましい態様、好ましい含有量、定義等の詳細と同様である。
[Isocyanate compound]
The details of the specific example, preferred embodiment, preferred content, definition, etc. of the isocyanate compound in the fourth embodiment are the same as the details of the specific example, preferred embodiment, preferred content, definition, etc. of the isocyanate compound in the third embodiment. ..
 前記イソシアネート化合物としては、脂肪族イソシアネート化合物、脂環族イソシアネート化合物、芳香族イソシアネート化合物及び複素環イソシアネート化合物からなる群から選択される少なくとも1つを含むことが好ましい。特に、重合反応性を一定程度抑制してコバの状態を向上させる観点からは、イソシアネート化合物が、芳香族イソシアネート化合物を含まないことが好ましい。
 また、イソシアネート化合物が芳香族イソシアネート化合物を含む場合には、上記同様の観点から、光学材料用モノマーは、芳香族イソシアネート化合物と4官能以上のポリチオール化合物とを含むことも好ましい。
The isocyanate compound preferably contains at least one selected from the group consisting of an aliphatic isocyanate compound, an alicyclic isocyanate compound, an aromatic isocyanate compound and a heterocyclic isocyanate compound. In particular, from the viewpoint of suppressing the polymerization reactivity to a certain extent and improving the state of the edge, it is preferable that the isocyanate compound does not contain an aromatic isocyanate compound.
When the isocyanate compound contains an aromatic isocyanate compound, it is also preferable that the monomer for an optical material contains an aromatic isocyanate compound and a polythiol compound having four or more functionalities from the same viewpoint as described above.
〔活性水素化合物〕
 第4実施形態における活性水素化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第3実施形態における活性水素化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
[Active hydrogen compound]
The details of the specific example, preferred embodiment, preferred content, etc. of the active hydrogen compound in the fourth embodiment are the same as the details of the specific example, preferred embodiment, preferred content, etc. of the active hydrogen compound in the third embodiment.
(2つ以上のメルカプト基を有するポリチオール化合物)
 第4実施形態における2つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第3実施形態における2つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polythiol compound having two or more mercapto groups)
Specific examples of the polythiol compound having two or more mercapto groups in the fourth embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having two or more mercapto groups in the third embodiment, preferable. It is the same as the details such as an embodiment and a preferable content.
(3つ以上のメルカプト基を有するポリチオール化合物)
 第4実施形態における3つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第3実施形態における3つ以上のメルカプト基を有するポリチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polythiol compound having 3 or more mercapto groups)
Specific examples of the polythiol compound having three or more mercapto groups in the fourth embodiment, preferable embodiments, preferable contents and the like are details of the specific examples of the polythiol compound having three or more mercapto groups in the third embodiment, preferable. It is the same as the details such as an embodiment and a preferable content.
(1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物)
 第4実施形態における1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第3実施形態における1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups)
Specific examples, preferred embodiments, preferred contents and the like of the hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups in the fourth embodiment refer to the one or more mercapto groups in the third embodiment. It is the same as the details of the specific example of the hydroxythiol compound having one or more hydroxyl groups, a preferable embodiment, a preferable content and the like.
(2つ以上の水酸基を含むポリオール化合物)
 第4実施形態における2つ以上の水酸基を有するポリオール化合物の具体例、好ましい態様、好ましい含有量等の詳細は、第3実施形態における2つ以上の水酸基を有するポリオール化合物の具体例、好ましい態様、好ましい含有量等の詳細と同様である。
(Polyol compound containing two or more hydroxyl groups)
Specific examples, preferred embodiments, preferred contents and the like of the polyol compound having two or more hydroxyl groups in the fourth embodiment are specific examples of the polyol compound having two or more hydroxyl groups in the third embodiment, preferred embodiments. It is the same as the details such as a preferable content.
(アミン化合物)
 第4実施形態におけるアミン化合物の具体例、好ましい態様、好ましい含有量、(NCO基/(OH基+SH基))、粘度Va、粘度差V等の詳細は、第3実施形態におけるアミン化合物の具体例、好ましい態様、好ましい含有量、(NCO基/(OH基+SH基))、粘度Va、粘度差V等の詳細と同様である。
(Amine compound)
Specific examples of the amine compound in the fourth embodiment, preferred embodiments, preferred contents, (NCO group / (OH group + SH group)), viscosity Va, viscosity difference V and the like are details of the amine compound in the third embodiment. Examples, preferred embodiments, preferred contents, (NCO group / (OH group + SH group)), viscosity Va, viscosity difference V and the like are the same.
<重合触媒>
 第4実施形態における重合触媒の具体例、好ましい態様、好ましい含有量、条件1(-Ea/R)等の詳細は、第3実施形態における重合触媒の具体例、好ましい態様、好ましい含有量、条件1(-Ea/R)等の詳細と同様である。
<Polymerization catalyst>
Details of the specific example, preferred embodiment, preferred content, condition 1 (-Ea / R) and the like of the polymerization catalyst in the fourth embodiment are described in detail in the specific example, preferred embodiment, preferred content and condition of the polymerization catalyst in the third embodiment. It is the same as the details such as 1 (-Ea / R).
(塩基性触媒)
 第4実施形態における塩基性触の具体例、好ましい態様、好ましいpKa等の詳細は、第3実施形態における塩基性触の具体例、好ましい態様、好ましいpKa等の詳細と同様である。
(Basic catalyst)
The details of the specific example, preferred embodiment, preferred pKa, etc. of the basic touch in the fourth embodiment are the same as the details of the specific example, preferred embodiment, preferred pKa, etc. of the basic touch in the third embodiment.
(有機金属系触媒)
 第4実施形態における有機金属系触媒の具体例、好ましい態様等の詳細は、第3実施形態における有機金属系触媒の具体例、好ましい態様等の詳細と同様である。
(Organometallic catalyst)
The details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the fourth embodiment are the same as the details of the specific examples, preferred embodiments, etc. of the organometallic catalyst in the third embodiment.
(他の添加剤)
 第4実施形態の重合性組成物は、任意の添加剤を含んでもよい。
 任意の添加剤として、フォトクロミック化合物、内部離型剤、ブルーイング剤、紫外線吸収剤などを挙げることができる。
 第4実施形態におけるフォトクロミック化合物、内部離型剤、ブルーイング剤及び紫外線吸収剤の具体例、好ましい態様等の詳細は、第3実施形態におけるフォトクロミック化合物、内部離型剤、ブルーイング剤及び紫外線吸収剤の具体例、好ましい態様等の詳細と同様である。
(Other additives)
The polymerizable composition of the fourth embodiment may contain any additive.
Optional additives include photochromic compounds, internal mold release agents, brewing agents, UV absorbers and the like.
Details of specific examples of the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorber in the fourth embodiment, preferable embodiments, and the like are described in detail in the photochromic compound, the internal mold release agent, the bluing agent, and the ultraviolet absorption in the third embodiment. The same applies to the details of specific examples of the agent, preferred embodiments, and the like.
(粘度)
 第4実施形態の重合性組成物の粘度の好ましい範囲、調整態様等の詳細は、第3実施形態の重合性組成物の粘度の好ましい範囲、調整態様等の詳細と同様である。
(viscosity)
The details of the preferable range of the viscosity of the polymerizable composition of the fourth embodiment, the adjustment mode, and the like are the same as the details of the preferable range of the viscosity of the polymerizable composition of the third embodiment, the adjustment mode, and the like.
<硬化工程>
 第4実施形態における硬化工程の具体的態様、好ましい態様、好ましい時間、好ましい温度等の詳細は、第3実施形態における硬化工程の具体的態様、好ましい態様、好ましい時間、好ましい温度等の詳細と同様である。
<Curing process>
The details of the specific mode, preferred mode, preferred time, preferred temperature, etc. of the curing step in the fourth embodiment are the same as the details of the specific mode, preferred mode, preferred time, preferred temperature, etc. of the curing step in the third embodiment. Is.
 硬化工程において、重合性組成物の硬化に伴い、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間のフィルムの形状が凹状の曲線となることが好ましい。
 上記の点について、図10を用いて詳細に説明する。
 図10は、硬化工程におけるフィルムの形状変化を説明するための概略図である。
In the curing step, as the polymerizable composition is cured, the shape of the film between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface may become a concave curve. preferable.
The above points will be described in detail with reference to FIG.
FIG. 10 is a schematic diagram for explaining a change in the shape of the film in the curing step.
 図10に示すように、硬化工程では、キャビティ114中の重合性組成物120を硬化させる。重合性組成物120は、例えば加熱、活性エネルギー線等により重合し、重合収縮が生じる。この重合収縮が最も激しく起こる際に、フィルム(例えば粘着テープ)113において、その形状を保持する形状保持力が低下する。 As shown in FIG. 10, in the curing step, the polymerizable composition 120 in the cavity 114 is cured. The polymerizable composition 120 is polymerized by, for example, heating, active energy rays, or the like, and polymerization shrinkage occurs. When this polymerization shrinkage occurs most violently, the shape-retaining force for holding the shape of the film (for example, adhesive tape) 113 decreases.
 フィルム113の形状保持力が低下する結果、キャビティ114の中の重合性組成物120の重合収縮に伴う応力により、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間のフィルムの形状が凹状の曲線に変形する。この際、フィルムの変形量は、重合性組成物120の重合収縮量にほぼ等しくなる。 As a result of the decrease in the shape-retaining force of the film 113, the stress associated with the polymerization shrinkage of the polymerizable composition 120 in the cavity 114 causes the intersection of one main surface and the outer peripheral surface and the other main surface and the outer peripheral surface. The shape of the film between the intersections is transformed into a concave curve. At this time, the amount of deformation of the film is substantially equal to the amount of polymerization shrinkage of the polymerizable composition 120.
 これにより、重合性組成物120の容積収縮を、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間のフィルムの形状を凹状の曲線とすることによって吸収することができる。得られた硬化物130の側面は、凹状の曲線を形成する。
 そのため、モールド基板111及び112の外径は、プラスチックレンズの仕上り外径寸法と同じでよい。これによって、従来、研磨作業で削っていた数mm分の外周部分の無駄がなくなる。外周部分が厚いレンズの場合、10%強の重合性組成物の節減になる。また、研磨作業が不要になるメリットもある。
Thereby, the volumetric contraction of the polymerizable composition 120 is made into a concave curve in the shape of the film between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface. Can be absorbed. The side surface of the obtained cured product 130 forms a concave curve.
Therefore, the outer diameters of the molded substrates 111 and 112 may be the same as the finished outer diameter dimensions of the plastic lens. This eliminates the waste of the outer peripheral portion of several mm, which has been conventionally scraped by the polishing work. In the case of a lens having a thick outer peripheral portion, the amount of the polymerizable composition can be reduced by more than 10%. In addition, there is an advantage that polishing work becomes unnecessary.
 従来では、重合反応を行う際、重合性組成物を加熱して重合反応を発生させていた。
 第4実施形態における重合性組成物は、重合反応に伴う反応熱(即ち自己発熱による熱)を短時間で発生させることで、重合性組成物中の光学材料用モノマーの重合反応を促進させることもできる。
 第4実施形態における重合反応に伴う反応熱を用いて重合反応を促進させることに関する具体的態様、好ましい態様、閉鎖系空間及び断熱環境の定義、断熱材料の熱伝導率及び密度、重合時間等の詳細は、第3実施形態における重合反応に伴う反応熱を用いて重合反応を促進させることに関する具体的態様、好ましい態様、閉鎖系空間及び断熱環境の定義、断熱材料の熱伝導率及び密度、重合時間等の詳細と同様である。
Conventionally, when the polymerization reaction is carried out, the polymerizable composition is heated to generate the polymerization reaction.
The polymerizable composition according to the fourth embodiment promotes the polymerization reaction of the monomer for optical material in the polymerizable composition by generating the reaction heat (that is, the heat due to self-heating) associated with the polymerization reaction in a short time. You can also.
Specific embodiments, preferred embodiments, definitions of closed space and adiabatic environment, thermal conductivity and density of adiabatic material, polymerization time, etc. regarding accelerating the polymerization reaction using the reaction heat associated with the polymerization reaction in the fourth embodiment. For details, a specific embodiment, a preferred embodiment, a definition of a closed system space and an adiabatic environment, a thermal conductivity and density of an adiabatic material, and polymerization regarding accelerating the polymerization reaction by using the reaction heat associated with the polymerization reaction in the third embodiment. It is the same as the details such as time.
 第4実施形態における硬化工程の一態様としては、第3実施形態における硬化工程の一態様として記載した工程bを含む態様が挙げられる。 As one aspect of the curing step in the fourth embodiment, there is an aspect including the step b described as one aspect of the curing step in the third embodiment.
(硬化物)
 第4実施形態における硬化物の具体的態様、好ましい態様、好ましいアミンの含有量、アミンの含有量の測定方法、好ましいスズの含有量、失透度、脈理の有無等の詳細は、第3実施形態における硬化物の具体的態様、好ましい態様、好ましいアミンの含有量、アミンの含有量の測定方法、好ましいスズの含有量、失透度、失透度の測定方法、脈理の有無等の詳細と同様である。
(Cursed product)
Details of the specific embodiment of the cured product, the preferred embodiment, the preferred amine content, the method for measuring the amine content, the preferred tin content, the devitrification, the presence or absence of veins, etc. in the fourth embodiment are described in the third embodiment. Specific aspects of the cured product in the embodiment, preferred embodiments, preferred amine content, preferred amine content measuring method, preferred tin content, devitrification, devitrification measuring method, presence or absence of veins, etc. Similar to details.
<アニール工程>
 第4実施形態の光学部材の製造方法は、必要に応じて、硬化した重合性組成物をアニール処理するアニール工程を含んでもよい。
 アニール処理を行う際の温度は、通常50~150℃で行われるが、90~140℃で行うことが好ましく、100~130℃で行うことがより好ましい。
<Annealing process>
The method for producing an optical member according to the fourth embodiment may include an annealing step of annealing the cured polymerizable composition, if necessary.
The temperature at which the annealing treatment is performed is usually 50 to 150 ° C, preferably 90 to 140 ° C, and more preferably 100 to 130 ° C.
<光学部材>
 第4実施形態における硬化物は、光学部材として好適に用いることができる。
 例えば、第4実施形態における光学部材は、厚みが、1mm~20mmであってもよく、4mm~16mmであってもよい。
<Optical member>
The cured product in the fourth embodiment can be suitably used as an optical member.
For example, the optical member in the fourth embodiment may have a thickness of 1 mm to 20 mm or 4 mm to 16 mm.
<光学部材の用途>
 第4実施形態における光学部材は、プラスチックレンズ、プリズム、光ファイバー、情報記録基板、フィルター、発光ダイオード等に用いることができる。
 上記の中でも、第4実施形態における光学部材は、プラスチックレンズに好適に用いることができ、眼鏡用プラスチックレンズにより好適に用いることができる。
<Use of optical members>
The optical member in the fourth embodiment can be used for a plastic lens, a prism, an optical fiber, an information recording board, a filter, a light emitting diode and the like.
Among the above, the optical member according to the fourth embodiment can be suitably used for a plastic lens, and can be preferably used for a plastic lens for spectacles.
 以下、第1実施形態の一実施形態を実施例により具体的に説明するが、第1実施形態はこれらの実施
例に限定されるものではない。
 実施例における粘度の測定方法は上述の方法と同様である。
 各実施例又は比較例において得られた成形体について、以下の評価を行った。
Hereinafter, one embodiment of the first embodiment will be specifically described with reference to Examples, but the first embodiment is not limited to these Examples.
The method for measuring the viscosity in the examples is the same as the above-mentioned method.
The following evaluation was performed on the molded product obtained in each Example or Comparative Example.
(脈理)
 成形体を超高圧水銀灯(光源型式OPM-252HEG:ウシオ電機株式会社製)で投影し、透過した像を目視にて観察し、以下の基準で評価した。
  A:脈理が観察されなかった、又は、脈理が明確には観察されなかった。
  B:僅かに脈理が観察されるものの、製品として概ね許容できるものであった。
  C:多くの脈理が観察され、製品として許容できないものであった。
(Pulse)
The molded product was projected with an ultra-high pressure mercury lamp (light source model OPM-252HEG: manufactured by Ushio, Inc.), and the transmitted image was visually observed and evaluated according to the following criteria.
A: No pulse was observed, or no pulse was clearly observed.
B: Although slight pulse was observed, it was generally acceptable as a product.
C: Many veins were observed and it was unacceptable as a product.
[実施例1]
 三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]40.6質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]23.9質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]25.5質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒](pKa値=6.14)0.05質量部を仕込んで400Pa、25℃で脱気を行いながら1時間撹拌した。粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物である第1混合液を得た。プレポリマーを含む混合物の粘度は表1に示す。
[Example 1]
Mitsui Chemicals, Inc. MR internal mold release agent [internal mold release agent] 0.1 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane [monomer for optical material] 40.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixed solution, pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical material] 23.9 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [optical material] Monomer] 25.5 parts by mass was charged, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. Further, 0.05 part by mass of 3,5-lutidine [polymerization catalyst] (pKa value = 6.14) was charged in the obtained uniform solution, and the mixture was stirred for 1 hour while degassing at 400 Pa and 25 ° C. The monomer for optical materials was polymerized while adjusting the viscosity to obtain a first mixed solution containing a prepolymer. The viscosities of the mixture containing the prepolymer are shown in Table 1.
 2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]10.0質量部、及び3,5-ルチジン[重合触媒]0.15質量部を仕込んで混合液を作製した。この混合液を25℃で15分撹拌して第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane [monomer for optical materials] 10.0 parts by mass, and 3,5-lutidine [polymerization catalyst] 0.15 A mixed solution was prepared by charging parts by mass. This mixture was stirred at 25 ° C. for 15 minutes to obtain a second mixture.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
 得られた光学材料用重合性組成物を静止型混合器内にて再混合しながら注型用鋳型(即ちモールド型)に送液した。
 鋳型に送液され、注型される際の光学材料用重合性組成物の粘度(注型粘度ともいう)を表1に示す値に調整した。
 光学材料用重合性組成物の送液の際、光学材料用重合性組成物を1μmPTFEフィルターにて濾過を行いながら、直径78mmの4カーブ又は6カーブのガラスモールド(上型)と、直径78mmの4カーブ又は2カーブのガラスモールド(下型)とから構成され、表1に記載の設定中心厚を有するレンズ作製用のキャビティを有するモールド型のキャビティ内に10g/秒の速度で注入した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
The obtained polymerizable composition for optical materials was sent to a casting mold (that is, a mold) while being remixed in a static mixer.
The viscosity (also referred to as casting viscosity) of the polymerizable composition for an optical material when the liquid was sent to a mold and cast was adjusted to the value shown in Table 1.
When the polymerizable composition for optical materials is sent, a 4-curve or 6-curve glass mold (upper mold) having a diameter of 78 mm and a glass mold (upper mold) having a diameter of 78 mm are used while filtering the polymerizable composition for optical materials with a 1 μm PTFE filter. It was injected at a rate of 10 g / sec into a mold cavity having a cavity for making a lens having a set center thickness shown in Table 1 and composed of a 4-curve or 2-curve glass mold (lower mold).
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
[実施例2~実施例4]
 プレポリマー化工程における第1混合液の重合触媒量及び撹拌時間を表1に示す値に変更し、光学材料用重合性組成物の注型粘度を表1に示す値に調整したこと以外は実施例1と同様の方法により成形体(レンズ)を得た。
[Examples 2 to 4]
Except for changing the polymerization catalyst amount and stirring time of the first mixed solution in the prepolymerization step to the values shown in Table 1 and adjusting the casting viscosity of the polymerizable composition for optical materials to the values shown in Table 1. A molded product (lens) was obtained by the same method as in Example 1.
[実施例5]
 三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]50.6質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]1.7質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]1.8質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]0.2質量部を仕込んで40℃で3時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表1に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]22.2質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]23.7質量部を仕込んで混合液を作製した後、得られた混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表1に示す値に調整した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Example 5]
Mitsui Chemicals, Inc. MR internal mold release agent [internal mold release agent] 0.1 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane [monomer for optical material] 50.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixed solution, pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical material] 1.7 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [optical material] Monomer for use] 1.8 parts by mass was charged, and this was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. Further, 0.2 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 3 hours to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 1.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
Pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical materials] 22.2 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] 23.7% by mass After charging the parts to prepare a mixed solution, the obtained mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 1.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
[実施例6~実施例7]
 プレポリマー化工程におけるペンタエリスリトールテトラキス(3-メルカプトプロピオネート)及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンの含有量を表1に示す値に変更し、光学材料用重合性組成物の注型粘度を表1に示す値に調整したこと以外は実施例5と同様の方法により成形体(レンズ)を得た。
[Examples 6 to 7]
The contents of pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane in the prepolymerization step were changed to the values shown in Table 1 and polymerized for optical materials. A molded product (lens) was obtained by the same method as in Example 5 except that the casting viscosity of the sex composition was adjusted to the values shown in Table 1.
[実施例8]
 注型物を25℃の断熱容器に入れて3時間静置して断熱重合を行った後、断熱容器から注型物を取り出し離型を行ったこと以外は実施例7と同様の方法により成形体(レンズ)を得た。
[Example 8]
The cast was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization, and then the cast was taken out from the heat insulating container and released by the same method as in Example 7. I got a body (lens).
[実施例9]
 注型物を断熱重合せずに、時間とともに30℃から120℃まで加熱し、3時間かけて加熱重合を行ったこと以外は実施例7と同様の方法により成形体(レンズ)を得た。
[Example 9]
A molded product (lens) was obtained by the same method as in Example 7 except that the cast product was heated from 30 ° C. to 120 ° C. over time without adiabatic polymerization and heat-polymerized over 3 hours.
[実施例10~実施例11]
 プレポリマー化工程におけるペンタエリスリトールテトラキス(3-メルカプトプロピオネート)及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンの含有量を表1に示す値に変更し、光学材料用重合性組成物の注型粘度を表1に示す値に調整したこと以外は実施例5と同様の方法により成形体(レンズ)を得た。
[Examples 10 to 11]
The contents of pentaerythritol tetrakis (3-mercaptopropionate) and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane in the prepolymerization step were changed to the values shown in Table 1 and polymerized for optical materials. A molded product (lens) was obtained by the same method as in Example 5 except that the casting viscosity of the sex composition was adjusted to the values shown in Table 1.
[比較例1]
 三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[
紫外線吸収剤]1.5質量部、及び2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]40.6質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]23.9質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]25.5質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。この溶液を400Pa、25℃にて1時間脱気を行い、第1混合液を得た。
 2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]10.0質量部と、ジブチルスズジクロリド(DBCともいう)[重合触媒]0.035質量部と、を25℃で30分撹拌して完全に溶解させ第2混合液を得た。
 そして、第1混合液及び第2混合液を、25℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型物に対して断熱重合は行わず、10℃から120℃まで時間とともに加熱し、38時間かけて加熱重合を行った。そして、実施例1と同様の方法により成形体(レンズ)を得た。
[Comparative Example 1]
Internal mold release agent for MR manufactured by Mitsui Chemicals, Inc. [Internal mold release agent] 0.1 part by mass, Tinuvin 329 [
UV absorber] 1.5 parts by mass and 2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane [monomer for optical material] 40.6 parts by mass A mixed solution was prepared. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixed solution, pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical material] 23.9 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [optical material] Monomer] 25.5 parts by mass was charged, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. This solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane [monomer for optical materials] 10.0 parts by mass and dibutyltin dichloride (also called DBC) [polymerization catalyst] 0 .035 parts by mass was stirred at 25 ° C. for 30 minutes to completely dissolve the mixture to obtain a second mixed solution.
Then, the first mixed solution and the second mixed solution were mixed at 25 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting was not subjected to adiabatic polymerization, and the time was from 10 ° C to 120 ° C. And heat polymerization was carried out over 38 hours. Then, a molded product (lens) was obtained by the same method as in Example 1.
[比較例2]
 比較例1と同様の方法で第1混合液を得た。
 2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]10.0質量部と、3,5-ルチジン[重合触媒]0.2質量部と、を25℃で30分撹拌して完全に溶解させ第2混合液を得た。
 第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表1に示す値に調整した。
注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Comparative Example 2]
The first mixed solution was obtained in the same manner as in Comparative Example 1.
2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane [monomer for optical materials] 10.0 parts by mass and 3,5-lutidine [polymerization catalyst] 0.2 The parts by mass were stirred at 25 ° C. for 30 minutes to completely dissolve the mixture to obtain a second mixed solution.
The first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 1.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
Figure JPOXMLDOC01-appb-T000004

 
 
Figure JPOXMLDOC01-appb-T000004

 
 
 表1~表3に記載のモノマー種は以下のとおりである。
 a1:2,5-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンと2
,6-ビス(イソシアナトメチル)ビシクロ-[2.2.1]-ヘプタンとの混合物
 a2:m-キシリレンジイソシアネート
 a3:ジシクロヘキシルメタンジイソシアネート
 a4:1,3-ビス(イソシアネートメチル)シクロヘキサン
 b1:4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
 b2:ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
 b3:5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物
 b4:ペンタエリスリトールテトラキス(2-メルカプトアセテート)
 b5:2,5-ビス(メルカプトメチル)-1,4-ジチアン
The monomer types shown in Tables 1 to 3 are as follows.
a1: 2,5-bis (isocyanatomethyl) bicyclo- [2.2.1] -heptane and 2
, 6-Bis (isocyanatomethyl) bicyclo- [2.2.1] -mixture with heptane a2: m-xylylene diisocyanate a3: dicyclohexylmethane diisocyanate a4: 1,3-bis (isocyanatemethyl) cyclohexane b1: 4 -Mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane b2: Pentaerythritol tetrakis (3-mercaptopropionate)
b3: 5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan and 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan And 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane b4: pentaerythritol tetrakis (2-mercaptoacetate)
b5: 2,5-bis (mercaptomethyl) -1,4-dithiane
 表1に示す通り、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を準備する準備工程と、
 2種以上の異なる光学材料用モノマーの一部と、重合触媒の少なくとも一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得るプレポリマー化工程と、
 プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを硬化させることにより、光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
を含む光学材料の製造方法を用いた実施例は、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができた。
 一方、プレポリマー化工程を行わなかった比較例2は、脈理を抑制することができず、比較例1においては、脈理を抑制できていたが、光学材料の製造時間が38時間と長期であり、製造時間を短縮することができなかった。
 実施例の中でも、注型される際の光学材料用重合性組成物の粘度(即ち注型粘度)が70mPa・s以上である実施例2~実施例4、実施例6~実施例11は、より良好に脈理を抑制できていた。
As shown in Table 1, a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass.
A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer. Thereby, a prepolymerization step of obtaining a mixture containing a prepolymer, and
Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer. A process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material,
A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
In the examples using the method for producing an optical material containing the above, it was possible to suppress the pulse in the obtained optical material and shorten the production time of the optical material.
On the other hand, Comparative Example 2 in which the prepolymerization step was not performed could not suppress the pulse, and in Comparative Example 1, the pulse could be suppressed, but the production time of the optical material was as long as 38 hours. Therefore, the manufacturing time could not be shortened.
Among the examples, Examples 2 to 4 and Examples 6 to 11 have a viscosity (that is, a casting viscosity) of the polymerizable composition for an optical material at the time of casting of 70 mPa · s or more. The optics could be suppressed better.
[実施例12]
 酸性リン酸エステルであるJP-506H(城北化学工業株式会社製)0.03質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び、m-キシリレンジイソシアネート[光学材料用モノマー]40.7質量部を25℃で1時間撹拌して完全に溶解させることで混合液を作製し、その後、この混合液に、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物[光学材料用モノマー]49.3質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。
 さらに、得られた均一溶液に3,5-ルチジン[重合触媒](pKa値=6.14)0.015質量部を仕込んで400Pa、25℃で脱気を行いながら1時間撹拌した。粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物である第1混合液を得た。プレポリマーを含む混合物の粘度は表2に示す。
 m-キシリレンジイソシアネート[光学材料用モノマー]10質量部及び3,5-ルチジン[重合触媒]0.01質量部を仕込んで混合液を作製した。この混合液を25℃で15分撹拌して第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得
た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表2に示す値に調整した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 そして、実施例1と同様の方法により成形体(レンズ)を得た。
[Example 12]
JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.03 part by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical material] 40. A mixed solution was prepared by stirring 7 parts by mass at 25 ° C. for 1 hour to completely dissolve the mixture, and then, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9 was added to the mixed solution. -Trithiaundecane, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiaundecane and 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9 -A mixture with trithiaundecane [monomer for optical material] 49.3 parts by mass was charged, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution.
Further, 0.015 parts by mass of 3,5-lutidine [polymerization catalyst] (pKa value = 6.14) was charged into the obtained uniform solution, and the mixture was stirred for 1 hour while degassing at 400 Pa and 25 ° C. The monomer for optical materials was polymerized while adjusting the viscosity to obtain a first mixed solution containing a prepolymer. The viscosities of the mixture containing the prepolymer are shown in Table 2.
A mixed solution was prepared by charging 10 parts by mass of m-xylylene diisocyanate [monomer for optical material] and 0.01 part by mass of 3,5-lutidine [polymerization catalyst]. This mixture was stirred at 25 ° C. for 15 minutes to obtain a second mixture.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 2.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
Then, a molded product (lens) was obtained by the same method as in Example 1.
[実施例13]
 プレポリマー化工程における第1混合液の重合触媒量及び撹拌時間を表2に示す値に変更し、光学材料用重合性組成物の注型粘度を表2に示す値に調整したこと以外は実施例12と同様の方法により成形体(レンズ)を得た。
[Example 13]
Except for changing the polymerization catalyst amount and stirring time of the first mixed solution in the prepolymerization step to the values shown in Table 2 and adjusting the casting viscosity of the polymerizable composition for optical materials to the values shown in Table 2. A molded product (lens) was obtained by the same method as in Example 12.
[実施例14]
 酸性リン酸エステルであるJP-506H(城北化学工業株式会社製)0.03質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及びm-キシリレンジイソシアネート[光学材料用モノマー]50.7質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物6.9質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]0.025質量部を仕込んで40℃で3時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表2に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物42.4質量部を仕込んでこの混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表2に示す値に調整した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Example 14]
JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.03 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical materials] 50.7 A mixed solution was prepared by charging parts by mass. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixture, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto-3,6, A mixture of 9-trichiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was charged in an amount of 6.9 parts, and the mixture was stirred at 25 ° C. for 5 minutes. , A uniform solution. Further, 0.025 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 3 hours to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 2.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 42.4 parts by mass of a mixture with 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was charged, and the mixture was removed at 400 Pa and 25 ° C. for 1 hour. Care was taken to obtain a second mixture.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the values shown in Table 2.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
[実施例15~実施例19]
 プレポリマー化工程における重合触媒量、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物の含有量、及び撹拌時間を表2に示す値に変更し、光学材料用重合性組成物の注型粘度を表2に示す値に調整したこと以外は実施例14と同様の方法により成形体(レンズ)を得た。
[Examples 15 to 19]
Polymerization catalyst amount in the prepolymerization step, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto-3, Changed the content and stirring time of the mixture of 6,9-trichaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecan to the values shown in Table 2. A molded body (lens) was obtained by the same method as in Example 14 except that the casting viscosity of the polymerizable composition for optical materials was adjusted to the values shown in Table 2.
[実施例20]
 注型物を25℃の断熱容器に入れて3時間静置して断熱重合を行った後、断熱容器から
注型物を取り出し離型を行ったこと以外は実施例19と同様の方法により成形体(レンズ)を得た。
[Example 20]
The cast was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization, and then the cast was taken out from the heat insulating container and released by the same method as in Example 19. I got a body (lens).
[実施例21]
 注型物を断熱重合せずに、時間とともに30℃から120℃まで加熱し、3時間かけて加熱重合を行ったこと以外は実施例19と同様の方法により成形体(レンズ)を得た。
[Example 21]
A molded product (lens) was obtained by the same method as in Example 19 except that the cast product was heated from 30 ° C. to 120 ° C. over time without adiabatic polymerization and heat-polymerized over 3 hours.
[比較例3]
 三井化学社製MR用内部離型剤0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び、m-キシリレンジイソシアネート[光学材料用モノマー]40.7質量部を25℃で1時間撹拌して完全に溶解させることで混合液を作製し、その後、この混合液に、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物49.3質量部仕込み、これを25℃で5分撹拌し、均一溶液とした。この溶液を400Paにて1時間脱気を行い、第1混合液を得た。
 また、m-キシリレンジイソシアネート[光学材料用モノマー]10.0質量部と、ジメチルスズジクロリド(DMC)[重合触媒]0.008質量部とを、25℃で10分撹拌して完全に溶解させ第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表2に示す値に調整した。
 注型物に対して断熱重合は行わず、20℃から120℃まで時間とともに加熱し、30時間かけて加熱重合を行った。そして、実施例1と同様の方法により成形体(レンズ)を得た。
[Comparative Example 3]
0.1 part by mass of internal mold release agent for MR manufactured by Mitsui Chemicals, 1.5 parts by mass of Tinuvin 329 [ultraviolet absorber], and 40.7 parts by mass of m-xylylene diisocyanate [monomer for optical material] at 25 ° C. A mixture is prepared by stirring for 1 hour to completely dissolve the mixture, and then 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecan and 4 are added to the mixture. , 7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan and 4,8-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecane 49.3 parts by mass was charged, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. This solution was degassed at 400 Pa for 1 hour to obtain a first mixed solution.
Further, 10.0 parts by mass of m-xylylene diisocyanate [monomer for optical material] and 0.008 part by mass of dimethyltindichloride (DMC) [polymerization catalyst] are completely dissolved by stirring at 25 ° C. for 10 minutes. A second mixture was obtained.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the values shown in Table 2.
The cast material was not subjected to adiabatic polymerization, but was heated from 20 ° C. to 120 ° C. over time, and heat polymerization was carried out over 30 hours. Then, a molded product (lens) was obtained by the same method as in Example 1.
[比較例4]
 三井化学社製MR用内部離型剤0.1質量部の代わりにJP-506H(城北化学工業株式会社製)0.03質量部を使用した以外は比較例3と同様の方法で第1混合液を得た。
 m-キシリレンジイソシアネート[光学材料用モノマー]10.0質量部と、3,5-ルチジン[重合触媒]0.025質量部と、を25℃で30分撹拌して完全に溶解させ第2混合液を得た。
 第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表2に示す値に調整した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Comparative Example 4]
First mixing by the same method as in Comparative Example 3 except that 0.03 part by mass of JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.) was used instead of 0.1 part by mass of the internal mold release agent for MR manufactured by Mitsui Chemicals. Obtained liquid.
10.0 parts by mass of m-xylylene diisocyanate [monomer for optical material] and 0.025 parts by mass of 3,5-lutidine [polymerization catalyst] were stirred at 25 ° C. for 30 minutes to completely dissolve and the second mixture. Obtained liquid.
The first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the values shown in Table 2.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
Figure JPOXMLDOC01-appb-T000005

 
 
Figure JPOXMLDOC01-appb-T000005

 
 
 表2に示す通り、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.
010質量部~2.0質量部の重合触媒と、を準備する準備工程と、
 2種以上の異なる光学材料用モノマーの一部と、重合触媒の少なくとも一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得るプレポリマー化工程と、
 プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを硬化させることにより、光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
を含む光学材料の製造方法を用いた実施例は、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができた。
 一方、プレポリマー化工程を行わなかった比較例4は、脈理を抑制することができず、重合触媒の含有量が0.010質量部未満である比較例3は、光学材料の製造時間が30時間と長期であり、製造時間を短縮することができなかった。また、比較例3は、厚み15.6mmの光学材料(フロント:6カーブ、バック2カーブ)を製造した際、脈理の評価に劣っていた。
 実施例の中でも、注型される際の光学材料用重合性組成物の粘度(即ち注型粘度)が120mPa・s以上である実施例11~実施例12、及び実施例14~実施例21は、より良好に脈理を抑制できていた。
As shown in Table 2, a total of 100 parts by mass of two or more different monomers for optical materials and 0.
A preparatory step for preparing a polymerization catalyst of 010 parts by mass to 2.0 parts by mass, and
A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer. Thereby, a prepolymerization step of obtaining a mixture containing a prepolymer, and
Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer. A process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material,
A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
In the examples using the method for producing an optical material containing the above, it was possible to suppress the pulse in the obtained optical material and shorten the production time of the optical material.
On the other hand, in Comparative Example 4 in which the prepolymerization step was not performed, the pulse could not be suppressed, and in Comparative Example 3 in which the content of the polymerization catalyst was less than 0.010 parts by mass, the production time of the optical material was It was a long period of 30 hours, and the manufacturing time could not be shortened. Further, in Comparative Example 3, when an optical material having a thickness of 15.6 mm (front: 6 curves, back 2 curves) was manufactured, the evaluation of the pulse was inferior.
Among the examples, Examples 11 to 12 and Examples 14 to 21 have a viscosity (that is, a casting viscosity) of the polymerizable composition for an optical material at the time of casting of 120 mPa · s or more. , I was able to suppress the optics better.
[実施例22]
 酸性リン酸エステルであるJP-506H(城北化学工業株式会社製)0.05質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及びm-キシリレンジイソシアネート[光学材料用モノマー]52質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]7.7質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]0.02質量部を仕込んで40℃で3時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表3に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン40.3質量部を仕込んでこの混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表3に示す値に調整した。
注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Example 22]
JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.05 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical materials] 52 parts by mass. Was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 7.7 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] was added to this mixed solution, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. did. Further, 0.02 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 3 hours to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 3.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
4-0.3 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane was charged, and the mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution. rice field.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 3.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
[実施例23~実施例25]
 プレポリマー化工程における4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンの含有量を表3に示す値に変更し、光学材料用重合性組成物の注型粘度を表3に示す値に調整したこと以外は実施例22と同様の方法により成形体(レンズ)を得た。
[Examples 23 to 25]
The content of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane in the prepolymerization step was changed to the value shown in Table 3, and the casting viscosity of the polymerizable composition for optical materials is shown in Table 3. A molded product (lens) was obtained by the same method as in Example 22 except that the value was adjusted.
[実施例26]
注型物を25℃の断熱容器に入れて3時間静置して断熱重合を行った後、断熱容器から注型物を取り出し離型を行ったこと以外は実施例25と同様の方法により成形体(レンズ)を得た。
[Example 26]
The cast was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization, and then the cast was taken out from the heat insulating container and released by the same method as in Example 25. I got a body (lens).
[実施例27]
 注型物を断熱重合せずに、時間とともに30℃から120℃まで加熱し、3時間かけて加熱重合を行ったこと以外は実施例25と同様の方法により成形体(レンズ)を得た。
[Example 27]
A molded product (lens) was obtained by the same method as in Example 25 except that the cast product was heated from 30 ° C. to 120 ° C. over time without adiabatic polymerization and heat-polymerized over 3 hours.
[比較例5]
 三井化学社製MR用内部離型剤0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び、m-キシリレンジイソシアネート[光学材料用モノマー]42.0質量部を25℃で1時間撹拌して完全に溶解させることで混合液を作製し、その後、この混合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン48.0質量部仕込み、これを25℃で5分撹拌し、均一溶液とした。この溶液を400Paにて1時間脱気を行い、第1混合液を得た。
 また、m-キシリレンジイソシアネート[光学材料用モノマー]10.0質量部と、ジメチルスズジクロリド(DMC)[重合触媒]0.01質量部とを、25℃で10分撹拌して完全に溶解させ第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表3に示す値に調整した。
 注型物に対して断熱重合は行わず、20℃から120℃まで時間とともに加熱し、38時間かけて加熱重合を行った。そして、実施例1と同様の方法により成形体(レンズ)を得た。
[Comparative Example 5]
0.1 part by mass of internal mold release agent for MR manufactured by Mitsui Chemicals, 1.5 parts by mass of Tinuvin 329 [ultraviolet absorber], and 42.0 parts by mass of m-xylylene diisocyanate [monomer for optical material] at 25 ° C. A mixed solution was prepared by stirring for 1 hour to completely dissolve the mixture, and then 48.0 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane was added to the mixed solution, and this was added to 25 parts. The mixture was stirred at ° C. for 5 minutes to obtain a uniform solution. This solution was degassed at 400 Pa for 1 hour to obtain a first mixed solution.
Further, 10.0 parts by mass of m-xylylene diisocyanate [monomer for optical material] and 0.01 part by mass of dimethyltindichloride (DMC) [polymerization catalyst] are completely dissolved by stirring at 25 ° C. for 10 minutes. A second mixture was obtained.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 3.
The cast material was not subjected to adiabatic polymerization, but was heated from 20 ° C. to 120 ° C. over time, and heat polymerization was carried out over 38 hours. Then, a molded product (lens) was obtained by the same method as in Example 1.
[比較例6]
 三井化学社製MR用内部離型剤0.1質量部の代わりにJP-506H(城北化学工業株式会社製)0.05質量部を使用した以外は比較例5と同様の方法で第1混合液を得た。
 m-キシリレンジイソシアネート[光学材料用モノマー]10.0質量部と、3,5-ルチジン[重合触媒]0.02質量部と、を25℃で30分撹拌して完全に溶解させ第2混合液を得た。
 第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表3に示す値に調整した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Comparative Example 6]
First mixing by the same method as in Comparative Example 5 except that 0.05 parts by mass of JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.) was used instead of 0.1 parts by mass of the internal mold release agent for MR manufactured by Mitsui Chemicals. Obtained liquid.
10.0 parts by mass of m-xylylene diisocyanate [monomer for optical material] and 0.02 part by mass of 3,5-lutidine [polymerization catalyst] were stirred at 25 ° C. for 30 minutes to completely dissolve and the second mixture. Obtained liquid.
The first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 3.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
Figure JPOXMLDOC01-appb-T000006

 
 
Figure JPOXMLDOC01-appb-T000006

 
 
 表3に示す通り、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.
010質量部~2.0質量部の重合触媒と、を準備する準備工程と、
 2種以上の異なる光学材料用モノマーの一部と、重合触媒の少なくとも一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得るプレポリマー化工程と、
 プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを硬化させることにより、光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
を含む光学材料の製造方法を用いた実施例は、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができた。
 一方、プレポリマー化工程を行わなかった比較例6は、脈理を抑制することができず、比較例5においては、光学材料の製造時間が38時間と長期であり、製造時間を短縮することができなかった。
 実施例の中でも、注型される際の光学材料用重合性組成物の粘度(即ち注型粘度)が230mPa・s以上である実施例23~実施例27は、より良好に脈理を抑制できていた。
As shown in Table 3, a total of 100 parts by mass of two or more different monomers for optical materials and 0.
A preparatory step for preparing a polymerization catalyst of 010 parts by mass to 2.0 parts by mass, and
A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer. Thereby, a prepolymerization step of obtaining a mixture containing a prepolymer, and
Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer. A process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material,
A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
In the examples using the method for producing an optical material containing the above, it was possible to suppress the pulse in the obtained optical material and shorten the production time of the optical material.
On the other hand, in Comparative Example 6 in which the prepolymerization step was not performed, the pulse could not be suppressed, and in Comparative Example 5, the production time of the optical material was as long as 38 hours, and the production time was shortened. I couldn't.
Among the examples, Examples 23 to 27, in which the viscosity (that is, the casting viscosity) of the polymerizable composition for an optical material at the time of casting is 230 mPa · s or more, can suppress the pulse more satisfactorily. It was.
[実施例28]
 ジシクロヘキシルメタンジイソシアネート[光学材料用モノマー]58.9質量部、Tinuvin329[紫外線吸収剤]を1.5質量部、三井化学社製MR用内部離型剤[内部離型剤]0.1質量部仕込んで混合溶液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物4.1質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]1.5質量部を仕込んで40℃で4時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表4に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物37.0質量部を仕込んでこの混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表4に示す値に調整した。
 注型物を25℃の断熱容器に入れて3時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに130℃、2時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Example 28]
Dicyclohexylmethane diisocyanate [monomer for optical material] 58.9 parts by mass, Tinuvin329 [ultraviolet absorber] 1.5 parts by mass, Mitsui Chemicals Co., Ltd. MR internal mold release agent [internal mold release agent] 0.1 parts by mass A mixed solution was prepared in. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixture, 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-dimercaptomethyl-1,11-dimercapto-3,6, A mixture of 9-trichiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was charged in an amount of 4.1 parts by mass, and the mixture was stirred at 25 ° C. for 5 minutes. , A uniform solution. Further, 1.5 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 4 hours to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 4.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
5,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, 4,7-Dimercaptomethyl-1,11-Dimercapto-3,6,9-Trithiandecan, A mixture of 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane was charged in an amount of 37.0 parts by mass, and the mixture was removed from the mixture at 400 Pa and 25 ° C. for 1 hour. Care was taken to obtain a second mixture.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 4.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 3 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 130 ° C. for 2 hours.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 表4に示す通り、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を準備する準備工程と、
 2種以上の異なる光学材料用モノマーの一部と、重合触媒の少なくとも一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得るプレポリマー化工程と、
 プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを硬化させることにより、光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
を含む光学材料の製造方法を用いた実施例は、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができた。
As shown in Table 4, a preparatory step for preparing a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass.
A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer. Thereby, a prepolymerization step of obtaining a mixture containing a prepolymer, and
Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to the mixture containing the prepolymer. A process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material,
A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
In the examples using the method for producing an optical material containing the above, it was possible to suppress the pulse in the obtained optical material and shorten the production time of the optical material.
[実施例29]
 1,3-ビス(イソシアネートメチル)シクロヘキサン[光学材料用モノマー]48質量部、Tinuvin329[紫外線吸収剤]を1.5質量部、JP-506H(城北化学工業株式会社製)0.18質量部仕込んで混合溶液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(2-メルカプトアセテート)4.0質量部と、2,5-ビス(メルカプトメチル)-1,4-ジチアンを3.9質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]0.1質量部を仕込んで40℃で3時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表5に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 ペンタエリスリトールテトラキス(2-メルカプトアセテート)22.7質量部と、2,5-ビス(メルカプトメチル)-1,4-ジチアン22.3質量部とを仕込んで、この混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表5に示す値に調整した。
 注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。
[Example 29]
1,3-Bis (isocyanismethyl) cyclohexane [monomer for optical material] 48 parts by mass, Tinuvin329 [ultraviolet absorber] 1.5 parts by mass, JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.) 0.18 parts by mass A mixed solution was prepared in. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 4.0 parts by mass of pentaerythritol tetrakis (2-mercaptoacetate) and 3.9 parts by mass of 2,5-bis (mercaptomethyl) -1,4-dithiane were added to this mixed solution, and 25 parts by mass was charged. The mixture was stirred at ° C. for 5 minutes to obtain a uniform solution. Further, 0.1 part by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 3 hours to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 5.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
22.7 parts by mass of pentaerythritol tetrakis (2-mercaptoacetate) and 22.3 parts by mass of 2,5-bis (mercaptomethyl) -1,4-dithiane were charged, and 400 Pa, 400 Pa, was added to this mixed solution. Degassing was performed at 25 ° C. for 1 hour to obtain a second mixed solution.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 5.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens).
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
 表5に示す通り、合計で100質量部の2種以上の異なる光学材料用モノマーと、0.
010質量部~2.0質量部の重合触媒と、を準備する準備工程と、
 2種以上の異なる光学材料用モノマーの一部と、重合触媒の少なくとも一部と、を混合し、2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、プレポリマーを含む混合物を得るプレポリマー化工程と、
 プレポリマーを含む混合物に対し、少なくとも、2種以上の異なる光学材料用モノマーの残部を添加することにより、2種以上の異なる光学材料用モノマーと、プレポリマーと、重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
 光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを硬化させることにより、光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
を含む光学材料の製造方法を用いた実施例は、得られる光学材料における脈理を抑制し、かつ、光学材料の製造時間を短縮することができた。
As shown in Table 5, a total of 100 parts by mass of two or more different monomers for optical materials and 0.
A preparatory step for preparing a polymerization catalyst of 010 parts by mass to 2.0 parts by mass, and
A part of two or more different monomers for optical materials and at least a part of a polymerization catalyst are mixed, and at least a part of a part of two or more different monomers for optical materials is polymerized to obtain a prepolymer. Thereby, a prepolymerization step of obtaining a mixture containing a prepolymer, and
Optical containing at least two or more different optical material monomers, a prepolymer, and a polymerization catalyst by adding the remainder of two or more different optical material monomers to a mixture containing the prepolymer. A process for producing a polymerizable composition for an optical material for obtaining a polymerizable composition for a material,
A curing step of obtaining an optical material which is a cured product of a polymerizable composition for an optical material by curing two or more different monomers for an optical material in the polymerizable composition for an optical material.
In the examples using the method for producing an optical material containing the above, it was possible to suppress the pulse in the obtained optical material and shorten the production time of the optical material.
[実施例101~実施例103]
 プレポリマー化工程において、表6に記載のイソシアネート及びチオール[光学材料用モノマー]を表6に記載の量で用い、3,5-ルチジン[重合触媒]を表6に記載の量で用い、MR内部離型剤[離型剤]を表6に記載の量で用い、光学材料用重合性組成物における光学材料用モノマーの添加量が表7に記載の通りになるように調製し、重合時間及び方法を表6に記載の通りに変更したこと以外は、実施例5と同様の方法で成形体(レンズ)を得た。脈理の評価を表6に示す。
[Examples 101 to 103]
In the prepolymerization step, the isocyanate and thiol [monomer for optical material] shown in Table 6 are used in the amounts shown in Table 6, and 3,5-lutidine [polymerization catalyst] is used in the amounts shown in Table 6 to MR. The internal mold release agent [release agent] was used in the amount shown in Table 6, and the amount of the monomer for the optical material added in the polymerizable composition for the optical material was adjusted as shown in Table 7, and the polymerization time was adjusted. And a molded body (lens) was obtained by the same method as in Example 5 except that the method was changed as shown in Table 6. The evaluation of the pulse is shown in Table 6.
[実施例104~実施例105]
 プレポリマー化工程において、表6に記載のイソシアネート及びチオール[光学材料用モノマー]を表6に記載の量で用い、3,5-ルチジン[重合触媒]を表6に記載の量で用い、JP-506H[離型剤]を表6に記載の量で用い、光学材料用重合性組成物における光学材料用モノマーの添加量が表7に記載の通りになるように調製し、重合時間及び方法を表6に記載の通りに変更したこと以外は、実施例22と同様の方法で成形体(レンズ)を得た。脈理の評価を表6に示す。
[Examples 104 to 105]
In the prepolymerization step, the isocyanate and thiol [monomer for optical material] shown in Table 6 are used in the amounts shown in Table 6, and 3,5-lutidine [polymerization catalyst] is used in the amounts shown in Table 6, JP. -506H [mold release agent] was used in the amount shown in Table 6, and the amount of the monomer for the optical material added in the polymerizable composition for the optical material was adjusted as shown in Table 7, and the polymerization time and method were adjusted. A molded product (lens) was obtained in the same manner as in Example 22 except that the above was changed as shown in Table 6. The evaluation of the pulse is shown in Table 6.
[実施例106]
 Tinuvin329[紫外線吸収剤]1.5質量部、及びm-キシリレンジイソシアネート[光学材料用モノマー]48.9質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]10.1質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]0.025質量部を仕込んで40℃で1時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表6に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行い、JP-506H[離型剤]0.1質量部を加えて10分撹拌し第1混合液を得た。
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン37.9質量部、及びm-キシリレンジイソシアネート[光学材料用モノマー]3.1質量部を仕込んで混合液を作製した。これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒]0.005質量部を仕込んで40℃で1時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表6に示す。この混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。
 得られた光学材料用重合性組成物を用いて、実施例1と同様の方法により注型用鋳型に送液し、注型粘度を表6に示す値に調整した。
注型物を25℃の断熱容器に入れて2時間静置して断熱重合を行った後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行った。
 モールド型から硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。脈理の評価を表6に示す。
[Example 106]
A mixed solution was prepared by charging 1.5 parts by mass of Tinuvin 329 [ultraviolet absorber] and 48.9 parts by mass of m-xylylene diisocyanate [monomer for optical material]. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 10.1 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] was added to this mixed solution, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. did. Further, 0.025 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 1 hour to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 6.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour, 0.1 part by mass of JP-506H [release agent] was added, and the mixture was stirred for 10 minutes to obtain the first mixed solution. rice field.
A mixed solution was prepared by charging 37.9 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and 3.1 parts by mass of m-xylylene diisocyanate [monomer for optical material]. This was stirred at 25 ° C. for 5 minutes to give a uniform solution. Further, 0.005 parts by mass of 3,5-lutidine [polymerization catalyst] was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 1 hour to polymerize the monomer for optical material while adjusting the viscosity. A mixture containing the polymer was obtained. The viscosities of the mixture containing the prepolymer are shown in Table 6. This mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material.
Using the obtained polymerizable composition for optical materials, the liquid was sent to a casting mold by the same method as in Example 1, and the casting viscosity was adjusted to the value shown in Table 6.
The cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for adiabatic polymerization. Then, the cast material was taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
The cured molded product was released from the mold mold and further subjected to annealing treatment at 120 ° C. for 2 hours to obtain a molded product (lens). The evaluation of the pulse is shown in Table 6.
[実施例107~実施例108]
 プレポリマー化工程において、表6に記載のイソシアネート及びチオール[光学材料用モノマー]を表6に記載の量で用い、3,5-ルチジン[重合触媒]を表6に記載の量で用い、JP-506H[離型剤]を表6に記載の量で用い、光学材料用重合性組成物における光学材料用モノマーの添加量が表7に記載の通りになるように調製し、重合時間及び方法を表6に記載の通りに変更したこと以外は、実施例14と同様の方法で成形体(レンズ)を得た。脈理の評価を表6に示す。
[Example 107 to Example 108]
In the prepolymerization step, the isocyanate and thiol [monomer for optical material] shown in Table 6 are used in the amounts shown in Table 6, and 3,5-lutidine [polymerization catalyst] is used in the amounts shown in Table 6, JP. -506H [mold release agent] was used in the amount shown in Table 6, and the amount of the monomer for the optical material added in the polymerizable composition for the optical material was adjusted as shown in Table 7, and the polymerization time and method were adjusted. A molded product (lens) was obtained in the same manner as in Example 14 except that the above was changed as shown in Table 6. The evaluation of the pulse is shown in Table 6.
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000010

 
Figure JPOXMLDOC01-appb-T000010

 
 表6及び表7中、各項目の記載についての詳細は以下の通りである。
・NBDI  2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン
・XDI  m-キシリレンジイソシアネート
・PEMP  ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)
・GST  4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン
・FSH  5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンと、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカンとの混合物
Details of the description of each item in Tables 6 and 7 are as follows.
NBDI 2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane-XDI m-xylylene diisocyanate-PEMP pentaerythritol tetrakis (3-mercaptopropionate)
GST 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane FSH 5,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane and 4,7-di Mixture of mercaptomethyl-1,11-dimercapto-3,6,9-trichiaundecane and 4,8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane
 以下、第2実施形態の一実施形態を実施例により具体的に説明するが、第2実施形態はこれらの実施例に限定されるものではない。
 実施例における粘度の測定方法は上述の方法と同様である。
 各実施例又は比較例において得られた成形体について、以下の評価を行った。
Hereinafter, one embodiment of the second embodiment will be specifically described with reference to Examples, but the second embodiment is not limited to these Examples.
The method for measuring the viscosity in the examples is the same as the above-mentioned method.
The following evaluation was performed on the molded product obtained in each Example or Comparative Example.
(脈理)
 成形体を超高圧水銀灯(光源型式OPM-252HEG:ウシオ電機株式会社製)で投影し、透過した像を目視にて観察し、以下の基準で評価した。
  A:U字型の脈理が観察されなかった、又は、U字型の脈理が明確には観察されなかった。
  B:僅かにU字型の脈理が観察されるものの、製品として概ね許容できるものであった。
  C:明確にU字型の脈理が観察され、製品として許容できないものであった。
(Pulse)
The molded product was projected with an ultra-high pressure mercury lamp (light source model OPM-252HEG: manufactured by Ushio, Inc.), and the transmitted image was visually observed and evaluated according to the following criteria.
A: No U-shaped pulse was observed, or U-shaped pulse was not clearly observed.
B: Although a slight U-shaped pulse was observed, it was generally acceptable as a product.
C: A U-shaped pulse was clearly observed, which was unacceptable as a product.
[実施例201~実施例211]
(組成物の作製)
 三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]50.6質量部を仕込んで混合液を作製した。この混合液を25℃で1時間撹拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]3.6質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]3.8質量部を仕込み、これを25℃で5分撹拌し、均一溶液とした。さらに、得られた均一溶液に3,5-ルチジン[重合触媒](pKa値=6.14、-Ea/R=-3397)0.2質量部を仕込んで40℃で3時間撹拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1原料組成物を得た。
 第1原料組成物の粘度Vaは表8に示す。
[Examples 201 to 211]
(Preparation of composition)
Mitsui Chemicals, Inc. MR internal mold release agent [internal mold release agent] 0.1 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane [monomer for optical material] 50.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixed solution, pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical material] 3.6 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [optical material] Monomer for use] 3.8 parts by mass was charged, and this was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. Further, 0.2 parts by mass of 3,5-lutidine [polymerization catalyst] (pKa value = 6.14, -Ea / R = -3397) was added to the obtained uniform solution, and the mixture was stirred at 40 ° C. for 3 hours. The monomer for optical material was polymerized while adjusting the viscosity to obtain a mixture containing a prepolymer. Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first raw material composition.
The viscosity Va of the first raw material composition is shown in Table 8.
 ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]20.3質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]21.7質量部を仕込み、これを25℃で15分撹拌し、均一溶液とした。この混合液を400Pa、25℃にて1時間脱気を行って第2原料組成物を得た。
 第2原料組成物の粘度Vbは表8に示す。
Pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical materials] 20.3 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] 21.7% by mass A portion was charged, and the mixture was stirred at 25 ° C. for 15 minutes to prepare a uniform solution. This mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second raw material composition.
The viscosity Vb of the second raw material composition is shown in Table 8.
(組成物のせん断及び撹拌)
 第1原料組成物を第1タンクに、第2原料組成物を第2タンクに、それぞれ入れた。
 ギヤポンプを用いて、表8に記載の流速にて、各組成物をパワーミキサーに送液した。
 次に、表8に記載の回転数で、パワーミキサーを用いて、送液された第1原料組成物及び第2原料組成物にせん断力を加えた後、表8に記載のろ過精度を有するカプセルフィルター(エフテック社製)を通過させた。
 フィルターを通過させた後の光学材料用重合性組成物を撹拌槽に送液し、撹拌槽内にて表8に記載の回転数で撹拌することで、光学材料用重合性組成物に対して流動方向の略平行逆方向に力を加えて撹拌した。
 その際、撹拌槽における液面側から表8に記載の圧力で、窒素を用いて背圧を加えた。
 その後、表8に記載の内径及びエレメント数を有するスタティックミキサーで、光学材料用重合性組成物を撹拌した後、直径78mm、4カーブ、表8に記載の設定中心厚を有するレンズ作製用のモールドに注型した。注型軸数及び注型の吐出量は表8に示す。
(Shearing and stirring of composition)
The first raw material composition was placed in the first tank, and the second raw material composition was placed in the second tank.
Using a gear pump, each composition was fed to a power mixer at the flow rates shown in Table 8.
Next, after applying a shearing force to the first raw material composition and the second raw material composition sent by using a power mixer at the rotation speeds shown in Table 8, the filtration accuracy shown in Table 8 is obtained. It was passed through a capsule filter (manufactured by F-tech Inc.).
The polymerizable composition for optical materials after passing through the filter is sent to a stirring tank and stirred in the stirring tank at the rotation speeds shown in Table 8 to obtain the polymerizable composition for optical materials. A force was applied in the direction substantially parallel to the flow direction and the mixture was stirred.
At that time, back pressure was applied using nitrogen at the pressures shown in Table 8 from the liquid level side in the stirring tank.
Then, after stirring the polymerizable composition for an optical material with a static mixer having an inner diameter and the number of elements shown in Table 8, a mold for manufacturing a lens having a diameter of 78 mm, 4 curves, and a set center thickness shown in Table 8 is used. Was cast into. Table 8 shows the number of casting axes and the ejection amount of casting.
(組成物の硬化)
 以下のいずれかの方法で重合反応を行った。
・注型後のモールドを25℃の断熱容器に入れて、2時間静置して断熱重合を行った。その後、断熱容器から注型物を取り出し、さらに120℃、1時間の加熱重合を行う。
・オーブンを用いて、注型後のモールドを、1.5時間かけて30℃から70℃まで加熱し、その後0.5時間かけて70℃から120℃まで加熱し、その後1時間、温度を120℃に維持して加熱重合を行う。
(Curing of composition)
The polymerization reaction was carried out by any of the following methods.
-The mold after casting was placed in a heat insulating container at 25 ° C. and allowed to stand for 2 hours for heat insulating polymerization. Then, the cast material is taken out from the heat insulating container and further subjected to heat polymerization at 120 ° C. for 1 hour.
-Using an oven, heat the cast mold from 30 ° C to 70 ° C over 1.5 hours, then heat from 70 ° C to 120 ° C over 0.5 hours, then heat the temperature for 1 hour. Heat polymerization is performed while maintaining the temperature at 120 ° C.
 重合反応を行った後、モールドを自然冷却し、モールドから硬化した成形体を離型し、さらに120℃で2時間アニール処理を行い、成形体(レンズ)を得た。 After the polymerization reaction was carried out, the mold was naturally cooled, the cured molded product was released from the mold, and further annealed at 120 ° C. for 2 hours to obtain a molded product (lens).
Figure JPOXMLDOC01-appb-T000011

 
Figure JPOXMLDOC01-appb-T000011

 
 表8中、「-」は、該当する操作を行っていない、又は、該当する値が存在しないことを意味する。 In Table 8, "-" means that the corresponding operation has not been performed or the corresponding value does not exist.
 表8に示す通り、2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造する方法であって、第1原料組成物及び第2原料組成物を準備する原料組成物準備工程と、第1原料組成物及び第2原料組成物にせん断力を加えて光学材料用重合性組成物を製造するせん断工程と、光学材料用重合性組成物に撹拌力を加える撹拌工程と、撹拌工程の後、光学材料用重合性組成物をモールドに注型する注型工程と、モールド中の光学材料用重合性組成物中の2種以上の異なる光学材料用モノマーを重合させることにより光学材料用重合性組成物を硬化させる硬化工程と、を含む光学材料の製造方法を用いた実施例は、脈理の評価に優れており、光学材料におけるU字型の脈理を抑制することができた。 As shown in Table 8, it is a method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst, wherein the first raw material composition and the polymerization catalyst are used. A raw material composition preparation step for preparing a second raw material composition, a shearing step for producing a polymerizable composition for an optical material by applying a shearing force to the first raw material composition and the second raw material composition, and polymerization for an optical material. Two or more of the stirring step of applying a stirring force to the sex composition, the casting step of casting the polymerizable composition for an optical material into a mold after the stirring step, and the polymerizable composition for an optical material in the mold. Examples using a curing step of curing a polymerizable composition for an optical material by polymerizing different monomers for an optical material and a method for producing an optical material including the above are excellent in evaluation of pulse and the optical material. I was able to suppress the U-shaped polymerization in.
 以下、第3実施形態の一実施形態を実施例により具体的に説明するが、第3実施形態はこれらの実施例に限定されるものではない。
 実施例における粘度の測定方法は、上述の方法と同様である。
 実施例における耐熱指数試験の方法は、上述の方法と同様である。
 実施例における熱変形温度の測定方法は、上述の方法と同様である。
 実施例における貯蔵弾性率の測定方法は、上述の方法と同様である。
 実施例におけるガラスボールタック試験の方法は、上述の方法と同様である。
 実施例における粘着力の測定方法は、上述の方法と同様である。
Hereinafter, one embodiment of the third embodiment will be specifically described with reference to Examples, but the third embodiment is not limited to these Examples.
The method for measuring the viscosity in the examples is the same as the above-mentioned method.
The method of the heat resistance index test in the examples is the same as the above-mentioned method.
The method for measuring the heat distortion temperature in the examples is the same as the above-mentioned method.
The method for measuring the storage elastic modulus in the examples is the same as the above-mentioned method.
The method of the glass ball tack test in the examples is the same as the above-mentioned method.
The method for measuring the adhesive strength in the examples is the same as the above-mentioned method.
 各実施例又は比較例において得られた硬化物(即ちレンズ)について、以下の評価を行った。
[コバ平滑性]
 硬化物の外周面の平滑性を目視で確認した。
 外周面に深さ1mm以上の凹凸がない場合をAとし、外周面に深さ1mm以上の凹凸がある場合をBとした。
The cured product (that is, the lens) obtained in each Example or Comparative Example was evaluated as follows.
[Edge smoothness]
The smoothness of the outer peripheral surface of the cured product was visually confirmed.
The case where the outer peripheral surface has no unevenness with a depth of 1 mm or more was defined as A, and the case where the outer peripheral surface had irregularities with a depth of 1 mm or more was defined as B.
[糊残り]
 硬化後のレンズ及びモールドに、糊残りがあるか否かを目視で確認した。
 糊残りがない場合をA、糊残りがあるが容易に除去できる場合をB、糊残りがあり除去することが困難である場合をCとした。なお、糊残りがある場合は目視で外周面が白濁したように見え、糊残りがない場合は外周面が鏡面状でほぼ透明に見える。
[Remaining glue]
It was visually confirmed whether or not there was adhesive residue on the cured lens and mold.
The case where there is no glue residue is A, the case where there is glue residue but can be easily removed is B, and the case where there is glue residue and it is difficult to remove is C. If there is adhesive residue, the outer peripheral surface looks cloudy visually, and if there is no adhesive residue, the outer peripheral surface looks mirror-like and almost transparent.
[ボイド]
 硬化物において、ボイドが発生しているか否かを目視で確認した。
 ボイドが発生していない場合をA、ボイドが発生している場合をBとした。
[void]
It was visually confirmed whether or not voids were generated in the cured product.
The case where no void was generated was defined as A, and the case where a void was generated was defined as B.
[漏れ]
モノマー漏れ率:「モノマー漏れ」とは、注入後にオーブン内でモールドから漏れる現象である。モールドへのモノマー注入量および重合後樹脂重量を測定し、注入後にオーブン内でモールドから漏れたモノマーの割合をモノマー漏れ率として以下の式により定義し、求めた。
 モノマー漏れ率が、1%以下の場合をA、1%より大きい場合をBとした。
モノマー注入量=X(g)
重合後樹脂質量=Y(g)
モノマー漏れ量=X-Y(g)
モノマー漏れ率=(X-Y)/X×100(%)
[leak]
Monomer leakage rate: "Monomer leakage" is a phenomenon of leakage from the mold in the oven after injection. The amount of monomer injected into the mold and the weight of the resin after polymerization were measured, and the proportion of the monomer leaked from the mold in the oven after injection was defined as the monomer leakage rate by the following formula and determined.
When the monomer leakage rate was 1% or less, it was designated as A, and when it was larger than 1%, it was designated as B.
Monomer injection amount = X (g)
Post-polymerization resin mass = Y (g)
Monomer leakage amount = XY (g)
Monomer leakage rate = (XY) / X × 100 (%)
[樹脂バリの発生]
「樹脂バリの発生」とは、ガラスモールドから硬化物を離型した際に、硬化物が欠け、バリが発生する現象である。
 バリが発生しなかった場合をA、バリが発生した場合をBとした。
 
[Generation of resin burrs]
"Generation of resin burrs" is a phenomenon in which when the cured product is released from the glass mold, the cured product is chipped and burrs are generated.
The case where no burr occurred was designated as A, and the case where burr occurred was designated as B.
[白濁/溶出]
 硬化物において、白濁又は粘着剤の溶出が発生しているか否かを目視で確認した。
 白濁又は粘着剤の溶出が確認されなかった場合をA、白濁又は粘着剤の溶出が確認された場合をBとした。
[White turbidity / elution]
It was visually confirmed whether or not cloudiness or elution of the adhesive was generated in the cured product.
The case where cloudiness or elution of the adhesive was not confirmed was designated as A, and the case where cloudiness or elution of the adhesive was confirmed was designated as B.
[突起]
 硬化物における一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含むか否かを目視で確認した。
 突起が確認された場合をA、突起が確認されなかった場合をBとした。
[protrude]
It was visually confirmed whether or not the intersection of one main surface and the outer peripheral surface of the cured product and the intersection of the other main surface and the outer peripheral surface contained a protrusion substantially parallel to the outer peripheral surface.
The case where the protrusion was confirmed was designated as A, and the case where the protrusion was not confirmed was designated as B.
<フィルム>
 本実施例で用いるフィルムは以下の通りである。
A:SLIONTEC #6261(マクセル株式会社製)
B:メンディングテープ #810(スリーエムジャパン株式会社製)
C:SLIONTEC 6263-73(マクセル株式会社製)
 各フィルムの詳細は表9に示す。
<Film>
The films used in this example are as follows.
A: SLIONTEC # 6261 (manufactured by Maxell Co., Ltd.)
B: Mending tape # 810 (manufactured by 3M Japan Ltd.)
C: SLIONTEC 6263-73 (manufactured by Maxell Co., Ltd.)
Details of each film are shown in Table 9.
[実施例301]
 三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]50.6質量部を仕込んで混合液を作製した。この混合液を25℃で1時間攪拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]3.1質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]3.3質量部を仕込み、これを25℃で5分攪拌し、均一溶液とした。さらに、得られた均一溶液に表9に記載の重合触媒を合計で表9に記載の量となるように仕込んで40℃で3時間攪拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]20.8質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]22.2質量部を仕込んで混合液を作製した後、得られた混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、重合性組成物を得た。得られた重合性組成物は、25℃において増粘曲線の傾きが4.6822であった。
[Example 301]
Mitsui Chemicals, Inc. MR internal mold release agent [internal mold release agent] 0.1 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane [monomer for optical material] 50.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixed solution, pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical material] 3.1 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [optical material] Monomer for use] 3.3 parts by mass was charged, and this was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. Further, the polymer catalysts shown in Table 9 are added to the obtained uniform solution so as to have the total amount shown in Table 9, and the mixture is stirred at 40 ° C. for 3 hours to prepare a monomer for an optical material while adjusting the viscosity. Polymerization was carried out to obtain a mixture containing a prepolymer.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
Pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical materials] 20.8 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] 22.2% by mass After charging the parts to prepare a mixed solution, the obtained mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition. The obtained polymerizable composition had a thickening curve slope of 4.6822 at 25 ° C.
 所定の間隔で対向するように配置した2つのモールド基板の外周面に、表9に記載のフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成して、注型用鋳型を作製した。 The films shown in Table 9 are attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film for casting. A mold was made.
 得られた重合性組成物を静止型混合器内にて再混合しながら直径80mmの4カーブの
ガラスモールド(上型)と、直径80mmの4カーブのガラスモールド(下型)とから構成された中心厚10mmの上記空間内に6g/秒の速度で注入した。
 鋳型に送液され、注型される際の重合性組成物の粘度(注型粘度ともいう)を表9に示す値に調整した。
The obtained polymerizable composition was remixed in a static mixer to form a 4-curve glass mold (upper mold) having a diameter of 80 mm and a 4-curve glass mold (lower mold) having a diameter of 80 mm. It was injected at a rate of 6 g / sec into the above space having a center thickness of 10 mm.
The viscosity (also referred to as casting viscosity) of the polymerizable composition when the liquid was sent to the mold and cast was adjusted to the value shown in Table 9.
 注型物をオーブン内にて、表9に記載の温度及び時間で加熱し、重合を行った。
 モールド型から硬化した硬化物を離型し、さらに120℃で2時間アニール処理を行い、硬化物(レンズ)を得た。
The cast material was heated in an oven at the temperature and time shown in Table 9 to carry out polymerization.
The cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
[実施例302]
 注型物を25℃の断熱容器に入れて表9に記載の硬化時間静置して断熱重合を行ったこと以外は、実施例301と同様にして、レンズを得た。最大硬化温度は表9に示す。
[Example 302]
A lens was obtained in the same manner as in Example 301, except that the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for the curing time shown in Table 9 for heat insulating polymerization. The maximum curing temperature is shown in Table 9.
[実施例303]
 酸性リン酸エステルであるJP-506H(城北化学工業株式会社製)0.05質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及びm-キシリレンジイソシアネート[光学材料用モノマー]52.0質量部を仕込んで混合液を作製した。この混合液
を25℃で1時間攪拌して完全に溶解させた。その後、この混合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]12.0質量部を仕込み、これを25℃で5分攪拌し、均一溶液とした。さらに、得られた均一溶液に表9に記載の重合触媒を合計で表9に記載の量となるように仕込んで40℃で3時間攪拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。プレポリマーを含む混合物の粘度は表9に示す。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン36.0質量
部を仕込んでこの混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、重合性組成物を得た。
 得られた重合性組成物は、25℃において増粘曲線の傾きが1.8476であった。
 得られた重合性組成物を用いて、実施例301と同様の方法により注型用鋳型に送液し、注型粘度を表9に示す値に調整した。
 注型物をオーブン内にて表9に記載の温度及び時間で加熱し重合を行った。
 モールド型から硬化した硬化物を離型し、さらに120℃で2時間アニール処理を行い、硬化物(レンズ)を得た。
[Example 303]
JP-506H (manufactured by Johoku Chemical Industry Co., Ltd.), which is an acidic phosphoric acid ester, 0.05 parts by mass, Tinuvin329 [ultraviolet absorber] 1.5 parts by mass, and m-xylylene diisocyanate [monomer for optical material] 52.0 A mixed solution was prepared by charging parts by mass. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 12.0 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical material] was added to this mixed solution, and the mixture was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. did. Further, the polymer catalysts shown in Table 9 are added to the obtained uniform solution so as to have the total amount shown in Table 9, and the mixture is stirred at 40 ° C. for 3 hours to prepare a monomer for an optical material while adjusting the viscosity. Polymerization was carried out to obtain a mixture containing a prepolymer. The viscosities of the mixture containing the prepolymer are shown in Table 9.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
4-Mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane 36.0 parts by mass was charged, and the mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution. rice field.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition.
The obtained polymerizable composition had a thickening curve slope of 1.8476 at 25 ° C.
Using the obtained polymerizable composition, the liquid was sent to a casting mold by the same method as in Example 301, and the casting viscosity was adjusted to the value shown in Table 9.
The cast material was heated in an oven at the temperature and time shown in Table 9 to carry out polymerization.
The cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
[実施例304]
 注型物を25℃の断熱容器に入れて表9に記載の硬化時間静置して断熱重合を行ったこと以外は、実施例303と同様にして、レンズを得た。最大硬化温度は表9に示す。
[Example 304]
A lens was obtained in the same manner as in Example 303, except that the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for the curing time shown in Table 9 for heat insulating polymerization. The maximum curing temperature is shown in Table 9.
[実施例305]
 JP-506Hを0.1質量部、重合触媒を合計で表9に記載の量となるように仕込んだこと以外は、実施例303と同様にして、レンズを得た。最大硬化温度は表9に示す。
 得られた重合性組成物は、25℃において増粘曲線の傾きが0.9010あった。
[Example 305]
A lens was obtained in the same manner as in Example 303, except that JP-506H was charged in an amount of 0.1 parts by mass and the polymerization catalyst was charged in a total amount shown in Table 9. The maximum curing temperature is shown in Table 9.
The obtained polymerizable composition had an inclination of the thickening curve of 0.9010 at 25 ° C.
 なお、実施例301及び実施例302において、重合性組成物は、重合開始後重合性組成物の温度が40℃に到達した時点において、B型粘度計で40℃ 60rpmの条件で測定した粘度が164mPa・sであった。 In Examples 301 and 302, the viscosity of the polymerizable composition measured at 40 ° C. and 60 rpm with a B-type viscometer when the temperature of the polymerizable composition reached 40 ° C. after the start of polymerization. It was 164 mPa · s.
[比較例301]
 フィルムを表9に記載のフィルムに変更したこと以外は、実施例301と同様にして、レンズを得た。最大硬化温度は表9に示す。
[Comparative Example 301]
A lens was obtained in the same manner as in Example 301, except that the film was changed to the film shown in Table 9. The maximum curing temperature is shown in Table 9.
[比較例302]
 フィルムを表9に記載のフィルムに変更したこと以外は、実施例302と同様にして、レンズを得た。最大硬化温度は表9に示す。
[Comparative Example 302]
A lens was obtained in the same manner as in Example 302, except that the film was changed to the film shown in Table 9. The maximum curing temperature is shown in Table 9.
[比較例303]
 ジブチル錫(II)ジクロリド[重合触媒]0.035質量部、三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]50.6質量部を仕込んで混合溶液を作製した。この混合溶液を25℃で1時間攪拌して完全に溶解させた。その後、この調合液に、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタンを25.5質量部と、ペンタエリ
スリトールテトラキス(3-メルカプトプロピオネート)を23.9質量部仕込み、これを25℃で30分攪拌し、均一な溶液を調製した。得られた溶液(つまり重合性組成物)は、25℃において増粘曲線の傾きが0.2336であった。
 実施例301に記載の方法と同様の方法により、表9に記載のフィルムを用いて注型用鋳型を作製した。
 得られた溶液を400Paにて1時間脱泡を行い、1μmPTFEフィルターにて濾過を行った後、実施例301と同様の方法により注型用鋳型に送液し、注型粘度を表9に示す値に調整した。注型物をオーブン内にて表9に記載の温度及び時間で加熱し重合を行った。モールド型から硬化した硬化物を離型し、さらに120℃で2時間アニール処理を行い、硬化物(レンズ)を得た。
 最大硬化温度は表9に示す。
[Comparative Example 303]
Dibutyltin (II) dichloride [polymerization catalyst] 0.035 parts by mass, Mitsui Chemicals, Inc. MR internal mold release agent [internal mold release agent] 0.1 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, A mixed solution was prepared by charging 2,5 (6) -bis (isocyanatomethyl) -bicyclo- [2.2.1] -heptane [monomer for optical material] by 50.6 parts by mass. The mixed solution was stirred at 25 ° C. for 1 hour to completely dissolve. Then, 25.5 parts by mass of 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane and 23.9 parts by mass of pentaerythritol tetrakis (3-mercaptopropionate) were added to this preparation solution. This was stirred at 25 ° C. for 30 minutes to prepare a uniform solution. The obtained solution (that is, the polymerizable composition) had a thickening curve slope of 0.2336 at 25 ° C.
A casting mold was prepared using the films shown in Table 9 by the same method as that described in Example 301.
The obtained solution was defoamed at 400 Pa for 1 hour, filtered through a 1 μm PTFE filter, and then sent to a casting mold by the same method as in Example 301, and the casting viscosity is shown in Table 9. Adjusted to the value. The cast material was heated in an oven at the temperature and time shown in Table 9 to carry out polymerization. The cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
The maximum curing temperature is shown in Table 9.
[比較例304]
 フィルムを表9に記載のフィルムに変更したこと以外は実施例301と同様にして、レンズを得た。
[Comparative Example 304]
A lens was obtained in the same manner as in Example 301 except that the film was changed to the film shown in Table 9.
[比較例305]
 フィルムを表9に記載のフィルムに変更したこと以外は実施例302と同様にして、レンズを得た。
[Comparative Example 305]
A lens was obtained in the same manner as in Example 302 except that the film was changed to the film shown in Table 9.
[比較例306]
 フィルムを表9に記載のフィルムに変更したこと以外は比較例303と同様にして、レンズを得た。
[Comparative Example 306]
A lens was obtained in the same manner as in Comparative Example 303 except that the film was changed to the film shown in Table 9.
Figure JPOXMLDOC01-appb-T000012

 
 
Figure JPOXMLDOC01-appb-T000012

 
 
 表9に記載の通り、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、前記空間に重合性組成物を注入する注入工程と、前記空間に注入さ
れた前記重合性組成物を硬化させて硬化物を得る硬化工程と、を含み、前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、ガラスから完全に剥がれるフィルムであり、前記フィルムは、熱変形温度が70℃以上であり、前記硬化工程において、硬化時間は10時間以下である光学部材の製造方法を用いた実施例は、コバ平滑性、糊残り及び突起の評価に優れていた。そのため、外周面が平滑である光学部材を製造することができた。また、実施例は、25℃において増粘曲線の傾きが0.4以上であった。
 また、実施例は、ボイド、漏れ、樹脂バリの発生、及び白濁/溶出の評価にも優れていた。
 一方、フィルムの熱変形温度が70℃以上でない比較例301~比較例303は、コバ平滑性の評価に劣っており、外周面が平滑である光学部材を製造することができなかった。比較例301~比較例303は、糊残りの評価にも劣っていた。
 ガラスに貼り付けて85℃で耐熱指数試験を行った場合にガラスから完全に剥がれないフィルムを用いた比較例304~比較例306は、コバ平滑性の評価に劣っており、外周面が平滑である光学部材を製造することができなかった。
As shown in Table 9, a space forming step of attaching a film to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film. The film comprises an injection step of injecting the polymerizable composition into the space and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass. A film that completely peels off from glass when a heat resistance index test is performed at 85 ° C. The film has a thermal deformation temperature of 70 ° C. or higher and a curing time of 10 hours or less in the curing step. The examples using the above-mentioned production method were excellent in the evaluation of edge smoothness, adhesive residue and protrusions. Therefore, it was possible to manufacture an optical member having a smooth outer peripheral surface. Moreover, in the example, the slope of the thickening curve was 0.4 or more at 25 ° C.
The examples were also excellent in evaluating voids, leaks, resin burrs, and cloudiness / elution.
On the other hand, Comparative Examples 301 to 303, in which the heat distortion temperature of the film was not 70 ° C. or higher, were inferior in the evaluation of edge smoothness, and it was not possible to manufacture an optical member having a smooth outer peripheral surface. Comparative Examples 301 to 303 were also inferior in the evaluation of the adhesive residue.
Comparative Examples 304 to 306 using a film that does not completely peel off from the glass when attached to glass and subjected to a heat resistance index test at 85 ° C. are inferior in the evaluation of edge smoothness, and the outer peripheral surface is smooth. It was not possible to manufacture a certain optical member.
 以下、第4実施形態の一実施形態を実施例により具体的に説明するが、第4実施形態はこれらの実施例に限定されるものではない。
 実施例における粘度の測定方法は、上述の方法と同様である。
 実施例における耐熱指数試験の方法は、上述の方法と同様である。
 実施例における熱変形温度の測定方法は、上述の方法と同様である。
 実施例における貯蔵弾性率の測定方法は、上述の方法と同様である。
 実施例におけるガラスボールタック試験の方法は、上述の方法と同様である。
 実施例における粘着力の測定方法は、上述の方法と同様である。
Hereinafter, one embodiment of the fourth embodiment will be specifically described with reference to the examples, but the fourth embodiment is not limited to these examples.
The method for measuring the viscosity in the examples is the same as the above-mentioned method.
The method of the heat resistance index test in the examples is the same as the above-mentioned method.
The method for measuring the heat distortion temperature in the examples is the same as the above-mentioned method.
The method for measuring the storage elastic modulus in the examples is the same as the above-mentioned method.
The method of the glass ball tack test in the examples is the same as the above-mentioned method.
The method for measuring the adhesive strength in the examples is the same as the above-mentioned method.
 各実施例又は比較例において得られた硬化物(即ちレンズ)について、以下の評価を行った。
[コバ平滑性]
 硬化物の外周面の平滑性を目視で確認した。
 硬化物において、一方の主面と外周面との交点及び他方の主面と外周面との交点の間の形状が凹状の曲線であり、外周面に深さ1mm以上の凹凸がない場合をAとし、
 硬化物において、一方の主面と外周面との交点及び他方の主面と外周面との交点の間の形状が凹状の曲線でないか、又は、外周面に深さ1mm以上の凹凸がある場合をBとした。
The cured product (that is, the lens) obtained in each Example or Comparative Example was evaluated as follows.
[Edge smoothness]
The smoothness of the outer peripheral surface of the cured product was visually confirmed.
In the cured product, the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a concave curve, and the outer peripheral surface has no unevenness with a depth of 1 mm or more. year,
In the cured product, the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is not a concave curve, or the outer peripheral surface has irregularities with a depth of 1 mm or more. Was set to B.
[ボイド]
 硬化物において、ボイドが発生しているか否かを目視で確認した。
 ボイドが発生していない場合をA、ボイドが発生している場合をBとした。
[void]
It was visually confirmed whether or not voids were generated in the cured product.
The case where no void was generated was defined as A, and the case where a void was generated was defined as B.
[漏れ]
モノマー漏れ率:「モノマー漏れ」とは、注入後にオーブン内でモールドから漏れる現象である。モールドへのモノマー注入量および重合後樹脂重量を測定し、注入後にオーブン内でモールドから漏れたモノマーの割合をモノマー漏れ率として以下の式により定義し、求めた。
 モノマー漏れ率が、1%以下の場合をA、1%より大きい場合をBとした。
モノマー注入量=X(g)
重合後樹脂質量=Y(g)
モノマー漏れ量=X-Y(g)
モノマー漏れ率=(X-Y)/X×100(%)
[leak]
Monomer leakage rate: "Monomer leakage" is a phenomenon of leakage from the mold in the oven after injection. The amount of monomer injected into the mold and the weight of the resin after polymerization were measured, and the proportion of the monomer leaked from the mold in the oven after injection was defined as the monomer leakage rate by the following formula and determined.
When the monomer leakage rate was 1% or less, it was designated as A, and when it was larger than 1%, it was designated as B.
Monomer injection amount = X (g)
Post-polymerization resin mass = Y (g)
Monomer leakage amount = XY (g)
Monomer leakage rate = (XY) / X × 100 (%)
[白濁/溶出]
 硬化物において、白濁又は粘着剤の溶出が発生しているか否かを目視で確認した。
 白濁又は粘着剤の溶出が確認されなかった場合をA、白濁又は粘着剤の溶出が確認された場合をBとした。
[White turbidity / elution]
It was visually confirmed whether or not cloudiness or elution of the adhesive was generated in the cured product.
The case where cloudiness or elution of the adhesive was not confirmed was designated as A, and the case where cloudiness or elution of the adhesive was confirmed was designated as B.
[突起]
 硬化物における一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含むか否かを目視で確認した。
 突起が確認された場合をA、突起が確認されなかった場合をBとした。
[protrude]
It was visually confirmed whether or not the intersection of one main surface and the outer peripheral surface of the cured product and the intersection of the other main surface and the outer peripheral surface contained a protrusion substantially parallel to the outer peripheral surface.
The case where the protrusion was confirmed was designated as A, and the case where the protrusion was not confirmed was designated as B.
<フィルム>
 本実施例で用いるフィルムは以下の通りである。
A:セロテープ(登録商標) CT405AP-18(ニチバン株式会社製)
B:セロテープ(登録商標) No.252(積水化学工業株式会社製)
C:セロテープ(登録商標) Tanosee(積水化学工業株式会社製)
D:セロテープ(登録商標) NO29NEW(日東電工株式会社製)
E:あとではがせるテープ #821(スリーエムジャパン株式会社製)
 各フィルムの詳細は表10に示す。
<Film>
The films used in this example are as follows.
A: Cellotape (registered trademark) CT405AP-18 (manufactured by Nichiban Co., Ltd.)
B: Cellotape (registered trademark) No. 252 (manufactured by Sekisui Chemical Co., Ltd.)
C: Cellotape (registered trademark) Tanosee (manufactured by Sekisui Chemical Co., Ltd.)
D: Cellotape (registered trademark) NO29NEW (manufactured by Nitto Denko KK)
E: Tape that can be peeled off later # 821 (manufactured by 3M Japan Ltd.)
Details of each film are shown in Table 10.
[実施例401]
 三井化学社製MR用内部離型剤[内部離型剤]0.1質量部、Tinuvin329[紫外線吸収剤]1.5質量部、及び2,5(6)-ビス(イソシアナトメチル)-ビシクロ-[2.2.1]-ヘプタン[光学材料用モノマー]50.6質量部を仕込んで混合液を作製した。この混合液を25℃で1時間攪拌して完全に溶解させた。その後、この混合液に、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]3.1質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]3.3質量部を仕込み、これを25℃で5分攪拌し、均一溶液とした。さらに、得られた均一溶液に表10に記載の重合触媒を合計で表10に記載の量となるように仕込んで40℃で3時間攪拌することで、粘度を調整しながら光学材料用モノマーを重合させて、プレポリマーを含む混合物を得た。
 その後、プレポリマーを含む混合物に対して、400Pa、25℃にて1時間脱気を行って第1混合液を得た。
 ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)[光学材料用モノマー]20.8質量部、及び4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン[光学材料用モノマー]22.2質量部を仕込んで混合液を作製した後、得られた混合液に対して、400Pa、25℃にて1時間脱気を行って第2混合液を得た。
 そして、第1混合液及び第2混合液を、20℃で混合し、光学材料用重合性組成物を得た。得られた重合性組成物は、25℃において増粘曲線の傾きが4.6822であった。
[Example 401]
Mitsui Chemicals, Inc. MR internal mold release agent [internal mold release agent] 0.1 parts by mass, Tinuvin 329 [ultraviolet absorber] 1.5 parts by mass, and 2,5 (6) -bis (isocyanatomethyl) -bicyclo -[2.2.1] -Heptane [monomer for optical material] 50.6 parts by mass was charged to prepare a mixed solution. The mixture was stirred at 25 ° C. for 1 hour to completely dissolve. Then, in this mixed solution, pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical material] 3.1 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [optical material] Monomer for use] 3.3 parts by mass was charged, and this was stirred at 25 ° C. for 5 minutes to prepare a uniform solution. Further, the polymer catalysts shown in Table 10 are added to the obtained uniform solution so as to have the total amount shown in Table 10, and the mixture is stirred at 40 ° C. for 3 hours to prepare a monomer for an optical material while adjusting the viscosity. Polymerization was carried out to obtain a mixture containing a prepolymer.
Then, the mixture containing the prepolymer was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a first mixed solution.
Pentaerythritol tetrakis (3-mercaptopropionate) [monomer for optical materials] 20.8 parts by mass, and 4-mercaptomethyl-1,8-dimercapto-3,6-dithiaoctane [monomer for optical materials] 22.2% by mass After charging the parts to prepare a mixed solution, the obtained mixed solution was degassed at 400 Pa and 25 ° C. for 1 hour to obtain a second mixed solution.
Then, the first mixed solution and the second mixed solution were mixed at 20 ° C. to obtain a polymerizable composition for an optical material. The obtained polymerizable composition had a thickening curve slope of 4.6822 at 25 ° C.
 所定の間隔で対向するように配置した2つのモールド基板の外周面に、表10に記載のフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成して、注型用鋳型を作製した。 The films shown in Table 10 are attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film for casting. A mold was made.
 得られた重合性組成物を静止型混合器内にて再混合しながら直径80mmの4カーブのガラスモールド(上型)と、直径80mmの4カーブのガラスモールド(下型)とから構
成された中心厚10mmの上記空間内に6g/秒の速度で注入した。
 鋳型に送液され、注型される際の重合性組成物の粘度(注型粘度ともいう)を表10に示す値に調整した。
The obtained polymerizable composition was remixed in a static mixer to form a 4-curve glass mold (upper mold) having a diameter of 80 mm and a 4-curve glass mold (lower mold) having a diameter of 80 mm. It was injected at a rate of 6 g / sec into the above space having a center thickness of 10 mm.
The viscosity (also referred to as casting viscosity) of the polymerizable composition when the liquid was sent to the mold and cast was adjusted to the value shown in Table 10.
 注型物をオーブン内にて、表10に記載の温度及び時間で加熱し、重合を行った。
 モールド型から硬化した硬化物を離型し、さらに120℃で2時間アニール処理を行い、硬化物(レンズ)を得た。
The cast product was heated in an oven at the temperature and time shown in Table 10 to carry out polymerization.
The cured product was released from the mold and further annealed at 120 ° C. for 2 hours to obtain a cured product (lens).
[実施例402]
 注型物を25℃の断熱容器に入れて表10に記載の硬化時間静置して断熱重合を行ったこと以外は、実施例401と同様にして、レンズを得た。最大硬化温度は表10に示す。
[Example 402]
A lens was obtained in the same manner as in Example 401, except that the cast material was placed in a heat insulating container at 25 ° C. and allowed to stand for the curing time shown in Table 10 for heat insulating polymerization. The maximum curing temperature is shown in Table 10.
 なお、実施例401~実施例405において、重合性組成物は、重合開始後重合性組成物の温度が40℃に到達した時点において、B型粘度計で40℃ 60rpmの条件で測定した粘度が164mPa・sであった。 In Examples 401 to 405, the viscosity of the polymerizable composition measured at 40 ° C. and 60 rpm with a B-type viscometer when the temperature of the polymerizable composition reached 40 ° C. after the start of polymerization. It was 164 mPa · s.
[実施例403~実施例405、比較例402]
 フィルムを表10に記載のフィルムに変更したこと以外は、実施例402と同様にして、レンズを得た。最大硬化温度は表10に示す。
[Example 403 to Example 405, Comparative Example 402]
A lens was obtained in the same manner as in Example 402, except that the film was changed to the film shown in Table 10. The maximum curing temperature is shown in Table 10.
[比較例401]
 フィルムを表10に記載のフィルムに変更したこと以外は、実施例401と同様にして、レンズを得た。
[Comparative Example 401]
A lens was obtained in the same manner as in Example 401, except that the film was changed to the film shown in Table 10.
Figure JPOXMLDOC01-appb-T000013

 
 
Figure JPOXMLDOC01-appb-T000013

 
 
 表10に記載の通り、所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、前記空間に重合性組成物を注入する注入工程と、前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、を含み、前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上であり(但し、前記ガラスから完全に剥がれる場合を除く)、前記フィルムは、熱変形温度が120℃以下であり、前記硬化工程において、硬化時間は10時間以下である光学部材の製造方法を用いた実施例は、コバ平滑性及び突起の評価に優れていた。そのため、外周面が平滑である光学部材を製造することができた。また、実施例は、25℃において増粘曲線の傾きが0.4以上であった。
 また、実施例は、ボイド、漏れ、及び白濁/溶出の評価にも優れていた。
 一方、ガラスに貼り付けて85℃で耐熱指数試験を行った場合にガラスから完全に剥がれるフィルムを用いた比較例401及び比較例402は、コバ平滑性の評価に劣っており、突起が確認できなかった。そのため、外周面が平滑である光学部材を製造することができなかった。
As shown in Table 10, a space forming step of attaching a film to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film. The film comprises an injection step of injecting the polymerizable composition into the space and a curing step of curing the polymerizable composition injected into the space to obtain a cured product, and the film is attached to glass. When the heat resistance index test is performed at 85 ° C., the heat resistance index is 1 mm or more (except when it is completely peeled off from the glass), the film has a thermal deformation temperature of 120 ° C. or less, and the curing step. In the example using the method for manufacturing an optical member having a curing time of 10 hours or less, the edge smoothness and the evaluation of protrusions were excellent. Therefore, it was possible to manufacture an optical member having a smooth outer peripheral surface. Moreover, in the example, the slope of the thickening curve was 0.4 or more at 25 ° C.
The examples were also excellent in assessing voids, leaks, and cloudiness / elution.
On the other hand, Comparative Example 401 and Comparative Example 402 using a film that completely peels off from the glass when the film is attached to glass and subjected to a heat resistance index test at 85 ° C. are inferior in the evaluation of edge smoothness, and protrusions can be confirmed. There wasn't. Therefore, it has not been possible to manufacture an optical member having a smooth outer peripheral surface.
 2020年11月24日に出願された日本国特許出願2020-194660号、2021年7月29日に出願された日本国特許出願2021-124696号、2021年7月29日に出願された日本国特許出願2021-124697号、2021年7月27日に出願された日本国特許出願2021-122743号、及び2021年5月19日に出願された日本国特許出願2021-084856号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
Japanese Patent Application No. 2020-194660 filed on November 24, 2020, Japanese Patent Application No. 2021-124696 filed on July 29, 2021, Japan filed on July 29, 2021 The disclosure of patent application 2021-124697, Japanese patent application 2021-122743 filed on July 27, 2021, and Japanese patent application 2021-084856 filed on May 19, 2021 is the same. The whole is incorporated herein by reference.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
1・・・A液タンク
2・・・B液タンク
3・・・チラー
4・・・A液計量部
5・・・A液用流量センサヘッド
6・・・B液計量部
7・・・B液用流量センサヘッド
8・・・上位パワーミキサー
9・・・下位パワーミキサー
10・・・カプセルフィルター
11・・・撹拌槽
12・・・スターラー(撹拌子)
13・・・スタティックミキサー
14・・・モールド
15・・・制御盤
16・・・フットスイッチ
60・・・コンピュータ
61・・・CPU
62・・・メモリ
63・・・記憶部
64・・・入出力I/F
65・・・R/W部
66・・・ネットワークI/F
67・・・バス
68・・・記録媒体
110・・・レンズ注型重合型
111・・・第1モールド基板
112・・・第2モールド基板
113・・・フィルム(粘着テープ)
114・・・空間(キャビティ)
120・・・重合性組成物
130・・・プラスチックレンズ
1 ... A liquid tank 2 ... B liquid tank 3 ... Chiller 4 ... A liquid measuring unit 5 ... Flow rate sensor head for A liquid 6 ... B liquid measuring unit 7 ... B Liquid flow rate sensor head 8 ... Upper power mixer 9 ... Lower power mixer 10 ... Capsule filter 11 ... Stirrer tank 12 ... Stirrer (stirrer)
13 ... Static mixer 14 ... Mold 15 ... Control panel 16 ... Foot switch 60 ... Computer 61 ... CPU
62 ... Memory 63 ... Storage unit 64 ... Input / output I / F
65 ... R / W section 66 ... Network I / F
67 ... Bus 68 ... Recording medium 110 ... Lens casting polymerization type 111 ... First mold substrate 112 ... Second mold substrate 113 ... Film (adhesive tape)
114 ... Space (cavity)
120 ... Polymerizable composition 130 ... Plastic lens

Claims (65)

  1.  合計で100質量部の2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の重合触媒と、を原料として用いて光学材料を製造する方法であって、
     合計で100質量部の前記2種以上の異なる光学材料用モノマーと、0.010質量部~2.0質量部の前記重合触媒と、を準備する準備工程と、
     前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の少なくとも一部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得るプレポリマー化工程と、
    を含む光学材料の製造方法。
    A method for producing an optical material using a total of 100 parts by mass of two or more different monomers for optical materials and a polymerization catalyst of 0.010 parts by mass to 2.0 parts by mass as raw materials.
    A preparatory step for preparing a total of 100 parts by mass of the two or more different monomers for optical materials and 0.010 parts by mass to 2.0 parts by mass of the polymerization catalyst.
    A part of the two or more different monomers for optical materials and at least a part of the polymerization catalyst are mixed, and at least a part of the two or more different monomers for optical materials is polymerized to prepolymerize. A prepolymerization step of obtaining a mixture containing the prepolymer by obtaining a polymer, and
    A method for manufacturing an optical material including.
  2.  さらに、前記プレポリマーを含む混合物に対し、少なくとも、前記2種以上の異なる光学材料用モノマーの残部を添加することにより、前記2種以上の異なる光学材料用モノマーと、前記プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
     前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、を含む請求項1に記載の光学材料の製造方法。
    Further, by adding at least the remainder of the two or more different optical material monomers to the mixture containing the prepolymer, the two or more different optical material monomers, the prepolymer, and the polymerization A step of producing a polymerizable composition for an optical material for obtaining a polymerizable composition for an optical material containing a catalyst, and a process for producing the polymerizable composition for an optical material.
    A claim comprising a curing step of obtaining an optical material which is a cured product of the polymerizable composition for optical materials by curing two or more different monomers for optical materials in the polymerizable composition for optical materials. Item 2. The method for producing an optical material according to Item 1.
  3.  前記プレポリマー化工程が、前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の全部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得る工程である請求項2に記載の光学材料の製造方法。 The prepolymerization step mixes a part of the two or more different monomers for optical materials and all of the polymerization catalysts, and at least a part of the two or more different monomers for optical materials. The method for producing an optical material according to claim 2, which is a step of obtaining a mixture containing the prepolymer by polymerizing the above.
  4.  前記2種以上の異なる光学材料用モノマーの一部が、前記2種以上の異なる光学材料用モノマーの内の1種の光学材料用モノマーの全部と、前記1種の光学材料用モノマー以外の他の光学材料用モノマーの一部と、からなる請求項3に記載の光学材料の製造方法。 Some of the two or more different optical material monomers are all of one optical material monomer among the two or more different optical material monomers, and other than the one optical material monomer. The method for producing an optical material according to claim 3, further comprising a part of the monomer for optical material of the above.
  5.  前記プレポリマー化工程が、前記2種以上の異なる光学材料用モノマーの一部と、前記重合触媒の一部と、を混合し、前記2種以上の異なる光学材料用モノマーの一部における少なくとも一部を重合させてプレポリマーを得ることにより、前記プレポリマーを含む混合物を得る工程であり、
     前記光学材料用重合性組成物製造工程が、前記プレポリマーを含む混合物に対し、少なくとも、前記2種以上の異なる光学材料用モノマーの残部及び前記重合触媒の残部を添加することにより、前記2種以上の異なる光学材料用モノマーと、前記プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る工程である請求項2に記載の光学材料の製造方法。
    The prepolymerization step mixes a part of the two or more different monomers for optical materials and a part of the polymerization catalyst, and at least one of the two or more different monomers for optical materials. This is a step of obtaining a mixture containing the prepolymer by polymerizing the parts to obtain a prepolymer.
    In the process of producing a polymerizable composition for an optical material, at least the remainder of the two or more different monomers for an optical material and the balance of the polymerization catalyst are added to the mixture containing the prepolymer, whereby the two types are described. The method for producing an optical material according to claim 2, which is a step of obtaining a polymerizable composition for an optical material containing the above-mentioned different monomers for an optical material, the prepolymer, and the polymerization catalyst.
  6.  前記2種以上の異なる光学材料用モノマーがイソシアネート化合物(A)を含み、
     前記2種以上の異なる光学材料用モノマーの一部がイソシアネート化合物(A)の一部を含み、前記2種以上の異なる光学材料用モノマーの残部がイソシアネート化合物(A)の残部を含む請求項5に記載の光学材料の製造方法。
    The two or more different monomers for optical materials contain an isocyanate compound (A).
    5. Claim 5 in which a part of the two or more different optical material monomers contains a part of an isocyanate compound (A), and the balance of the two or more different optical material monomers contains a balance of an isocyanate compound (A). The method for manufacturing an optical material according to.
  7.  前記重合触媒の一部は、前記重合触媒の100質量部の内の5質量部~80質量部である請求項5又は請求項6に記載の光学材料の製造方法。 The method for producing an optical material according to claim 5 or 6, wherein a part of the polymerization catalyst is 5 parts by mass to 80 parts by mass in 100 parts by mass of the polymerization catalyst.
  8.  前記2種以上の異なる光学材料用モノマーの一部は、前記2種以上の異なる光学材料用モノマーの100質量部の内の5質量部~95質量部である請求項2~請求項7のいずれか1項に記載の光学材料の製造方法。 Any of claims 2 to 7, wherein a part of the two or more kinds of monomers for different optical materials is 5 parts by mass to 95 parts by mass in 100 parts by mass of the two or more kinds of monomers for different optical materials. The method for manufacturing an optical material according to item 1.
  9.  前記プレポリマー化工程の後であって、前記光学材料用重合性組成物製造工程の前に、前記プレポリマーを含む混合物のB型粘度計で25℃ 60rpmの条件で測定した粘度を30mPa・s~2000mPa・sに調整する粘度調整工程をさらに含む請求項2~請求項8のいずれか1項に記載の光学材料の製造方法。 After the prepolymerization step and before the step of producing the polymerizable composition for an optical material, the viscosity of the mixture containing the prepolymer was measured at 25 ° C. and 60 rpm with a B-type viscosity meter at 30 mPa · s. The method for producing an optical material according to any one of claims 2 to 8, further comprising a viscosity adjusting step of adjusting to ~ 2000 mPa · s.
  10.  さらに、前記2種以上の異なる光学材料用モノマーの残部と、前記重合触媒の残部と、を混合し、前記2種以上の異なる光学材料用モノマーの残部における少なくとも一部を重合させて第2プレポリマーを得ることにより、前記第2プレポリマーを含む混合物を得る第2プレポリマー化工程と、
     前記プレポリマーを含む混合物に対し、前記第2プレポリマーを含む混合物を添加することにより、前記プレポリマーと、前記第2プレポリマーと、前記重合触媒と、を含有する光学材料用重合性組成物を得る光学材料用重合性組成物製造工程と、
     前記光学材料用重合性組成物中の前記プレポリマー及び前記第2プレポリマーを硬化させることにより、前記光学材料用重合性組成物の硬化物である光学材料を得る硬化工程と、
    を含む請求項1に記載の光学材料の製造方法。
    Further, the remnants of the two or more different types of monomers for optical materials and the remnants of the polymerization catalyst are mixed, and at least a part of the remnants of the two or more kinds of monomers for different optical materials is polymerized to form a second pre. A second prepolymerization step of obtaining a mixture containing the second prepolymer by obtaining a polymer, and a second prepolymerization step.
    A polymerizable composition for an optical material containing the prepolymer, the second prepolymer, and the polymerization catalyst by adding the mixture containing the second prepolymer to the mixture containing the prepolymer. In the process of manufacturing a polymerizable composition for optical materials,
    A curing step of obtaining an optical material which is a cured product of the polymerizable composition for an optical material by curing the prepolymer and the second prepolymer in the polymerizable composition for an optical material.
    The method for producing an optical material according to claim 1.
  11.  前記光学材料用重合性組成物製造工程の後であって、前記硬化工程の前に、前記光学材料用重合性組成物を注型用鋳型に送液する送液工程をさらに含み、
     前記送液工程が、前記光学材料用重合性組成物を静止型混合器内にて再混合しながら注型用鋳型に送液する工程である請求項2~請求項10のいずれか1項に記載の光学材料の製造方法。
    A liquid feeding step of feeding the polymerizable composition for optical materials into a casting mold after the step of producing the polymerizable composition for optical materials and before the curing step is further included.
    The liquid feeding step is any one of claims 2 to 10, wherein the liquid feeding step is a step of feeding the polymerizable composition for an optical material to a casting mold while remixing it in a static mixer. The method for manufacturing an optical material according to the description.
  12.  前記硬化工程が、前記光学材料用重合性組成物を静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む請求項2~請求項11のいずれか1項に記載の光学材料の製造方法。 The optical according to any one of claims 2 to 11, wherein the curing step includes a step of curing the polymerizable composition for an optical material by allowing the polymerizable composition for an optical material to stand still. Material manufacturing method.
  13.  前記硬化工程が、前記光学材料用重合性組成物を閉鎖系空間内にて静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む請求項2~請求項12のいずれか1項に記載の光学材料の製造方法。 Any of claims 2 to 12, wherein the curing step includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand in a closed system space. The method for producing an optical material according to item 1.
  14.  前記硬化工程が、前記光学材料用重合性組成物を外部から加熱することなく静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む請求項2~請求項13のいずれか1項に記載の光学材料の製造方法。 Any of claims 2 to 13, wherein the curing step includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand without being heated from the outside. The method for producing an optical material according to item 1.
  15.  前記硬化工程が、前記光学材料用重合性組成物を2時間~10時間静置することにより、前記光学材料用重合性組成物を硬化させる工程を含む請求項2~請求項14のいずれか1項に記載の光学材料の製造方法。 One of claims 2 to 14, wherein the curing step includes a step of curing the polymerizable composition for optical materials by allowing the polymerizable composition for optical materials to stand for 2 to 10 hours. The method for manufacturing an optical material according to the section.
  16.  前記2種以上の異なる光学材料用モノマーが、イソシアネート化合物(A)と、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを有するヒドロキシチオール化合物、2つ以上の水酸基を有するポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも一種である活性水素化合物(B)と、を含む請求項1~請求項15のいずれか1項に記載の光学材料の製造方法。 The two or more different monomers for optical materials are an isocyanate compound (A), a polythiol compound having two or more mercapto groups, and a hydroxythiol compound having one or more mercapto groups and one or more hydroxyl groups. The optical according to any one of claims 1 to 15, comprising a polyol compound having one or more hydroxyl groups and an active hydrogen compound (B) which is at least one selected from the group consisting of an amine compound. How to make the material.
  17.  前記イソシアネート化合物(A)が、脂環族イソシアネート化合物及び芳香族イソシアネート化合物の少なくとも一方を含む請求項16に記載の光学材料の製造方法。 The method for producing an optical material according to claim 16, wherein the isocyanate compound (A) contains at least one of an alicyclic isocyanate compound and an aromatic isocyanate compound.
  18.  前記重合触媒が、pKa値が4~8である塩基性触媒、及び、有機金属系触媒からなる
    群から選択される少なくとも一種を含む請求項1~請求項17のいずれか1項に記載の光学材料の製造方法。
    The optics according to any one of claims 1 to 17, wherein the polymerization catalyst comprises at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst. Material manufacturing method.
  19.  前記重合触媒が、アミン系触媒及び有機錫系触媒からなる群から選択される少なくとも一種を含む請求項1~請求項18のいずれか1項に記載の光学材料の製造方法。 The method for producing an optical material according to any one of claims 1 to 18, wherein the polymerization catalyst contains at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
  20.  前記重合触媒が、3,5-ルチジン、2,4,6-コリジン、トリエチレンジアミン、N,N-ジメチルエタノールアミン,トリエチルアミン、N-エチルモルホリン、ジブチルスズジクロリド、ジメチルスズジクロリド、ジブチルスズジラウレート及びジブチルスズジアセテートからなる群から選択される少なくとも一種を含む請求項1~請求項19のいずれか1項に記載の光学材料の製造方法。 The polymerization catalysts are 3,5-lutidine, 2,4,6-cholidine, triethylenediamine, N, N-dimethylethanolamine, triethylamine, N-ethylmorpholine, dibutyltin dichloride, dimethyltin dichloride, dibutyltin dilaurate and dibutyltin diacetate. The method for producing an optical material according to any one of claims 1 to 19, which comprises at least one selected from the group consisting of.
  21.  2種以上の異なる光学材料用モノマーと、
     重合触媒と、
     前記2種以上の異なる光学材料用モノマーの内の少なくとも2種の光学材料用モノマーを重合させて得られるプレポリマーと、を含み、
     前記重合触媒の含有量が、前記2種以上の異なる光学材料用モノマー及び前記プレポリマーの合計100質量部に対して、0.010質量部~2.0質量部である光学材料用重合性組成物。
    Two or more different monomers for optical materials and
    With a polymerization catalyst
    A prepolymer obtained by polymerizing at least two kinds of monomers for optical materials among the two or more kinds of monomers for different optical materials, and the like.
    The content of the polymerization catalyst is 0.010 parts by mass to 2.0 parts by mass with respect to 100 parts by mass in total of the two or more different monomers for optical materials and the prepolymer. thing.
  22.  B型粘度計で25℃ 60rpmの条件で測定した粘度が70mPa・s~1000mPa・sである請求項21に記載の光学材料用重合性組成物。 The polymerizable composition for an optical material according to claim 21, wherein the viscosity measured with a B-type viscometer at 25 ° C. and 60 rpm is 70 mPa · s to 1000 mPa · s.
  23.  2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造する方法であって、
     第1原料組成物及び第2原料組成物を準備する原料組成物準備工程と、
     前記第1原料組成物及び前記第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断工程と、
     前記光学材料用重合性組成物に撹拌力を加える撹拌工程と、
     前記撹拌工程の後、前記光学材料用重合性組成物をモールドに注型する注型工程と、
     前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化工程と、
    を含み、
     前記第1原料組成物及び前記第2原料組成物の少なくとも一方が、前記プレポリマーを含む混合物を含む請求項1~請求項20のいずれか1項に記載の光学材料の製造方法。
    A method for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
    The raw material composition preparation step for preparing the first raw material composition and the second raw material composition, and
    A shearing step of applying a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material.
    A stirring step of applying a stirring force to the polymerizable composition for an optical material, and a stirring step.
    After the stirring step, a casting step of casting the polymerizable composition for an optical material into a mold, and a casting step.
    A curing step of curing the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
    Including
    The method for producing an optical material according to any one of claims 1 to 20, wherein at least one of the first raw material composition and the second raw material composition contains a mixture containing the prepolymer.
  24.  前記第1原料組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度Vaと、
     前記第2原料組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度Vbと、の差の絶対値Vが、20mPa・s~1500mPa・sの範囲内である請求項23に記載の光学材料の製造方法。
    Viscosity Va measured at 25 ° C. and 60 rpm with a B-type viscometer of the first raw material composition, and
    23. Manufacturing method of optical material.
  25.  前記粘度Vaが10mPa・s~2000mPa・sの範囲内である請求項24に記載の光学材料の製造方法。 The method for producing an optical material according to claim 24, wherein the viscosity Va is in the range of 10 mPa · s to 2000 mPa · s.
  26.  前記第1原料組成物が、ポリイソシアネート化合物、エポキシ化合物及びエピチオ化合物からなる群から選択される少なくとも1種の化合物を含む請求項23~請求項25のいずれか1項に記載の光学材料の製造方法。 The production of the optical material according to any one of claims 23 to 25, wherein the first raw material composition contains at least one compound selected from the group consisting of a polyisocyanate compound, an epoxy compound and an epithio compound. Method.
  27.  前記第2原料組成物が、2つ以上のメルカプト基を有するポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物、2つ以上の水酸基を含むポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも1種の活性水素化合物を含む請求項23~請求項26のいずれか1項に記載の光学材料の製造方法。 The second raw material composition is a polythiol compound having two or more mercapto groups, a hydroxythiol compound containing one or more mercapto groups and one or more hydroxyl groups, a polyol compound containing two or more hydroxyl groups, and The method for producing an optical material according to any one of claims 23 to 26, which comprises at least one active hydrogen compound selected from the group consisting of amine compounds.
  28.  前記注型工程における前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sである請求項23~請求項27のいずれか1項に記載の光学材料の製造方法。 One of claims 23 to 27, wherein the viscosity measured at 25 ° C. and 60 rpm with a B-type viscometer of the polymerizable composition for optical materials in the casting step is 10 mPa · s to 1000 mPa · s. The method for manufacturing an optical material according to.
  29.  前記重合触媒は、下記条件1を満たす請求項23~請求項28のいずれか1項に記載の光学材料の製造方法。
    [条件1]
     -Ea/Rが、-7100以上-2900以下である。
    (Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
    The method for producing an optical material according to any one of claims 23 to 28, wherein the polymerization catalyst satisfies the following condition 1.
    [Condition 1]
    -Ea / R is -7100 or more and -2900 or less.
    (Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
  30.  前記重合触媒は、pKa値が4~8である塩基性触媒、及び、有機金属系触媒からなる群から選択される少なくとも1種を含む請求項23~請求項29のいずれか1項に記載の光学材料の製造方法。 The invention according to any one of claims 23 to 29, wherein the polymerization catalyst comprises at least one selected from the group consisting of a basic catalyst having a pKa value of 4 to 8 and an organometallic catalyst. Manufacturing method of optical material.
  31.  2種以上の異なる光学材料用モノマーと、重合触媒と、を含有する光学材料用重合性組成物を用いて光学材料を製造するシステムであって、
     第1原料組成物及び第2原料組成物にせん断力を加えて前記光学材料用重合性組成物を製造するせん断部と、
     前記光学材料用重合性組成物に撹拌力を加える撹拌部と、
     前記光学材料用重合性組成物をモールドに注型する注型部と、
     前記モールド中の前記光学材料用重合性組成物中の前記2種以上の異なる光学材料用モノマーを重合させることにより前記光学材料用重合性組成物を硬化させる硬化部と、
     定量送液部と、
    を含む光学材料製造システム。
    A system for producing an optical material using a polymerizable composition for an optical material containing two or more different monomers for an optical material and a polymerization catalyst.
    A shearing portion that applies a shearing force to the first raw material composition and the second raw material composition to produce the polymerizable composition for an optical material, and a shearing portion.
    A stirring unit that applies stirring force to the polymerizable composition for optical materials, and a stirring unit.
    A casting portion for casting the polymerizable composition for an optical material into a mold, and a casting portion.
    A cured portion that cures the polymerizable composition for optical materials by polymerizing two or more different monomers for optical materials in the polymerizable composition for optical materials in the mold.
    The fixed quantity liquid delivery unit and
    Optical material manufacturing system including.
  32.  さらに、前記せん断部のせん断力、前記撹拌部における光学材料用重合性組成物の温度、前記硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質、及び、前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度と相関がある特徴量からなる群から選択される少なくとも1つの条件に応じて、前記撹拌部における前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度を制御する粘度制御部を備える請求項31に記載の光学材料製造システム。 Further, the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, the optical quality of the cured product obtained by curing the polymerizable composition for optical material in the cured portion, and the above. The optical material in the stirring section according to at least one condition selected from the group consisting of feature quantities that correlate with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials. The optical material manufacturing system according to claim 31, further comprising a viscosity control unit that controls the viscosity measured under the condition of 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for use.
  33.  さらに、前記せん断部のせん断力、前記撹拌部における光学材料用重合性組成物の温度、前記硬化部で光学材料用重合性組成物を硬化させて得られた硬化物の光学品質、及び、前記光学材料用重合性組成物のB型粘度計で25℃ 60rpmの条件で測定した粘度と相関がある特徴量からなる群から選択される少なくとも1つの条件に応じて、前記撹拌部における温度を制御する温度制御部を備える請求項31又は請求項32に記載の光学材料製造システム。 Further, the shearing force of the sheared portion, the temperature of the polymerizable composition for optical material in the stirring portion, the optical quality of the cured product obtained by curing the polymerizable composition for optical material in the cured portion, and the above. The temperature in the stirring section is controlled according to at least one condition selected from the group consisting of feature quantities correlating with the viscosity measured at 25 ° C. and 60 rpm with a B-type viscosity meter of the polymerizable composition for optical materials. 31. The optical material manufacturing system according to claim 32, further comprising a temperature control unit.
  34.  所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、
     前記空間に重合性組成物を注入する注入工程と、
     前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、
    を含み、
     前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、前記ガラスから完全に剥がれるフィルムであり、
     前記フィルムは、熱変形温度が70℃以上である光学部材の製造方法。
    A space forming step of attaching a film to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film.
    The injection step of injecting the polymerizable composition into the space, and
    A curing step of curing the polymerizable composition injected into the space to obtain a cured product,
    Including
    The film is a film that completely peels off from the glass when it is attached to glass and subjected to a heat resistance index test at 85 ° C.
    The film is a method for manufacturing an optical member having a heat distortion temperature of 70 ° C. or higher.
  35.  前記重合性組成物は、25℃において増粘曲線(y=aebx)の傾きが0.4以上である請求項34に記載の光学部材の製造方法。 The method for producing an optical member according to claim 34, wherein the polymerizable composition has an inclination of a thickening curve (y = ae bx ) of 0.4 or more at 25 ° C.
  36.  前記硬化工程において、硬化時間は10時間以下である請求項34又は請求項35に記載の光学部材の製造方法。 The method for manufacturing an optical member according to claim 34 or 35, wherein in the curing step, the curing time is 10 hours or less.
  37.  前記フィルムは、80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下である請求項34~請求項36のいずれか1項に記載の光学部材の製造方法。 The method for manufacturing an optical member according to any one of claims 34 to 36, wherein the film has a moving distance of glass balls of 200 mm or less when a glass ball tack test is performed at 80 ° C.
  38.  前記硬化工程において、前記重合性組成物の硬化に伴い、前記2つのモールド基板の少なくとも一方が前記フィルムとの接触面上を移動し、前記モールド基板間の間隔が前記空間形成工程における前記モールド基板間の間隔よりも小さくなる請求項34~請求項37のいずれか1項に記載の光学部材の製造方法。 In the curing step, as the polymerizable composition is cured, at least one of the two mold substrates moves on the contact surface with the film, and the distance between the mold substrates is the distance between the mold substrates in the space forming step. The method for manufacturing an optical member according to any one of claims 34 to 37, which is smaller than the interval between the two.
  39.  前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、を含み、
     前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が0.010質量部~2.0質量部であり、
     B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sである請求項34~請求項38のいずれか1項に記載の光学部材の製造方法。
    The polymerizable composition comprises two or more different monomers for optical materials and a polymerization catalyst.
    The content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is 0.010 parts by mass to 2.0 parts by mass.
    The method for manufacturing an optical member according to any one of claims 34 to 38, wherein the viscosity measured with a B-type viscometer at 25 ° C. and 60 rpm is 10 mPa · s to 1000 mPa · s.
  40.  前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、前記2種以上の異なる光学材料用モノマーの重合体であり重合性官能基を含むプレポリマーと、を含む請求項34~請求項39のいずれか1項に記載の光学部材の製造方法。 A claim that the polymerizable composition comprises two or more different monomers for optical materials, a polymerization catalyst, and a prepolymer that is a polymer of the two or more different monomers for optical materials and contains a polymerizable functional group. The method for manufacturing an optical member according to any one of Items 34 to 39.
  41.  前記2種以上の異なる光学材料用モノマーが、2つ以上のメルカプト基を含むポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物、2つ以上の水酸基を含むポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも1つの活性水素化合物を含む請求項39又は請求項40に記載の光学部材の製造方法。 The two or more different monomers for optical materials are polythiol compounds containing two or more mercapto groups, hydroxythiol compounds containing one or more mercapto groups and one or more hydroxyl groups, and polyols containing two or more hydroxyl groups. The method for producing an optical member according to claim 39 or 40, which comprises at least one active hydrogen compound selected from the group consisting of a compound and an amine compound.
  42.  前記重合触媒は、下記条件1を満たす請求項39~請求項41のいずれか1項に記載の光学部材の製造方法。
    [条件1]
    -Ea/Rが、-7100以上-2900以下である。
    (Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
    The method for manufacturing an optical member according to any one of claims 39 to 41, wherein the polymerization catalyst satisfies the following condition 1.
    [Condition 1]
    -Ea / R is -7100 or more and -2900 or less.
    (Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
  43.  前記重合触媒が、アミン系触媒及び有機錫系触媒からなる群から選択される少なくとも1つを含む請求項39~請求項42のいずれか1項に記載の光学部材の製造方法。 The method for producing an optical member according to any one of claims 39 to 42, wherein the polymerization catalyst comprises at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
  44.  所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、10時間以下で前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するための光学部材製造用フィルムであって、
     少なくとも基材層及び粘着層を含み、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、前記ガラスから完全に剥がれる光学部材製造用フィルム。
    A film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film, and the polymerizable composition is arranged in the space. A film for manufacturing an optical member for manufacturing an optical member by curing the polymerizable composition in 10 hours or less to obtain a cured product.
    A film for manufacturing an optical member that includes at least a base material layer and an adhesive layer and is completely peeled off from the glass when the film is attached to glass and subjected to a heat resistance index test at 85 ° C.
  45.  所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するためのモールドであって、前記モールドの主面の略直径が60cm~80cmである光学部材製造用モールド。 A film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and the polymerizable composition is arranged in the space. A mold for manufacturing an optical member by curing the polymerizable composition to obtain a cured product, wherein the main surface of the mold has a substantially diameter of 60 cm to 80 cm.
  46.  2種以上の異なる光学用モノマーの硬化物であって、前記硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がなく、
     前記硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が略直線である硬化物。
    It is a cured product of two or more different optical monomers, and there is no vein having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
    The outer peripheral surface of the cured product is a mirror surface, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a substantially straight line.
  47.  前記一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含む請求項46に記載の硬化物。 The cured product according to claim 46, wherein the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface include a protrusion substantially parallel to the outer peripheral surface.
  48.  ガスクロマトグラフ質量分析で測定されるアミンの含有量が、0.03質量%以上2.5質量%以下である請求項46又は請求項47に記載の硬化物。 The cured product according to claim 46 or 47, wherein the amine content measured by gas chromatograph mass spectrometry is 0.03% by mass or more and 2.5% by mass or less.
  49.  チオウレタン樹脂を含む請求項46~請求項48のいずれか1項に記載の硬化物。 The cured product according to any one of claims 46 to 48, which contains a thiourethane resin.
  50.  所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成する空間形成工程と、
     前記空間に重合性組成物を注入する注入工程と、
     前記空間に注入された前記重合性組成物を硬化させて硬化物を得る硬化工程と、
    を含み、
     前記フィルムは、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上であり(但し、前記ガラスから完全に剥がれる場合を除く)、
     前記フィルムは、熱変形温度が120℃以下である光学部材の製造方法。
    A space forming step of attaching a film to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film.
    The injection step of injecting the polymerizable composition into the space, and
    A curing step of curing the polymerizable composition injected into the space to obtain a cured product,
    Including
    The film has a heat resistance index of 1 mm or more when it is attached to glass and subjected to a heat resistance index test at 85 ° C. (except when it is completely peeled off from the glass).
    The film is a method for manufacturing an optical member having a heat distortion temperature of 120 ° C. or lower.
  51.  前記重合性組成物は、25℃において増粘曲線(y=aebx)の傾きが0.4以上である請求項50に記載の光学部材の製造方法。 The method for producing an optical member according to claim 50, wherein the polymerizable composition has an inclination of a thickening curve (y = ae bx ) of 0.4 or more at 25 ° C.
  52.  前記硬化工程において、硬化時間は10時間以下である請求項50又は請求項51に記載の光学部材の製造方法。 The method for manufacturing an optical member according to claim 50 or 51, wherein in the curing step, the curing time is 10 hours or less.
  53.  前記フィルムは、80℃でガラスボールタック試験を行った場合に、ガラスボールの移動距離が200mm以下である請求項50~請求項52のいずれか1項に記載の光学部材の製造方法。 The method for manufacturing an optical member according to any one of claims 50 to 52, wherein the film has a moving distance of glass balls of 200 mm or less when a glass ball tack test is performed at 80 ° C.
  54.  前記硬化工程において、前記空間に注入された前記重合性組成物を閉鎖系空間に静置することで前記重合性組成物を硬化させる請求項50~請求項53のいずれか1項に記載の光学部材の製造方法。 The optics according to any one of claims 50 to 53, wherein in the curing step, the polymerizable composition injected into the space is allowed to stand in a closed space to cure the polymerizable composition. Manufacturing method of parts.
  55.  前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、を含み、
     前記2種以上の異なる光学材料用モノマーの合計100質量部に対する前記重合触媒の含有量が0.010質量部~2.0質量部であり、
     B型粘度計で25℃ 60rpmの条件で測定した粘度が10mPa・s~1000mPa・sである請求項50~請求項54のいずれか1項に記載の光学部材の製造方法。
    The polymerizable composition comprises two or more different monomers for optical materials and a polymerization catalyst.
    The content of the polymerization catalyst with respect to a total of 100 parts by mass of the two or more different monomers for optical materials is 0.010 parts by mass to 2.0 parts by mass.
    The method for manufacturing an optical member according to any one of claims 50 to 54, wherein the viscosity measured with a B-type viscometer at 25 ° C. and 60 rpm is 10 mPa · s to 1000 mPa · s.
  56.  前記重合性組成物が、2種以上の異なる光学材料用モノマーと、重合触媒と、前記2種以上の異なる光学材料用モノマーの重合体であり重合性官能基を含むプレポリマーと、を含む請求項50~請求項55のいずれか1項に記載の光学部材の製造方法。 A claim that the polymerizable composition comprises two or more different monomers for optical materials, a polymerization catalyst, and a prepolymer that is a polymer of the two or more different monomers for optical materials and contains a polymerizable functional group. Item 5. The method for manufacturing an optical member according to any one of items 50 to 55.
  57.  前記2種以上の異なる光学材料用モノマーが、2つ以上のメルカプト基を含むポリチオール化合物、1つ以上のメルカプト基と1つ以上の水酸基とを含むヒドロキシチオール化合物、2つ以上の水酸基を含むポリオール化合物、及び、アミン化合物からなる群から選択される少なくとも1つの活性水素化合物を含む請求項55又は請求項56に記載の光学部材の製造方法。 The two or more different monomers for optical materials are polythiol compounds containing two or more mercapto groups, hydroxythiol compounds containing one or more mercapto groups and one or more hydroxyl groups, and polyols containing two or more hydroxyl groups. The method for producing an optical member according to claim 55 or 56, which comprises at least one active hydrogen compound selected from the group consisting of a compound and an amine compound.
  58.  前記重合触媒は、下記条件1を満たす請求項55~請求項57のいずれか1項に記載の光学部材の製造方法。
    [条件1]
    -Ea/Rが、-7100以上-2900以下である。
    (Eaは、2種以上の異なる温度における前記2種以上の異なる光学材料用モノマーの反応速度定数からアレニウスプロットにより算出した活性化エネルギーであり、Rは、気体定数(8.314J/mol/K)である。)
    The method for manufacturing an optical member according to any one of claims 55 to 57, wherein the polymerization catalyst satisfies the following condition 1.
    [Condition 1]
    -Ea / R is -7100 or more and -2900 or less.
    (Ea is the activation energy calculated by the Arrhenius plot from the reaction rate constants of the two or more different optical material monomers at two or more different temperatures, and R is the gas constant (8.314 J / mol / K). ).)
  59.  前記重合触媒が、アミン系触媒及び有機錫系触媒からなる群から選択される少なくとも1つを含む請求項55~請求項58のいずれか1項に記載の光学部材の製造方法。 The method for producing an optical member according to any one of claims 55 to 58, wherein the polymerization catalyst comprises at least one selected from the group consisting of an amine-based catalyst and an organic tin-based catalyst.
  60.  所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、10時間以下で前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するための光学部材製造用フィルムであって、
     少なくとも基材層及び粘着層を含み、ガラスに貼り付けて85℃で耐熱指数試験を行った場合に、耐熱指数が1mm以上である(但し、前記ガラスから完全に剥がれる場合を除く)光学部材製造用フィルム。
    A film is attached to the outer peripheral surfaces of two mold substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two mold substrates and the film, and the polymerizable composition is arranged in the space. A film for manufacturing an optical member for manufacturing an optical member by curing the polymerizable composition in 10 hours or less to obtain a cured product.
    Manufacturing of optical members including at least a base material layer and an adhesive layer, and having a heat resistance index of 1 mm or more (except when completely peeling off from the glass) when attached to glass and subjected to a heat resistance index test at 85 ° C. Film for.
  61.  所定の間隔で対向するように配置した2つのモールド基板の外周面にフィルムを貼り付けて前記2つのモールド基板及び前記フィルムで囲まれた空間を形成し、前記空間に重合性組成物を配置し、前記重合性組成物を硬化させて硬化物を得ることで光学部材を製造するためのモールドであって、前記モールドの主面の略直径が60cm~80cmである光学部材製造用モールド。 A film is attached to the outer peripheral surfaces of two molded substrates arranged so as to face each other at predetermined intervals to form a space surrounded by the two molded substrates and the film, and the polymerizable composition is arranged in the space. A mold for manufacturing an optical member by curing the polymerizable composition to obtain a cured product, wherein the main surface of the mold has a substantially diameter of 60 cm to 80 cm.
  62.  2種以上の異なる光学用モノマーの硬化物であって、前記硬化物の中心から半径15mmの範囲内に1.0mm以上の長さの脈理がなく、
     前記硬化物の外周面は、鏡面状であり、一方の主面と外周面との交点、及び、他方の主面と外周面との交点の間の形状が凹状の曲線である硬化物。
    It is a cured product of two or more different optical monomers, and there is no vein having a length of 1.0 mm or more within a radius of 15 mm from the center of the cured product.
    The outer peripheral surface of the cured product is a mirror surface, and the shape between the intersection of one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface is a concave curve.
  63.  前記一方の主面と外周面との交点、及び、前記他方の主面と外周面との交点に、前記外周面と略平行な突起部を含む請求項62に記載の硬化物。 The cured product according to claim 62, wherein the intersection of the one main surface and the outer peripheral surface and the intersection of the other main surface and the outer peripheral surface include a protrusion substantially parallel to the outer peripheral surface.
  64.  ガスクロマトグラフ質量分析で測定されるアミンの含有量が、0.03質量%以上2.5質量%以下である請求項62又は請求項63に記載の硬化物。 The cured product according to claim 62 or 63, wherein the amine content measured by gas chromatograph mass spectrometry is 0.03% by mass or more and 2.5% by mass or less.
  65.  チオウレタン樹脂を含む請求項62~請求項64のいずれか1項に記載の硬化物。 The cured product according to any one of claims 62 to 64, which contains a thiourethane resin.
PCT/JP2021/042848 2020-11-24 2021-11-22 Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product WO2022113955A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180078034.0A CN116529048A (en) 2020-11-24 2021-11-22 Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product
JP2022565339A JPWO2022113955A1 (en) 2020-11-24 2021-11-22

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2020194660 2020-11-24
JP2020-194660 2020-11-24
JP2021-084856 2021-05-19
JP2021084856 2021-05-19
JP2021-122743 2021-07-27
JP2021122743 2021-07-27
JP2021124696 2021-07-29
JP2021124697 2021-07-29
JP2021-124696 2021-07-29
JP2021-124697 2021-07-29

Publications (1)

Publication Number Publication Date
WO2022113955A1 true WO2022113955A1 (en) 2022-06-02

Family

ID=81754608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042848 WO2022113955A1 (en) 2020-11-24 2021-11-22 Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product

Country Status (2)

Country Link
JP (1) JPWO2022113955A1 (en)
WO (1) WO2022113955A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047334A (en) * 2012-09-04 2014-03-17 Mitsubishi Gas Chemical Co Inc Production method of polymerizable composition for optical material
WO2014080750A1 (en) * 2012-11-21 2014-05-30 三井化学株式会社 Polyurethane resin production method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047334A (en) * 2012-09-04 2014-03-17 Mitsubishi Gas Chemical Co Inc Production method of polymerizable composition for optical material
WO2014080750A1 (en) * 2012-11-21 2014-05-30 三井化学株式会社 Polyurethane resin production method

Also Published As

Publication number Publication date
JPWO2022113955A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
JP7141528B2 (en) Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured product, and method for producing optical material
WO2021153632A1 (en) Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured product, and method for producing optical material
WO2021182526A1 (en) Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured object, and method for producing optical material
JP6872086B1 (en) Method for setting usage conditions of polymerization catalyst, method for setting polymerization conditions, method for manufacturing optical materials
WO2022113955A1 (en) Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product
WO2023120606A1 (en) Method for manufacturing optical member and cured product
CN116529048A (en) Method for producing optical material, polymerizable composition for optical material, optical material production system, method for producing optical member, film for producing optical member, mold for producing optical member, and cured product
WO2023163191A1 (en) Optical member production method and optical member
WO2023145685A1 (en) Method for producing optical material
WO2024096030A1 (en) Method for producing optical member, and thermal insulation member
JP2023094404A (en) Polymerizable composition for optical material, polymerizable prepolymer composition for optical material, cured material and manufacturing method of optical material
CN118159876A (en) Method for producing optical member and cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565339

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180078034.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897928

Country of ref document: EP

Kind code of ref document: A1