JP2006097797A - Porous static pressure gas bearing and its manufacturing method - Google Patents

Porous static pressure gas bearing and its manufacturing method Download PDF

Info

Publication number
JP2006097797A
JP2006097797A JP2004285300A JP2004285300A JP2006097797A JP 2006097797 A JP2006097797 A JP 2006097797A JP 2004285300 A JP2004285300 A JP 2004285300A JP 2004285300 A JP2004285300 A JP 2004285300A JP 2006097797 A JP2006097797 A JP 2006097797A
Authority
JP
Japan
Prior art keywords
porous
layer
back metal
metal
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004285300A
Other languages
Japanese (ja)
Inventor
Hirotsugu Tomita
博嗣 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Industry Co Ltd
Original Assignee
Oiles Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Industry Co Ltd filed Critical Oiles Industry Co Ltd
Priority to JP2004285300A priority Critical patent/JP2006097797A/en
Publication of JP2006097797A publication Critical patent/JP2006097797A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous static pressure gas bearing, if long, for suppressing the heating of air while properly escaping air forming a gas membrane to the outside to avoid its residence and for actualizing the higher-speed movement, particularly, the rotation of a movable body relative to a bearing surface while avoiding heat expansion on the sides of the bearing surface and the movable body, and to provide its manufacturing method. <P>SOLUTION: The porous static pressure gas radial bearing 1 comprises a backing metal 2, porous metal sintered layers 6a, 6b arranged side by side on an inner face 3 of the backing metal 2 with an annular gap 5 therebetween, a supply means 12 for supplying high pressure gas to each of the porous metal sintered layers 6a, 6b, sealing materials 15a, 15ab, 15b integrally joined to end faces 13, 13a, 14, 14b of the porous meal sintered layers 6a, 6b, a radial through-hole 16 provided in the sealing material 15ab, and a through-hole 17 for communicating the through-hole 16 with the outside of the backing metal 2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、多孔質静圧気体軸受、とくに無機物質粒子を分散含有した多孔質金属焼結層を具備した多孔質静圧気体軸受及びその製造方法に関する。   The present invention relates to a porous hydrostatic gas bearing, and more particularly to a porous hydrostatic gas bearing provided with a sintered porous metal layer containing dispersed inorganic substance particles and a method for manufacturing the same.

特開平11−158511号公報JP-A-11-158511 特開2000−346071号公報JP 2000-346071 A

静圧気体軸受は、その軸受面で支持する可動体との間に気体膜を形成して、この気体膜を介して可動体を移動自在に支持するものであるために、好ましく製造された静圧気体軸受は、それが本来的に有するセンタリング機能等と相俟って、軸受隙間に潤滑油及び給油を必要とせず、しかも、高速移動においても振動を生じさせないで、低摩擦、低発熱でもって可動体を好ましく支持できる。   Since a static pressure gas bearing is one in which a gas film is formed between a movable body supported by the bearing surface and the movable body is supported movably through the gas film, The pressurized gas bearing, combined with its inherent centering function, does not require lubrication or lubrication in the bearing gap, and does not generate vibration even during high-speed movement, with low friction and low heat generation. Therefore, the movable body can be preferably supported.

静圧気体軸受の一つとして、裏金と、この裏金に固定された多孔質金属焼結層とを具備した多孔質静圧気体軸受(特許文献1参照)が用いられるが、この多孔質静圧気体軸受では、供給される高圧気体の利用効率を上げるためには、多孔質金属焼結層において軸受面からのみ高圧気体が噴出することが好ましい。   As one of the static pressure gas bearings, a porous static pressure gas bearing (see Patent Document 1) including a back metal and a porous metal sintered layer fixed to the back metal is used. In the gas bearing, in order to increase the utilization efficiency of the high-pressure gas supplied, it is preferable that the high-pressure gas is ejected only from the bearing surface in the porous metal sintered layer.

上記の多孔質静圧気体軸受では、多孔質金属焼結層が裏金の一方の面に一体に形成されたものであるために、多孔質金属焼結層の端面からの高圧気体の漏出は避けられず、高圧気体の利用効率が低下してしまう。   In the above porous hydrostatic gas bearing, since the porous metal sintered layer is integrally formed on one side of the back metal, avoid leakage of high-pressure gas from the end surface of the porous metal sintered layer. In other words, the utilization efficiency of the high-pressure gas is reduced.

この問題点に対し、本出願人は、先に、多孔質金属焼結層の端面に当該端面を覆ってかつ多孔質金属焼結層の軸受面を越えて突出しないように封止材を固着した多孔質静圧気体軸受を提案した(特許文献2参照)。   In response to this problem, the applicant first fixed the sealing material on the end surface of the porous metal sintered layer so as to cover the end surface and not protrude beyond the bearing surface of the porous metal sintered layer. A porous hydrostatic gas bearing was proposed (see Patent Document 2).

この提案に係る多孔質静圧気体軸受は、裏金と、この裏金の一方の面に固定された多孔質金属焼結層とを具備しており、多孔質金属焼結層の端面には、当該多孔質金属焼結層の端面を覆って且つ多孔質金属焼結層の軸受面を越えて突出しないようにして封止材が固着されている。   The porous hydrostatic gas bearing according to this proposal includes a back metal and a porous metal sintered layer fixed to one surface of the back metal, and the end surface of the porous metal sintered layer has the The sealing material is fixed so as to cover the end face of the porous metal sintered layer and not to protrude beyond the bearing surface of the porous metal sintered layer.

ところで、多孔質静圧気体軸受では、軸受面と可動体との間に気体膜を形成し気体膜を介して可動体を支持するのであるが、軸受面に対する可動体の相対的な高速回転において気体膜の空気が高速剪断力を受けて発熱することになる。この発熱は、軸受面側及び可動体側に熱膨張を惹起させて軸受面と可動体との間の隙間を狭めて、最悪の場合には軸受の焼き付きを生じさせる虞がある結果、可動体の相対的な移動、例えば回転の上限を決定する要因となる。特に、軸方向に長い長尺の多孔質静圧気体軸受では、軸方向の中間部分における気体膜の空気の外部への逃げをそれ程期待できないために、斯かる中間部分での気体膜の空気は、そこに滞留して比較的長い時間に亘って高速剪断力を受けて発熱することになり、そこでの軸受面と可動体との間の隙間を大きく狭める虞がある。   By the way, in the porous static pressure gas bearing, a gas film is formed between the bearing surface and the movable body, and the movable body is supported via the gas film. However, in the relative high-speed rotation of the movable body with respect to the bearing surface. The air in the gas film receives heat at high speed and generates heat. This heat generation causes thermal expansion on the bearing surface side and the movable body side, narrowing the gap between the bearing surface and the movable body, and in the worst case, may cause seizure of the bearing. It becomes a factor which determines the relative movement, for example, the upper limit of rotation. In particular, in the case of a long porous hydrostatic gas bearing that is long in the axial direction, it is not possible to expect much escape of the gas film air to the outside in the axial intermediate portion. Then, it stays there and receives high-speed shearing force over a relatively long time to generate heat, and there is a possibility that the gap between the bearing surface and the movable body there is greatly narrowed.

また、特許文献2に示される本出願人の提案に係る多孔質静圧気体軸受では、多孔質金属焼結層の端面に当該多孔質金属焼結層の端面を覆って且つ多孔質金属焼結層の軸受面を越えて突出しないようにしてエポキシ樹脂又はフェノール樹脂からなる封止材を固着して多孔質金属焼結層の端面からの高圧気体の漏出を防止するようにしているが、エポキシ樹脂又はフェノール樹脂からなる封止材の固着作業は、裏金の一方の面に固着された多孔質金属焼結層に切削加工又は研削加工を施した後に行われるため、提案に係る多孔質静圧気体軸受の製造工程においてはこの封止作業工程を加えることが余儀なくされる。   Further, in the porous static pressure gas bearing according to the applicant's proposal shown in Patent Document 2, the end surface of the porous metal sintered layer is covered with the end surface of the porous metal sintered layer, and the porous metal sintered material is sintered. The sealing material made of epoxy resin or phenol resin is fixed so as not to protrude beyond the bearing surface of the layer to prevent leakage of high-pressure gas from the end face of the porous metal sintered layer. Since the fixing work of the sealing material made of resin or phenol resin is performed after cutting or grinding the porous metal sintered layer fixed to one surface of the back metal, the porous static pressure according to the proposal In the manufacturing process of the gas bearing, this sealing work process is inevitably added.

本発明は、前記諸点に鑑みてなされたものであり、その目的とするところは、長尺であっても、気体膜を形成する空気をその滞留を避けるように適宜に外部に逃がし得て当該空気の発熱を抑えることができ、而して、軸受面側及び可動体側の熱膨張を回避できて軸受面に対する可動体のより高速な移動、特に回転を可能にする多孔質静圧気体軸受及びその製造方法を提供することにある。   The present invention has been made in view of the above-mentioned points, and the object of the present invention is to allow the air forming the gas film to escape to the outside appropriately so as to avoid the retention even if it is long. A porous hydrostatic gas bearing that can suppress heat generation of air, and thus can avoid thermal expansion on the bearing surface side and the movable body side, thereby enabling faster movement of the movable body relative to the bearing surface, in particular rotation. It is in providing the manufacturing method.

本発明の他の目的とするところは、多孔質金属焼結層への切削加工又は研削加工の施工後のエポキシ樹脂又はフェノール樹脂からなる封止材による封止作業工程を必要とすることなく、しかも、エポキシ樹脂又はフェノール樹脂等の乾燥、固化を待つ必要もない上に多孔質金属焼結層への切削加工又は研削加工の完了でもって一応の製品を得ることができ、その上、多孔質金属焼結層の端面の確実な封止を長期にわたって維持することができる多孔質静圧気体軸受及びその製造方法を提供することにある。   The other object of the present invention is that without requiring a sealing work step with a sealing material composed of an epoxy resin or a phenol resin after the cutting or grinding of the porous metal sintered layer, Moreover, there is no need to wait for drying or solidification of epoxy resin or phenolic resin, etc., and it is possible to obtain a temporary product by completion of cutting processing or grinding processing to the porous metal sintered layer. An object of the present invention is to provide a porous hydrostatic gas bearing capable of maintaining a reliable sealing of the end face of the sintered metal layer over a long period of time and a method for manufacturing the same.

本発明の多孔質静圧気体軸受は、ステンレス鋼からなる筒状の裏金と、この裏金の円筒状の内面に軸方向において環状隙間を挟んで並置された少なくとも2個の多孔質金属焼結層と、この多孔質金属焼結層の夫々に高圧気体を供給すべく、裏金の内面に当該内面側で開口して形成されていると共に当該内面側の開口が多孔質金属焼結層によって覆われた溝を有している供給手段と、裏金の端部及び環状隙間における多孔質金属焼結層の端面を封止すべく、裏金の端部及び環状隙間における多孔質金属焼結層の端面に一体に接合された封止材と、環状隙間において多孔質金属焼結層の端面を封止する封止材に設けられた径方向の貫通孔と、この貫通孔を裏金の外部に連通させるべく、裏金に設けられた貫通孔とを具備している。   The porous hydrostatic gas bearing of the present invention includes a cylindrical back metal made of stainless steel, and at least two porous metal sintered layers juxtaposed on the cylindrical inner surface of the back metal with an annular gap in the axial direction. In order to supply a high pressure gas to each of the porous metal sintered layers, the inner surface of the back metal is formed with an opening on the inner surface side, and the opening on the inner surface side is covered with the porous metal sintered layer. The end of the back metal and the end surface of the porous metal sintered layer in the annular gap are sealed in order to seal the end means of the back metal and the end surface of the porous metal sintered layer in the annular gap. In order to make the through-hole communicate with the outside of the back metal, the sealing material joined integrally, the radial through-hole provided in the sealing material sealing the end face of the porous metal sintered layer in the annular gap And a through hole provided in the back metal.

本発明の多孔質静圧気体軸受によれば、少なくとも2個の多孔質金属焼結層が裏金の円筒状の内面に軸方向において環状隙間を挟んで並置されて多孔質金属焼結層が分割して配されていると共に環状隙間において多孔質金属焼結層の端面を封止する封止材に径方向の貫通孔が設けられており、しかも、裏金に設けられた貫通孔が封止材の径方向の貫通孔を裏金の外部に連通させるようになっているために、当該多孔質静圧気体軸受が軸方向において長尺であっても、2個の多孔質金属焼結層間の近傍で気体膜を形成する空気を封止材の貫通孔と裏金の貫通孔とを介してその滞留を避けるように適宜に外部に逃がし得て斯かる近傍での気体膜の空気の発熱を抑えることができ、而して、軸受面側及び可動体側の熱膨張を回避できて軸受面に対する可動体のより高速な移動、特に回転を可能にすることができる。   According to the porous hydrostatic gas bearing of the present invention, at least two porous metal sintered layers are juxtaposed on the cylindrical inner surface of the back metal with an annular gap in the axial direction to divide the porous metal sintered layer. The through hole in the radial direction is provided in the sealing material that seals the end face of the porous metal sintered layer in the annular gap, and the through hole provided in the back metal is the sealing material. Because the through hole in the radial direction is communicated with the outside of the back metal, even if the porous hydrostatic gas bearing is elongated in the axial direction, it is in the vicinity of the two porous metal sintered layers. The air that forms the gas film can be appropriately released to the outside through the through hole of the sealing material and the through hole of the back metal so as to avoid the retention, and the heat generation of the air in the gas film in the vicinity is suppressed. Therefore, it is possible to avoid thermal expansion on the bearing surface side and the movable body side, and against the bearing surface. Faster movement of the movable body, in particular to allow rotation.

本発明の好ましい例では、裏金の内面には接合層が形成されており、各多孔質金属焼結層は、裏金の内面に接合層を介して一体に接合されており、各封止材は、裏金の内面に接合層を介して接合されていると共に純銅からなっており、斯かる例の多孔質静圧気体軸受によれば、多孔質金属焼結層の端面に純銅からなる封止材が接合されているので、当該端面からの供給高圧気体の漏出をなくし得て、供給高圧気体の利用効率を上げることができ、軸受隙間に所望の気体膜を形成できるのみならず、多孔質金属焼結層への切削加工又は研削加工の施工後のエポキシ樹脂又はフェノール樹脂からなる封止材による封止作業工程を必要とすることなく、しかも、エポキシ樹脂又はフェノール樹脂等の乾燥、固化を待つ必要もない上に多孔質金属焼結層への切削加工又は研削加工の完了でもって一応の製品を得ることができる。   In a preferred example of the present invention, a bonding layer is formed on the inner surface of the back metal, each porous metal sintered layer is integrally bonded to the inner surface of the back metal via the bonding layer, and each sealing material is The inner surface of the back metal is joined via a joining layer and is made of pure copper. According to the porous hydrostatic gas bearing of such an example, the sealing material made of pure copper on the end face of the porous metal sintered layer Can be used to eliminate leakage of the supply high-pressure gas from the end face, increase the utilization efficiency of the supply high-pressure gas, and not only can form a desired gas film in the bearing gap, but also porous metal. Without requiring a sealing work step with a sealing material composed of an epoxy resin or a phenol resin after the cutting process or grinding process on the sintered layer, and waiting for drying or solidification of the epoxy resin or the phenol resin, etc. No need for porous metal sintering It can be obtained prima facie product with a completion of a cutting or grinding to.

上記の好ましい例において、接合層は、ニッケルメッキ層と銅メッキ層との二層のメッキ層を含んでおり、ニッケルメッキ層は裏金の内面に接合されており、多孔質金属焼結層及び封止材は銅メッキ層に接合されているとよく、この例の多孔質静圧気体軸受によれば、筒状の裏金の内面に形成された接合層と封止材及び多孔質金属焼結層とは金属同士の接合となるため接合力が強く、多孔質金属焼結層に供給される高圧気体によって封止材が裏金の内面及び多孔質金属焼結層の端面とから剥離等を生じることはなく、多孔質金属焼結層の端面の確実な封止を長期にわたって維持することができる。   In the above preferred example, the bonding layer includes two plating layers of a nickel plating layer and a copper plating layer, the nickel plating layer being bonded to the inner surface of the back metal, and the porous metal sintered layer and the sealing layer. The stopper is preferably bonded to the copper plating layer. According to the porous hydrostatic gas bearing of this example, the bonding layer, the sealing material and the porous metal sintered layer formed on the inner surface of the cylindrical back metal Is a metal-to-metal bond, so the bonding force is strong, and the sealing material peels off from the inner surface of the back metal and the end surface of the porous metal sintered layer by the high-pressure gas supplied to the porous metal sintered layer Rather, reliable sealing of the end face of the porous metal sintered layer can be maintained over a long period of time.

本発明においては、純銅には無酸素銅又はタフピッチ銅が好適に使用され得、無酸素銅又はタフピッチ銅は、多孔質金属焼結層の端面との間に焼結時に一部合金化して接合せしめられ得るので、封止材と多孔質金属焼結層との間の接合力は高く、結果として封止材の多孔質金属焼結層からの剥離等を生じることはない。   In the present invention, oxygen-free copper or tough pitch copper can be suitably used as pure copper, and the oxygen-free copper or tough pitch copper is partly alloyed and bonded to the end face of the porous metal sintered layer. Therefore, the bonding force between the sealing material and the porous metal sintered layer is high, and as a result, the peeling of the sealing material from the porous metal sintered layer does not occur.

本発明の他の例では、多孔質金属焼結層は、4重量%以上10重量%以下の錫(Sn)と、10重量%以上40重量%以下のニッケル(Ni)と、0.1重量%以上0.5重量%未満の燐(P)と、2重量%以上10重量%以下の無機物質粒子と、残部が銅(Cu)とからなっており、この例の多孔質静圧気体軸受では、焼結過程において液相のNiPを発生する燐成分が0.1重量%以上0.5重量%未満の含有量であるために、液相のNiPの発生量が少なくなり、焼結時に液相のNiPが流れ出すことがなく、多孔質金属焼結層を接合層に接合するに必要な量の液相のNiPとなり、接合層を介する多孔質金属焼結層と裏金との接合力が高められ、しかも、液相のNiPの発生量が少ないことにより焼結後の冷却(放冷)時の多孔質金属焼結層の収縮量が少ないので、多孔質金属焼結層の収縮に起因する裏金と多孔質金属焼結層との接合層を介する各接合面で多孔質金属焼結層の剥離を生じることがない。 In another example of the present invention, the sintered porous metal layer has 4 wt% or more and 10 wt% or less of tin (Sn), 10 wt% or more and 40 wt% or less of nickel (Ni), 0.1 wt% % To less than 0.5% by weight of phosphorus (P), 2% to 10% by weight of inorganic substance particles, and the balance consisting of copper (Cu). In the sintering process, since the phosphorus component that generates liquid phase Ni 3 P is 0.1 wt% or more and less than 0.5 wt%, the amount of liquid phase Ni 3 P generated is reduced. The liquid phase Ni 3 P does not flow out at the time of sintering, and the amount of liquid phase Ni 3 P necessary to join the porous metal sintered layer to the bonding layer is obtained, and the porous metal sintering via the bonding layer The bonding force between the layer and the back metal is increased, and the amount of generated liquid phase Ni 3 P is small, so that cooling (release) is performed after sintering. Since the amount of shrinkage of the porous metal sintered layer during cooling is small, the porous metal fired at each joining surface through the joining layer between the back metal and the porous metal sintered layer due to the shrinkage of the porous metal sintered layer. No delamination occurs.

本発明では、多孔質金属焼結層に分散含有される無機物質粒子は、好ましくは、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つが選択されて使用される。   In the present invention, the inorganic substance particles dispersed and contained in the porous metal sintered layer are preferably at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Selected and used.

多孔質金属焼結層の粒界に分散含有された斯かる無機物質粒子は、このもの自体が機械加工によって塑性変形することがなく、加えて多孔質金属焼結層の素地の金属部分の塑性変形を分断して軽減する働きにより、軸受面の形成のための切削加工又は研削加工等の機械加工における多孔質金属焼結層の目詰まりを抑えることができる。   Such inorganic substance particles dispersed and contained in the grain boundary of the porous metal sintered layer are not themselves plastically deformed by machining, and in addition, the plasticity of the metal part of the base of the porous metal sintered layer By clogging and reducing deformation, clogging of the porous sintered metal layer in machining such as cutting or grinding for forming the bearing surface can be suppressed.

本発明の多孔質静圧気体軸受の製造方法は、ステンレス鋼からなる筒状の裏金を準備し、この裏金の円筒状の内面に軸方向に所定の間隔を隔てて少なくとも2個の環状溝を形成する工程と、裏金の内面に、当該裏金の内面に接合されたニッケルメッキ層と当該ニッケルメッキ層に接合された銅メッキ層との二層のメッキ層からなる接合層を形成する工程と、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、2重量%以上10重量%以下の無機物質粒子と、残部が銅とを混合して混合粉末を形成し、この混合粉末を金型内に装填し、所定の成形圧力を掛けて該混合粉末からなる2個の円筒状の圧粉体を形成する工程と、純銅からなる少なくとも3個の環状の封止材を準備する工程と、裏金の一方の端部の内面に接合層を介して一つの封止材を圧接嵌合したのち、この一つの封止材と接触させて裏金の内面に接合層を介して一方の圧粉体を圧接嵌合し、ついで、軸方向において2個の環状溝の間で一方の圧粉体の端面と接触させて他の封止材を裏金の内面に接合層を介して圧接嵌合し、さらにこの他の封止材と接触させて裏金の内面に接合層を介して他方の圧粉体を圧接嵌合し、この他方の圧粉体の端面と接触させて裏金の他方の端部の内面に接合層を介して残る封止材を圧接嵌合する工程と、これらを還元性雰囲気又は真空中で800〜1150℃の温度で20〜120分間焼結し、圧粉体の焼結と同時に接合層を介する当該圧粉体の裏金の内面への接合を行う工程と、焼結後、裏金の内面に接合層を介して一体に接合していると共に圧粉体の焼結により得られた多孔質金属焼結層の内面に切削加工又は研削加工を施す工程とを具備しており、純銅からなる封止材が裏金の端部及び環状隙間における裏金の内面に接合層を介して接合されていると共に多孔質金属焼結層の端面に一体に接合されている多孔質静圧気体軸受を製造することを特徴とする。   The method for producing a porous hydrostatic gas bearing according to the present invention comprises preparing a cylindrical backing metal made of stainless steel, and forming at least two annular grooves on the cylindrical inner surface of the backing metal at predetermined intervals in the axial direction. Forming a bonding layer composed of two plating layers, a nickel plating layer bonded to the inner surface of the back metal and a copper plating layer bonded to the nickel plating layer, on the inner surface of the back metal; 4% by weight to 10% by weight tin, 10% by weight to 40% by weight nickel, 0.1% by weight to less than 0.5% by weight phosphorus, and 2% by weight to 10% by weight inorganic The material particles and the balance copper are mixed to form a mixed powder, the mixed powder is loaded into a mold, and a predetermined compacting pressure is applied to form two cylindrical green compacts made of the mixed powder. And at least three annular sealing materials made of pure copper After the step of preparing and press-fitting one sealing material to the inner surface of one end of the back metal via a bonding layer, the inner surface of the back metal is contacted with the one sealing material via the bonding layer. One green compact is press-fitted and then contacted with the end face of one green compact between two annular grooves in the axial direction, and the other sealing material is bonded to the inner surface of the back metal via a bonding layer Press-fit, and contact with the other sealing material to press-fit the other green compact to the inner surface of the back metal via the bonding layer, and contact with the end surface of the other green compact. The step of press-fitting the sealing material remaining on the inner surface of the other end through the bonding layer, and sintering these at a temperature of 800 to 1150 ° C. for 20 to 120 minutes in a reducing atmosphere or vacuum, The step of bonding the green compact to the inner surface of the back metal through the bonding layer simultaneously with the sintering of the body, and after sintering, the bonding layer is inserted into the inner surface of the back metal And a step of cutting or grinding the inner surface of the porous metal sintered layer obtained by sintering the green compact, and the sealing material made of pure copper is used as the back metal A porous hydrostatic gas bearing is manufactured which is bonded to the inner surface of the back metal in the end portion and the annular gap via a bonding layer and integrally bonded to the end surface of the porous metal sintered layer. .

本発明の製造方法によれば、裏金の円筒状の内面に、当該裏金の内面に接合されたニッケルメッキ層と当該ニッケルメッキ層に接合された銅メッキ層との二層のメッキ層からなる接合層を形成し、斯かる裏金の一方の端部の内面に接合層を介して一つの封止材を圧接嵌合したのち、該封止材と接触させて該裏金の内面に、錫、ニッケル、燐、無機物質粒子及び銅を含んだ一方の圧粉体を接合層を介して圧接嵌合し、ついで、軸方向において2個の環状溝の間で一方の圧粉体の端面と接触させて他の封止材を裏金の内面に接合層を介して圧接嵌合し、さらに他の封止材の端面と接触させて裏金の内面に他方の圧粉体を接合層を介して圧接嵌合し、他方の圧粉体の端面と接触させて裏金の他方の端部の内面に残る封止材を接合層を介して圧接嵌合し、これら裏金、封止材及び圧粉体を還元性雰囲気又は真空中で800〜1150℃の温度で20〜120分間焼結し、この圧粉体の焼結と同時に接合層を介して圧粉体の裏金の内面への接合を行う結果、裏金の内面に接合層を介して一体に接合されていると共に圧粉体の焼成により得られた多孔質金属焼結層の各端面には、裏金の内面の接合層の銅メッキ層に一体に接合された純銅からなる封止材が当該多孔質金属焼結層と焼結時に一部合金化して一体に接合されるため、封止材の裏金の内面及び多孔質金属焼結層の端面との接合強度が高められ、封止材が多孔質金属焼結層から剥離等を生じることはなく、多孔質金属焼結層の各端面からの高圧気体の漏出をなくし得て、供給高圧気体の利用効率を上げることができ、軸受隙間に所望の気体膜を形成できるのみならず、多孔質金属焼結層への切削加工又は研削加工の施工後のエポキシ樹脂又はフェノール樹脂からなる封止材による封止作業工程を必要とすることなく、しかも、エポキシ樹脂又はフェノール樹脂等の乾燥、固化を待つ必要もない上に多孔質金属焼結層への切削加工又は研削加工の完了でもって一応の製品を得ることができ、その上、裏金の内面に形成された接合層と封止材及び多孔質金属焼結層とは金属同士の接合となるため接合力が強く、多孔質金属焼結層に供給される高圧気体によって封止材が裏金の内面及び多孔質金属焼結層の端面とから剥離等を生じることはなく、多孔質金属焼結層の端面の確実な封止を長期にわたって維持することができる上に、2個の多孔質金属焼結層間の近傍で気体膜を形成する空気を外部に適宜逃がすようにすると、2個の多孔質金属焼結層間の近傍での空気の滞留を避けることができて空気の発熱を抑えることができ、而して、軸受面側及び可動体側の熱膨張を回避できて軸受面に対する可動体のより高速な回転を含む移動が可能な多孔質静圧気体軸受を提供できる。   According to the manufacturing method of the present invention, a joining consisting of two plating layers, a nickel plating layer joined to the inner surface of the backing metal and a copper plating layer joined to the nickel plating layer, on the cylindrical inner surface of the backing metal. After forming a layer and press-fitting one sealing material to the inner surface of one end of the back metal via a bonding layer, the inner surface of the back metal is contacted with tin, nickel Then, one green compact containing phosphorus, inorganic particles and copper is press-fitted through a bonding layer, and then brought into contact with the end face of one green compact between two annular grooves in the axial direction. The other sealing material is press-fitted to the inner surface of the back metal via a bonding layer, and the other green compact is pressed to the inner surface of the back metal via the bonding layer. The sealing material remaining on the inner surface of the other end of the back metal is brought into contact with the end surface of the other green compact through the bonding layer. The backing metal, the sealing material, and the green compact are sintered in a reducing atmosphere or vacuum at a temperature of 800 to 1150 ° C. for 20 to 120 minutes, and the green compact is sintered through the bonding layer simultaneously with the sintering of the green compact. As a result of bonding to the inner surface of the back metal of the body, each end surface of the porous metal sintered layer obtained by firing of the green compact is integrally bonded to the inner surface of the back metal via the bonding layer. Since the sealing material made of pure copper integrally bonded to the copper plating layer of the inner surface of the bonding layer is partly alloyed and integrally bonded with the porous metal sintered layer during sintering, the backing metal of the sealing material The bonding strength between the inner surface of the porous metal sintered layer and the end surface of the porous metal sintered layer is increased, the sealing material does not peel off from the porous metal sintered layer, and the high pressure from each end surface of the porous metal sintered layer. Gas leakage can be eliminated, the utilization efficiency of the supplied high-pressure gas can be increased, and the desired clearance can be provided in the bearing gap. Not only can a film be formed, but it does not require a sealing work step with a sealing material made of epoxy resin or phenol resin after cutting or grinding to the porous metal sintered layer, and epoxy There is no need to wait for the resin or phenol resin to dry or solidify, and the porous metal sintered layer can be cut or ground to complete a temporary product, and then formed on the inner surface of the back metal. The bonding layer, the sealing material, and the porous metal sintered layer are bonded to each other, so that the bonding force is strong, and the sealing material becomes the inner surface of the back metal and the high pressure gas supplied to the porous metal sintered layer. No peeling or the like occurs from the end face of the porous metal sintered layer, it is possible to maintain a reliable sealing of the end face of the porous metal sintered layer over a long period of time, and two porous metal sintered bodies A void that forms a gas film near the interlayer If air is allowed to escape to the outside as appropriate, it is possible to avoid the retention of air in the vicinity of the two porous metal sintered layers and to suppress the heat generation of the air. It is possible to provide a porous hydrostatic gas bearing capable of avoiding thermal expansion on the body side and capable of movement including faster rotation of the movable body with respect to the bearing surface.

本発明の製造方法においては、2個の多孔質金属焼結層間の近傍で気体膜を形成する空気を外部に逃がす貫通孔を裏金と他の封止材とに形成する工程を具備していてもよいが、斯かる工程は、圧粉体の焼成後又は切削加工若しくは研削加工の施工後に行ってもよく、また、貫通孔を形成する工程の前に他の封止材の内周面に環状の溝を形成する工程を具備していてもよく、この環状の溝を形成することにより、2個の多孔質金属焼結層間の近傍で気体膜を形成する空気を当該環状の溝を介して効果的に外部に逃がすことができるようになる。更に本発明の製造方法においては、径方向の貫通孔を有した裏金及び他の封止材を準備し、裏金の径方向の貫通孔に他の封止材の径方向の貫通孔を連通させるように、径方向の貫通孔を有した他の封止材を軸方向において2個の環状溝の間で該一つの圧粉体の端面と接触させると共に裏金の内面に圧接嵌合する工程を有していてもよく、この場合、環状の溝を外周面に有した他の封止材を用いると、裏金の径方向の貫通孔と他の封止材の径方向の貫通孔との位置合わせが容易となり好ましい。   The manufacturing method of the present invention includes a step of forming, in the back metal and other sealing material, a through-hole for escaping air that forms a gas film in the vicinity of two porous metal sintered layers to the outside. However, such a step may be performed after the green compact is fired or after cutting or grinding, and before the step of forming the through hole, it is performed on the inner peripheral surface of another sealing material. There may be provided a step of forming an annular groove. By forming this annular groove, air forming a gas film in the vicinity of the two porous metal sintered layers is passed through the annular groove. Can effectively escape to the outside. Furthermore, in the manufacturing method of the present invention, a back metal having a through hole in the radial direction and other sealing material are prepared, and the through hole in the radial direction of the other sealing material is communicated with the through hole in the radial direction of the back metal. Thus, the step of bringing another sealing material having a through hole in the radial direction into contact with the end face of the one green compact between the two annular grooves in the axial direction and press-fitting to the inner surface of the back metal In this case, if another sealing material having an annular groove on the outer peripheral surface is used, the position of the radial through hole of the back metal and the radial through hole of the other sealing material Matching is easy and preferable.

本発明の製造方法では、多孔質金属焼結層に分散含有される無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つが選択されて使用されるとよい。   In the production method of the present invention, the inorganic substance particles dispersed and contained in the porous metal sintered layer are at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. It should be selected and used.

斯かる製造方法によれば、多孔質金属焼結層の粒界に分散含有された無機物質粒子は、このもの自体が機械加工によって塑性変形することがなく、加えて多孔質金属焼結層の素地の金属部分の塑性変形を分断して軽減する働きにより、機械加工における多孔質金属焼結層の目詰まりを抑えることができる。   According to such a manufacturing method, the inorganic substance particles dispersed and contained in the grain boundaries of the porous metal sintered layer are not themselves plastically deformed by machining, and in addition, the porous metal sintered layer By clogging and reducing the plastic deformation of the metal part of the substrate, clogging of the porous metal sintered layer in machining can be suppressed.

本発明の多孔質静圧気体軸受の製造方法では、封止材を形成する純銅には、無酸素銅又はタフピッチ銅が使用されるとよい。   In the method for producing a porous hydrostatic gas bearing according to the present invention, oxygen-free copper or tough pitch copper may be used as the pure copper forming the sealing material.

無酸素銅又はタフピッチ銅は、多孔質金属焼結層の端面との間に焼結時に一部合金化して接合せしめられので、封止材と多孔質金属焼結層との間の接合力は高く、結果として封止材の多孔質金属焼結層からの剥離等を生じることはない。   Oxygen-free copper or tough pitch copper is partly alloyed and bonded to the end face of the porous metal sintered layer during sintering, so the bonding force between the sealing material and the porous metal sintered layer is As a result, peeling of the sealing material from the porous metal sintered layer does not occur.

本発明において供給手段は、一つの好ましい例では溝として少なくとも2個の環状溝とこの2個の環状溝を連通する直線状溝とを含んでいてもよいが、斯かる直線状溝に代えて又は直線状溝に加えて孔を含んでいてもよい。   In the present invention, the supply means may include at least two annular grooves as a groove and a linear groove communicating the two annular grooves in one preferred example, but instead of such a linear groove, Alternatively, holes may be included in addition to the linear grooves.

本発明によれば、長尺であっても、気体膜を形成する空気をその滞留を避けるように適宜に外部に逃がし得て当該空気の発熱を抑えることができ、而して、軸受面側及び可動体側の熱膨張を回避できて軸受面に対する可動体のより高速な移動、特に回転を可能にする多孔質静圧気体軸受及びその製造方法を提供し得る。   According to the present invention, even if it is long, the air forming the gas film can be released to the outside appropriately so as to avoid the retention, and the heat generation of the air can be suppressed. In addition, it is possible to provide a porous hydrostatic gas bearing capable of avoiding thermal expansion on the movable body side and enabling faster movement of the movable body relative to the bearing surface, in particular rotation, and a method for manufacturing the same.

また本発明によれば、多孔質金属焼結層への切削加工又は研削加工の施工後のエポキシ樹脂又はフェノール樹脂からなる封止材による封止作業工程を必要とすることなく、しかも、エポキシ樹脂又はフェノール樹脂等の乾燥、固化を待つ必要もない上に多孔質金属焼結層への切削加工又は研削加工の完了でもって一応の製品を得ることができ、その上、多孔質金属焼結層の端面の確実な封止を長期にわたって維持することができる多孔質静圧気体軸受及びその製造方法を提供し得る。   According to the present invention, the epoxy resin can be used without the need for a sealing work step with a sealing material made of an epoxy resin or a phenol resin after the cutting or grinding of the porous metal sintered layer. Alternatively, it is not necessary to wait for drying or solidification of phenol resin or the like, and the porous metal sintered layer can be obtained by completion of cutting or grinding to the porous metal sintered layer. It is possible to provide a porous hydrostatic gas bearing capable of maintaining a reliable sealing of the end face for a long period of time and a method for manufacturing the same.

次に、本発明の実施の形態の例を、図に示す例に基づいて更に詳細に説明する。なお、本発明はこれら例に何等限定されないのである。   Next, an example of an embodiment of the present invention will be described in more detail based on an example shown in the figure. The present invention is not limited to these examples.

図1から図4に示す本例の多孔質静圧気体軸受としての多孔質静圧気体ラジアル軸受1は、内径寸法に対して長尺のステンレス鋼からなる円筒状の裏金2と、裏金2の円筒状の内面3に当該内面3に形成された接合層4を介して一体に接合され、かつ軸方向において環状隙間5を挟んで並置された少なくとも2個の(本例では2個)の多孔質金属焼結層6a及び6bと、多孔質金属焼結層6a及び6bの夫々に高圧気体を供給すべく、裏金2の内面3に当該内面3側で開口して形成されていると共に当該内面3側の開口が夫々多孔質金属焼結層6a及び6bによって覆われており、かつ軸方向に間隔を隔てて配された2個の環状溝7及び8並びに裏金2の軸方向の一方の環状端面10から他方の環状端面9に向けて軸方向に伸びて裏金2の内部に設けて環状溝7及び8を相互に連通させた孔11を有した供給手段12と、裏金2の端部の内面3及び環状隙間5における裏金2の内面3に接合層4を介して接合されていると共に裏金2の端部及び環状隙間5における多孔質金属焼結層6a及び6bの端面13及び13a並びに14及び14bを封止すべく、裏金2の端部及び環状隙間5における多孔質金属焼結層6a及び6bの端面13及び13a並びに14及び14bに一体に接合された3個の封止材15a、15ab及び15bと、環状隙間5において多孔質金属焼結層6a及び6bの端面13a及び14bを封止する封止材15abに設けられている径方向の1個以上、本例では1個の貫通孔16と、裏金2に設けられていると共に径方向の貫通孔16を裏金2の外部に連通させる1個以上、本例では1個の貫通孔17とを具備しており、多孔質金属焼結層6a及び6bの円筒状の内面を夫々軸受面18a及び18bとしており、供給手段12は、裏金2に設けられた環状溝7及び8並びに孔11に加えて、裏金2の円筒状の外面19で開口して裏金2に設けられていると共に環状溝7及び孔11を介して環状溝8に夫々高圧気体供給を供給する高圧気体供給用の孔20とを具備しており、貫通孔17は、裏金2の外面19で開口して外部に連通されている。   A porous hydrostatic gas radial bearing 1 as a porous hydrostatic gas bearing of this example shown in FIGS. 1 to 4 includes a cylindrical back metal 2 made of stainless steel that is long with respect to the inner diameter, and a back metal 2. At least two (in this example, two) perforations that are integrally bonded to the cylindrical inner surface 3 via a bonding layer 4 formed on the inner surface 3 and juxtaposed with an annular gap 5 in the axial direction. The inner surface 3 of the back metal 2 is formed with an opening on the inner surface 3 side so as to supply high-pressure gas to each of the sintered metal layers 6a and 6b and the porous sintered metal layers 6a and 6b. 3 side openings are covered with porous metal sintered layers 6a and 6b, respectively, and two annular grooves 7 and 8 arranged at an interval in the axial direction and one annular in the axial direction of the back metal 2 The inner side of the back metal 2 extends in the axial direction from the end surface 10 toward the other annular end surface 9. Are provided on the inner surface 3 of the end of the back metal 2 and the inner surface 3 of the back metal 2 in the annular gap 5 via the bonding layer 4. In order to seal the end faces 13 and 13a and 14 and 14b of the porous metal sintered layers 6a and 6b in the end of the back metal 2 and the annular gap 5, the porous in the end of the back metal 2 and the annular gap 5 is sealed. Three sealing materials 15a, 15ab and 15b integrally joined to the end faces 13 and 13a and 14 and 14b of the sintered metal layers 6a and 6b, and end faces of the porous metal sintered layers 6a and 6b in the annular gap 5 One or more radial holes provided in the sealing material 15ab for sealing 13a and 14b, in this example, one through hole 16 and the back metal 2 and the radial through hole 16 are backed by the back metal Communicating outside of 2 1 or more, in this example, one through-hole 17, and cylindrical inner surfaces of the porous metal sintered layers 6 a and 6 b are used as bearing surfaces 18 a and 18 b, respectively. In addition to the annular grooves 7 and 8 and the hole 11 provided in the back metal 2, an opening is provided at the cylindrical outer surface 19 of the back metal 2 so as to be provided in the back metal 2 and the annular groove 8 through the annular groove 7 and the hole 11. And a high-pressure gas supply hole 20 for supplying a high-pressure gas supply, and the through hole 17 is opened at the outer surface 19 of the back metal 2 and communicated with the outside.

裏金2の環状端面10で開口した孔11の軸方向の一端21は、ノックピンからなる栓22で閉塞されており、孔11の軸方向の他端23は、裏金2の環状端面9の手前で裏金2自体で閉塞されている一方、孔20に連通されており、孔11は、その途中で環状溝8に連通しており、孔20は、孔11及び環状溝7に連通している。   One end 21 in the axial direction of the hole 11 opened at the annular end surface 10 of the back metal 2 is closed with a stopper 22 made of a knock pin, and the other end 23 in the axial direction of the hole 11 is in front of the annular end surface 9 of the back metal 2. While closed by the back metal 2 itself, it communicates with the hole 20, the hole 11 communicates with the annular groove 8 in the middle thereof, and the hole 20 communicates with the hole 11 and the annular groove 7.

多孔質静圧気体ラジアル軸受1において、裏金2を形成するステンレス鋼としては、オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼又はフェライト系ステンレス鋼が使用される。とくに、クロム(Cr)含有量の少ないマルテンサイト系ステンレス鋼又はフェライト系ステンレス鋼は好ましいものである。   In the porous hydrostatic gas radial bearing 1, as the stainless steel forming the back metal 2, austenitic stainless steel, martensitic stainless steel or ferritic stainless steel is used. In particular, martensitic stainless steel or ferritic stainless steel having a low chromium (Cr) content is preferable.

接合層4は、裏金2の内面3に接合されたニッケルメッキ層と該ニッケルメッキ層の表面に接合されていると共に多孔質金属焼結層6a及び6b並びに封止材15a、15ab及び15bが表面に接合されている銅メッキ層との二層のメッキ層を含んでいる。接合層4を介する裏金2と多孔質金属焼結層6a及び6bとの接合部に剥離等を生じさせないためには、多孔質金属焼結層6a及び6bを形成する圧粉体のメッキ層への圧接の程度にもよるが、ニッケルメッキ層は、2μm以上20μm以下、好ましくは3μm以上15μm以下の厚さを有しており、銅メッキ層は、10μm以上25μm以下、好ましくは10μm以上20μm以下の厚みを有している。   The bonding layer 4 is bonded to the nickel plating layer bonded to the inner surface 3 of the back metal 2, the surface of the nickel plating layer, and the porous metal sintered layers 6a and 6b and the sealing materials 15a, 15ab and 15b It includes two plating layers with a copper plating layer bonded to the substrate. In order to prevent peeling or the like from occurring at the joint between the back metal 2 and the porous metal sintered layers 6a and 6b via the bonding layer 4, to the green compact plating layer forming the porous metal sintered layers 6a and 6b. Depending on the degree of pressure contact, the nickel plating layer has a thickness of 2 μm or more and 20 μm or less, preferably 3 μm or more and 15 μm or less, and the copper plating layer is 10 μm or more and 25 μm or less, preferably 10 μm or more and 20 μm or less. It has the thickness of.

多孔質金属焼結層6a及び6bの夫々は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、2重量%以上10重量%以下の無機物質粒子と、残部が銅とからなる。成分中の燐成分は、圧粉体の焼結過程において液相のNiPを生成し、焼結を進行させるとともに裏金2の一方の面に形成された接合層4へのニッケル成分の拡散を助長し、圧粉体の焼結により得られた多孔質金属焼結層6a及び6bを強固に一体にさせる役割を果たす。 Each of the porous metal sintered layers 6a and 6b is composed of 4 wt% or more and 10 wt% or less tin, 10 wt% or more and 40 wt% or less nickel, and 0.1 wt% or more and less than 0.5 wt%. Phosphorus, 2% by weight or more and 10% by weight or less of inorganic substance particles, and the balance consists of copper. The phosphorus component in the component generates liquid phase Ni 3 P in the sintering process of the green compact, advances the sintering, and diffuses the nickel component into the bonding layer 4 formed on one surface of the back metal 2. The porous metal sintered layers 6a and 6b obtained by sintering the green compact are firmly integrated.

また、燐成分の配合量を0.1重量%以上0.5重量%未満とすることにより、多孔質金属焼結層6a及び6bの焼結後冷却時の収縮量を低く抑えることができ、多孔質金属焼結層6a及び6bの収縮に起因する多孔質金属焼結層6a及び6bの裏金2の内面3における接合層4からの剥離等を生じることはない。さらに、燐成分の配合量を少なくして液相のNiPの生成量を少なくすることにより、多孔質金属焼結層6a及び6bの気孔率が高められ、多孔質金属焼結層6a及び6bを流通する高圧気体の圧力損失が低下することによって、多孔質金属焼結層6a及び6bの軸受面18a及び18bに噴出す給気圧力が相対的に高まり浮上量を高めることができる。 Moreover, the amount of shrinkage at the time of cooling after sintering of the porous metal sintered layers 6a and 6b can be kept low by making the blending amount of the phosphorus component 0.1 wt% or more and less than 0.5 wt%, No peeling or the like from the bonding layer 4 on the inner surface 3 of the back metal 2 of the porous metal sintered layers 6a and 6b due to the shrinkage of the porous metal sintered layers 6a and 6b. Further, the porosity of the porous metal sintered layers 6a and 6b is increased by reducing the amount of phosphorus component added and the amount of liquid phase Ni 3 P produced, and the porous metal sintered layers 6a and 6b By reducing the pressure loss of the high-pressure gas flowing through 6b, the air supply pressure ejected to the bearing surfaces 18a and 18b of the porous metal sintered layers 6a and 6b can be relatively increased and the flying height can be increased.

多孔質金属焼結層6a及び6bの夫々に分散含有される無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる。これらは、多くの金属材料のように塑性変形することはなく、無機物質である。このような無機物質粒子が多孔質金属焼結層6a及び6bの錫、ニッケル、燐及び銅からなる素地(粒界)中に分散含有されていると、このもの自体が機械加工によって塑性変形することがなく、加えて、多孔質金属焼結層6a及び6bの素地の金属部分の塑性変形を分断し軽減する働きがあるため、機械加工における多孔質金属焼結層6a及び6bの目詰まりを抑えることができる。そして、これら無機物質粒子の配合量は、2重量%以上10重量%以下の割合が適当である。配合量が2重量%未満では多孔質金属焼結層6a及び6bの素地の金属部分の塑性変形を分断し軽減する働きが充分発揮されず、また配合量が10重量%を超えて配合すると、多孔質金属焼結層6a及び6bの焼結性を阻害する。   The inorganic substance particles dispersedly contained in each of the porous metal sintered layers 6a and 6b are made of at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. . These are inorganic substances that do not undergo plastic deformation like many metal materials. When such inorganic substance particles are dispersed and contained in the base (grain boundary) made of tin, nickel, phosphorus and copper of the porous metal sintered layers 6a and 6b, the particles themselves are plastically deformed by machining. In addition, since there is a function of dividing and reducing plastic deformation of the metal portion of the base of the porous metal sintered layers 6a and 6b, clogging of the porous metal sintered layers 6a and 6b in machining is prevented. Can be suppressed. And, the blending amount of these inorganic substance particles is suitably a ratio of 2% by weight to 10% by weight. When the blending amount is less than 2% by weight, the function of dividing and reducing the plastic deformation of the metal parts of the porous metal sintered layers 6a and 6b is not sufficiently exerted, and when the blending amount exceeds 10% by weight, This impairs the sinterability of the porous metal sintered layers 6a and 6b.

純銅からなっている環状の封止材15a、15ab及び15bにおいて、封止材15abは、貫通孔16に加えて、環状の内周面30及び外周面31と、内周面30に形成された環状の溝32とを有しており、溝32は、貫通孔16によって封止材15abの外周面31側に連通されており、而して、溝32が貫通孔16及び貫通孔17を介して裏金2の外部に連通される結果、環状隙間5に隣接する多孔質金属焼結層6a及び6b間の近傍34a及び34b、すなわち環状隙間5の近傍34a及び34bで気体膜を形成する空気は、溝32、貫通孔16及び貫通孔17を介して裏金2の外部に排出されるようになっている。溝32と同等の環状の溝を外周面31に形成し、斯かる外周面31の溝と溝32とを貫通孔16を介して連通させるようにしてもよく、この場合、複数の貫通孔16を封止材15abに周方向に分散して好ましくは等角度間隔をもって形成し、この複数の貫通孔16を介して外周面31の溝と溝32とを連通させるようにしてもよい。   In the annular sealing materials 15a, 15ab, and 15b made of pure copper, the sealing material 15ab is formed on the annular inner peripheral surface 30 and the outer peripheral surface 31 and the inner peripheral surface 30 in addition to the through hole 16. The groove 32 is communicated with the outer peripheral surface 31 side of the sealing material 15ab by the through hole 16, and thus the groove 32 passes through the through hole 16 and the through hole 17. As a result of communicating with the outside of the backing metal 2, air forming a gas film in the vicinity 34a and 34b between the porous metal sintered layers 6a and 6b adjacent to the annular gap 5, that is, in the vicinity 34a and 34b of the annular gap 5 is In addition, it is discharged to the outside of the back metal 2 through the groove 32, the through hole 16 and the through hole 17. An annular groove equivalent to the groove 32 may be formed on the outer peripheral surface 31, and the groove of the outer peripheral surface 31 and the groove 32 may be communicated with each other through the through hole 16. May be dispersed in the sealing material 15ab in the circumferential direction, preferably at equal angular intervals, and the grooves of the outer peripheral surface 31 and the grooves 32 may be communicated with each other through the plurality of through holes 16.

多孔質静圧気体ラジアル軸受1によれば、2個の多孔質金属焼結層6a及び6bが裏金2の円筒状の内面3に軸方向において環状隙間5を挟んで並置されて多孔質金属焼結層が分割して配されていると共に環状隙間5において多孔質金属焼結層6a及び6bの端面13a及び14bを封止する封止材15abに径方向の貫通孔16が設けられており、しかも、裏金2に設けられた貫通孔17が封止材15abの径方向の貫通孔16を裏金2の外部に連通させるようになっているために、当該多孔質静圧気体軸受1が軸方向において長尺であっても、2個の多孔質金属焼結層6a及び6b間の近傍34a及び34bで気体膜を形成する空気を封止材15abの貫通孔16と裏金2の貫通孔17とを介してその滞留を避けるように適宜に外部に逃がし得て斯かる近傍34a及び34bでの気体膜の空気の発熱を抑えることができ、而して、軸受面18a及び18b側及び可動体、例えば回転軸35側の熱膨張を回避できて軸受面18a及び18bに対する回転軸35のより高速な回転を可能にすることができる。   According to the porous hydrostatic gas radial bearing 1, two porous metal sintered layers 6a and 6b are juxtaposed on the cylindrical inner surface 3 of the back metal 2 with the annular gap 5 interposed therebetween in the axial direction. The bonding layers are divided and the radial through holes 16 are provided in the sealing material 15ab for sealing the end faces 13a and 14b of the porous metal sintered layers 6a and 6b in the annular gap 5. Moreover, since the through hole 17 provided in the back metal 2 allows the radial through hole 16 of the sealing material 15ab to communicate with the outside of the back metal 2, the porous hydrostatic gas bearing 1 is axially arranged. The air forming a gas film in the vicinity 34a and 34b between the two porous metal sintered layers 6a and 6b is allowed to pass through the through-hole 16 of the sealing material 15ab and the through-hole 17 of the back metal 2. To avoid any stagnation through the Thus, the heat generation of the gas film air in the vicinity 34a and 34b can be suppressed, and thus the thermal expansion of the bearing surfaces 18a and 18b and the movable body, for example, the rotating shaft 35 can be avoided. Faster rotation of the rotating shaft 35 relative to the surfaces 18a and 18b can be made possible.

また多孔質静圧気体ラジアル軸受1によれば、多孔質金属焼結層6a及び6bの端面13及び13a並びに14及び14bの夫々に純銅からなる封止材15a、15ab及び15bが接合されているので、当該端面13及び13a並びに14及び14bからの供給高圧気体の漏出をなくし得て、供給高圧気体の利用効率を上げることができ、軸受隙間36に所望の気体膜を形成できるのみならず、多孔質金属焼結層6a及び6bへの切削加工又は研削加工の施工後のエポキシ樹脂又はフェノール樹脂からなる封止材による封止作業工程を必要とすることなく、しかも、エポキシ樹脂又はフェノール樹脂等の乾燥、固化を待つ必要もない上に多孔質金属焼結層6a及び6bへの切削加工又は研削加工の完了でもって一応の製品を得ることができ、その上、裏金2の内面3に形成された接合層4と封止材15a、15ab及び15b及び多孔質金属焼結層6a及び6bとは金属同士の接合となるため接合力が強く、多孔質金属焼結層6a及び6bに供給される高圧気体によって封止材15a、15ab及び15bが裏金2の内面3及び多孔質金属焼結層6a及び6bの端面13及び13a並びに14及び14bとから剥離等を生じることはなく、多孔質金属焼結層6a及び6bの端面13及び13a並びに14及び14bの確実な封止を長期にわたって維持することができる。   Further, according to the porous hydrostatic gas radial bearing 1, sealing materials 15a, 15ab and 15b made of pure copper are joined to the end faces 13 and 13a and 14 and 14b of the porous metal sintered layers 6a and 6b, respectively. Therefore, the leakage of the supply high-pressure gas from the end faces 13 and 13a and 14 and 14b can be eliminated, the utilization efficiency of the supply high-pressure gas can be increased, and a desired gas film can be formed in the bearing gap 36. There is no need for a sealing work step with a sealing material made of epoxy resin or phenol resin after the cutting or grinding of porous metal sintered layers 6a and 6b, and epoxy resin or phenol resin, etc. There is no need to wait for drying and solidification of the porous metal, and it is possible to obtain a temporary product by cutting or grinding the porous metal sintered layers 6a and 6b. In addition, the bonding layer 4 formed on the inner surface 3 of the back metal 2, the sealing materials 15 a, 15 ab and 15 b and the porous metal sintered layers 6 a and 6 b are bonded to each other, so that the bonding force is strong and porous. The sealing materials 15a, 15ab and 15b are peeled off from the inner surface 3 of the back metal 2 and the end surfaces 13 and 13a and 14 and 14b of the porous metal sintered layers 6a and 6b by the high pressure gas supplied to the metal sintered layers 6a and 6b. The end surfaces 13 and 13a and 14 and 14b of the porous metal sintered layers 6a and 6b can be reliably sealed for a long time.

次に、多孔質静圧気体ラジアル軸受1の製造方法について説明する。   Next, the manufacturing method of the porous static pressure gas radial bearing 1 will be described.

オーステナイト系ステンレス鋼、マルテンサイト系ステンレス鋼又はフェライト系ステンレス鋼からなる内径寸法に対して長尺であって貫通孔17を有しない円筒状の裏金2を準備し、この裏金2の内面3にその軸方向に等間隔に2個の環状溝7及び8を形成すると共に、裏金2に裏金2の軸方向の一方の環状端面10から他方の環状端面9に向けて軸方向に伸びて環状溝7及び8を相互に連通させた孔11と、裏金2の径方向の円筒状の外面19で開口していると共に裏金2の内部で裏金2の外面19から相互連通用の孔11に向けて径方向に伸びた高圧気体供給用の孔20とを形成し、孔11の一端21をノックピンからなる栓22によって閉塞する。   A cylindrical back metal 2 that is long with respect to the inner diameter of the austenitic stainless steel, martensitic stainless steel, or ferritic stainless steel and does not have the through-hole 17 is prepared. Two annular grooves 7 and 8 are formed at equal intervals in the axial direction, and the annular groove 7 extends in the axial direction from one annular end face 10 in the axial direction of the backing metal 2 toward the other annular end face 9 in the backing metal 2. And 8 are opened at the cylindrical outer surface 19 in the radial direction of the back metal 2 and the diameter of the inner surface of the back metal 2 from the outer surface 19 of the back metal 2 toward the hole 11 for mutual communication. A hole 20 for supplying high-pressure gas extending in the direction is formed, and one end 21 of the hole 11 is closed by a plug 22 made of a knock pin.

環状溝7及び8並びに栓22によって閉塞された孔11及び孔20が形成された裏金2のこれら環状溝7及び8を除く内面3に厚さ2〜20μm、好ましくは3〜15μmのニッケルメッキ層を形成し、該ニッケルメッキ層の表面に厚さ10〜25μm、好ましくは10〜20μmの銅メッキ層を形成して、裏金2の環状溝7及び8を除く内面3に、当該裏金2の内面3に接合されたニッケルメッキ層と当該ニッケルメッキ層に接合された銅メッキ層との二層のメッキ層からなると共に裏金2と多孔質金属焼結層6a及び6bとを接合する接合層4を形成する。   Nickel plating layer having a thickness of 2 to 20 μm, preferably 3 to 15 μm, on the inner surface 3 excluding these annular grooves 7 and 8 of the back metal 2 in which the holes 11 and 20 closed by the stoppers 22 and the annular grooves 7 and 8 are formed. A copper plating layer having a thickness of 10 to 25 μm, preferably 10 to 20 μm is formed on the surface of the nickel plating layer, and the inner surface 3 of the back metal 2 is removed from the inner surface 3 excluding the annular grooves 7 and 8. A bonding layer 4 composed of two plating layers, a nickel plating layer bonded to 3 and a copper plating layer bonded to the nickel plating layer, and bonding the back metal 2 and the porous metal sintered layers 6a and 6b. Form.

250メッシュの篩を通過するアトマイズ錫粉末4重量%以上10重量%以下と、250メッシュの篩を通過する電解ニッケル粉末10重量%以上40重量%以下と、120メッシュの篩を通過する銅燐(燐14.5%)粉末0.7重量%以上3.4重量%未満と、150メッシュの篩を通過する無機物質粒子2重量%以上10重量%以下と、150メッシュの篩を通過する電解銅粉末残部とをミキサーにて混合して混合粉末を作製する。   4 to 10% by weight of atomized tin powder passing through a 250-mesh sieve, 10 to 40% by weight of electrolytic nickel powder passing through a 250-mesh sieve, and copper phosphorous ( Phosphorus 14.5%) Powder 0.7 wt% or more and less than 3.4 wt%, inorganic substance particles 2 wt% or more and 10 wt% or less passing through 150 mesh screen, electrolytic copper passing through 150 mesh screen The remaining powder is mixed with a mixer to prepare a mixed powder.

無機物質粒子としては、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなるものが好適である。   As the inorganic substance particles, those composed of at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide and silicon carbide are suitable.

この混合粉末を金型中に装填し、成形圧力3トン/cm〜7トン/cmの範囲で圧縮成形し、2個の円筒状の圧粉体を作製する。 This mixed powder is loaded into a mold and compression molded at a molding pressure of 3 ton / cm 2 to 7 ton / cm 2 to produce two cylindrical compacts.

純銅からなる2つの環状の封止材15a及び15bと貫通孔16及び溝32を有しない純銅からなる封止材15abとを準備する。封止材15a、15ab及び15bを形成する純銅としては、JIS−H−2123で規定されている無酸素形銅の1種又は2種又は同じくJIS−H−2123で規定されているタフピッチ形銅が使用されて好適である。   Two annular sealing materials 15a and 15b made of pure copper and a sealing material 15ab made of pure copper having no through hole 16 and groove 32 are prepared. As pure copper for forming the sealing materials 15a, 15ab and 15b, one or two types of oxygen-free copper specified by JIS-H-2123 or a tough pitch type copper also specified by JIS-H-2123 Is preferably used.

ニッケルメッキ層と銅メッキ層とからなる二層のメッキ層(接合層4)が形成された円筒状の裏金2の一方の端部の内面3にメッキ層(接合層4)を介して一つの環状の封止材15aを圧接嵌合したのち、円筒状の裏金2内に一方の圧粉体を圧入して当該圧粉体を封止材15aと接触させて裏金2の内面3にメッキ層(接合層4)を介して圧接嵌合し、ついで、軸方向において2個の環状溝7及び8の間で当該一方の圧粉体の端面と接触させて封止材15abを裏金2の内面3にメッキ層(接合層4)を介して圧接嵌合し、さらに円筒状の裏金2内に他方の圧粉体を圧入して当該他方の圧粉体を封止材15abと接触させて裏金2の内面3にメッキ層(接合層4)を介して圧接嵌合し、この他方の圧粉体の端面と接触させて裏金2の他方の端部の内面3にメッキ層(接合層4)を介して残る封止材15bを圧接嵌合する。   One of the inner surfaces 3 of one end of the cylindrical back metal 2 formed with two plating layers (joining layer 4) composed of a nickel plating layer and a copper plating layer is provided via the plating layer (joining layer 4). After the annular sealing material 15a is press-fitted and fitted, one green compact is pressed into the cylindrical back metal 2, and the green compact is brought into contact with the sealing material 15a so that a plating layer is formed on the inner surface 3 of the back metal 2. Then, the sealing material 15ab is brought into contact with the end face of the one green compact between the two annular grooves 7 and 8 in the axial direction, and the sealing material 15ab is brought into contact with the inner surface of the back metal 2. 3 is press-fitted to the plate 3 through the plating layer (joining layer 4), and the other green compact is pressed into the cylindrical back metal 2 so that the other green compact is brought into contact with the sealing material 15ab. 2 is press-fitted to the inner surface 3 of the back plate 2 through a plating layer (bonding layer 4), and is brought into contact with the other end face of the green compact so as to contact the other end of the back metal 2. Plating layer on the inner surface 3 a sealing member 15b remains over the (bonding layer 4) to press fit.

次に、これら裏金2、3個の封止材15a、15ab及び15b及び2個の圧粉体の組み合わせ体を還元性雰囲気又は真空の焼結炉中で800〜1150℃、好ましくは850〜1000℃の温度で20〜120分間、好ましくは30〜90分間焼結を形成する。   Next, the combination of these backing metal 2, 3 sealing materials 15a, 15ab and 15b and 2 green compacts in a reducing atmosphere or vacuum sintering furnace is 800-1150 ° C, preferably 850-1000. The sintering is formed at a temperature of 20 ° C. for 20 to 120 minutes, preferably 30 to 90 minutes.

この焼結過程において、圧粉体の成分中のニッケル(Ni)及び燐(P)が液相のNiPを発生するが、液相のNiPを発生する燐成分が0.1重量%以上0.5重量%未満の含有量であることから、液相のNiPの発生量が少なくなり、焼結時に流れ出すことがなく、圧粉体の焼成により得られた多孔質金属焼結層6a及び6bを接合層4に接合するに必要な量の液相のNiPとなり、焼結後の冷却(放冷)時の温度の下降に伴って、裏金2、多孔質金属焼結層6a及び6b及び接合層4における各接合面で該多孔質金属焼結層6a及び6bの収縮に起因する剥離を生じることがない。 In this sintering process, nickel (Ni) and phosphorus (P) in the green compact component generate Ni 3 P in the liquid phase, but 0.1 wt.% Of the phosphorus component generating Ni 3 P in the liquid phase. % Or more and less than 0.5% by weight, the amount of Ni 3 P generated in the liquid phase is reduced, and does not flow out during sintering. The amount of liquid phase Ni 3 P required to join the bonding layers 6a and 6b to the bonding layer 4 becomes lower, and as the temperature decreases during cooling (cooling) after sintering, the back metal 2, the porous metal firing Peeling due to shrinkage of the porous metal sintered layers 6a and 6b does not occur at the bonding surfaces of the bonding layers 6a and 6b and the bonding layer 4.

また、円筒状の裏金2の内面3にはニッケルメッキ層と銅メッキ層との二層のメッキ層からなる接合層4が形成されているので、焼結過程において、裏金2と多孔質金属焼結層6a及び6bとの両者間に接合層4を介する強固な一体化がなされる。同時に、封止材15a、15ab及び15bの夫々は接合層4に一体に接合されると共に、多孔質金属焼結層6a及び6bの端面13、13a、14及び14bと一部合金化して一体に接合される。円筒状の裏金2と裏金2の内面3に接合層4を介して接合された多孔質金属焼結層6a及び6bとの接合強さ(剪断強さ)は、6.5N/mm以上を示す。このようにして円筒状の裏金2の内面3に接合層4を介して焼結された多孔質金属焼結層6a及び6bの内面をその粗さが10−3mm以下となるように切削加工、研削加工、ラッピング等の機械加工を施し、この機械加工前又は機械加工後、封止材15abの内周面30に環状の溝32を形成する一方、裏金2の軸方向の略中央部において一端では内面3で開口すると共に他端では外面19で開口した径方向の貫通孔17と貫通孔17に連通すると共に封止材15abの軸方向の略中央部において一端では溝32に開口し他端では外周面31側で開口した径方向の貫通孔16と孔明け形成して、純銅からなる封止材15a、15ab及び15bが裏金2の端部及び環状隙間5における裏金2の内面3に接合層4を介して接合されていると共に多孔質金属焼結層6a及び6bの端面13、13a、14及び14bに一体に接合されており、しかも、軸受面18a及び18bを有した所望の多孔質静圧気体ラジアル軸受1を得る。 Further, since a joining layer 4 composed of two plating layers of a nickel plating layer and a copper plating layer is formed on the inner surface 3 of the cylindrical backing metal 2, the backing metal 2 and the porous metal firing are formed in the sintering process. Strong integration through the bonding layer 4 is performed between the binder layers 6a and 6b. At the same time, each of the sealing materials 15a, 15ab and 15b is integrally bonded to the bonding layer 4, and partly alloyed with the end faces 13, 13a, 14 and 14b of the porous metal sintered layers 6a and 6b to be integrated. Be joined. The joining strength (shear strength) between the cylindrical backing metal 2 and the porous metal sintered layers 6a and 6b joined to the inner surface 3 of the backing metal 2 via the joining layer 4 is 6.5 N / mm 2 or more. Show. In this way, the inner surfaces of the porous metal sintered layers 6a and 6b sintered on the inner surface 3 of the cylindrical back metal 2 through the bonding layer 4 are cut so that the roughness thereof is 10 −3 mm or less. In this case, an annular groove 32 is formed on the inner peripheral surface 30 of the sealing material 15ab before or after the machining, and at the substantially central portion in the axial direction of the back metal 2. One end opens at the inner surface 3 and the other end communicates with the radial through-hole 17 and the through-hole 17 opened at the outer surface 19, and at one end opens into the groove 32 at the substantially central portion in the axial direction of the sealing material 15 ab. At the end, a through-hole 16 in the radial direction opened on the outer peripheral surface 31 side is formed and sealing materials 15a, 15ab and 15b made of pure copper are formed on the end portion of the back metal 2 and the inner surface 3 of the back metal 2 in the annular gap 5. When bonded via the bonding layer 4 Obtaining porous metal sintered layer 6a and 6b of the end faces 13, 13a, 14 and are joined together to 14b, moreover, a desired porous hydrostatic gas radial bearing 1 having a bearing surface 18a and 18b on.

本製造方法によれば、封止材15a、15ab及び15bの裏金2の内面3及び多孔質金属焼結層6a及び6bの端面13、13a、14及び14bとの接合強度が高められ、封止材15a、15ab及び15bが多孔質金属焼結層6a及び6bから剥離等を生じることはなく、多孔質金属焼結層6a及び6bの端面13、13a、14及び14bからの高圧気体の漏出をなくし得て、供給高圧気体の利用効率を上げることができ、軸受隙間36に所望の気体膜を形成できるのみならず、多孔質金属焼結層6a及び6bへの切削加工又は研削加工の施工後のエポキシ樹脂又はフェノール樹脂からなる封止材による封止作業工程を必要とすることなく、しかも、エポキシ樹脂又はフェノール樹脂等の乾燥、固化を待つ必要もない上に多孔質金属焼結層6a及び6bへの切削加工又は研削加工の完了でもって一応の製品を得ることができ、その上、裏金2の内面3に形成された接合層4と封止材15a、15ab及び15b及び多孔質金属焼結層6a及び6bとは金属同士の接合となるため接合力が強く、多孔質金属焼結層6a及び6bに供給される高圧気体によって封止材15a、15ab及び15bが裏金2の内面3及び多孔質金属焼結層6a及び6bの端面13、13a、14及び14bとから剥離等を生じることはなく、多孔質金属焼結層6a及び6bの端面13、13a、14及び14bの確実な封止を長期にわたって維持することができる上に、2個の多孔質金属焼結層6a及び6b間の近傍34a及び34bで気体膜を形成する空気を外部に適宜逃がすことができ、2個の多孔質金属焼結層6a及び6b間の近傍34a及び34bでの空気の滞留を避けることができて空気の発熱を抑えることができ、而して、軸受面18a及び18b側及び回転軸35側の熱膨張を回避できて軸受面18a及び18bに対する回転軸35のより高速な回転が可能な多孔質静圧気体軸受1を提供できる。   According to this manufacturing method, the bonding strength between the inner surface 3 of the back metal 2 of the sealing materials 15a, 15ab and 15b and the end surfaces 13, 13a, 14 and 14b of the porous metal sintered layers 6a and 6b is increased, and sealing is performed. The materials 15a, 15ab and 15b do not peel from the porous metal sintered layers 6a and 6b, and the high pressure gas leaks from the end faces 13, 13a, 14 and 14b of the porous metal sintered layers 6a and 6b. It can be eliminated, the utilization efficiency of the supplied high-pressure gas can be increased, and not only a desired gas film can be formed in the bearing gap 36, but also after the cutting or grinding of the porous metal sintered layers 6a and 6b. Without the need for a sealing work step with a sealing material made of epoxy resin or phenol resin, and without waiting for drying or solidification of epoxy resin or phenol resin, etc. A temporary product can be obtained by completing the cutting or grinding of the bonding layers 6a and 6b, and the bonding layer 4 formed on the inner surface 3 of the back metal 2 and the sealing materials 15a, 15ab and 15b, and Since the porous metal sintered layers 6a and 6b are metal-to-metal bonded, the bonding force is strong, and the sealing materials 15a, 15ab and 15b are back metal 2 by the high-pressure gas supplied to the porous metal sintered layers 6a and 6b. No peeling or the like occurs from the inner surface 3 of the metal and the end surfaces 13, 13a, 14 and 14b of the porous metal sintered layers 6a and 6b, and the end surfaces 13, 13a, 14 and 14b of the porous metal sintered layers 6a and 6b. In addition to being able to maintain a reliable sealing over a long period of time, air forming a gas film in the vicinity 34a and 34b between the two porous metal sintered layers 6a and 6b can be appropriately released to the outside, 2 pieces The retention of air in the vicinity 34a and 34b between the porous metal sintered layers 6a and 6b can be avoided and heat generation of air can be suppressed. Thus, the bearing surfaces 18a and 18b side and the rotary shaft 35 side It is possible to provide the porous hydrostatic gas bearing 1 that can avoid the thermal expansion of the rotating shaft 35 and can rotate the rotating shaft 35 at higher speed with respect to the bearing surfaces 18a and 18b.

多孔質金属焼結層6a及び6b間に配される封止材としては、上記の封止材15abに限定されないのであって、例えば溝32を有しない封止材であってもよい。   The sealing material disposed between the porous metal sintered layers 6a and 6b is not limited to the sealing material 15ab described above, and may be a sealing material that does not have the groove 32, for example.

本発明の多孔質静圧気体ラジアル軸受を示す断面図である。It is sectional drawing which shows the porous static pressure gas radial bearing of this invention. 図1に示すII−II線矢視断面図である。It is the II-II arrow directional cross-sectional view shown in FIG. 図1に示す一つの封止材の平面断面図である。It is a plane sectional view of one sealing material shown in FIG. 図1に示す一つの封止材の斜視図である。It is a perspective view of one sealing material shown in FIG.

符号の説明Explanation of symbols

1 多孔質静圧気体ラジアル軸受
2 裏金
3 内面
4 接合層
5 環状隙間
6a、6b 多孔質金属焼結層
7、8 環状溝
9、10 環状端面
11 孔
12 供給手段
13、13a、14、14b 端面
15a、15ab及び15b 封止材
16、17 貫通孔
18a、18b 軸受面
19 外面
20 孔
DESCRIPTION OF SYMBOLS 1 Porous static pressure gas radial bearing 2 Back metal 3 Inner surface 4 Joining layer 5 Annular gap 6a, 6b Porous metal sintered layer 7, 8 Annular groove 9, 10 Annular end surface 11 Hole 12 Supply means 13, 13a, 14, 14b End surface 15a, 15ab and 15b Sealing material 16, 17 Through hole 18a, 18b Bearing surface 19 Outer surface 20 Hole

Claims (11)

ステンレス鋼からなる筒状の裏金と、この裏金の円筒状の内面に軸方向において環状隙間を挟んで並置された少なくとも2個の多孔質金属焼結層と、この多孔質金属焼結層の夫々に高圧気体を供給すべく、裏金の内面に当該内面側で開口して形成されていると共に当該内面側の開口が多孔質金属焼結層によって覆われた溝を有している供給手段と、裏金の端部及び環状隙間における多孔質金属焼結層の端面を封止すべく、裏金の端部及び環状隙間における多孔質金属焼結層の端面に一体に接合された封止材と、環状隙間において多孔質金属焼結層の端面を封止する封止材に設けられた径方向の貫通孔と、この貫通孔を裏金の外部に連通させるべく、裏金に設けられた貫通孔とを具備している多孔質静圧気体軸受。   Each of the cylindrical back metal made of stainless steel, at least two porous metal sintered layers juxtaposed on the cylindrical inner surface of the back metal with an annular gap in the axial direction, and each of the porous metal sintered layers In order to supply a high-pressure gas to the inner surface of the back metal, the supply means is formed with an opening on the inner surface side and has a groove in which the opening on the inner surface side is covered with a porous metal sintered layer, To seal the end surface of the porous metal sintered layer in the end portion of the back metal and the annular gap, the sealing material integrally joined to the end portion of the back metal and the end surface of the porous metal sintered layer in the annular space, and the ring A radial through-hole provided in a sealing material that seals the end face of the porous metal sintered layer in the gap, and a through-hole provided in the back metal so as to communicate with the outside of the back metal Porous static pressure gas bearing. 裏金の内面には接合層が形成されており、各多孔質金属焼結層は、裏金の内面に接合層を介して一体に接合されており、各封止材は、裏金の内面に接合層を介して接合されていると共に純銅からなっている請求項1に記載の多孔質静圧気体軸受。   A bonding layer is formed on the inner surface of the back metal, and each porous metal sintered layer is integrally bonded to the inner surface of the back metal via the bonding layer, and each sealing material is bonded to the inner surface of the back metal. The porous static pressure gas bearing according to claim 1, wherein the porous static pressure gas bearing is made of pure copper. 接合層は、ニッケルメッキ層と銅メッキ層との二層のメッキ層を含んでおり、ニッケルメッキ層は裏金の内面に接合されており、多孔質金属焼結層及び封止材は銅メッキ層に接合されている請求項2に記載の多孔質静圧気体軸受。   The bonding layer includes two plating layers, a nickel plating layer and a copper plating layer. The nickel plating layer is bonded to the inner surface of the back metal, and the porous metal sintered layer and the sealing material are copper plating layers. The porous static pressure gas bearing according to claim 2, wherein 純銅には、無酸素銅又はタフピッチ銅が使用されている請求項2又は3に記載の多孔質静圧気体軸受。   The porous static pressure gas bearing according to claim 2 or 3, wherein oxygen-free copper or tough pitch copper is used as the pure copper. 多孔質金属焼結層は、4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、2重量%以上10重量%以下の無機物質粒子と、残部が銅とからなる請求項1から4のいずれか一項に記載の多孔質静圧気体軸受。   The porous metal sintered layer comprises 4 wt% or more and 10 wt% or less of tin, 10 wt% or more and 40 wt% or less of nickel, 0.1 wt% or more and less than 0.5 wt% of phosphorus, 2 wt% 5. The porous static pressure gas bearing according to claim 1, wherein the porous material is composed of inorganic particles of not less than 10% and not more than 10% by weight and the balance is copper. 無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる請求項5に記載の多孔質静圧気体軸受。   The porous hydrostatic gas bearing according to claim 5, wherein the inorganic substance particles comprise at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. ステンレス鋼からなる筒状の裏金を準備し、この裏金の円筒状の内面に軸方向に所定の間隔を隔てて少なくとも2個の環状溝を形成する工程と、
裏金の内面に、当該裏金の内面に接合されたニッケルメッキ層と当該ニッケルメッキ層に接合された銅メッキ層との二層のメッキ層からなる接合層を形成する工程と、
4重量%以上10重量%以下の錫と、10重量%以上40重量%以下のニッケルと、0.1重量%以上0.5重量%未満の燐と、2重量%以上10重量%以下の無機物質粒子と、残部が銅とを混合して混合粉末を形成し、この混合粉末を金型内に装填し、所定の成形圧力を掛けて該混合粉末からなる2個の円筒状の圧粉体を形成する工程と、
純銅からなる少なくとも3個の環状の封止材を準備する工程と、
裏金の一方の端部の内面に接合層を介して一つの封止材を圧接嵌合したのち、この一つの封止材と接触させて裏金の内面に接合層を介して一方の圧粉体を圧接嵌合し、ついで、軸方向において2個の環状溝の間で一方の圧粉体の端面と接触させて他の封止材を裏金の内面に接合層を介して圧接嵌合し、さらにこの他の封止材と接触させて裏金の内面に接合層を介して他方の圧粉体を圧接嵌合し、この他方の圧粉体の端面と接触させて裏金の他方の端部の内面に接合層を介して残る封止材を圧接嵌合する工程と、
これらを還元性雰囲気又は真空中で800〜1150℃の温度で20〜120分間焼結し、圧粉体の焼結と同時に接合層を介する当該圧粉体の裏金の内面への接合を行う工程と、
焼結後、裏金の内面に接合層を介して一体に接合していると共に圧粉体の焼結により得られた多孔質金属焼結層の内面に切削加工又は研削加工を施す工程と、
を具備しており、
純銅からなる封止材が裏金の端部及び環状隙間における裏金の内面に接合層を介して接合されていると共に多孔質金属焼結層の端面に一体に接合されている多孔質静圧気体軸受を製造することを特徴とする多孔質静圧気体軸受の製造方法。
Preparing a cylindrical backing metal made of stainless steel, and forming at least two annular grooves at predetermined intervals in the axial direction on the cylindrical inner surface of the backing metal;
Forming a bonding layer consisting of two plating layers, a nickel plating layer bonded to the inner surface of the back metal and a copper plating layer bonded to the nickel plating layer, on the inner surface of the back metal;
4% by weight to 10% by weight tin, 10% by weight to 40% by weight nickel, 0.1% by weight to less than 0.5% by weight phosphorus, and 2% by weight to 10% by weight inorganic The material particles and the balance copper are mixed to form a mixed powder, the mixed powder is loaded into a mold, and a predetermined compacting pressure is applied to form two cylindrical green compacts made of the mixed powder. Forming a step;
Preparing at least three annular sealing materials made of pure copper;
One sealing material is press-fitted onto the inner surface of one end of the back metal via a bonding layer, and then one green compact is brought into contact with the inner surface of the back metal via the bonding layer. And then contact the end face of one green compact between the two annular grooves in the axial direction and press-fit the other sealing material to the inner surface of the back metal via the joining layer, Further, the other green compact is brought into pressure contact with the inner surface of the back metal through a bonding layer in contact with the other sealing material, and the other end of the back metal is brought into contact with the end surface of the other green compact. A step of press-fitting a sealing material remaining on the inner surface via a bonding layer;
A step of sintering these in a reducing atmosphere or in vacuum at a temperature of 800 to 1150 ° C. for 20 to 120 minutes, and simultaneously bonding the green compact to the inner surface of the backing metal via the bonding layer. When,
After sintering, the step of performing cutting or grinding on the inner surface of the porous metal sintered layer obtained by sintering the green compact while integrally bonding to the inner surface of the back metal through the bonding layer;
It has
A porous hydrostatic gas bearing in which a sealing material made of pure copper is joined to an end portion of a back metal and an inner surface of the back metal in an annular gap via a joining layer and is integrally joined to an end face of the porous metal sintered layer A method for producing a porous hydrostatic gas bearing, characterized by comprising:
裏金と他の封止材とに径方向の貫通孔を形成する工程を具備している請求項7に記載の多孔質静圧気体軸受の製造方法。   The manufacturing method of the porous hydrostatic gas bearing of Claim 7 which comprises the process of forming the through-hole of a radial direction in a back metal and another sealing material. 他の封止材の内周面に環状の溝を形成する工程を具備している請求項7又は8に記載の多孔質静圧気体軸受の製造方法。   The manufacturing method of the porous hydrostatic gas bearing of Claim 7 or 8 which comprises the process of forming a cyclic | annular groove | channel in the internal peripheral surface of another sealing material. 無機物質粒子は、黒鉛、窒化ホウ素、フッ化黒鉛、フッ化カルシウム、酸化アルミニウム、酸化ケイ素及び炭化ケイ素のうちの少なくとも一つからなる請求項7から9いずれか一項に記載の多孔質静圧気体軸受の製造方法。   The porous static pressure according to any one of claims 7 to 9, wherein the inorganic substance particles comprise at least one of graphite, boron nitride, graphite fluoride, calcium fluoride, aluminum oxide, silicon oxide, and silicon carbide. Manufacturing method of gas bearing. 純銅には、無酸素銅又はタフピッチ銅が使用される請求項7から10のいずれか一項に記載の多孔質静圧気体軸受の製造方法。   The method for producing a porous hydrostatic gas bearing according to any one of claims 7 to 10, wherein oxygen-free copper or tough pitch copper is used as the pure copper.
JP2004285300A 2004-09-29 2004-09-29 Porous static pressure gas bearing and its manufacturing method Pending JP2006097797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004285300A JP2006097797A (en) 2004-09-29 2004-09-29 Porous static pressure gas bearing and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004285300A JP2006097797A (en) 2004-09-29 2004-09-29 Porous static pressure gas bearing and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006097797A true JP2006097797A (en) 2006-04-13

Family

ID=36237809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004285300A Pending JP2006097797A (en) 2004-09-29 2004-09-29 Porous static pressure gas bearing and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006097797A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011071033A1 (en) * 2009-12-07 2011-06-16 株式会社ダイヤメット Sintered sliding member
WO2014034368A1 (en) * 2012-08-28 2014-03-06 オイレス工業株式会社 Aerostatic radial bearing
WO2017010059A1 (en) * 2015-07-16 2017-01-19 オイレス工業株式会社 Multi-layered sliding member
JP2017066491A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Powder for powder metallurgy, green compact and method for producing sintered component
CN108396169A (en) * 2018-01-26 2018-08-14 中国科学院兰州化学物理研究所 A kind of copper-base graphite composite seal

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709124B2 (en) 2009-12-07 2014-04-29 Diamet Corporation Sintered sliding member
CN102648299A (en) * 2009-12-07 2012-08-22 大治美有限公司 Sintered sliding member
EP2511388A1 (en) * 2009-12-07 2012-10-17 Diamet Corporation Sintered sliding member
JP5337884B2 (en) * 2009-12-07 2013-11-06 株式会社ダイヤメット Sintered sliding member
CN102648299B (en) * 2009-12-07 2013-11-06 大冶美有限公司 Sintered sliding member
EP2511388A4 (en) * 2009-12-07 2017-05-03 Diamet Corporation Sintered sliding member
WO2011071033A1 (en) * 2009-12-07 2011-06-16 株式会社ダイヤメット Sintered sliding member
JP2014043918A (en) * 2012-08-28 2014-03-13 Oiles Ind Co Ltd Static pressure gas radial bearing
WO2014034368A1 (en) * 2012-08-28 2014-03-06 オイレス工業株式会社 Aerostatic radial bearing
WO2017010059A1 (en) * 2015-07-16 2017-01-19 オイレス工業株式会社 Multi-layered sliding member
JP2017025358A (en) * 2015-07-16 2017-02-02 オイレス工業株式会社 Multiple layer sliding member
CN107848035A (en) * 2015-07-16 2018-03-27 奥依列斯工业株式会社 Multilayer sliding component
JP2017066491A (en) * 2015-09-30 2017-04-06 Ntn株式会社 Powder for powder metallurgy, green compact and method for producing sintered component
CN108396169A (en) * 2018-01-26 2018-08-14 中国科学院兰州化学物理研究所 A kind of copper-base graphite composite seal
CN108396169B (en) * 2018-01-26 2020-07-31 中国科学院兰州化学物理研究所 Copper-based graphite composite sealing material

Similar Documents

Publication Publication Date Title
JP4385618B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP5443734B2 (en) Composite bearing member, method for manufacturing composite bearing member, bearing device, and rotating electrical machine
US8007713B2 (en) Sintered composite machine part and manufacturing method thereof
JP4450114B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
EP3387261B1 (en) Shrouded impeller made by additive manufacturing and including voids in the hub and in the shroud
KR20090011027A (en) Powder metal friction stir welding tool and method of manufacture thereof
JP2006097797A (en) Porous static pressure gas bearing and its manufacturing method
US20210116011A1 (en) Sprocket with vibration absorption properties
JP2006090482A (en) Porous hydrostatic gas bearing and its manufacturing method
JP2015506818A (en) High pressure carbide components incorporating gradient structures
JP2002147617A (en) Seal ring for mechanical seal, and mechanical seal using the same
JP4379951B2 (en) Porous static pressure gas screw
JP4798161B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
JP4442012B2 (en) Porous static pressure gas bearing and manufacturing method thereof
JP2004052998A (en) Sliding member provided with dynamic pressure generating groove and manufacturing method therefor
JP2000009142A (en) Manufacture of bearing device and bearing device
FI91725B (en) Production of objects with good dimensional accuracy
JP2006188428A (en) Ceramic member and table for wafer polishing device
JP2014152914A (en) Resin bearing, manufacturing method of the same, and component member separation method of the same
JP5131256B2 (en) Bearing material for porous hydrostatic gas bearing and porous hydrostatic gas bearing using the same
TW201408897A (en) Aerostatic radial bearing
WO2019172244A1 (en) Dynamic pressure bearing, and method for manufacturing same
JP4466349B2 (en) Porous static pressure gas bearing
JP2017009033A (en) Cylindrical composite member for hydrostatic gas bearing, process of manufacture of cylindrical composite member and hydrostatic gas bearing with cylindrical composite member
JPH02175014A (en) Composite sintered hard alloy roll and its manufacture