JP2014046362A - Distortion adjustment method of casting - Google Patents

Distortion adjustment method of casting Download PDF

Info

Publication number
JP2014046362A
JP2014046362A JP2012194011A JP2012194011A JP2014046362A JP 2014046362 A JP2014046362 A JP 2014046362A JP 2012194011 A JP2012194011 A JP 2012194011A JP 2012194011 A JP2012194011 A JP 2012194011A JP 2014046362 A JP2014046362 A JP 2014046362A
Authority
JP
Japan
Prior art keywords
casting
rigidity
rigidity portion
relatively low
adjustment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012194011A
Other languages
Japanese (ja)
Other versions
JP5858239B2 (en
Inventor
Takashi Nakamichi
隆 中道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012194011A priority Critical patent/JP5858239B2/en
Publication of JP2014046362A publication Critical patent/JP2014046362A/en
Application granted granted Critical
Publication of JP5858239B2 publication Critical patent/JP5858239B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method by which distortion of a casting including a relatively low rigidity portion can be easily and surely adjusted, using simple constitution.SOLUTION: A distortion adjustment method of a casting 1 is provided for adjusting the distortion of the casting 1 including a relatively low rigidity portion LR and a high rigidity portion HR. In the method,, a large contraction amount adjusting casting plan 7a which has a relatively large contraction amount caused by a temperature drop to the ordinary temperature from a mold release is provided between a region of the relatively low rigidity portion LR being distorted so as to be deformed in a direction (upward in (a) of Fig.1) in which the portion separates from the high rigidity portion HR and the relatively high rigidity portion HR, and a small contraction amount adjusting casting plan 7b which has a relatively small contraction amount caused by the temperature drop to the ordinary temperature from the mold release is provided between a region of the relatively low rigidity portion LR being distorted so as to be deformed in a direction (downward in the (a) of the Fig.1) in which the portion approaches the high rigidity portion HR and the relatively high rigidity portion HR.

Description

本発明は、鋳物の歪み調整方法に関し、さらに詳しくは、相対的に低剛性の部分と高剛性の部分を含む鋳物の歪みを調整する方法に関するものである。   The present invention relates to a method for adjusting distortion of a casting, and more particularly, to a method for adjusting distortion of a casting including a relatively low rigidity portion and a high rigidity portion.

例えば、図7に示したように、底部分2から離れており両側壁部分3、4の間にわたる梁状の部分5を有する鋳物1を鋳造により一体成形するに際して、梁状の部分5の剛性が底部分2等と比較して相対的に低い場合(以下、この梁状の部分5を低剛性の部分LRともいい、また、底部分2を高剛性の部分HRともいう)、図8に示すように、梁状の部分5(相対的に低剛性の部分LR)は、図8に鎖線で示した本来の形状から、底部分2(相対的に高剛性の部分HR)から離れる方向へ変形するように歪む部分と、底部分2に近づく方向へ変形するように歪む部分とが発生し、その結果、波打つように変形して、狙った寸法の鋳物を成形することができないことがある。このように相対的に低剛性の部分LRが変形する原因としては、離型時の鋳物1全体の温度ムラや、鋳物1の温度が常温に至るまでの熱収縮量が部分によって異なることなどが挙げられる。   For example, as shown in FIG. 7, when a casting 1 having a beam-like portion 5 that is separated from the bottom portion 2 and extends between both side wall portions 3 and 4 is integrally formed by casting, the rigidity of the beam-like portion 5 is increased. 8 is relatively low compared to the bottom portion 2 and the like (hereinafter, the beam-like portion 5 is also referred to as a low-rigidity portion LR, and the bottom portion 2 is also referred to as a high-rigidity portion HR). As shown, the beam-like portion 5 (relatively low-rigidity portion LR) is away from the original shape shown by the chain line in FIG. 8 away from the bottom portion 2 (relatively high-rigidity portion HR). A part that is distorted so as to be deformed and a part that is distorted so as to be deformed in a direction approaching the bottom part 2 are generated. As a result, the part may be deformed so as to be undulated and a casting having a target size may not be formed. . The reason why the relatively low-rigidity portion LR is deformed in this way is that the temperature unevenness of the entire casting 1 at the time of mold release or the amount of thermal shrinkage until the temperature of the casting 1 reaches room temperature varies depending on the portion. Can be mentioned.

このような相対的に低剛性の部分LRの歪みを低減させるよう調整するための対策として、離型時の鋳物1全体の温度ムラを低減させるために、鋳物1の温度低下が遅い部分と対応する部分の鋳型を特に冷却することができるような鋳型冷却構造を構成したり、鋳物1の温度ムラが低減されるように鋳物1の肉厚を適正化させるよう設計したり、また鋳物1の剛性が高くなるように鋳物の形状を設計することなどが実施されている。   As a measure for adjusting the distortion of such a relatively low-rigidity portion LR, in order to reduce the temperature unevenness of the entire casting 1 at the time of mold release, it corresponds to a portion where the temperature drop of the casting 1 is slow. A mold cooling structure that can particularly cool the mold of the casting part, or a design that optimizes the wall thickness of the casting 1 so that the temperature unevenness of the casting 1 is reduced. For example, the shape of a casting is designed so as to increase rigidity.

さらに、別の従来の技術としては、例えば特許文献1に開示されているように、鋳型に注湯された溶湯を冷却して得られる鋳物において、前記溶湯の放熱しやすい部分の肉厚が厚く、放熱しにくい部分の肉厚が薄くなるように、肉厚が変化していることなどを特徴とする鋳物が開示されている。   Furthermore, as another conventional technique, for example, as disclosed in Patent Document 1, in a casting obtained by cooling a molten metal poured into a mold, a thickness of a portion where the molten metal is easily radiated is increased. Further, there is disclosed a casting characterized in that the thickness is changed so that the thickness of the portion that is difficult to dissipate heat is reduced.

特開2002−307138号公報JP 2002-307138 A

しかしながら、上記従来の技術のうち、鋳型冷却構造を構成する場合にあっては、鋳物の相対的に低剛性の部分LRの歪み調整と鋳物1の品質の確保とのバランスを維持するために、鋳物1の相対的に低剛性の部分LRの歪み調整するための対策として鋳型を部分的に十分に冷却することができないという問題があった。   However, in the case of configuring the mold cooling structure among the above conventional techniques, in order to maintain the balance between the distortion adjustment of the relatively low-rigidity portion LR of the casting and the ensuring of the quality of the casting 1, As a measure for adjusting the distortion of the relatively low rigidity portion LR of the casting 1, there is a problem that the mold cannot be partially cooled sufficiently.

また、上記従来の技術のうち、鋳物1の肉厚を適正化させる場合にあっては、厚肉部を鋳抜くことなどで、均肉化に繋がるが、相対的に低剛性の部分LRの歪みを低減させるよう調整するための対策としては限界があるという問題があった。   Moreover, in the case of optimizing the thickness of the casting 1 among the above-described conventional techniques, it is possible to equalize the thickness by casting the thick portion, but the relatively low rigidity portion LR is reduced. There is a problem that there is a limit as a measure for adjusting to reduce distortion.

さらに、上記従来の技術のうち、鋳物1の剛性が高くなるように鋳物1の形状を設計する場合にあっては、鋳物1の重量が増加することに繋がるなどの問題があった。   Further, among the above conventional techniques, when the shape of the casting 1 is designed so that the rigidity of the casting 1 is increased, there is a problem that the weight of the casting 1 is increased.

一方、上記特許文献1にあっては、製品となる鋳物の形状が限定されるため、均一な厚さの製品を鋳造により成形する場合に適用することができないなどの問題があった。   On the other hand, in the above-mentioned Patent Document 1, since the shape of a casting as a product is limited, there is a problem that it cannot be applied when a product having a uniform thickness is formed by casting.

本発明は、上述した問題に鑑みてなされたもので、簡単な構成で、相対的に低剛性の部分と高剛性の部分とを含む鋳物において、相対的に低剛性の部分の歪みを容易に且つ確実に調整することができる方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and in a casting including a relatively low-rigidity part and a high-rigidity part with a simple configuration, the distortion of the relatively low-rigidity part can be easily performed. And it aims at providing the method which can be adjusted reliably.

請求項1の鋳物の歪み調整方法に係る発明は、上記目的を達成するため、相対的に低剛性の部分と高剛性の部分とを含む鋳物の歪みを調整する方法であって、前記相対的に低剛性の部分の高剛性の部分に対して変形するよう歪む傾向の方向に応じて、収縮量の異なる収縮量調整用方案を、相対的に低剛性の部分と高剛性の部分との間に設けることを特徴とする。   In order to achieve the above object, the invention according to the first aspect of the present invention relates to a method for adjusting the distortion of a casting including a relatively low-rigidity portion and a high-rigidity portion. Depending on the direction in which the low-rigidity part is distorted so as to be deformed with respect to the high-rigidity part, a shrinkage adjustment method with a different shrinkage quantity is applied between the relatively low-rigidity part and the high-rigidity part. It is characterized by providing in.

請求項1の発明によれば、相対的に低剛性の部分の高剛性の部分に対して変形するよう歪む傾向の方向に応じて、収縮量の異なる収縮量調整用方案を、相対的に低剛性の部分と高剛性の部分との間に設けることにより、成形が完了した離型時から常温に至るまでの温度低下に伴い、各収縮量調整用方案が相対的に低剛性の部分の高剛性の部分に対して変形するよう歪む傾向の方向に応じて異なる量で収縮するため、相対的に低剛性の部分の歪みが低減される。したがって、相対的に低剛性の部分と相対的に高剛性の部分とを含む鋳物の歪みを容易に且つ確実に調整することができる。なお、各収縮量調整用方案は、製品として不要であれば、鋳物の温度が常温に低下した後に切除することができる。   According to the first aspect of the present invention, the contraction amount adjustment schemes having different contraction amounts are relatively low in accordance with the direction of the tendency to deform with respect to the high rigidity portion of the relatively low rigidity portion. By providing it between the rigid part and the high-rigidity part, each shrinkage adjustment method can be applied to a relatively low-rigidity part as the temperature decreases from the time of mold release to room temperature. Since the contraction is made in different amounts depending on the direction of the tendency to be distorted with respect to the rigid portion, the distortion of the relatively low-rigidity portion is reduced. Therefore, it is possible to easily and reliably adjust the distortion of the casting including the relatively low rigidity portion and the relatively high rigidity portion. In addition, if each contraction amount adjustment method is unnecessary as a product, it can be excised after the temperature of the casting is lowered to room temperature.

本発明の鋳物の歪み調整方法の実施の一形態を説明するために、収縮量の異なる収縮量調整用方案を、相対的に低剛性の部分の高剛性の部分に対して変形するよう歪む傾向の方向に応じて、相対的に低剛性の部分と高剛性の部分との間に設けた鋳物を示した部分拡大正面図である。In order to explain an embodiment of the method for adjusting a distortion of a casting according to the present invention, a shrinkage adjustment method having a different shrinkage tends to be distorted so as to be deformed with respect to a high-rigidity portion of a relatively low-rigidity portion. It is the elements on larger scale which showed the casting provided between the relatively low-rigidity part and the highly rigid part according to this direction. 図1に示した実施の形態の変形例を説明するために示した部分拡大正面図である。It is the elements on larger scale shown in order to demonstrate the modification of embodiment shown in FIG. 図1に示した実施の形態のさらに変形例を説明するために示した斜視図である。It is the perspective view shown in order to demonstrate the further modification of embodiment shown in FIG. 図3に示した実施の形態のさらに変形例を説明するために斜視図である。FIG. 4 is a perspective view for explaining a further modification of the embodiment shown in FIG. 3. 本発明の鋳物の歪み調整方法の第2の実施の形態を説明するために示した斜視図である。It is the perspective view shown in order to demonstrate 2nd Embodiment of the distortion adjustment method of the casting of this invention. 図5に示した実施の形態の変形例を説明するために示した斜視図である。It is the perspective view shown in order to demonstrate the modification of embodiment shown in FIG. 相対的に低剛性の部分と高剛性の部分とを含む鋳物の形状の一例を説明するために示した斜視図である。It is the perspective view shown in order to demonstrate an example of the shape of the casting containing a relatively low rigidity part and a highly rigid part. 相対的に低剛性の部分の歪みを説明するために、図7の矢印A方向から見た一部拡大側面図である。FIG. 8 is a partially enlarged side view seen from the direction of arrow A in FIG. 7 in order to explain the distortion of the relatively low rigidity portion.

本発明の鋳物の歪み調整方法の実施の一形態を、図1〜4に基づいて詳細に説明する。なお、図において同じ符号は、同様または相当する部分を示すものとする。なお、この実施の形態における鋳物1の形状は、図7に示したように、底部分2と、底部分2の互いに対向する側縁から立ち上がる両側壁部分3、4と、両側壁部分3、4との間に隣接して底部分2の後方縁から立ち上がる後壁部分6と、底部分2から離間して両側壁部分3、4の前方の間にわたる梁状の部分5とを有している。そして、梁状の部分5の剛性が底部分2と比較して相対的に低い。この実施の形態においては、梁状の部分5が本願発明の相対的に低剛性の部分LRに相当し、底部分2が本願発明の相対的に高剛性の部分HRに相当することとして説明する。   One embodiment of the casting distortion adjusting method of the present invention will be described in detail with reference to FIGS. In the drawings, the same reference numerals denote the same or corresponding parts. As shown in FIG. 7, the shape of the casting 1 in this embodiment is that the bottom portion 2, both side wall portions 3 and 4 rising from opposite side edges of the bottom portion 2, the both side wall portions 3, 4 has a rear wall portion 6 rising from the rear edge of the bottom portion 2 adjacent to each other, and a beam-shaped portion 5 which is spaced from the bottom portion 2 and extends between the front sides of the side wall portions 3 and 4. Yes. The rigidity of the beam-like part 5 is relatively low compared to the bottom part 2. In this embodiment, it is assumed that the beam-like portion 5 corresponds to the relatively low-rigidity portion LR of the present invention, and the bottom portion 2 corresponds to the relatively high-rigidity portion HR of the present invention. .

本発明の鋳物1の歪み調整方法は、概略、相対的に低剛性の部分LRと高剛性の部分HRを含む鋳物1の歪みを調整するものであって、相対的に低剛性の部分LRの高剛性の部分HRに対して変形するよう歪む傾向の方向に応じて、収縮量の異なる収縮量調整用方案7a、7bを、相対的に低剛性の部分LRと高剛性の部分HRとの間に設ける。
そして、さらに詳しくは、相対的に低剛性の部分LRの高剛性の部分HRから離れる方向(図1の(a)では上方)へ変形するよう歪む部位とこの相対的に高剛性の部分HRとの間に、離型時から常温への温度低下に伴う収縮量が比較的大きい大収縮量調整用方案7aを設け、相対的に低剛性の部分LRの高剛性の部分HRに近づく方向(図1の(a)では下方)へ変形するよう歪む部位とこの相対的に高剛性の部分HRとの間に、離型時から常温への温度低下に伴う収縮量が比較的小さい小収縮量調整用方案7bを設けるものである。
The method for adjusting the distortion of the casting 1 of the present invention generally adjusts the distortion of the casting 1 including the relatively low-rigidity portion LR and the high-rigidity portion HR. Depending on the direction in which the high-rigidity portion HR is distorted so as to be deformed, the contraction amount adjustment methods 7a and 7b having different contraction amounts are placed between the relatively low-rigidity portion LR and the high-rigidity portion HR. Provided.
In more detail, the relatively distorted portion LR is deformed in a direction away from the highly rigid portion HR (upward in FIG. 1A) and the relatively highly rigid portion HR. Is provided with a large shrinkage adjustment method 7a that has a relatively large shrinkage amount due to the temperature drop from the time of mold release to room temperature, and approaches the high-rigidity portion HR of the relatively low-rigidity portion LR (see FIG. Small shrinkage adjustment between the part which is distorted to be deformed downward in (1) (a) and the relatively high rigidity part HR, which is relatively small in shrinkage due to the temperature drop from mold release to room temperature The usage plan 7b is provided.

鋳物の相対的に低剛性の部分である梁状の部分5は、図1の(a)に鎖線で示すように、成形が完了して離型させてから常温に至るまでの温度ムラなどによって歪むこととなる。この梁状の部分5の歪みには、相対的に高剛性の部分である底部分2から離れる方向(図1の(a)では上方)へ変形するように歪む傾向にある部位と、底部分2に近付く方向(図1の(a)では下方)へ変形するように歪む傾向にある部位と、がある。この部分によって歪む方向の傾向は、経験則やシミュレーションなどによって予め把握しておくことができる。   The beam-like portion 5 which is a relatively low-rigidity portion of the casting is caused by unevenness in temperature from the completion of molding to release to normal temperature as shown by the chain line in FIG. It will be distorted. The distortion of the beam-shaped portion 5 includes a portion that tends to be distorted in a direction away from the bottom portion 2 that is a relatively high-rigidity portion (upward in FIG. 1A), and a bottom portion. 2 and a portion that tends to be distorted so as to be deformed in a direction approaching 2 (downward in FIG. 1A). The tendency in the direction of distortion due to this part can be grasped in advance by an empirical rule or simulation.

そこで、この実施の形態では、梁状の部分5の底部分2から離れる方向へ変形するように歪む傾向にある部位と底部2との間に大収縮量調整用方案7aを設け、また、底部分2に近付く方向へ変形するように歪む傾向にある部位と底部2との間に小収縮量調整用方案7bを設ける。大収縮量調整用方案7aは、具体的には断面が比較的大きく(すなわち、断面における幅方向(図1における左右方向)と奥行き方向(図1の紙面に対して垂直な方向)の寸法が比較的大きい)、離型時に溶湯の熱を相対的に保持し易く(つまり、高温を維持し易く)常温に至るまでの温度低下に伴う収縮量が比較的大きい(図1の(b)において大収縮量調整用方案7aに示した矢印の長さを参照)ものである。一方、小収縮量調整用方案7bは、具体的には断面が比較的小さく(すなわち、断面における幅方向(図1における左右方向)と奥行き方向(図1の紙面に対して垂直な方向)の寸法が比較的小さい)、離型時に溶湯の熱を相対的に放出し易く(つまり、低温になり易く)常温に至るまでの温度低下に伴う収縮量が比較的小さい(図1の(b)において小収縮量調整用方案7bに示した矢印の長さを参照)ものである。なお、ここでいう「相対的に高剛性または低剛性の部分」とは、両部分を比較した場合に剛性が高いまたは低いことを意味し、また、「溶湯の熱を相対的に保持または放出し易い」とは、溶湯の温度の変化を大収縮量調整用方案7aと小収縮量調整用方案7bとで比較した場合を意味する。さらに、寸法や収縮量について「比較的」大きいまたは小さいとは、大収縮量調整用方案7aと小収縮量調整用方案7bとを比較した場合に相対的に大きいまたは小さいことを意味する。   Therefore, in this embodiment, a large contraction amount adjusting plan 7a is provided between the bottom portion 2 and a portion that tends to be deformed so as to be deformed in a direction away from the bottom portion 2 of the beam-shaped portion 5. A small contraction amount adjusting method 7b is provided between the bottom portion 2 and a portion that tends to be distorted so as to be deformed in a direction approaching the portion 2. Specifically, the large shrinkage adjustment method 7a has a relatively large cross section (that is, the dimensions in the width direction (left and right direction in FIG. 1) and depth direction (direction perpendicular to the paper surface in FIG. 1) in the cross section). (Relatively large), it is relatively easy to maintain the heat of the molten metal at the time of mold release (that is, it is easy to maintain a high temperature), and the amount of shrinkage accompanying the temperature drop to room temperature is relatively large (in FIG. 1B) (Refer to the length of the arrow shown in the large shrinkage adjustment method 7a). On the other hand, the small shrinkage adjustment method 7b specifically has a comparatively small cross section (that is, a width direction in the cross section (left-right direction in FIG. 1) and a depth direction (direction perpendicular to the paper surface of FIG. 1). The size is relatively small), and the heat of the molten metal is relatively easily released at the time of mold release (that is, the temperature tends to be low), and the amount of shrinkage due to the temperature drop to room temperature is relatively small ((b) in FIG. 1). (Refer to the length of the arrow shown in the small shrinkage adjustment method 7b). As used herein, “relatively high or low rigidity part” means that the rigidity is high or low when both parts are compared, and “relatively holds or releases the heat of the molten metal. “Easy to do” means that the change in the temperature of the molten metal is compared between the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b. Furthermore, “relatively” larger or smaller in terms of dimensions and shrinkage amounts means that they are relatively larger or smaller when the large shrinkage amount adjustment plan 7a and the small shrinkage amount adjustment plan 7b are compared.

大収縮量調整用方案7aと小収縮量調整用方案7bは、それぞれ、梁状の部分5および底部分2と破断部8を介して一体に成形される。大収縮量調整用方案7aと小収縮量調整用方案7bは、ほぼ同じ長さとすることもできるが、適切な収縮量に調整するために長さを異ならせることもできる。   The large contraction amount adjusting method 7a and the small contraction amount adjusting method 7b are integrally formed through the beam-shaped portion 5, the bottom portion 2, and the fracture portion 8, respectively. The large contraction amount adjusting method 7a and the small contraction amount adjusting method 7b can have substantially the same length, but the lengths can be made different in order to adjust to an appropriate contraction amount.

次に、図1に示した実施の形態に基づいて、大収縮量調整用方案7aと小収縮量調整用方案7bの作用を説明する。鋳型のキャビティ内に充填された溶湯が所定温度まで低下し固化すると、型開きするなどして鋳型から鋳物1を取り出す(離型)。鋳物1の温度は、離型時から常温に至るまで低下する。このとき、上述したように、鋳物1の温度ムラなどによって、特に相対的に低剛性の部分である梁状の部分5が一般に歪む傾向にある。しかしながら、梁状の部分5の底部分2から離れる方向へ変形するように歪む傾向にある部位では、大収縮量調整用方案7aが常温に至るまでに比較的大きく熱収縮し、梁状の部分5の底部分2に近付く方向へ変形するように歪む傾向にある部位では、小収縮量調整用方案7bが常温に至るまでに比較的小さく熱収縮する。すなわち、大収縮量調整用方案7aと小収縮量調整用方案7bとでは、離型してから常温に至るまでの温度低下による熱収縮量に差が生じることとなる(図1(b)の異なる長さで示した矢印を参照)。そのため、図1の(b)に示すように、相対的に低剛性の部分である梁状の部分5の相反する方向への歪みを低減させるように調整することができる。   Next, based on the embodiment shown in FIG. 1, the operation of the large contraction amount adjusting plan 7a and the small contraction amount adjusting plan 7b will be described. When the molten metal filled in the mold cavity drops to a predetermined temperature and solidifies, the casting 1 is taken out of the mold by opening the mold (mold release). The temperature of the casting 1 decreases from the time of mold release to room temperature. At this time, as described above, the beam-like portion 5 that is a relatively low-rigidity portion generally tends to be distorted due to temperature unevenness of the casting 1 or the like. However, in a portion that tends to be distorted so as to be deformed in the direction away from the bottom portion 2 of the beam-shaped portion 5, the large shrinkage adjustment method 7 a is relatively heat-shrinked until it reaches room temperature, and the beam-shaped portion In the part which tends to be distorted so as to be deformed in the direction approaching the bottom part 2 of 5, the small shrinkage adjustment method 7b undergoes heat shrinkage relatively small by the time it reaches room temperature. That is, in the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b, there is a difference in the amount of thermal shrinkage due to a temperature drop from release to normal temperature (see FIG. 1B). See arrows with different lengths). Therefore, as shown in FIG. 1B, it is possible to adjust so as to reduce the distortion in the opposite direction of the beam-like portion 5 which is a relatively low-rigidity portion.

なお、このような形状の鋳物1を成形するための鋳型は、かかる鋳物1の形状に応じた形状のキャビティと、キャビティ内に溶湯を導入するための湯道など鋳造方案を形成することができるものであればよく、金型や砂型などを採用することができる。   The casting mold for forming the casting 1 having such a shape can form a casting plan such as a cavity having a shape corresponding to the shape of the casting 1 and a runner for introducing a molten metal into the cavity. What is necessary is just a thing, and a metal mold | die, a sand mold, etc. can be employ | adopted.

次に、図1に示した実施の形態の変形例を図2に基づいて説明する。なお、この実施の形態においては、図1に示した実施の形態と同様または相当する部分については同じ符号を付してその説明を省略し、異なる部分のみを説明することとする。   Next, a modification of the embodiment shown in FIG. 1 will be described with reference to FIG. In this embodiment, parts that are the same as or correspond to those in the embodiment shown in FIG. 1 are given the same reference numerals and explanation thereof is omitted, and only different parts are explained.

この実施の形態においては、大収縮量調整用方案7aと小収縮量調整用方案7bだけでなく、温度維持方案9が設けられている。図2に示した実施の形態では、温度維持方案9が大収縮量調整用方案7aと小収縮量調整用方案7bとに隣接して設けられている。この温度維持方案9は、相対的に低剛性の部分である梁状の部分5に、相対的に高剛性の部分である底部分2に達することのない長さで成形される。温度維持方案9が成形されることにより、梁状の部分5は、離型してから温度低下を遅延させることができる。そのため、梁状の部分5は、離型してから高温の状態が維持された状態で、大収縮量調整用方案7aと小収縮量調整用方案7bの熱収縮差が作用し、その歪みが低減されることとなる。   In this embodiment, not only a large shrinkage adjustment method 7a and a small shrinkage adjustment method 7b but also a temperature maintenance method 9 is provided. In the embodiment shown in FIG. 2, the temperature maintenance method 9 is provided adjacent to the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b. This temperature maintenance method 9 is formed in the beam-shaped part 5 which is a relatively low-rigidity part with a length that does not reach the bottom part 2 which is a relatively high-rigidity part. By forming the temperature maintenance plan 9, the beam-like portion 5 can delay the temperature drop after being released. For this reason, the beam-shaped portion 5 is subjected to a difference in thermal shrinkage between the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b in a state where the high temperature state is maintained after being released from the mold, and the distortion is reduced. It will be reduced.

次に、図1に示した実施の形態のさらに変形例を図3に基づいて説明する。なお、この実施の形態においても、図1に示した実施の形態と同様または相当する部分については同じ符号を付してその説明を省略し、異なる部分のみを説明することとする。   Next, a further modification of the embodiment shown in FIG. 1 will be described with reference to FIG. In this embodiment as well, the same or corresponding parts as those in the embodiment shown in FIG. 1 are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.

この実施の形態においては、大収縮量調整用方案7aと小収縮量調整用方案7bを必要に応じて冷却、または、加熱するよう温度調整するための手段11を設ける。図3に示した実施の形態においては、鋳型のキャビティにおいて大収縮量調整用方案7aと小収縮量調整用方案7bに接触するように形成された温度調整媒体を流通させるための流路11aにより構成されている。   In this embodiment, means 11 for adjusting the temperature so as to cool or heat the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b as necessary is provided. In the embodiment shown in FIG. 3, by the flow path 11a for circulating the temperature adjustment medium formed so as to be in contact with the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b in the cavity of the mold. It is configured.

このように流路11aからなる温度調整手段11を鋳型に設けることにより、大収縮量調整用方案7aと小収縮量調整用方案7bの断面の大きさだけでなく、熱収縮差を型開き時に任意の量で生じさせることができる。そのため、鋳物1の形状などによって相対的に低剛性の部分5と相対的に高剛性の部分2との間に大収縮量調整用方案7aと小収縮量調整用方案7bをその断面に差を付けるよう設けるのに鋳型に制約がある場合であっても、大収縮量調整用方案7aと小収縮量調整用方案7bに確実に熱収縮差を生じさせて相対的に低剛性の部分5の歪みを低減させることができる。   Thus, by providing the temperature adjusting means 11 including the flow path 11a in the mold, not only the size of the cross section of the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b, but also the thermal shrinkage difference can be set when the mold is opened. It can be produced in any amount. Therefore, depending on the shape of the casting 1 or the like, there is a difference in cross section between the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b between the relatively low rigidity portion 5 and the relatively high rigidity portion 2. Even if there is a restriction on the mold to be attached, a large shrinkage adjustment method 7a and a small shrinkage adjustment method 7b are surely caused to cause a heat shrinkage difference, and the relatively low rigidity portion 5 Distortion can be reduced.

次に、図3に示した実施の形態のさらに変形例を図4に基づいて説明する。なお、この実施の形態においても、図3に示した実施の形態と同様または相当する部分については同じ符号を付してその説明を省略し、異なる部分のみを説明することとする。   Next, a further modification of the embodiment shown in FIG. 3 will be described with reference to FIG. Also in this embodiment, the same or corresponding parts as those in the embodiment shown in FIG. 3 are denoted by the same reference numerals, and the description thereof will be omitted, and only different parts will be described.

この実施の形態において、温度調整手段11は、大収縮量調整用方案7aと小収縮量調整用方案7bとにそれぞれ冷却媒体または加熱媒体を吹き付けるノズル11bにより構成されている。   In this embodiment, the temperature adjusting means 11 is constituted by a nozzle 11b that sprays a cooling medium or a heating medium on the large shrinkage adjustment method 7a and the small shrinkage adjustment method 7b, respectively.

このようにノズル11bからなる温度調整手段11を備えることにより、図3に示した実施の形態だけでなく、図2に示した温度維持方案9を設けることが必要または好ましいものの、鋳物1の形状などによって温度維持方案9を設けることができない場合であっても、大収縮量調整用方案7aと小収縮量調整用方案7bに確実に熱収縮差を生じさせて相対的に低剛性の部分5の歪みを低減させることができる。   By providing the temperature adjusting means 11 including the nozzle 11b as described above, it is necessary or preferable to provide not only the embodiment shown in FIG. 3 but also the temperature maintenance method 9 shown in FIG. Even if the temperature maintenance method 9 cannot be provided due to the above, the heat shrinkage difference method 7a and the small shrinkage amount adjustment method 7b are surely caused to cause a difference in heat shrinkage and the relatively low rigidity portion 5 Distortion can be reduced.

次に、本発明の鋳物の歪み調整方法の第2の実施の形態を、図5および図6に基づいて詳細に説明する。なお、上述した実施の形態と同様または相当する部分については同じ符号を付してその説明を省略し、異なる部分のみを説明することとする。   Next, a second embodiment of the casting distortion adjusting method of the present invention will be described in detail with reference to FIGS. Note that portions that are the same as or correspond to those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and only different portions are described.

この実施の形態における鋳物1の形状は、底部分21と、底部分21の互いに対向する側縁から立ち上がる両側壁部分24、25とを有しており、断面がU字状のものである。そして、一方の側壁部分25は、その剛性が相対的に低い。この実施の形態においては、一方の側壁部分25が本願発明の相対的に低剛性の部分に相当することとして説明する。また、この実施の形態においては、鋳物1の製品を構成する部分以外に高剛性方案部分22が形成される。この高剛性方案部分22は、一方の側壁部分25に対して相対的に剛性が高い。この実施の形態においては、高剛性方案部分22が本願発明の相対的に高剛性の部分に相当することとして説明する。   The shape of the casting 1 in this embodiment has a bottom portion 21 and both side wall portions 24 and 25 rising from opposite side edges of the bottom portion 21 and has a U-shaped cross section. And one side wall part 25 has relatively low rigidity. In this embodiment, one side wall portion 25 will be described as corresponding to a relatively low rigidity portion of the present invention. In this embodiment, the high-rigidity plan portion 22 is formed in addition to the portion constituting the product of the casting 1. The high-rigidity plan portion 22 has a relatively high rigidity with respect to the one side wall portion 25. In this embodiment, the high-rigidity plan portion 22 will be described as corresponding to the relatively high-rigidity portion of the present invention.

この実施の形態における鋳物1の歪み調整方法は、概略、相対的に低剛性の部分である一方の側壁部分25の、高剛性の部分となる高剛性方案部分22から離れる方向へ変形するよう歪む部位とこの高剛性方案部分22との間に、離型時から常温への温度低下に伴う収縮量が比較的大きい大収縮量調整用方案7cを設け、一方の側壁部分25の、高剛性方案部分22に近づく方向へ変形するよう歪む部位とこの高剛性方案部分22との間に、離型時から常温への温度低下に伴う収縮量が比較的小さい小収縮量調整用方案7dを設けるものである。   The method for adjusting the distortion of the casting 1 in this embodiment is generally distorted so as to be deformed in a direction away from the high-rigidity plan portion 22 that is a high-rigidity portion of one side wall portion 25 that is a relatively low-rigidity portion. A large shrinkage adjustment method 7c having a relatively large shrinkage amount due to a temperature drop from the time of mold release to room temperature is provided between the portion and the high rigidity plan portion 22, and the high rigidity plan of one side wall portion 25 is provided. A small shrinkage adjustment method 7d is provided between the portion that is distorted so as to be deformed in a direction approaching the portion 22 and the high rigidity plan portion 22 with a relatively small shrinkage amount due to a temperature drop from the time of mold release to room temperature. It is.

高剛性方案部分7cは、鋳型のキャビティ内に溶湯を導入するための湯道を利用して成形してもよく、また、鋳物1の形状に応じたキャビティおよび湯道とは別に形成したキャビティにより成形することもできる。   The high-rigidity plan portion 7c may be formed using a runner for introducing the molten metal into the cavity of the mold, or by a cavity formed according to the shape of the casting 1 and a cavity formed separately from the runner. It can also be molded.

次に、第2の実施の形態の変形例を、図6に基づいて説明する。この実施の形態においては、上述した実施の形態と同様または相当する部分については同じ符号を付してその説明を省略し、異なる部分についてのみ説明することとする。
この実施の形態においては、図5に示した実施の形態と同様に、相対的に低剛性の部分である一方の側壁部分25と、相対的に高剛性の部分となる高剛性方案部分22との間に、一方の側壁部分25の変形する方向に応じて収縮量の異なる収縮量調整用方案7c、7dを設けているが、この実施の形態ではさらに、各収縮量調整用方案を必要に応じて冷却、または、加熱するための温度調整手段11が設けられている。
Next, a modification of the second embodiment will be described with reference to FIG. In this embodiment, parts that are the same as or correspond to those in the above-described embodiment are denoted by the same reference numerals, description thereof is omitted, and only different parts are described.
In this embodiment, as in the embodiment shown in FIG. 5, one side wall portion 25 that is a relatively low-rigidity portion, and a high-rigidity plan portion 22 that is a relatively high-rigidity portion, The shrinkage adjustment methods 7c and 7d having different shrinkage amounts are provided according to the direction in which one of the side wall portions 25 is deformed. In this embodiment, each shrinkage adjustment method is further required. Accordingly, temperature adjusting means 11 for cooling or heating is provided.

各収縮量調整用方案7c、7dを必要に応じて冷却、または、加熱するための温度調整手段11は、この実施の形態では図3に示した実施の形態と同様に、鋳型10のキャビティにおいて大収縮量調整用方案7cと小収縮量調整用方案7dに接触するように形成されており温度調整媒体を流通させるための流路11aにより構成されている。この構成により、鋳型10に制約がある場合であっても、大収縮量調整用方案7cと小収縮量調整用方案7dに確実に熱収縮差を生じさせて相対的に低剛性の部分25の歪みを低減させることができる。   In this embodiment, the temperature adjusting means 11 for cooling or heating the shrinkage adjustment methods 7c and 7d as necessary is provided in the cavity of the mold 10 in the same manner as the embodiment shown in FIG. It is formed so as to be in contact with the large shrinkage adjustment method 7c and the small shrinkage adjustment method 7d, and is constituted by a flow path 11a for circulating the temperature adjustment medium. With this configuration, even when the mold 10 is constrained, the large shrinkage adjustment method 7c and the small shrinkage adjustment method 7d are surely caused to have a difference in heat shrinkage, so that the relatively low rigidity portion 25 Distortion can be reduced.

なお、各収縮量調整用方案7c、7dを必要に応じて冷却、または、加熱するための温度調整手段11は、図4に示した実施の形態と同様に、大収縮量調整用方案7cと小収縮量調整用方案7dとにそれぞれ冷却媒体または加熱媒体を吹き付けるノズルを備えた構成とすることもできる。このような構成により、温度維持方案9(図2を参照)を設けることができないなどの場合であっても、大収縮量調整用方案7cと小収縮量調整用方案7dに確実に熱収縮差を生じさせて相対的に低剛性の部分25の歪みを低減させることができる。   The temperature adjustment means 11 for cooling or heating the shrinkage adjustment plans 7c and 7d as necessary is similar to the large shrinkage adjustment plan 7c as in the embodiment shown in FIG. It is also possible to employ a configuration in which a nozzle for spraying a cooling medium or a heating medium is provided on the small shrinkage adjustment method 7d. With such a configuration, even when the temperature maintenance method 9 (see FIG. 2) cannot be provided, the thermal contraction difference between the large contraction amount adjustment method 7c and the small contraction amount adjustment method 7d is reliably ensured. Thus, the distortion of the relatively low-rigidity portion 25 can be reduced.

また、上述した実施の形態で説明した鋳物1の形状は説明のために示したものであり、本発明は、相対的に低剛性と高剛性の部分5、2、または25、22 を含み、これら両部分が離間している鋳物であれば、適用することができる。   Further, the shape of the casting 1 described in the above-described embodiment is shown for explanation, and the present invention includes relatively low-rigidity and high-rigidity parts 5, 2, or 25, 22; Any casting can be used as long as these parts are separated from each other.

1:鋳物、 2:底部(相対的に高剛性の部分)、 5:(相対的に小剛性の部分)、 7a、7c:大収縮量調整方案、 7b、7d:小収縮量調整方案 8:破断部、 9:温度維持方案、 11:温度調整手段   1: casting, 2: bottom part (relatively high rigidity part), 5: (relatively small rigidity part), 7a, 7c: large shrinkage amount adjustment method, 7b, 7d: small shrinkage amount adjustment method 8: Breaking part, 9: Temperature maintenance plan, 11: Temperature adjusting means

Claims (1)

相対的に低剛性の部分と高剛性の部分とを含む鋳物の歪みを調整する方法であって、
前記相対的に低剛性の部分の高剛性の部分に対して変形するよう歪む傾向の方向に応じて、収縮量の異なる収縮量調整用方案を、相対的に低剛性の部分と高剛性の部分との間に設けることを特徴とする鋳物の歪み調整方法。
A method for adjusting distortion of a casting including a relatively low rigidity portion and a high rigidity portion,
Depending on the direction in which the relatively low-rigidity portion is distorted so as to be deformed with respect to the high-rigidity portion, the shrinkage-adjustment schemes having different shrinkage amounts are divided into a relatively low-rigidity portion and a high-rigidity portion. A method for adjusting the distortion of a casting, characterized by being provided between the two.
JP2012194011A 2012-09-04 2012-09-04 Casting strain adjustment method Expired - Fee Related JP5858239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194011A JP5858239B2 (en) 2012-09-04 2012-09-04 Casting strain adjustment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194011A JP5858239B2 (en) 2012-09-04 2012-09-04 Casting strain adjustment method

Publications (2)

Publication Number Publication Date
JP2014046362A true JP2014046362A (en) 2014-03-17
JP5858239B2 JP5858239B2 (en) 2016-02-10

Family

ID=50606581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194011A Expired - Fee Related JP5858239B2 (en) 2012-09-04 2012-09-04 Casting strain adjustment method

Country Status (1)

Country Link
JP (1) JP5858239B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105583370A (en) * 2014-10-21 2016-05-18 沈阳黎明航空发动机(集团)有限责任公司 Support type casting anti-deformation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148150U (en) * 1983-03-18 1984-10-03 トヨタ自動車株式会社 vanishing model
JPS6160260A (en) * 1984-08-31 1986-03-27 Fuji Heavy Ind Ltd Removal of bar-shaped waste bridge of casting
JPH02217133A (en) * 1989-02-16 1990-08-29 Tokico Ltd Lost foam pattern for casting disk brake carrier

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148150U (en) * 1983-03-18 1984-10-03 トヨタ自動車株式会社 vanishing model
JPS6160260A (en) * 1984-08-31 1986-03-27 Fuji Heavy Ind Ltd Removal of bar-shaped waste bridge of casting
JPH02217133A (en) * 1989-02-16 1990-08-29 Tokico Ltd Lost foam pattern for casting disk brake carrier

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105583370A (en) * 2014-10-21 2016-05-18 沈阳黎明航空发动机(集团)有限责任公司 Support type casting anti-deformation method
CN105583370B (en) * 2014-10-21 2018-10-09 沈阳黎明航空发动机(集团)有限责任公司 A kind of brace type casting anti-deformation method

Also Published As

Publication number Publication date
JP5858239B2 (en) 2016-02-10

Similar Documents

Publication Publication Date Title
US9987769B2 (en) Mold
JP2010519055A5 (en)
US20160031491A1 (en) Resin vehicle part and method for manufacturing same
JP4691051B2 (en) Manufacturing method of die casting and die casting mold
JP5758735B2 (en) Mold
JP5858239B2 (en) Casting strain adjustment method
KR102134137B1 (en) Chill vent for die casting mould
JP2015199118A (en) Sprue runner and casting method capable of solidifying quickly
JP5326814B2 (en) Injection mold equipment
JP2013132656A (en) Chill vent
JP5195328B2 (en) Mold, molding method using mold, and mold manufacturing method
JP5836837B2 (en) Mold for casting
JP6493583B1 (en) Molding equipment
JP2012179650A (en) Casting mold
JP5652027B2 (en) Plastic molded product, method for molding plastic molded product, and optical scanning device having the plastic molded product
JP5763584B2 (en) Chill vent
JP2011156569A (en) Method for producing gypsum mold, gypsum mold, and method for producing precision parts by the gypsum mold
JP5412201B2 (en) Casting mold
JP5919508B2 (en) Plate-like casing member and injection molding method thereof
JP2013081992A (en) Mechanism for regulating platen temperature
JP5731831B2 (en) Mold for casting
JP4813511B2 (en) Casting mold
JP2012148291A (en) Casting mold
JP2008114280A (en) Structure for preventing spouting of molten metal in metallic die
JP6769613B2 (en) Chill vent member and die casting mold using it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151201

R151 Written notification of patent or utility model registration

Ref document number: 5858239

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees