JP2014043918A5 - - Google Patents

Download PDF

Info

Publication number
JP2014043918A5
JP2014043918A5 JP2012187458A JP2012187458A JP2014043918A5 JP 2014043918 A5 JP2014043918 A5 JP 2014043918A5 JP 2012187458 A JP2012187458 A JP 2012187458A JP 2012187458 A JP2012187458 A JP 2012187458A JP 2014043918 A5 JP2014043918 A5 JP 2014043918A5
Authority
JP
Japan
Prior art keywords
metal powder
sintered layer
layer portion
powder sintered
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012187458A
Other languages
Japanese (ja)
Other versions
JP2014043918A (en
JP5965783B2 (en
Filing date
Publication date
Application filed filed Critical
Priority claimed from JP2012187458A external-priority patent/JP5965783B2/en
Priority to JP2012187458A priority Critical patent/JP5965783B2/en
Priority to TW102123629A priority patent/TW201408897A/en
Priority to PCT/JP2013/070860 priority patent/WO2014034368A1/en
Priority to CN201380041376.0A priority patent/CN104520600B/en
Priority to KR1020157002771A priority patent/KR20150051993A/en
Publication of JP2014043918A publication Critical patent/JP2014043918A/en
Publication of JP2014043918A5 publication Critical patent/JP2014043918A5/ja
Publication of JP5965783B2 publication Critical patent/JP5965783B2/en
Application granted granted Critical
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

例えば、本発明の第一の態様は、支持対象である回転体のラジアル方向の荷重を軸受面で非接触支持する静圧気体ラジアル軸受であって、
内周面を前記軸受面とする筒状の第一の金属粉末焼結層部と、
前記第一の金属粉末焼結層部の外周面上に形成され、前記第一の金属粉末焼結層部よりも大きな気孔率を有する第二の金属粉末焼結層部と、を備え、
前記第一の金属粉末焼結層部は、一次焼結することにより形成され、
前記第二の金属粉末焼結層は、前記第一の金属粉末焼結層部をコアとして、当該コアを筒状の型内に配置し、当該コアと当該型との隙間に金属粉末を充填して二次焼結することにより形成される。
For example, the first aspect of the present invention is a hydrostatic gas radial bearing that supports a radial load of a rotating body to be supported in a non-contact manner on a bearing surface,
A cylindrical first metal powder sintered layer portion having an inner peripheral surface as the bearing surface;
A second metal powder sintered layer portion formed on the outer peripheral surface of the first metal powder sintered layer portion and having a porosity larger than that of the first metal powder sintered layer portion,
The first metal powder sintered layer portion is formed by primary sintering,
The second metal powder sintered layer portion has the first metal powder sintered layer portion as a core, the core is disposed in a cylindrical mold, and the metal powder is placed in a gap between the core and the mold. It is formed by filling and secondary sintering.

このような静圧気体ラジアル軸受1Aにおいて、図示していない給気ポンプによりバックメタル4を介して第二の金属粉末焼結層部3の外周面32に供給された圧縮気体は、第二の金属粉末焼結層部3内の気孔を介して第二の金属粉末焼結層部3の内周面31に到達し、第一の金属粉末焼結層部2Aの外周面22に供給される。それから、第一の金属粉末焼結層部2A内の気孔を介して、軸受面である第一の金属粉末焼結層部2Aの内周面21に到達して、この内周面21全域から均一に吐出される。これにより、軸受面21と静圧気体ラジアル軸受1Aの貫通孔11に挿入された不図示の回転体の外周面との間に圧縮気体層が形成され、この回転体のラジアル方向の荷重が非接触で支持される。この際、第一の金属粉末焼結層部2Aの気孔率(例えば10%以下)が第二の金属粉末焼結層部3の気効率(例えば25%以上)よりも小さく、この第の金属粉末焼結層部2A内の気孔が圧縮気体の流路の絞り部として機能するため、第一の金属粉末焼結層部2Aの内周面21から吐出される圧縮気体が絞られ、その吐出量が調整される。 In such a static pressure gas radial bearing 1A, the compressed gas supplied to the outer peripheral surface 32 of the second metal powder sintered layer portion 3 via the back metal 4 by an air supply pump (not shown) It reaches the inner peripheral surface 31 of the second metal powder sintered layer portion 3 through the pores in the metal powder sintered layer portion 3 and is supplied to the outer peripheral surface 22 of the first metal powder sintered layer portion 2A. . Then, it reaches the inner peripheral surface 21 of the first metal powder sintered layer portion 2A, which is the bearing surface, through the pores in the first metal powder sintered layer portion 2A, and from the entire inner peripheral surface 21. It is discharged uniformly. As a result, a compressed gas layer is formed between the bearing surface 21 and the outer peripheral surface of the rotating body (not shown) inserted into the through hole 11 of the hydrostatic gas radial bearing 1A, and the radial load of the rotating body is not increased. Supported by contact. At this time, the porosity of the first metal powder sintered layer portion 2A (for example, 10% or less) of a second metal powder sintered layer 3 of exhaust efficiency (e.g., 25% or more) smaller than, the first Since the pores in the metal powder sintered layer portion 2A function as a throttle portion of the compressed gas flow path, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2A is throttled. The discharge amount is adjusted.

上記構成の静圧気体ラジアル軸受1Bにおいて、図示していない給気ポンプによりバックメタル4を介して第二の金属粉末焼結層部3の外周面32に供給された圧縮気体は、第二の金属粉末焼結層部3内の気孔を介して第二の金属粉末焼結層部3の内周面31に到達し、第一の金属粉末焼結層部2Bの外周面22に供給される。それから、第一の金属粉末焼結層部2B内の気孔を介して、軸受面である第一の金属粉末焼結層部2Bの内周面21に到達し、この内周面21全域から均一に吐出される。これにより、軸受面21と静圧気体ラジアル軸受1Bの貫通孔11に挿入された不図示の回転体との間に圧縮気体層が形成され、この回転体のラジアル方向の荷重が非接触で支持される。この際、第一の金属粉末焼結層部2Bの気孔率(例えば10%以下)が第二の金属粉末焼結層部3の気効率(例えば25%以上)よりも小さく、この第の金属粉末焼結層部2B内の気孔が圧縮気体の流路の絞り部として機能するため、第一の金属粉末焼結層部2Bの内周面21から吐出される圧縮気体が絞られ、その吐出量が調整される。 In the static pressure gas radial bearing 1B having the above-described configuration, the compressed gas supplied to the outer peripheral surface 32 of the second metal powder sintered layer portion 3 through the back metal 4 by an air supply pump (not shown) It reaches the inner peripheral surface 31 of the second metal powder sintered layer portion 3 through the pores in the metal powder sintered layer portion 3 and is supplied to the outer peripheral surface 22 of the first metal powder sintered layer portion 2B. . Then, it reaches the inner peripheral surface 21 of the first metal powder sintered layer portion 2B, which is the bearing surface, through the pores in the first metal powder sintered layer portion 2B, and is uniform from the entire inner peripheral surface 21. Discharged. As a result, a compressed gas layer is formed between the bearing surface 21 and a rotating body (not shown) inserted into the through hole 11 of the static pressure gas radial bearing 1B, and the radial load of the rotating body is supported without contact. Is done. At this time, the porosity of the first metal powder sintered layer portion 2B (for example, 10% or less) of a second metal powder sintered layer 3 of exhaust efficiency (e.g., 25% or more) smaller than, the first Since the pores in the metal powder sintered layer part 2B function as a throttle part of the compressed gas flow path, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer part 2B is throttled, The discharge amount is adjusted.

第二の金属粉末焼結層部3は、第一の金属粉末焼結層部2Cに用いる球状青銅合金粉末よりも大きな平均粒径の球状青銅合金粉末を焼結することにより得られる多孔質体で構成されている。例えば、円筒状の第一の金属粉末焼結層部2Cをコアとして、このコアを型として用いる金属製の円筒状のスリーブ内に互いの軸心が一致するように配置し、このコアの外周面とスリーブの内周面との隙間に、第一の金属粉末焼結層部2Cに用いる球状青銅合金粉末よりも大きな平均粒径の球状青銅合金粉末を充填して、コア、充填された、第一の金属粉末焼結層部2Cに用いる球状青銅合金粉末よりも大きな平均粒径の球状青銅合金粉末、およびスリーブを一緒に二次焼結することにより、第二の金属粉末焼結層部3が、第一の金属粉末焼結層部2Cの外周面22上に、第一の金属粉末焼結層部2Cと拡散接合した状態で形成されるとともに、このスリーブにより、バックメタル4が、第二の金属粉末焼結層部3の外周面32上に、第二の金属粉末焼結層部3と拡散接合した状態で形成される。ここで、第二の金属粉末焼結層部3に用いる球状青銅合金粉末には、少なくとも第二の金属粉末焼結層部3の気孔率を第一の金属粉末焼結層部2Cの気孔率より大きくすることのできる平均粒径のものが用いられる。例えば、第一の金属粉末焼結層部2Cの気孔率が10%以下である場合、第二の金属粉末焼結層部3の気孔率が25%以上となるように、球状青銅合金粉末の平均粒径が選択される。 The second metal powder sintered layer portion 3 is a porous body obtained by sintering a spherical bronze alloy powder having a larger average particle diameter than the spherical bronze alloy powder used for the first metal powder sintered layer portion 2C. It consists of For example, a cylindrical first metal powder sintered layer portion 2C is used as a core, and the core is disposed in a metal cylindrical sleeve using the core as a mold so that the axes of the cores coincide with each other. A spherical bronze alloy powder having an average particle size larger than the spherical bronze alloy powder used for the first metal powder sintered layer portion 2C is filled in the gap between the surface and the inner peripheral surface of the sleeve, and the core is filled. By sintering the spherical bronze alloy powder having an average particle size larger than that of the spherical bronze alloy powder used for the first metal powder sintered layer portion 2C and the sleeve together, the second metal powder sintered layer portion 3 is formed on the outer peripheral surface 22 of the first metal powder sintered layer portion 2C in a state of being diffusion bonded to the first metal powder sintered layer portion 2C, and the back metal 4 is formed by this sleeve. On the outer peripheral surface 32 of the second metal powder sintered layer portion 3, the second It is formed in a state of being diffusion bonded and attributes powder sintered layer portion 3. Here, in the spherical bronze alloy powder used for the second metal powder sintered layer portion 3, at least the porosity of the second metal powder sintered layer portion 3 is set to the porosity of the first metal powder sintered layer portion 2C. An average particle size that can be made larger is used. For example, when the porosity of the first metal powder sintered layer portion 2C is 10% or less, the spherical bronze alloy powder is formed so that the porosity of the second metal powder sintered layer portion 3 is 25% or more. An average particle size is selected.

上記構成の静圧気体ラジアル軸受1Cにおいて、図示していない給気ポンプによりバックメタル4を介して第二の金属粉末焼結層部3の外周面32に供給された圧縮気体は、第二の金属粉末焼結層部3内の気孔を介して第二の金属粉末焼結層部3の内周面31に到達し、第一の金属粉末焼結層部2Cの外周面22に供給される。それから、第一の金属粉末焼結層部2C内の気孔を介して、軸受面である第一の金属粉末焼結層部2Cの内周面21に到達し、この内周面21全域から均一に吐出される。これにより、軸受面21と静圧気体ラジアル軸受1Cの貫通孔11に挿入された不図示の回転体の外周面との間に圧縮気体層が形成され、この回転体のラジアル方向の荷重が非接触で支持される。この際、第一の金属粉末焼結層部2Cの気孔率(例えば10%以下)が第二の金属粉末焼結層部3の気孔率(例えば25%以上)より小さく、この第一の金属粉末焼結層部2C内の気孔が圧縮気体の流路の絞り部として機能するため、第一の金属粉末焼結層部2Cの内周面21から吐出される圧縮気体が絞られ、その吐出量が調整される。
In the static pressure gas radial bearing 1C having the above-described configuration, the compressed gas supplied to the outer peripheral surface 32 of the second metal powder sintered layer portion 3 via the back metal 4 by an air supply pump (not shown) through the pores of the metal powder sintered layer section 3 reaches the second inner circumferential surface 31 of the metal powder sintered layer 3, is supplied to the outer circumferential surface 22 of the first metal powder sintered layer unit 2C . Then, it reaches the inner peripheral surface 21 of the first metal powder sintered layer portion 2C, which is the bearing surface, through the pores in the first metal powder sintered layer portion 2C, and is uniform from the entire inner peripheral surface 21. Discharged. As a result, a compressed gas layer is formed between the bearing surface 21 and the outer peripheral surface of the rotating body (not shown) inserted into the through hole 11 of the static pressure gas radial bearing 1C, and the radial load of the rotating body is not increased. Supported by contact. At this time, the porosity (for example, 10% or less) of the first metal powder sintered layer portion 2C is smaller than the porosity (for example, 25% or more) of the second metal powder sintered layer portion 3; Since the pores in the powder sintered layer portion 2C function as a throttle portion of the compressed gas flow path, the compressed gas discharged from the inner peripheral surface 21 of the first metal powder sintered layer portion 2C is throttled and discharged. The amount is adjusted.

Claims (2)

支持対象である回転体のラジアル方向の荷重を軸受面で非接触支持する静圧気体ラジアル軸受であって、
内周面を前記軸受面とする筒状の第一の金属粉末焼結層部と、
前記第一の金属粉末焼結層部の外周面上に形成され、前記第一の金属粉末焼結層部よりも大きな気孔率を有する第二の金属粉末焼結層部と、を備え、
前記第一の金属粉末焼結層部は、一次焼結することにより形成され、
前記第二の金属粉末焼結層は、前記第一の金属粉末焼結層部をコアとして、当該コアを筒状の型内に配置し、当該コアと当該型との隙間に金属粉末を充填して二次焼結することにより形成される
ことを特徴とする静圧気体ラジアル軸受。
A static pressure gas radial bearing that supports a radial load of a rotating body to be supported in a non-contact manner on a bearing surface,
A cylindrical first metal powder sintered layer portion having an inner peripheral surface as the bearing surface;
A second metal powder sintered layer portion formed on the outer peripheral surface of the first metal powder sintered layer portion and having a porosity larger than that of the first metal powder sintered layer portion,
The first metal powder sintered layer portion is formed by primary sintering,
The second metal powder sintered layer portion has the first metal powder sintered layer portion as a core, the core is disposed in a cylindrical mold, and the metal powder is placed in a gap between the core and the mold. A hydrostatic gas radial bearing characterized by being formed by filling and secondary sintering.
請求項1に記載の静圧気体ラジアル軸受であって、
前記第の金属粉末焼結層部には、前記第の金属粉末焼結層部に用いる球状青銅合金粉末より大きな平均粒径の球状青銅合金粉末が用いられている
ことを特徴とする静圧気体ラジアル軸受。
The hydrostatic gas radial bearing according to claim 1,
In the second metal powder sintered layer portion, a spherical bronze alloy powder having an average particle size larger than that of the spherical bronze alloy powder used in the first metal powder sintered layer portion is used. Pressure gas radial bearing.
JP2012187458A 2012-08-28 2012-08-28 Method for producing hydrostatic gas radial bearing Active JP5965783B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012187458A JP5965783B2 (en) 2012-08-28 2012-08-28 Method for producing hydrostatic gas radial bearing
TW102123629A TW201408897A (en) 2012-08-28 2013-07-02 Aerostatic radial bearing
KR1020157002771A KR20150051993A (en) 2012-08-28 2013-08-01 Aerostatic radial bearing
CN201380041376.0A CN104520600B (en) 2012-08-28 2013-08-01 Pressurized air journal bearing
PCT/JP2013/070860 WO2014034368A1 (en) 2012-08-28 2013-08-01 Aerostatic radial bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187458A JP5965783B2 (en) 2012-08-28 2012-08-28 Method for producing hydrostatic gas radial bearing

Publications (3)

Publication Number Publication Date
JP2014043918A JP2014043918A (en) 2014-03-13
JP2014043918A5 true JP2014043918A5 (en) 2015-07-23
JP5965783B2 JP5965783B2 (en) 2016-08-10

Family

ID=50183186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187458A Active JP5965783B2 (en) 2012-08-28 2012-08-28 Method for producing hydrostatic gas radial bearing

Country Status (5)

Country Link
JP (1) JP5965783B2 (en)
KR (1) KR20150051993A (en)
CN (1) CN104520600B (en)
TW (1) TW201408897A (en)
WO (1) WO2014034368A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644029B (en) * 2016-06-30 2018-12-11 祥瑩有限公司 Double-layer sliding bearing
CN115057101A (en) * 2022-06-02 2022-09-16 深圳市恒歌科技有限公司 Metal perfume volatilization cover and manufacturing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162966A (en) * 1997-08-28 1999-03-05 Toshiba Mach Co Ltd Hydrostatic bearing and manufacture thereof
JP2000009142A (en) * 1998-06-18 2000-01-11 Asahi Optical Co Ltd Manufacture of bearing device and bearing device
JP4385618B2 (en) * 2002-08-28 2009-12-16 オイレス工業株式会社 Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP2005221002A (en) * 2004-02-05 2005-08-18 Nsk Ltd Forming method for gas throttle layer
JP2006097797A (en) * 2004-09-29 2006-04-13 Oiles Ind Co Ltd Porous static pressure gas bearing and its manufacturing method
KR100600668B1 (en) * 2004-10-18 2006-07-13 한국과학기술연구원 Air foil bearing having a porous foil

Similar Documents

Publication Publication Date Title
JP2014510836A5 (en)
CL2008003338A1 (en) Method for making a powdered instant drink that has a particle size greater than 1 mm, comprising the steps of: providing a porous particulate powder base, sintering said powder to form an agglomerated cake and texturing the agglomerated cake to obtain a drink instant powder.
TW200636200A (en) Sintered heat pipe and manufacturing method thereof
JP2014043918A5 (en)
CN105393005B (en) Sintered bearing and its manufacture method
JP5965783B2 (en) Method for producing hydrostatic gas radial bearing
JP4798161B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
CN201202730Y (en) Composite bearing with conicity at two ends
TWI785213B (en) Dynamic pressure bearing and manufacturing method thereof
TWI259894B (en) Sintered heat pipe and method for manufacturing the same
WO2011011586A3 (en) Dry and wet low friction silicon carbide seal
TW201410360A (en) Bearing forming method
CN207647976U (en) A kind of turbocharger linear bearing
JP2000009142A (en) Manufacture of bearing device and bearing device
CN207848231U (en) A kind of powder oiliness bearing delivery device
CN202158077U (en) Thrust bearing
JP2017009033A (en) Cylindrical composite member for hydrostatic gas bearing, process of manufacture of cylindrical composite member and hydrostatic gas bearing with cylindrical composite member
JP2005221002A (en) Forming method for gas throttle layer
TWM416698U (en) Dynamic pressure bearing
JP4983904B2 (en) Porous static pressure gas bearing and manufacturing method thereof
KR101840006B1 (en) Porous ceramic air bearing
CN205751514U (en) Copper acoustic filter
JP2015045414A5 (en)
CN103899645B (en) Staged composite throttling static pressure gas spheric bearing
TWD136585S1 (en) Silencer for air pressure machine