JP2014046260A - シロキサンガス除去材 - Google Patents

シロキサンガス除去材 Download PDF

Info

Publication number
JP2014046260A
JP2014046260A JP2012191345A JP2012191345A JP2014046260A JP 2014046260 A JP2014046260 A JP 2014046260A JP 2012191345 A JP2012191345 A JP 2012191345A JP 2012191345 A JP2012191345 A JP 2012191345A JP 2014046260 A JP2014046260 A JP 2014046260A
Authority
JP
Japan
Prior art keywords
metal complex
porous metal
siloxane gas
removing material
siloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012191345A
Other languages
English (en)
Other versions
JP6056280B2 (ja
Inventor
Yasuko Nishiguchi
靖子 西口
Yusuke Nishitani
祐介 西谷
Tadao Masumori
忠雄 増森
Masanobu Kobayashi
真申 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012191345A priority Critical patent/JP6056280B2/ja
Publication of JP2014046260A publication Critical patent/JP2014046260A/ja
Application granted granted Critical
Publication of JP6056280B2 publication Critical patent/JP6056280B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】高い除去性能を有し、環境負荷を低減できるシロキサンガス除去材を提供すること。
【解決手段】多孔性金属錯体を用いることで上記課題を解決する。特に、多孔性金属錯体の水分吸着率が、温度30℃、相対湿度60%の条件において10.0wt%以下、かつ相対圧1.0における窒素吸着量が、温度77Kの条件下、350ml(STP)/g以上、かつMP法から得られる、細孔径8Å以上の細孔容積が0.04cm/g以上の多孔性金属錯体を用いることで、上記課題を解決する。
【選択図】図1

Description

本発明は、シロキサンガス除去材に関するものである。
近年、石油代替エネルギーとして、廃棄物や下水処理後のスラッジ、汚泥から発生する消化ガス(例えば、メタン)が広く利用されている。しかしながら、これらのガスには、様々な不具合を引き起こす原因となっている微量の不純物が含まれている。中でもシロキサン化合物は、発電の際の燃焼により酸化ケイ素となり、これがガスエンジンやタービン、配管等に析出し、装置や部品の耐久性低下を引き起こしたり、触媒を劣化させたりする要因となっている。
また一方で、シロキサン化合物は、半導体や液晶工場でも問題とされている化合物である。クリーンルームに使用されているシリコン系シール材などからシロキサンガスが発生するとされており、例えば、これがシリコンウェハーに付着するとその特性を変えてしまうなど、生産性の低下を引き起こす原因となっている。
このような背景から、シロキサンガスを選択的に、かつ効率よく分離除去できる技術の確立が望まれている。シロキサンガスとしては、主に環状シロキサン、例えば、オクタメチルシクロテトラシロキサン(D4)やデカメチルシクロペンタシロキサン(D5)などが挙げられる。
一般に、ガス除去材としては、多孔性材料が使用される。選択性を上げるために細孔分布の狭い多孔性材料を用いたり、高吸着容量を得るため比表面積の大きなものを利用したりする。多孔性材料には、活性炭やゼオライト、活性炭素繊維、近年注目される金属イオンと有機配位子から形成される多孔性金属錯体(Porous Coordination Polymers、或いは、Metal Organic Frameworksとも称される)等がある。
このような多孔性材料を用いたシロキサンガス除去材としては、活性炭(特許文献1)や活性炭素繊維(特許文献2)が知られている。しかし活性炭や活性炭素繊維は、その製造過程において、約600〜1000℃の高温で処理するため、膨大なエネルギーを消費すること、また、一般的には製造時の重量収率が半分以下で、大量の二酸化炭素を排出することから、環境負荷の高い材料となっており、環境に優しい材料が望まれている。
多孔性金属錯体は、金属と有機配位子を溶液中、約−10℃〜200℃、120時間以下で反応させることにより製造でき、高収率で得られる。中には、室温で数分間の攪拌のみで製造できるものもある。活性炭や活性炭素繊維と比較すると、製造に必要なエネルギーや二酸化炭素排出量を低減させることができることから、環境負荷の低い材料として期待される材料である。
しかしながら、多孔性金属錯体の多くは、水蒸気(非特許文献1)やメタン、水素、二酸化炭素などのガス(非特許文献2)やメタノール、ベンゼン、トルエン、キシレン、トリメチルベンゼンなどの有機溶媒(非特許文献3)などの吸着材として検討されているのみで、シロキサンガス除去材として使用されている例はない。
特開2005−177737号公報 特開2008−55318号公報
S.Kaskelら(他3名)、Chem.Commun.,p2462−2464(2008) S.Kaskelら(他5名)、Microporous and Mesoporous Materials,122,p93−98(2009) X.−M.Chenら(他2名)、Inorganic Chemistry,47,p1346−1351(2008)
このような状況の下、本発明では高いガス除去性能を有し、環境負荷を低減できるシロキサンガス除去材の提供を本発明の課題として掲げた。
本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、設計性に優れた多孔性金属錯体が、水分存在下でも高いシロキサンガス除去性能を有することを見出した。特に、水分吸着率が、温度30℃、相対湿度60%の条件において10.0wt%以下、かつ相対圧1.0における窒素吸着量が、温度77Kの条件下、350ml(STP)/g以上、かつMP法から得られる、細孔径8Å以上の細孔容積が0.04cm/g以上の特徴を有する多孔性金属錯体は、より優れたシロキサンガス除去性能を有し、かつ長時間使用しても、優れたシロキサンガス除去性能が維持されることを見出した。さらに、多孔性金属錯体は、金属と有機配位子を溶液中、約−10℃〜200℃で加熱することにより製造できるため、多孔性金属錯体を用いることで環境へ大きな負荷をかけることなく優れたシロキサンガス除去材が得られることを見出し、本発明を完成した。
すなわち、本発明は、以下の構成からなる。
1.金属及び有機配位子から構成される多孔性金属錯体を用いたシロキサンガス除去材であって、前記多孔性金属錯体の水分吸着率が、温度30℃、相対湿度60%の条件において10.0wt%以下、かつ相対圧1.0における窒素吸着量が、温度77Kの条件下、350ml(STP)/g以上、かつMP法から得られる、細孔径8Å以上の 細孔容積が0.04cm/g以上であることを特徴とするシロキサンガス除去材。
2.周期表の第2族および第7〜第14族元素から選ばれる少なくとも一種の金属と、二座以上で配位可能なカルボン酸化合物又は二座以上で配位可能な複素環式五員環化合物から選ばれる少なくとも一種の有機配位子とから構成される多孔性金属錯体である1.に記載のシロキサンガス除去材。
3.前記金属がAl、Si、Znから選ばれる少なくとも一種の金属であり、かつ前記有機配位子が2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、3,3’,5,5’−テトラメチル−4,4’−ビピラゾレートから選ばれる少なくとも一種の有機配位子である、2.に記載のシロキサンガス除去材。
4.前記多孔性金属錯体が、Alと2,6−ナフタレンジカルボン酸、Siと4,4’−ビフェニルジカルボン酸、Znとテレフタル酸と3,3’,5,5’−テトラメチル−4,4’−ビピラゾレート、の組み合わせで構成される、いずれかの多孔性金属錯体である1.〜3.のいずれかに記載のシロキサンガス除去材。
本発明のシロキサンガス除去材は、水分吸着率が、温度30℃、相対湿度60%の条件において10.0wt%以下、かつ相対圧1.0における窒素吸着量が、温度77Kの条件下、350ml(STP)/g以上、かつMP法から得られる、細孔径8Å以上の細孔容積が0.04cm/g以上の多孔性金属錯体であるため、優れたシロキサンガス除去性能を有し、かつ長時間使用した場合であっても、この優れたシロキサンガス除去性能が維持される。また、設計の自由度の高い 多孔性金属錯体を用いることから、所望の性質を有するシロキサンガス除去材を作製することができる。
図1は、実施例及び比較例で行われたシロキサンD4ガス流通系吸着試験結果を示すグラフである。
本発明のシロキサンガス除去材とは、シロキサンガスを含む被処理ガスと接触させて、前記シロキサンガスを吸着により除去するための除去材をさし、本発明のシロキサンガス除去材は多孔性金属錯体で構成されている。高吸着容量を得るため、また除去材製造時の環境負荷を低減させることができるため、多孔性金属錯体を使用することが好ましく、この多孔性金属錯体は、金属及び有機配位子から構成されることが望ましい。多孔性金属錯体としては、周期表の第2族および第7〜第14族元素から選ばれる少なくとも1種の金属と、二座以上で配位可能なカルボン酸化合物または二座以上で配位可能な複素環式化合物から選ばれる少なくとも一種の有機配位子とから構成される、いずれかの多孔性金属錯体が好ましい。中でもシロキサンガス除去性能が高いことから、Siと4,4’−ビフェニルジカルボン酸、Alと2,6−ナフタレンジカルボン酸、Znとテレフタル酸と3,3’,5,5’−テトラメチル−4,4’−ビピラゾレート、の組み合わせで構成される、いずれかの多孔性金属錯体を使用することがより好ましい。
多孔性金属錯体の金属としては、周期表第2族、第7〜第14族に分類される金属の使用が好ましい。中でも、Mg、Ca、Sr、Baの第2族元素;Mn、Reの第7族元素;Fe、Ru、Osの第8族元素;Co、Rh、Irの第9族元素;Ni、Pd、Ptの第10族元素;Cu、Ag、Auの第11族元素;Zn、Cd、Hgの第12族元素;Al、Ga、In、Tlの第13族元素;B、Si、Ge、Sn、Pbの第14族元素が好ましく、さらに好ましくは第12族〜第14族の元素であり、中でも本発明にはZn、Al、Siの使用が最適である。
また有機配位子としては、二座以上で配位可能なカルボン酸及びその誘導体、または二座以上で配位可能な複素環式五員環化合物及びその誘導体から選ばれる少なくとも1種の有機配位子の 使用が望ましい。二座以上で配位可能なカルボン酸及びその誘導体としては、例えば、p−テルフェニル−3,3’,5,5’−テトラカルボン酸〔別名称:5,5’−(1,4−フェニレン)ビスイソフタル酸〕、1,2,4,5−テトラキス(4−カルボキシフェニル)ベンゼン等のテトラカルボン酸及びその誘導体;ビフェニル−3,4’,5−トリカルボン酸、1,3,5−トリス(4’−カルボキシ[1,1’−ビフェニル]−4−イル)ベンゼン、1,3,5−トリス(4−カルボキシフェニル)ベンゼン、1,3,5−ベンゼントリカルボン酸等のトリカルボン酸及びその誘導体;テレフタル酸、イソフタル酸、2,5−ジアミノテレフタル酸、2,5−ジヒドロキシテレフタル酸、1,4−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、3,3’−ビフェニルジカルボン酸、フマル酸、マロン酸、アジピン酸等のジカルボン酸及びその誘導体が挙げられる。また二座以上で配位可能な複素環式五員環化合物及びその誘導体としては、イミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール等のイミダゾール類及びその誘導体;4,4’−ビピラゾレート、3,3’,5,5’−テトラメチル−4,4’−ビピラゾレート、1,3,5−トリス(1H−1,2−ピラゾール−4−イル)ベンゼン等のピラゾール類及びその誘導体;1,3,5−トリス(1H−1,2,3−トリアゾール−5−イル)ベンゼン等のトリアゾール類及びその誘導体;5,5’−ビステトラゾール、5,5’−アゾビス−1H−テトラゾール、1,3,5−トリス(2H−テトラゾール−5−イル)ベンゼン等のテトラゾール類等が好ましく使用できる。中でも本発明には、テレフタル酸、2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、3,3’,5,5’−テトラメチル−4,4’−ビピラゾレートの使用が好ましい。
多孔性金属錯体の水分吸着率は、温度30℃、相対湿度60%の条件において10.0wt%以下であることが望ましく、より好ましくは9.0wt%以下であり、さらに好ましくは、8.2wt%以下である。水分吸着率が低いほど、疎水性であるシロキサンガスを捕捉できるため望ましい。
多孔性金属錯体の相対圧1.0における窒素吸着量は、温度77Kの条件下、350ml(STP)/g以上であることが望ましく、より好ましくは370ml(STP)/g以上であり、さらに好ましくは、385ml(STP)/g以上である。窒素吸着量が多ければ多いほど、吸着容量が大きくシロキサンガスを多く捕捉できるため望ましい。
多孔性金属錯体のMP法から得られる、細孔径8Å以上の細孔容積は0.04cm/g以上であることが望ましく、より好ましくは0.09cm/g以上であり、さらに好ましくは、0.13cm/g以上である。細孔容積が大きければ大きいほど、シロキサンガスを細孔内に多量に吸着できるため望ましい。
本発明の多孔性金属錯体は、前記の水分吸着率、窒素吸着量、細孔容積を全て満たすものが望ましい。前記の水分吸着率を満たすためには、メチル基やエチル基、フッ素基等の疎水性残基を有する配位子や芳香環を有する配位子等を用いることが好ましい。また、前記の窒素吸着量や細孔容積を満たすためには、芳香環を2つ以上有する配位子等を選択することが望ましい。これらの配位子と周期表第2族、第7〜第14族に分類される金属から選択される多孔性金属錯体により、前記の水分吸着率、窒素吸着量、細孔容積を満たすものが得られる。
これらの多孔性金属錯体は、前記金属と前記有機配位子を溶液中、約−10℃〜200℃、120時間以下で反応させることにより製造できる。−10℃〜約170℃、100時間以下の反応で製造できることがより好ましく、−10℃〜140℃で80時間反応させることで製造できることがさらに好ましい。温度が低く反応時間が短いほど、熱エネルギーを削減できるため、望ましい。また、溶液としては、水やメタノール、エタノール、ジメチルホルムアミド(DMF)、ジエチルホルムアミド(DEF)、ジメチルアセトアミド(DMAc)、テトラヒドロフラン(THF)などが用いられ、環境負荷低減を考慮に入れると、水を用いることが好ましい。
本発明の多孔性金属錯体のシロキサンガス除去性能は、除去率90%における破過時間が50分以上であることが好ましく、より好ましくは70分以上であり、さらに好ましくは90分以上である。
本発明により得られるガス除去材は、シロキサンガス除去性能に優れるため、消化ガス等の精製装置等にシロキサンガス除去材として充填することにより、消化ガス中のシロキサン量を簡便に低減することができる。シロキサン化合物の含有量の少ない精製ガスは、ガスエンジンやタービン等の装置や部品の耐久性低下を引き起こすことがなく、加えて、下流工程での触媒劣化を防止することができる。また、本発明のガス除去材をフィルター等に担持させることでシロキサンガス除去フィルターとしても使用可能である。シロキサンガス除去フィルターを半導体や液晶工場に設置することにより、クリーンルーム内のシロキサン量を低減することができ、生産性低下を防止することができる。すなわち本発明のシロキサンガス除去材によれば、消化ガス精製装置等のメンテナンスコストを大幅に削減することができるため、消化ガス等のバイオガスの石油代替エネルギーの利用拡大が期待される。また、半導体や液晶工場での長期の品質維持による生産性向上が期待される。さらに多孔性金属錯体を用いることで活性炭や活性炭素繊維等の代替が可能となることから、製造時のエネルギー削減にも大きな効果をもたらし、環境負荷低減に大きく寄与することができる。
以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、実施例及び比較例中における分析または評価は、以下のようにして行った。
<IR測定>
合成した多孔性金属錯体について、IR測定装置(日本分光株式会社製「FT/IR−6100」)を用いて、全反射吸収(ATR)法で測定した。
<粉末X線回折測定>
合成した多孔性金属錯体について、粉末X線回折装置(ブルカー・エイエックスエス株式会社製「NEW D8 ADVANCE」)を用いて、対称反射法で測定した。測定条件を以下に示す。
1)X線源:CuKα(λ=1.5418Å)40kV 200mA
2)ゴニオメーター:縦型ゴニオメーター
3)検出器:シンチレーションカウンター
4)回折角(2θ)範囲:3〜90°
5)スキャンステップ:0.05°
6)積算時間:0.5秒/ステップ
7)スリット:発散スリット=0.5°、受光スリット=0.15mm、散乱スリット=0.5°
<水分吸着率測定>
多孔性金属錯体を120℃で12時間真空乾燥し、吸着水などを除去した。これをサンプル管に入れ重量を測定し、温度30℃、相対湿度60%に設定した恒温恒湿器(ヤマト科学株式会社製「IW222」)中、3時間静置した後の重量を測定した。水分吸着率は、下記式(i);
水分吸着率(%)={(3時間静置後の重量−3時間静置前の重量)/(3時間静置前の重量)}×100 ・・・(i)
に基づき算出した。
<窒素吸着測定>
自動比表面積/細孔分布測定装置(日本BEL株式会社製「BELSORP−miniII」)を用いて容量法で測定を行った。測定に先立ち、多孔性金属錯体を120℃で18時間真空乾燥し、吸着水などを除去した。測定条件を以下に示す。
1)測定温度:77K
2)平衡待ち時間:300秒
<細孔容積の算出>
細孔径8Å以上の細孔容積は、前記窒素吸着測定の結果を基に算出した。解析ソフトウェア(日本BEL株式会社製「BELMasterTM」)を用い、MP法によりマイクロ細孔分布解析を行った。数値データに基づき、細孔径8Å 以上の細孔容積を求めた。細孔直径範囲0.42〜2nmの条件で解析し、吸着時の数値データ表の結果より、全マイクロポア細孔容積(A)から細孔直径0.8nm未満のマイクロポア細孔容積を引いて、細孔直径0.8nm以上のマイクロポア細孔容積B(単位:cm/g)を算出した。
MP法は、吸着等温線の各点での接線の傾きの変化から求められる各区間の外部表面積と吸着層厚み(細孔形状を円筒形とするため細孔半径に相当)を基に細孔容積を求め、吸着層厚みに対してプロットすることにより、細孔分布を得る方法である。
<シロキサンガス流通系吸着試験>
多孔性金属錯体100mgをカラムに充填し、試験ガスを流し、経時的にカラム出口でのガス濃度を、FID形VOC分析計(株式会社島津製作所製「VMS−1000F」を用いて検出し、シロキサンガス除去率を下記式(ii);
シロキサンガス除去率(%)={(カラム入口のシロキサンガス濃度−カラム出口のシロキサンガス濃度)/(カラム入口のシロキサンガス濃度)}×100 ・・・(ii)
に基づき算出した。なお、試料としては、120℃で12時間真空乾燥し、吸着物質を除去したものを使用した。評価条件の詳細を以下に示す。
1)測定雰囲気:25℃、50%RH空気下
2)圧力:常圧
3)試験ガス組成:シロキサンD4ガス濃度5ppm(25℃、50%RH空気希釈)
4)流量:0.5L/min
<実施例1>
Siと4,4’−ビフェニルジカルボン酸から形成された多孔性金属錯体EOF−2を、非特許文献1に従って、THF中、−10〜25℃で合成した。得られた多孔性金属錯体について、IR測定により同定し、水分吸着率および窒素吸着測定により物性評価を行った。水分吸着率、窒素吸着量、細孔容積を表1に示す。次いで、シロキサンガス流通系吸着試験を行った。結果を図1に示す。
<実施例2>
Alと2,6−ナフタレンジカルボン酸から形成された多孔性金属錯体DUT−4を、非特許文献2に従って、DMF中、120℃で24時間合成した。得られた多孔性金属錯体について、粉末X線回折測定により同定し、水分吸着率および窒素吸着測定により物性評価を行った。水分吸着率、窒素吸着量、細孔容積を表1に示す。次いで、シロキサンガス流通系吸着試験を行った。結果を図1に示す。
<実施例3>
Znとテレフタル酸と3,3’,5,5’−テトラメチル−4,4’−ビピラゾレートから形成された多孔性金属錯体を、非特許文献3に従って、DMF中、140℃で80時間合成した。得られた多孔性金属錯体について、粉末X線回折測定により同定し、水分吸着率および窒素吸着測定により物性評価を行った。水分吸着率、窒素吸着量、細孔容積を表1に示す。次いで、シロキサンガス流通系吸着試験を行った。結果を図1に示す。
<比較例1>
Znと2−メチルイミダゾールから形成された多孔性金属錯体(BASF社製「Basolite(登録商標)Z1200」)について、水分吸着率および窒素吸着測定により物性評価を行った。水分吸着率、窒素吸着量、細孔容積を表1に示す。次いで、シロキサンガス流通系吸着試験を行った。結果を図1に示す。
<比較例2>
Cuと1,3,5−ベンゼントリカルボン酸から形成された多孔性金属錯体(BASF社製「Basolite(登録商標)C300」)について、水分吸着率および窒素吸着測定により物性評価を行った。水分吸着率、窒素吸着量、細孔容積を表1に示す。次いで、シロキサンガス流通系吸着試験を行った。結果を図1に示す。
<比較例3>
Alとテレフタル酸から形成された多孔性金属錯体(BASF社製「Basolite(登録商標)A100」)について、水分吸着率および窒素吸着測定により物性評価を行った。水分吸着率、窒素吸着量、細孔容積を表1に示す。次いで、シロキサンガス流通系吸着試験を行った。結果を図1に示す。

Claims (4)

  1. 金属及び有機配位子から構成される多孔性金属錯体を用いたシロキサンガス除去材であって、前記多孔性金属錯体の水分吸着率が、温度30℃、相対湿度60%の条件において10.0wt%以下、かつ相対圧1.0における窒素吸着量が、温度77Kの条件下、350ml(STP)/g以上、かつMP法から得られる、細孔径8Å以上の 細孔容積が0.04cm/g以上であることを特徴とするシロキサンガス除去材。
  2. 周期表の第2族および第7〜第14族元素から選ばれる少なくとも一種の金属と、二座以上で配位可能なカルボン酸化合物又は二座以上で配位可能な複素環式五員環化合物から選ばれる少なくとも一種の有機配位子とから構成される多孔性金属錯体である請求項1に記載のシロキサンガス除去材。
  3. 前記金属がAl、Si、Znから選ばれる少なくとも一種の金属であり、かつ前記有機配位子が2,6−ナフタレンジカルボン酸、4,4’−ビフェニルジカルボン酸、3,3’,5,5’−テトラメチル−4,4’−ビピラゾレートから選ばれる少なくとも一種の有機配位子である、請求項2に記載のシロキサンガス除去材。
  4. 前記多孔性金属錯体が、Alと2,6−ナフタレンジカルボン酸、Siと4,4’−ビフェニルジカルボン酸、Znとテレフタル酸と3,3’,5,5’−テトラメチル−4,4’−ビピラゾレート、の組み合わせで構成される、いずれかの多孔性金属錯体である請求項1〜3のいずれかに記載のシロキサンガス除去材。
JP2012191345A 2012-08-31 2012-08-31 シロキサンガス除去材 Active JP6056280B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012191345A JP6056280B2 (ja) 2012-08-31 2012-08-31 シロキサンガス除去材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012191345A JP6056280B2 (ja) 2012-08-31 2012-08-31 シロキサンガス除去材

Publications (2)

Publication Number Publication Date
JP2014046260A true JP2014046260A (ja) 2014-03-17
JP6056280B2 JP6056280B2 (ja) 2017-01-11

Family

ID=50606493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012191345A Active JP6056280B2 (ja) 2012-08-31 2012-08-31 シロキサンガス除去材

Country Status (1)

Country Link
JP (1) JP6056280B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231602A (ja) * 2014-06-10 2015-12-24 東洋紡株式会社 シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
JP2015231601A (ja) * 2014-06-10 2015-12-24 東洋紡株式会社 シロキサン除去剤およびそれを用いたシロキサン除去フィルタ

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061597A (ja) * 2003-08-20 2005-03-10 Osaka Gas Co Ltd シロキサン含有バイオガスの吸着式貯蔵装置および貯蔵方法
JP2008208110A (ja) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd 多孔性金属錯体、多孔性金属錯体の製造方法、吸着材、分離材、ガス吸着材及び水素吸着材
JP2011520592A (ja) * 2008-04-22 2011-07-21 ユニヴェルシテ ドゥ モンス ガス吸着剤
WO2011105521A1 (ja) * 2010-02-24 2011-09-01 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2012017268A (ja) * 2010-07-06 2012-01-26 Kuraray Co Ltd 金属錯体及びその製造方法
JP2012056946A (ja) * 2010-08-12 2012-03-22 Kuraray Co Ltd 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005061597A (ja) * 2003-08-20 2005-03-10 Osaka Gas Co Ltd シロキサン含有バイオガスの吸着式貯蔵装置および貯蔵方法
JP2008208110A (ja) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd 多孔性金属錯体、多孔性金属錯体の製造方法、吸着材、分離材、ガス吸着材及び水素吸着材
JP2011520592A (ja) * 2008-04-22 2011-07-21 ユニヴェルシテ ドゥ モンス ガス吸着剤
WO2011105521A1 (ja) * 2010-02-24 2011-09-01 株式会社クラレ 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材
JP2012017268A (ja) * 2010-07-06 2012-01-26 Kuraray Co Ltd 金属錯体及びその製造方法
JP2012056946A (ja) * 2010-08-12 2012-03-22 Kuraray Co Ltd 金属錯体、並びにそれからなる吸着材、吸蔵材及び分離材

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015231602A (ja) * 2014-06-10 2015-12-24 東洋紡株式会社 シロキサン除去剤およびそれを用いたシロキサン除去フィルタ
JP2015231601A (ja) * 2014-06-10 2015-12-24 東洋紡株式会社 シロキサン除去剤およびそれを用いたシロキサン除去フィルタ

Also Published As

Publication number Publication date
JP6056280B2 (ja) 2017-01-11

Similar Documents

Publication Publication Date Title
Ahmed et al. Design and synthesis of porous polymeric materials and their applications in gas capture and storage: a review
Xie et al. Hydrophobic metal–organic frameworks: assessment, construction, and diverse applications
Liu et al. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks
Zhang et al. The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene
Lv et al. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption
Lin et al. Ionic liquids as the MOFs/polymer interfacial binder for efficient membrane separation
Rabbani et al. Pyrene-directed growth of nanoporous benzimidazole-linked nanofibers and their application to selective CO 2 capture and separation
Lin et al. Ultra-high adsorption capacity of zeolitic imidazole framework-67 (ZIF-67) for removal of malachite green from water
Zhao et al. Adsorption and diffusion of carbon dioxide on metal− organic framework (MOF-5)
Dietzel et al. Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide
Rabbani et al. High CO 2 uptake and selectivity by triptycene-derived benzimidazole-linked polymers
Liu et al. Progress in adsorption-based CO 2 capture by metal–organic frameworks
Chen et al. Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability
Yoo et al. Isoreticular metal− organic frameworks and their membranes with enhanced crack resistance and moisture stability by surfactant-assisted drying
Li et al. Ultrafast room temperature synthesis of novel composites Imi@ Cu-BTC with improved stability against moisture
US20160160348A1 (en) Porous polymers for the abatement and purification of electronic gas and the removal of mercury from hydrocarbon streams
Wang et al. A ligand conformation preorganization approach to construct a copper–hexacarboxylate framework with a novel topology for selective gas adsorption
He et al. Functionalized Base‐Stable Metal–Organic Frameworks for Selective CO2 Adsorption and Proton Conduction
Pham et al. Novel improvement of CO2 adsorption capacity and selectivity by ethylenediamine-modified nano zeolite
JP5705010B2 (ja) 金属錯体及びそれからなる分離材
Wang et al. General strategies for effective capture and separation of noble gases by metal–organic frameworks
Dou et al. Preparation and gas separation properties of metal‐organic framework membranes
JP5829924B2 (ja) 多孔性複合材料とその製造方法、及び硫化水素ガス除去材
US20110160511A1 (en) Gas adsorption and gas mixture separations using porous organic polymer
Mounfield III et al. Synergistic effect of mixed oxide on the adsorption of ammonia with metal–organic frameworks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161121

R151 Written notification of patent or utility model registration

Ref document number: 6056280

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350