JP2014043680A - Thin-layer dredging method - Google Patents

Thin-layer dredging method Download PDF

Info

Publication number
JP2014043680A
JP2014043680A JP2012185204A JP2012185204A JP2014043680A JP 2014043680 A JP2014043680 A JP 2014043680A JP 2012185204 A JP2012185204 A JP 2012185204A JP 2012185204 A JP2012185204 A JP 2012185204A JP 2014043680 A JP2014043680 A JP 2014043680A
Authority
JP
Japan
Prior art keywords
water
cylindrical container
flow velocity
water level
suction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012185204A
Other languages
Japanese (ja)
Other versions
JP5988206B2 (en
Inventor
Takahiro Kumagai
隆宏 熊谷
Shinya Eguchi
信也 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP2012185204A priority Critical patent/JP5988206B2/en
Publication of JP2014043680A publication Critical patent/JP2014043680A/en
Application granted granted Critical
Publication of JP5988206B2 publication Critical patent/JP5988206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thin-layer dredging method by which diffusion of sediment in dredging work can be suppressed with a simple structure and only sediment components of small particle diameters can be dredged.SOLUTION: A dredging device 1 comprises: a tubular container 3, which is bottomed and has a tubular shape, disposed in water so as to be movable while projecting its upper end opening on the water; and a suction tube 5 of which one end is inserted into and communicated with the inside of the tubular container 3 and the another end is inserted into a face of a bottom of water. According to a thin-layer dredging method, the dredging device 1 is used to make a water level H inside of the tubular container lower than a water level outside of the tubular container and generate negative pressure within the suction tube 5 utilizing a water head difference between the water levels inside and outside of the tubular container 3, thereby sucking sediment on a top layer of the bottom of water. A flow velocity V within the suction tube 5 is measured by flow velocity measuring means and the flow velocity B within the suction tube is controlled to be equal to or lower than a required flow velocity by flow velocity control means based on the measurement obtained by the flow velocity measuring means, thereby sucking only sediment components with diameters equal to or smaller than a required particle diameter.

Description

本発明は、港湾等の水底部に堆積した土砂を浚渫する浚渫方法であって、水中に設置された筒状容器の内外水位差を利用した薄層浚渫方法に関する。   The present invention relates to a dredging method for dredging sediment deposited on the bottom of water such as a harbor, and relates to a thin layer dredging method using a difference in water level between inside and outside of a cylindrical container installed in water.

従来、港湾等の水底部を浚渫する方法には、グラブ浚渫船を使用した方法(例えば、特許文献1を参照)や、ポンプ浚渫船を使用した方法(例えば、特許文献2を参照)の他、上端開口部を水面に突出させた筒状容器を使用し、この筒状容器内の水位と筒状容器外の水位との水頭差を利用して浚渫を行う方法が知られている(例えば、特許文献3を参照)。   Conventional methods of dredging the bottom of a port or the like include a method using a grab dredger (see, for example, Patent Document 1), a method using a pump dredger (see, for example, Patent Document 2), and the upper end. A method is known in which a cylindrical container having an opening projecting on the water surface is used, and dredging is performed by utilizing the water head difference between the water level in the cylindrical container and the water level outside the cylindrical container (for example, a patent Reference 3).

水頭差を利用した浚渫方法は、上端開口部を水上に突出させた状態で水中に配置される有底筒状の筒状容器と、一端が筒状容器内に連通され、他端が水底面表層部に挿入される吸引管とを備え、筒状容器内水位を筒状容器外水位(自然水位)より低くし、その水頭差を利用して吸引管内に負圧を生じさせることにより吸引管を通して水底面表層部の土砂を周囲の水とともに筒状容器内に吸引するようにしている。   The dredging method utilizing the water head difference is a bottomed cylindrical container disposed in water with the upper end opening protruding above the water, one end communicating with the cylindrical container, and the other end being the bottom of the water. A suction pipe inserted into the surface layer portion, and lowering the water level in the cylindrical container from the water level outside the cylindrical container (natural water level), and using the water head difference to generate a negative pressure in the suction pipe The earth and sand on the surface of the bottom surface of water is sucked into the cylindrical container together with the surrounding water.

特開平10−060943号公報Japanese Patent Laid-Open No. 10-060943 特開平10―280468号公報Japanese Patent Laid-Open No. 10-280468 特表2004−52877号公報Special table 2004-52877 gazette

しかしながら、上述の如きグラブ浚渫船を使用した方法では、グラブバケットを着底させた際に周辺土砂が巻き上がり、それにより当該水域に混濁を生じさせるとともに土砂の拡散を招く虞があり、特に、水底土砂に汚染物質を含むような場合には当該土砂の拡散が問題となる。   However, in the method using the grab dredger as described above, when the grab bucket is settled, the surrounding earth and sand rolls up, which may cause turbidity in the water area and cause the earth and sand to spread. When the soil contains contaminants, the diffusion of the soil becomes a problem.

また、このようなグラブ浚渫船を使用した方法では、グラブバケットで水底部の土砂を掴み取るので、水底部表層を均一且つ薄く浚渫するには、グラブバケットの制御が複雑であったり、水底面に凹凸が生じたりする等の困難性を伴うという問題があった。   In addition, in such a method using a grab dredger, grab buckets grab the sediment at the bottom of the water, so to make the surface of the bottom of the water uniform and thin, the control of the grab bucket is complicated, There was a problem that it was accompanied by difficulties such as unevenness.

上述の如きポンプ浚渫船を使用した方法では、ポンプによる吸引力の微調整が難しく、水底部表層を均一且つ薄く浚渫することが困難であるという問題があった。   In the method using the pump dredger as described above, there is a problem that it is difficult to finely adjust the suction force by the pump, and it is difficult to make the water bottom surface layer uniform and thin.

一方、上述の如き筒状容器内外水位の水頭差を利用した浚渫方法においては、細粒分、砂、礫及びその他の雑物等の粒径の異なる土砂成分が吸引管を通して筒状容器内に吸引されるため、筒状容器内に吸引された土砂を細粒分、砂、細礫等の粒径の小さな成分と中礫以上の粒径の大きな成分とに分別する場合、粒径の小さな成分を筒状容器内から排出するためのサンドポンプとは別に、粒径の大きな成分を筒状容器内から排出するために重機やベルトコンベア等を必要とし、浚渫装置全体が大掛かりになるという問題があった。   On the other hand, in the dredging method using the water head difference between the inside and outside of the cylindrical container as described above, earth and sand components having different particle diameters such as fine particles, sand, gravel and other foreign substances are introduced into the cylindrical container through the suction pipe. Because it is aspirated, when the earth and sand sucked into the cylindrical container is separated into small particles such as fine particles, sand and fine pebbles, and large particles larger than medium pebbles, the particle size is small. Aside from the sand pump for discharging the components from the cylindrical container, a heavy machine, a belt conveyor, etc. are required to discharge the components having a large particle size from the cylindrical container. was there.

本発明は、このような従来の問題に鑑み、簡易な構造で粒径の小さな土砂成分のみを浚渫し、浚渫作業時の土砂の拡散を抑制可能な薄層浚渫方法の提供を目的としてなされたものである。   In view of such conventional problems, the present invention has been made for the purpose of providing a thin layer dredging method capable of dripping only sediment components having a small particle diameter with a simple structure and suppressing the spread of sediment during dredging operations. Is.

上述の如き従来の課題を解決するための請求項1に記載の発明の特徴は、上端開口部を水上に突出させた状態で移動可能に水中に配置される有底筒状の筒状容器と、一端が前記筒状容器内に連通され、他端が水底面部に挿入される吸引管とを備えてなる浚渫装置を使用し、前記筒状容器内水位を筒状容器外水位より低くし、前記筒状容器内外水位の水頭差を利用して前記吸引管内に負圧を生じさせることにより前記吸引管を通して前記水底面部表層の土砂を吸引する薄層浚渫方法において、前記吸引管内の流速を流速計測手段により計測し、該流速計測手段による計測値に基づいて流速制御手段により前記吸引管内の流速を所要の流速以下に制御し、所要粒径以下の土砂成分のみを吸引することにある。   The feature of the invention according to claim 1 for solving the conventional problems as described above is that the bottomed cylindrical tubular container is disposed in the water so as to be movable in a state where the upper end opening projects into the water. Using a scissor device having one end communicated with the inside of the cylindrical container and the other end of the suction pipe inserted into the bottom surface of the water, lowering the water level in the cylindrical container from the water level outside the cylindrical container, In the thin-layer dredging method in which the sand on the surface of the bottom surface of the water is sucked through the suction pipe by generating a negative pressure in the suction pipe by utilizing the water head difference between the inside and outside water levels of the cylindrical container, the flow rate in the suction pipe The measurement means measures and the flow velocity control means controls the flow velocity in the suction pipe below the required flow velocity based on the measurement value obtained by the flow velocity measurement means, and sucks only the earth and sand components less than the required particle size.

請求項2に記載の発明の特徴は、請求項1に構成に加え、前記流速制御手段は、前記筒状容器内水位を注排水により調整する水位調節機構と、予め設定された基準筒状容器内水位を再設定する再設定手段とを備え、前記流速計測手段により前記吸引管内の流速を計測しつつ、前記水位調節機構により前記流速計測手段による計測値が前記所要の流速より速い際には前記筒状容器内に注水し、計測値が前記所要の流速より遅い際には前記筒状容器内より排水することにより吸引管内の流速を調整し、然る後、該流速調整後の当該筒状容器内の水位を計測し、該計測値に基づいて再設定手段により新たな基準筒状容器内水位を再設定することにある。   According to a second aspect of the present invention, in addition to the configuration of the first aspect, the flow rate control means includes a water level adjusting mechanism for adjusting the water level in the cylindrical container by pouring and draining, and a preset reference cylindrical container. A resetting means for resetting the internal water level, and when the flow rate measurement means measures the flow velocity in the suction pipe by the flow velocity measurement means and the measured value by the flow velocity measurement means is faster than the required flow velocity by the water level adjustment mechanism. When water is poured into the cylindrical container and the measured value is slower than the required flow rate, the flow rate in the suction pipe is adjusted by draining from the cylindrical container, and then the cylinder after the flow rate adjustment is performed. The water level in the cylindrical container is measured, and a new reference cylindrical container water level is reset by the resetting means based on the measured value.

請求項3に記載の発明の特徴は、請求項1の構成に加え、前記流速制御手段は、前記吸引管の途中に流量調節可能な開閉弁を備え、前記流速計測手段による計測値が前記所要の流速より速い際に、前記開閉弁を動作させて前記流量を減少させ、前記流速計測手段による計測値が前記所要の流速より遅い際に、前記開閉弁を動作させて前記流量を増加させることにある。     According to a third aspect of the present invention, in addition to the configuration of the first aspect, the flow velocity control means includes an on-off valve capable of adjusting a flow rate in the middle of the suction pipe, and a measured value by the flow velocity measurement means is the required value. The flow rate is decreased by operating the on-off valve when the flow rate is faster than the flow rate of the flow rate, and the flow rate is increased by operating the on-off valve when the measured value by the flow rate measuring means is slower than the required flow rate. It is in.

請求項4に記載の発明の特徴は、請求項1、2又は3の構成に加え、記筒状容器内底部にポンプを備え、該ポンプにより前記筒状容器内に吸引された土砂成分を周囲の水とともに排出することにある。   According to a fourth aspect of the present invention, in addition to the structure of the first, second or third aspect, a pump is provided at the inner bottom of the cylindrical container, and the sediment component sucked into the cylindrical container by the pump is surrounded by the pump. It is to be discharged together with water.

請求項5に記載の発明の特徴は、請求項1〜3又は4の構成に加え、上端開口部が水上に突出した状態に水中に設置される逆流用筒状容器と、該逆流用筒状容器の下端部と前記吸引管とを連通させる開閉可能な連通路とを備え、前記逆流用筒状容器内の水位を記逆流用筒状容器外の水位より高くし、前記前記逆流用筒状容器内外水位の水頭差を利用して前記吸引管内に水底側に向けた流れを生じさせることにある。   According to a fifth aspect of the present invention, in addition to the configuration of the first to third or fourth aspects, the backflow tubular container installed in water in a state where the upper end opening projects onto the water, and the backflow tubular shape An openable and closable communication path that allows the lower end of the container and the suction pipe to communicate with each other, wherein the water level in the backflow cylindrical container is higher than the water level outside the backflow cylindrical container, and the backflow cylindrical The difference is that the flow toward the bottom of the water is generated in the suction pipe by utilizing the water head difference between the water levels inside and outside the container.

請求項6に記載の発明の特徴は、請求項1〜4又は5の構成に加え、前記吸引口は、水平方向に向けて開口した形状に形成されてなることにある。   The feature of the invention described in claim 6 is that, in addition to the structure of claims 1-4 or 5, the suction port is formed in a shape opened in the horizontal direction.

請求項7に記載の発明の特徴は、請求項1〜5又は6の構成に加え、前記吸引口に所要粒径以上の土砂成分の通過を規制するフィルターを設けてなることにある。   A feature of the invention described in claim 7 is that, in addition to the structure of claims 1 to 5 or 6, a filter for restricting passage of earth and sand components having a required particle size or more is provided in the suction port.

本発明に係る薄層浚渫方法は、上述したように、上端開口部を水上に突出させた状態で移動可能に水中に配置される有底筒状の筒状容器と、一端が前記筒状容器内に連通され、他端が水底面部に挿入される吸引管とを備えてなる浚渫装置を使用し、前記筒状容器内水位を筒状容器外水位より低くし、前記筒状容器内外水位の水頭差を利用して前記吸引管内に負圧を生じさせることにより前記吸引管を通して前記水底面部表層の土砂を吸引する薄層浚渫方法において、前記吸引管内の流速を流速計測手段により計測し、該流速計測手段による計測値に基づいて流速制御手段により前記吸引管内の流速を所要の流速以下に制御し、所要粒径以下の土砂成分のみを吸引することにより、粒径が小さく拡散し易い土砂成分の拡散及び周辺水域の混濁を抑えつつ、水底表層部を均一且つ薄く浚渫することができる。また、筒状容器内に吸引した土砂を分別する必要がなく、重機等を用いずにサンドポンプ等のみで排出することができる。更には、汚染物質がシルト・粘性土等の細粒分に付着し易いことから、吸引管内の流速を制御して粒径の小さな土砂成分のみを選別して浚渫することで、汚染物質を水底土砂から効率的に除去することができる。   As described above, the thin-layer dredging method according to the present invention includes a bottomed tubular container that is disposed in water so that the upper end opening protrudes above the water, and one end of the tubular container is disposed on the bottom. And using a dredge device that includes a suction pipe that is communicated with the other end and inserted into the bottom surface of the water, and lowers the water level in the cylindrical container to be lower than the water level outside the cylindrical container. In the thin-layer dredging method of sucking soil on the surface of the water bottom surface through the suction pipe by generating a negative pressure in the suction pipe using a water head difference, the flow velocity in the suction pipe is measured by a flow velocity measuring means, Based on the measured value by the flow velocity measuring means, the flow velocity control means controls the flow velocity in the suction pipe below the required flow velocity, and sucks only the earth and sand components less than the required particle size, so that the particle size is small and easy to diffuse. Diffusion and turbidity of surrounding waters Etsutsu, can be dredged uniform and thin water bottom surface portion. Moreover, there is no need to separate the earth and sand sucked into the cylindrical container, and it can be discharged only by a sand pump or the like without using a heavy machine or the like. Furthermore, since contaminants are likely to adhere to fine particles such as silt and clayey soil, by controlling the flow rate in the suction pipe and selecting only the sediment components with small particle size, It can be efficiently removed from the earth and sand.

また、本発明において、前記流速制御手段は、前記筒状容器内水位を注排水により調整する水位調節機構と、予め設定された基準筒状容器内水位を再設定する再設定手段とを備え、前記流速計測手段により前記吸引管内の流速を計測しつつ、前記水位調節機構により前記流速計測手段による計測値が前記所要の流速より速い際には前記筒状容器内に注水し、計測値が前記所要の流速より遅い際には前記筒状容器内より排水することにより吸引管内の流速を調整し、然る後、該流速調整後の当該筒状容器内の水位を計測し、該計測値に基づいて再設定手段により新たな基準筒状容器内水位を再設定することにより、吸引管内の流速を常に最適な状態に保つことができる。   Further, in the present invention, the flow rate control means includes a water level adjustment mechanism that adjusts the water level in the cylindrical container by pouring and drainage, and a resetting means that resets a preset reference cylindrical container water level, While measuring the flow velocity in the suction pipe by the flow velocity measuring means, when the measured value by the flow velocity measuring means is faster than the required flow velocity by the water level adjusting mechanism, water is poured into the cylindrical container, and the measured value is When the flow rate is slower than the required flow rate, the flow rate in the suction pipe is adjusted by draining from the cylindrical vessel, and then the water level in the cylindrical vessel after the flow rate adjustment is measured, Based on this, the resetting means resets the new reference cylindrical container water level, so that the flow velocity in the suction pipe can always be kept in an optimum state.

また、本発明において、前記流速制御手段は、前記吸引管の途中に流量調節可能な開閉弁を備え、前記流速計測手段による計測値が前記所要の流速より速い際に、前記開閉弁を動作させて前記流量を減少させ、前記流速計測手段による計測値が前記所要の流速より遅い際に、前記開閉弁を動作させて前記流量を増加させることにより、吸引管内の流速を常に最適な状態に保つことができる。   In the present invention, the flow rate control means includes an on-off valve capable of adjusting a flow rate in the middle of the suction pipe, and operates the on-off valve when a measured value by the flow rate measurement means is faster than the required flow rate. The flow rate in the suction pipe is always kept in an optimal state by decreasing the flow rate and increasing the flow rate by operating the on-off valve when the measured value by the flow velocity measuring means is slower than the required flow velocity. be able to.

更に本発明において、記筒状容器内底部にポンプを備え、該ポンプにより前記筒状容器内に吸引された土砂成分を周囲の水とともに排出することにより、筒状容器内からの土砂成分の排出を重機等の大掛かりな設備を用いずに容易に行うことができる。   Further, in the present invention, a pump is provided at the inner bottom of the cylindrical container, and the sediment component sucked into the tubular container by the pump is discharged together with the surrounding water, thereby discharging the sediment component from the cylindrical container. Can be easily performed without using large equipment such as heavy machinery.

更にまた、本発明において、上端開口部が水上に突出した状態に水中に設置される逆流用筒状容器と、該逆流用筒状容器の下端部と前記吸引管とを連通させる開閉可能な連通路とを備え、前記逆流用筒状容器内の水位を記逆流用筒状容器外の水位より高くし、前記前記逆流用筒状容器内外水位の水頭差を利用して前記吸引管内に水底側に向けた流れを生じさせることにより、吸引管内の目詰まりを好適に防止することができる。   Furthermore, in the present invention, a backflow tubular container installed in water with the upper end opening protruding above the water, and an openable and closable communication communicating the lower end of the backflow tubular container and the suction pipe. A water level in the backflow cylindrical container is made higher than the water level outside the backflow cylindrical container, and the bottom of the suction pipe is formed by utilizing a water head difference between the water level inside and outside the backflow cylindrical container. By causing the flow toward, clogging in the suction pipe can be suitably prevented.

また、本発明において、前記吸引口は、水平方向に向けて開口した形状に形成されてなることにより、好適に水底表層部に堆積した土砂成分を均一且つ薄く浚渫することができる。   Moreover, in this invention, the said suction port is formed in the shape opened toward the horizontal direction, Therefore The earth-and-sand component deposited on the water bottom surface layer part can be made thin uniformly and thinly.

更にまた、本発明において、前記吸引口に所要粒径以上の土砂成分の通過を規制するフィルターを設けてなることにより、粒径の大きな土砂成分の吸引を防止するとともに、流速制御手段により前記吸引管内の流速を所要の流速以下に制御されているので、フィルターが目詰まりを起こし難い。   Furthermore, in the present invention, the suction port is provided with a filter that restricts the passage of sediment components having a particle size larger than the required particle size, thereby preventing the suction of sediment components having a large particle size and the suction control means by the flow rate control means. Since the flow rate in the pipe is controlled below the required flow rate, the filter is less likely to be clogged.

本発明に係る薄層浚渫方法に使用する装置の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows an example of the apparatus used for the thin layer dredging method which concerns on this invention. 同上の浚渫装置の他の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of a saddle device same as the above. 同上の浚渫装置の更に他の一例を示す縦断面図である。It is a longitudinal cross-sectional view which shows another example of a saddle device same as the above. 土砂成分の粒径とその沈降速度との関係を示すグラフである。It is a graph which shows the relationship between the particle size of a sediment component, and its sedimentation speed. 本発明に係る薄層浚渫方法における吸引作業の手順の一例を示すフローチャートである。It is a flowchart which shows an example of the procedure of the suction operation | work in the thin layer dredging method which concerns on this invention. 本発明に係る薄層浚渫方法における吸引作業の手順の他の一例を示すフローチャートである。It is a flowchart which shows another example of the procedure of the suction operation | work in the thin layer dredging method which concerns on this invention.

次に、本発明に係る薄層浚渫方法の実施の態様を図1〜図6に示した実施例に基づいて説明する。尚、図中符号Aは水底部、符号Bは水面、符号1は水底部Aを浚渫するための浚渫装置である。   Next, an embodiment of the thin-layer wrinkle method according to the present invention will be described based on the embodiment shown in FIGS. In the figure, symbol A is a water bottom, symbol B is a water surface, and symbol 1 is a dredging device for dredging the water bottom A.

この浚渫装置1は、図1に示すように、上端開口部2を水上に突出させた状態で移動可能に水中に設置される有底筒状の筒状容器3と、一端が筒状容器3内に連通され、吸引口4を有する他端部が水底表層部に挿入される吸引管5とを備え、筒状容器内水位Hを水面B、即ち筒状容器3外の水位(自然水位)より低くし、筒状容器3の内外水位の水頭差を利用して吸引管5内に負圧を生じさせることにより吸引管5を通して水底部A表層の土砂を周囲の水とともに筒状容器3内に吸引するようになっている。   As shown in FIG. 1, the dredger device 1 has a bottomed cylindrical container 3 that is installed in water so that the upper end opening 2 protrudes above the water, and a cylindrical container 3 that has one end. The other end portion having the suction port 4 communicated with the suction port 5 is inserted into the surface layer portion of the bottom of the water, and the water level H in the cylindrical container is the water level B, that is, the water level outside the cylindrical container 3 (natural water level). By making the pressure lower and generating a negative pressure in the suction pipe 5 by utilizing the water head difference between the inside and outside water levels of the cylindrical container 3, the sediment on the surface of the water bottom A together with the surrounding water is put into the cylindrical container 3 through the suction pipe 5. It comes to be sucked into.

また、この浚渫装置1は、吸引管5内の流速を計測する流速計測手段と、流速計測手段による計測値に基づいて吸引管5内の流速を制御する流速制御手段とを備え、流速制御手段により吸引管5内の流速Vを所要の流速以下に制御し、所要粒径以下の土砂成分のみを選別して吸引するようになっている。   Further, the dredge apparatus 1 includes a flow rate measuring unit that measures a flow rate in the suction pipe 5 and a flow rate control unit that controls the flow rate in the suction pipe 5 based on a measurement value obtained by the flow rate measuring unit. Thus, the flow velocity V in the suction pipe 5 is controlled to be equal to or lower than the required flow velocity, and only the earth and sand components having the required particle size or less are selected and sucked.

更に、この浚渫装置1は、作業船6上の管理室内に設置されたコンピュータ等からなる制御装置により制御され、自動又は半自動で浚渫作業を行うようになっている。   Further, the dredger device 1 is controlled by a control device including a computer or the like installed in a management room on the work boat 6 and performs dredging work automatically or semi-automatically.

筒状容器3は、水底側に配置された底部3aと、底部3aの周縁より立ち上げた形状の周壁部3bとからなる上端が開口した有底筒状に形成され、その上端部が水上に浮かべた作業船6に連結部材8を介して支持されることにより、水面Bとの水深方向の相対位置関係が一定に保たれ、上端開口部2を水上に突出させ、筒用容器3の内外が互いに隔離された状態で水中に設置され、且つ作業船6の移動に伴い筒状容器3も移動するようになっている。   The cylindrical container 3 is formed in a bottomed cylindrical shape having an open upper end composed of a bottom portion 3a disposed on the water bottom side and a peripheral wall portion 3b having a shape raised from the periphery of the bottom portion 3a, and the upper end portion of the cylindrical container 3 is above the water. By supporting the floating work boat 6 via the connecting member 8, the relative positional relationship with the water surface B in the depth direction is kept constant, the upper end opening 2 protrudes above the water, and the inside and outside of the cylinder container 3 Are installed in the water in a state of being isolated from each other, and the cylindrical container 3 is also moved as the work ship 6 is moved.

尚、筒状容器3は、上述の如く作業船6に支持させるようにしたもののほか、筒状容器3自体に浮力を調節する浮力調整手段9を備えるようにしたものであってもよい。   The cylindrical container 3 may be one provided with the buoyancy adjusting means 9 for adjusting the buoyancy in the cylindrical container 3 itself, in addition to the one supported by the work boat 6 as described above.

この浮力調整手段9としては、図2に示すように、筒状容器3の周壁内に密閉可能な空洞部10を設け、この空洞部10に土砂や泥水等の中詰め材を注排出することにより筒状容器3自身の浮力を調整できるようにしたもの等がある。   As this buoyancy adjusting means 9, as shown in FIG. 2, a sealable cavity 10 is provided in the peripheral wall of the cylindrical container 3, and a filling material such as earth and sand or muddy water is poured and discharged into the cavity 10. And the like so that the buoyancy of the cylindrical container 3 itself can be adjusted.

この浮力調整手段9を備えた筒状容器3は、作業船6による曳航やその他の移動手段により水平方向で水中を移動できるようになっている。   The cylindrical container 3 provided with the buoyancy adjusting means 9 can be moved underwater in the horizontal direction by towing by the work ship 6 or other moving means.

この筒状容器3には、筒状容器3内の水位を測定する水位計測手段と、筒状容器3内に注排水することにより筒状容器3内の水位(以後、筒状容器内水位Hという)を調節可能な水位調節機構を備え、水位計測手段により得られた計測値に基づいて水位調節機構により筒状容器3内に注排水することにより筒状容器内水位Hが予め設定された基準筒状容器内水位範囲Hd<H<Hu内、即ち設定下限水位Hdから設定上限水位Huの間で調節されるようにしている。   The cylindrical container 3 includes a water level measuring means for measuring the water level in the cylindrical container 3, and a water level in the cylindrical container 3 by pouring and draining into the cylindrical container 3 (hereinafter referred to as a water level H in the cylindrical container). A water level adjusting mechanism that can be adjusted), and the water level H in the cylindrical container is preset by pouring and draining into the cylindrical container 3 by the water level adjusting mechanism based on the measured value obtained by the water level measuring means. The water level is adjusted within the reference cylindrical container water level range Hd <H <Hu, that is, between the set lower limit water level Hd and the set upper limit water level Hu.

水位計測手段は、例えば、筒状容器3内底部に水圧計11を備え、筒状容器3内底部における水圧の計測値を制御装置に送信し、制御装置によって筒状容器内水位Hに換算し、それがモニターに表示される。   The water level measuring means includes, for example, a water pressure gauge 11 at the inner bottom portion of the cylindrical container 3, transmits the measured value of the water pressure at the inner bottom portion of the cylindrical container 3 to the control device, and converts it to the water level H in the cylindrical container by the control device. , It is displayed on the monitor.

水位調節機構は、例えば、周壁部3bの下側部に開閉可能な注水口12を備え、筒状容器3の水中への設置を容易にするとともに、筒状容器内水位H調節の為に周囲の水を筒状容器3内に導入できるようになっている。   The water level adjusting mechanism includes, for example, a water inlet 12 that can be opened and closed on the lower side of the peripheral wall 3b, and facilitates the installation of the cylindrical container 3 in the water, and the surroundings for adjusting the water level H in the cylindrical container The water can be introduced into the cylindrical container 3.

この注水口12は、遠隔操作により開閉可能な注水口用開閉弁13を備え、この注水口用開閉弁13を制御装置からの命令に基づき開閉することにより筒状容器3内への注水量を制御できるようになっている。   The water injection port 12 includes a water injection port opening / closing valve 13 that can be opened and closed by remote control, and the water injection amount into the cylindrical container 3 can be reduced by opening and closing the water injection port opening / closing valve 13 based on a command from the control device. It can be controlled.

一方、筒状容器3内には、底部に制御装置からの命令に基づき動作するサンドポンプ等のポンプ14を備え、このポンプ14が水位調節機構を構成し、当該ポンプ14を用いて筒状容器3内の水を外部に排水するようになっている。   On the other hand, in the cylindrical container 3, a pump 14 such as a sand pump that operates based on a command from the control device is provided at the bottom, and this pump 14 constitutes a water level adjusting mechanism. The water in 3 is drained to the outside.

また、このポンプ14は、筒状容器3内に吸引された土砂成分を周囲の水とともに吸引し、排出管15を通して作業船6上に設置された貯留タンク16に排出するようになっている。   The pump 14 sucks earth and sand components sucked into the cylindrical container 3 together with surrounding water, and discharges them through a discharge pipe 15 to a storage tank 16 installed on the work ship 6.

尚、このサンドポンプ14は、筒状容器3内外水位の水頭差に基づく吸引力,吸引管5径,および浚渫対象部の地盤強度や透水性によって定まる吸引土量および吸引水量の総量以上の吐出能力を備えている。   This sand pump 14 discharges more than the total amount of suction soil volume and suction water volume determined by the suction force based on the water head difference between the inside and outside water levels of the cylindrical container 3, the diameter of the suction pipe 5 and the ground strength and water permeability of the dredging target part. Has the ability.

吸引管5は、下端部に吸引口4を有する水深方向に向けた管状に形成され、上端が筒状容器3底部に筒状容器3内に連通した状態で支持され、下端部が水底表層部の所要深さまで挿入されるようになっている。   The suction pipe 5 is formed in a tubular shape in the water depth direction having a suction port 4 at the lower end, supported at the upper end in communication with the cylindrical container 3 at the bottom, and the lower end at the bottom surface layer portion. Is inserted to the required depth.

吸引口4は、図1に示すように、吸引管5の水深方向下端に開口した形状であってもよく、図3に示すように、薄層浚渫に対応するように水平方向に向けて開口した形状であってもよい。また、吸引口4には、フィルター17が設けられ、所要粒径以上の土砂成分の通過を規制するようになっている。   The suction port 4 may have a shape opened at the lower end in the water depth direction of the suction pipe 5 as shown in FIG. 1, and is opened toward the horizontal direction so as to correspond to the thin layer ridge as shown in FIG. The shape may be sufficient. The suction port 4 is provided with a filter 17 so as to restrict passage of earth and sand components having a required particle size or more.

尚、図中符号18は、フィルター17の目詰まりを解消するための逆流機構である。   Incidentally, reference numeral 18 in the figure denotes a backflow mechanism for eliminating clogging of the filter 17.

この逆流機構18は、上端開口部2が水上に突出した状態に水中に設置される逆流用筒状容器19と、逆流用筒状容器19の下端部と吸引管5とを連通させる開閉可能な連通路20とを備え、逆流用筒状容器19内の水位を水面Bの自然水位、即ち逆流用筒状容器19外の水位より高くし、逆流用筒状容器19内外水位の水頭差を利用して吸引管5内に水底側に向けた流れを生じさせるようになっている。尚、図中符号21は開閉可能な開閉弁である。   The reverse flow mechanism 18 is openable and closable so as to communicate the reverse flow cylindrical container 19 installed in water with the upper end opening 2 protruding above the water, and the lower end of the reverse flow cylindrical container 19 and the suction pipe 5. The water level in the backflow cylindrical container 19 is made higher than the natural water level on the water surface B, that is, the water level outside the backflow cylindrical container 19, and the water head difference between the inside and outside water levels in the backflow cylindrical container 19 is used. Thus, a flow toward the bottom of the water is generated in the suction pipe 5. In the figure, reference numeral 21 denotes an openable / closable valve.

また、吸引管5には、制御室からの命令に基づき遠隔操作により開閉される吸引管用開閉弁22と、吸引管用開閉弁22より水底側に配置された吸引管5内の流速を計測する流速計測手段とが備えられている。   In addition, the suction pipe 5 includes a suction pipe on-off valve 22 that is opened and closed by remote operation based on a command from the control room, and a flow rate that measures a flow rate in the suction pipe 5 disposed on the water bottom side from the suction pipe on-off valve 22. Measuring means.

流速計測手段は、吸引管用開閉弁22より水底側に配置された流量計23を備え、この流量計23にて測定された計測値が常時制御装置に送信され、制御装置においてこの計測値と吸引管5の断面積とに基づいて流速に換算され、モニターに表示される。   The flow velocity measuring means includes a flow meter 23 disposed on the bottom of the water from the opening / closing valve 22 for the suction pipe, and a measured value measured by the flow meter 23 is constantly transmitted to the control device, and the measured value and the suction are measured by the control device. Based on the cross-sectional area of the tube 5, the flow velocity is converted and displayed on the monitor.

吸引管5を通して水底部A表層の土砂を筒状容器3内に吸引するには、吸引管5内を流れる土砂成分を含む水の流速Vが土砂成分の沈降速度を上回らなければならないところ、土砂成分の粒径とその沈降速度とは、Rubeyの実験式より図4に示す如き関係を有するので、吸引管5内の流速Vを吸引対象となる土砂成分の内最大粒径の成分の沈降速度以下にすることにより、所要の粒径以下の土砂成分のみを筒状容器3内に吸引できる。   In order to suck the sediment on the surface A of the bottom of the water through the suction pipe 5 into the cylindrical container 3, the flow velocity V of the water containing the sediment component flowing in the suction pipe 5 must exceed the sedimentation speed of the sediment component. Since the particle size of the component and the sedimentation speed have a relationship as shown in FIG. 4 from the Rubey's empirical formula, the sedimentation velocity of the component having the maximum particle size of the earth and sand component to be suctioned is determined based on the flow velocity V in the suction pipe 5. By setting it below, only the earth and sand components of a required particle size or less can be sucked into the cylindrical container 3.

一方、吸引管5内の流速Vは、例えば、ダルシーの法則に基づく次式によって求めることができる。

Figure 2014043680
尚、ここでkは透水係数、dhは水面Bと筒状容器内水位Hとの水頭差、dzは吸引管5の水底への挿入深さである。 On the other hand, the flow velocity V in the suction pipe 5 can be obtained by the following equation based on Darcy's law, for example.
Figure 2014043680
Here, k is a water permeability coefficient, dh is a water head difference between the water surface B and the water level H in the cylindrical container, and dz is an insertion depth of the suction pipe 5 into the water bottom.

流速Vは、透水係数k及び挿入深さdzを一定と仮定すると、水頭差dhにより決まる。そして、筒状容器3と水面Bとの相対位置関係は一定であるので、流速Vは、筒状容器内水位Hにより決まる。   The flow velocity V is determined by the water head difference dh, assuming that the hydraulic conductivity k and the insertion depth dz are constant. Since the relative positional relationship between the cylindrical container 3 and the water surface B is constant, the flow velocity V is determined by the water level H in the cylindrical container.

従って、吸引対象の土砂成分の粒径に応じて吸引管5内の基準流速範囲Vd<V<Vuを設定するとともに、それに合わせて基準筒状容器内水位範囲Hd<H<Huを設定し、その筒状容器内水位Hを流速制御手段を構成する水位調節機構により当該設定された範囲内で調節することにより、吸引管5内の流速Vが設定された所要の流速Vu以下に保たれ、所要粒径以下の土砂成分のみを筒状容器3内に吸引することができる。   Accordingly, the reference flow velocity range Vd <V <Vu in the suction pipe 5 is set according to the particle size of the sediment component to be sucked, and the reference cylindrical container water level range Hd <H <Hu is set accordingly. By adjusting the water level H in the cylindrical container within the set range by the water level adjusting mechanism constituting the flow rate control means, the flow rate V in the suction pipe 5 is kept below the set required flow rate Vu, Only earth and sand components having a required particle size or less can be sucked into the cylindrical container 3.

しかしながら、実際の浚渫作業においては、水底表層部における細粒分、砂、礫及び雑物の分布は一様ではなく、各成分における粒径分布も多様であって、その為、筒状容器内水位Hを設定範囲内で調整した場合であっても吸引管5内の流速Vが設定された範囲より逸脱する場合がある。   However, in actual dredging work, the distribution of fine particles, sand, gravel and other impurities in the surface layer of the bottom is not uniform, and the particle size distribution of each component is also diverse. Even when the water level H is adjusted within the set range, the flow velocity V in the suction pipe 5 may deviate from the set range.

そこで、吸引管5内の実際の流速Vが設定された流速の範囲Vd<V<Vuより逸脱した場合、この浚渫装置1では、流速制御手段により吸引管5内の流速を計測された流速に基づき制御するようになっている。   Therefore, when the actual flow velocity V in the suction pipe 5 deviates from the set flow velocity range Vd <V <Vu, in this dredging device 1, the flow velocity in the suction pipe 5 is measured by the flow velocity control means. Based on the control.

流速制御手段には、水位調節機構を使用し、計測された流速Vが基準流速の範囲より速い場合(V>Vu)、既存の基準筒状容器内水位範囲Hd<H<Huに依らずに筒状容器3内に注水口より注水させて既存の水位より水面を上昇させ、計測された流速Vが基準流速の範囲より遅い場合(V<Vd)、ポンプにより筒状容器より水を排出させ既存の水位より水面を下降させるようになっている。   The flow rate control means uses a water level adjusting mechanism, and when the measured flow velocity V is faster than the reference flow velocity range (V> Vu), it does not depend on the existing reference cylindrical vessel water level range Hd <H <Hu. When water is injected into the cylindrical container 3 from the water inlet and the water level is raised from the existing water level, and the measured flow velocity V is slower than the reference flow velocity range (V <Vd), water is discharged from the tubular container by the pump. The water level is lowered from the existing water level.

また、流速制御手段は、予め設定された基準筒状容器内水位範囲Hd<H<Huを新たな基準筒状容器内水位範囲Hd'<H<Hu'に再設定する再設定手段を備え、流速調整をした後は、再設定手段により設定された新たな基準筒状容器内水位範囲Hd'<H<Hu'に合わせて水位調整機構に筒状容器3内への注排水させるようになっている。   The flow rate control means includes a resetting means for resetting a preset reference cylindrical container water level range Hd <H <Hu to a new reference cylindrical container water level range Hd ′ <H <Hu ′, After adjusting the flow velocity, the water level adjusting mechanism is made to pour and drain the water into the cylindrical container 3 in accordance with a new reference cylindrical container water level range Hd ′ <H <Hu ′ set by the resetting means. ing.

再設定手段には、コンピュータ等からなる制御装置を使用し、この制御装置は、吸引管内流速Vが基準流速範囲Vd<V<Vuを満たす際の筒状容器内水位Hを水位計測手段に計測させ、その計測値に基づいて、新たな基準筒状容器内水位範囲Hd'<H<Hu'を設定するようになっている。   As the resetting means, a control device composed of a computer or the like is used. This control device measures the water level H in the cylindrical container when the in-pipe flow velocity V satisfies the reference flow velocity range Vd <V <Vu. Based on the measured value, a new reference cylindrical container water level range Hd ′ <H <Hu ′ is set.

次に、上述の如き浚渫装置1を使用した薄層浚渫方法について図5に示すフローチャートに基づいて説明する。尚、上述の実施例と同様の構成には同一符号を付して説明する。   Next, a thin-layer wrinkle method using the wrinkle device 1 as described above will be described based on the flowchart shown in FIG. In addition, the same code | symbol is attached | subjected and demonstrated to the structure similar to the above-mentioned Example.

まず、図1に示すように、浚渫作業現場において、注水口12の注水口用開閉弁13を解放して筒状容器3内に注水しつつ、筒状容器3を上端開口が水上に突出した状態に水中に設置するとともに、吸引管5の下端を水底表層部に挿入させ、吸引作業を開始する。   First, as shown in FIG. 1, at the dredging work site, the upper end opening of the cylindrical container 3 protrudes above the water while the water inlet / outlet valve 13 of the water inlet 12 is released and water is injected into the cylindrical container 3. While being installed in water, the lower end of the suction pipe 5 is inserted into the bottom surface layer portion, and the suction operation is started.

この土砂吸引作業にあたっては、まず、吸引する土砂成分の内、粒径の大きな成分の沈降速度に合わせて基準流速範囲Vd<V<Vuを制御装置に入力して設定する(S1)。   In this earth and sand suction operation, first, a reference flow velocity range Vd <V <Vu is set by inputting to the control device in accordance with the sedimentation speed of the large-diameter component among the earth and sand components to be sucked (S1).

この基準流速範囲Vd<V<Vuは、例えば、粒径が細礫(粒径2mm〜4.75mm)以下の土砂成分のみを吸引する場合、基準流速範囲Vd<V<Vuの上限Vuを図4から0.23m/sに設定し、下限Vdを0.14m/sに設定する。   This reference flow velocity range Vd <V <Vu represents the upper limit Vu of the reference flow velocity range Vd <V <Vu, for example, when sucking only earth and sand components having a particle size of fine gravel (particle diameter 2 mm to 4.75 mm) or less. From 4 to 0.23 m / s, the lower limit Vd is set to 0.14 m / s.

制御装置は、入力された基準流速範囲Vd<V<Vuを基に当該基準流速範囲Vd<V<Vuを満たすための筒状容器内水位Hをダルシーの法則により算出し、それに基づき基準筒状容器内水位範囲Hd<H<Huを設定する(S2)。   Based on the input reference flow velocity range Vd <V <Vu, the control device calculates the water level H in the cylindrical container to satisfy the reference flow velocity range Vd <V <Vu according to Darcy's law, and based on this, the reference tubular shape An in-container water level range Hd <H <Hu is set (S2).

基準筒状容器内水位範囲Hd<H<Huは、上述の基準流速範囲Vd<V<Vuを基に計算すると、水底表層部の透水係数kを0.01m/s、挿入深度dzを0.1mと仮定し、下限Hdが水面Bより2.3mの位置、上限Huが水面Bより1.4mの位置となる。   When the water level range Hd <H <Hu in the reference cylindrical container is calculated based on the above-described reference flow velocity range Vd <V <Vu, the water permeability coefficient k of the bottom surface layer portion is 0.01 m / s, and the insertion depth dz is 0. Assuming 1 m, the lower limit Hd is a position 2.3 m from the water surface B, and the upper limit Hu is a position 1.4 m from the water surface B.

次に、制御装置は、水位計測手段より計測された実際の筒状容器内水位Hを基準筒状容器内水位範囲Hd<H<Huと比較し(S3〜S5)、筒状容器内水位Hが基準水位範囲の下限Hdに満たない場合、制御装置は、注水口用開閉弁13を動作させて注水口12を解放し、筒状容器3内に周囲の水を取り込むことで注水し(S6)、その作業(L1)を筒状容器内水位Hが基準水位範囲の下限Hdに至るまで繰り返す。   Next, the control device compares the actual water level H in the cylindrical container measured by the water level measuring means with the reference cylindrical container water level range Hd <H <Hu (S3 to S5), and the water level H in the cylindrical container. Is less than the lower limit Hd of the reference water level range, the control device operates the water inlet opening / closing valve 13 to release the water inlet 12 and inject water by taking the surrounding water into the cylindrical container 3 (S6). ), And the operation (L1) is repeated until the water level H in the cylindrical container reaches the lower limit Hd of the reference water level range.

また、筒状容器内水位Hが基準水位範囲の上限Huを越えてしまった場合、制御装置は、吸引口4の吸引管用開閉弁22を閉鎖し(S7)、その状態でサンドポンプ14を動作させて筒状容器3内より排水し(S8)、その作業(L2)を筒状容器内水位Hが基準水位の上限Hu下に下降するまで繰り返す。   When the water level H in the cylindrical container exceeds the upper limit Hu of the reference water level range, the control device closes the suction pipe on-off valve 22 of the suction port 4 (S7), and operates the sand pump 14 in that state. Then, the water is discharged from the cylindrical container 3 (S8), and the operation (L2) is repeated until the water level H in the cylindrical container is lowered below the upper limit Hu of the reference water level.

そして、実際の筒状容器内水位Hが基準筒状容器内水位範囲Hd<H<Hu内にある時は、吸引管5の吸引管用開閉弁22を解放するとともに(S9)、筒状容器3内に設置されたサンドポンプ等のポンプ14を動作させて吸引を開始する(S10)。   When the actual water level H in the cylindrical container is within the reference cylindrical container water level range Hd <H <Hu, the suction pipe on-off valve 22 of the suction pipe 5 is released (S9), and the cylindrical container 3 is opened. Suction is started by operating a pump 14 such as a sand pump installed inside (S10).

次に、吸引が開始された際には、流速計測手段により吸引管5内の流速を計測し(S11)、その計測値を制御装置に送信する。   Next, when the suction is started, the flow velocity in the suction pipe 5 is measured by the flow velocity measuring means (S11), and the measured value is transmitted to the control device.

制御装置は、その計測された流速Vを設定された基準流速範囲Vd<V<Vuと比較し(S12)、実際の流速Vが基準流速範囲Vd<V<Vuを満たす場合には、上述したS3〜S13の作業(L3)を繰り返す。   The control device compares the measured flow velocity V with the set reference flow velocity range Vd <V <Vu (S12), and if the actual flow velocity V satisfies the reference flow velocity range Vd <V <Vu, the control device described above. The operations (L3) from S3 to S13 are repeated.

一方、一連の繰り返し作業(L3)において、吸引管5内の流速Vが基準流速範囲Vd<V<Vuより逸脱した場合には、流速制御手段により吸引管5内の流速を制御する。   On the other hand, in the series of repetitive operations (L3), when the flow velocity V in the suction pipe 5 deviates from the reference flow velocity range Vd <V <Vu, the flow velocity in the suction pipe 5 is controlled by the flow velocity control means.

即ち、実際の流速Vが基準流速範囲Vd<V<Vuの上限より速い場合には、直ちに注水口12の注水口用開閉弁13を動作させて注水口12を解放し(S15)、流速Vを計測(S16)しつつ筒状容器3内に注水して筒状容器内水位Hを上昇させ、筒状容器3内外水位の水頭差を小さくして吸引力を低減させていき、それを実際の流速Vが基準流速範囲の上限Vdを下回るまで繰り返し(L4)、流速Vを基準流速範囲の上限Vu、即ち所要の流速以下に制御する。   That is, when the actual flow velocity V is faster than the upper limit of the reference flow velocity range Vd <V <Vu, the water injection port 12 is immediately operated to release the water injection port 12 (S15). (S16), water is poured into the cylindrical container 3 to increase the water level H in the cylindrical container, and the suction difference is reduced by reducing the water head difference between the internal and external water levels of the cylindrical container 3. Is repeated until the flow velocity V falls below the upper limit Vd of the reference flow velocity range (L4), and the flow velocity V is controlled below the upper limit Vu of the reference flow velocity range, that is, the required flow velocity.

一方、実際の流速Vが基準流速範囲Vd<V<Vuの下限Vdより遅い場合には、直ちに吸引口4を閉鎖(S18)するとともに、サンドポンプ14を動作させて筒状容器3内の水を排出(S19)して筒状容器内水位Hを下降させ、筒状容器3内外水位の水頭差を大きくして吸引力を増加させた後、再度吸引口4を開放し(S20)、その際の吸引管内流速Vを計測する(S21)。この作業(S18〜S22)を実際の流速Vが基準流速範囲の下限Vdを上回るまで繰り返し(L5)、流速Vを基準流速範囲の下限Vd以上に制御し、一定の吸引力を確保する。   On the other hand, when the actual flow velocity V is slower than the lower limit Vd of the reference flow velocity range Vd <V <Vu, the suction port 4 is immediately closed (S18), and the sand pump 14 is operated to operate the water in the cylindrical container 3 (S19), the water level H in the cylindrical container is lowered, the water head difference between the inside and outside of the cylindrical container 3 is increased to increase the suction force, and the suction port 4 is opened again (S20). The flow velocity V in the suction pipe is measured (S21). This operation (S18 to S22) is repeated until the actual flow velocity V exceeds the lower limit Vd of the reference flow velocity range (L5), and the flow velocity V is controlled to be equal to or higher than the lower limit Vd of the reference flow velocity range to ensure a constant suction force.

そして、流速調整(L1又はL2)が完了した後、その際の筒状容器内水位Hを計測し(S23)、計測値に基づいて再設定手段により新たな基準筒状容器内水位範囲Hd<H<Huを再設定し(S24)、再設定された基準筒状容器内水位範囲Hd<H<Huに基づいてS3〜S13の一連の作業(L3)を行う。   Then, after the flow rate adjustment (L1 or L2) is completed, the water level H in the cylindrical container at that time is measured (S23), and based on the measured value, a new reference cylindrical container water level range Hd < H <Hu is reset (S24), and a series of operations S3 to S13 (L3) is performed based on the reset reference cylindrical container water level range Hd <H <Hu.

このように、流速調整を行った後、筒状容器内水位Hを計測し(S23)、その計測値に基づいて再設定手段により新たな基準筒状容器内水位範囲Hd<H<Huを再設定(S24)することにより、設計上の基準筒状容器内水位範囲Hd<H<Huと実際の浚渫現場において必要な筒状容器内水位Hとの誤差を修正することができ、また、計測した流速が基準流速範囲Vd<V<Vuから逸脱する毎に基準水位範囲を再設定することにより、筒状容器内水位Hが常に最適な流速Vを得るための水位に保たれるようになっている。   In this way, after adjusting the flow velocity, the water level H in the cylindrical container is measured (S23), and a new reference cylindrical container water level range Hd <H <Hu is reset by the resetting unit based on the measured value. By setting (S24), it is possible to correct an error between the designed reference cylindrical container water level range Hd <H <Hu and the actual cylindrical container water level H at the actual dredging site, and to measure By resetting the reference water level range every time the flow velocity deviates from the reference flow velocity range Vd <V <Vu, the water level H in the cylindrical container is always kept at the water level for obtaining the optimum flow velocity V. ing.

このような吸引作業を行いつつ、作業船6に連動して筒状容器3を移動させることにより水底表層部の拡散し易い所要粒径以下の土砂成分のみを選別して吸引することにより土砂成分の拡散を抑制しつつ、均一且つ薄く水底土砂の表層を浚渫することができる。   While performing such suction work, by moving the cylindrical container 3 in conjunction with the work vessel 6, only the earth and sand components having a required particle size or less that are easily diffused in the surface layer of the bottom of the water are selected and sucked. The surface layer of the bottom sediment can be dredged while suppressing the diffusion of water.

また、汚染物質の除去を目的とする浚渫作業においては、汚染物質がシルト・粘性土等の細粒部に付着し易いことから、吸引管5内の流速Vを制御して所要粒径以下の粒径の小さな土砂成分のみを選別して浚渫することにより、効率よく水底土砂より汚染物質を除去することができる。   In addition, in dredging operations for the purpose of removing contaminants, the contaminants are likely to adhere to fine particles such as silt and clayey soil, so the flow velocity V in the suction pipe 5 is controlled to be less than the required particle size. By selecting and dripping only sediment components having a small particle size, it is possible to efficiently remove contaminants from the bottom sediment.

尚、上述の実施例では、筒状容器内水位Hを変動させ、且つ基準筒状容器内水位範囲を再設定することにより吸引管5内流速Vを制御する方法について説明したが、吸引管5の吸引管用開閉弁22を絞り弁等の流量調整可能な開閉弁とし、図6に示す手順に基づいて、吸引管用開閉弁22の開閉により吸引管5内の流速を制御するようにしてもよい。尚、上述の実施例と同様の構成には同一符号を付して説明を省略する。   In the above-described embodiment, the method for controlling the flow velocity V in the suction pipe 5 by changing the water level H in the cylindrical container and resetting the reference water level range in the cylindrical container has been described. The suction pipe on-off valve 22 may be an on-off valve such as a throttle valve whose flow rate can be adjusted, and the flow rate in the suction pipe 5 may be controlled by opening and closing the suction pipe on-off valve 22 based on the procedure shown in FIG. . In addition, the same code | symbol is attached | subjected to the structure similar to the above-mentioned Example, and description is abbreviate | omitted.

即ち、吸引開始時においては、吸引管用開閉弁22を中間位置にセットしておき、S3〜S12の手順に従って処理し、実際の流速Vが基準流速範囲を満たす場合には、この一連の作業を繰り返す(L3)。   That is, at the start of suction, the suction pipe on-off valve 22 is set at an intermediate position, processed in accordance with the procedures of S3 to S12, and when the actual flow velocity V satisfies the reference flow velocity range, this series of operations is performed. Repeat (L3).

一方、流速計測手段により得られた実際の吸引管5内流速Vが設定された基準流速範囲の上限Vuより速い場合には、流速Vを計測(S27)しつつ吸引管用開閉弁22を閉鎖方向に動作(S26)させて吸引管5内の流量を減少させていき、それを実際の流速Vが基準流速範囲の上限Vdを下回るまで繰り返し(L6)、流速Vを基準流速範囲の上限Vu、即ち所要の流速以下に制御する。   On the other hand, when the actual flow velocity V in the suction pipe 5 obtained by the flow velocity measuring means is faster than the upper limit Vu of the set reference flow velocity range, the suction pipe on-off valve 22 is closed in the closing direction while measuring the flow velocity V (S27). (S26), the flow rate in the suction pipe 5 is decreased, and this is repeated until the actual flow velocity V falls below the upper limit Vd of the reference flow velocity range (L6). That is, the flow rate is controlled below the required flow rate.

一方、流速計測手段により得られた吸引管5内流速Vが設定された基準流速範囲の下限Vdより遅い場合、流速を計測(S30)しつつ吸引管用開閉弁22を開き方向に動作(S29)させて吸引管5内の流量を増加させていき、それを実際の流速Vが基準流速範囲の下限Vdを上回るまで繰り返し(L7)、流速Vを基準流速範囲の下限Vd以上に制御し、一定の吸引力を確保する。   On the other hand, when the flow velocity V in the suction pipe 5 obtained by the flow velocity measuring means is slower than the lower limit Vd of the set reference flow velocity range, the suction pipe on-off valve 22 is operated in the opening direction while measuring the flow speed (S30) (S29). The flow rate in the suction pipe 5 is increased, and this is repeated until the actual flow velocity V exceeds the lower limit Vd of the reference flow velocity range (L7), and the flow velocity V is controlled to be equal to or higher than the lower limit Vd of the reference flow velocity range. Ensuring the suction power.

尚、流速制御手段による吸引管5内の流速Vの制御は、上述した手順に限定されるものではなく、流速計測手段による計測置に基づいて制御するものであればよい。   Note that the control of the flow velocity V in the suction pipe 5 by the flow velocity control means is not limited to the above-described procedure, and any control is possible as long as it is controlled based on the measurement device by the flow velocity measurement means.

A 水底部
B 水面
1 浚渫装置
2 上端開口部
3 筒状容器
4 吸引口
5 吸引管
6 作業船
7 管理室
8 連結部材
9 浮力調整手段
10 空洞部
11 水圧計
12 注水口
13 注水口用開閉弁
14 ポンプ
15 排出管
16 貯留タンク
17 フィルター
18 逆流機構
19 逆流用筒状容器
20 連通路
21 開閉弁
22 吸引管用開閉弁
23 流量計
A Water bottom B Water surface 1 Dredge device 2 Upper end opening 3 Tubular container 4 Suction port 5 Suction pipe 6 Work boat 7 Management room 8 Connecting member 9 Buoyancy adjustment means 10 Cavity 11 Water pressure gauge 12 Water inlet 13 Water inlet / outlet valve 14 Pump 15 Discharge Pipe 16 Storage Tank 17 Filter 18 Backflow Mechanism 19 Backflow Cylindrical Container 20 Communication Path 21 On-off Valve 22 Suction Pipe On-off Valve 23 Flowmeter

Claims (7)

上端開口部を水上に突出させた状態で移動可能に水中に配置される有底筒状の筒状容器と、一端が前記筒状容器内に連通され、他端が水底面部に挿入される吸引管とを備えてなる浚渫装置を使用し、前記筒状容器内水位を筒状容器外水位より低くし、前記筒状容器内外水位の水頭差を利用して前記吸引管内に負圧を生じさせることにより前記吸引管を通して前記水底面部表層の土砂を吸引する薄層浚渫方法において、
前記吸引管内の流速を流速計測手段により計測し、該流速計測手段による計測値に基づいて流速制御手段により前記吸引管内の流速を所要の流速以下に制御し、所要粒径以下の土砂成分のみを吸引することを特徴としてなる薄層浚渫方法。
A bottomed cylindrical container disposed in water so that the upper end opening protrudes above the water, and a suction where one end communicates with the cylindrical container and the other end is inserted into the bottom surface of the water Using a dredge device comprising a pipe, lowering the water level in the cylindrical container to be lower than the water level outside the cylindrical container, and generating a negative pressure in the suction pipe by utilizing a water head difference between the water levels inside and outside the cylindrical container In the thin-layer dredging method for sucking the sand on the surface of the bottom surface of the water through the suction pipe,
The flow velocity in the suction pipe is measured by the flow velocity measuring means, and the flow velocity in the suction pipe is controlled below the required flow velocity by the flow velocity control means on the basis of the measured value by the flow velocity measuring means, and only the sediment component having the particle diameter below the required particle size is controlled. A thin-layer scissor method characterized by sucking.
前記流速制御手段は、前記筒状容器内水位を注排水により調整する水位調節機構と、予め設定された基準筒状容器内水位を再設定する再設定手段とを備え、
前記流速計測手段により前記吸引管内の流速を計測しつつ、前記水位調節機構により前記流速計測手段による計測値が前記所要の流速より速い際には前記筒状容器内に注水し、計測値が前記所要の流速より遅い際には前記筒状容器内より排水することにより吸引管内の流速を調整し、
然る後、該流速調整後の当該筒状容器内の水位を計測し、該計測値に基づいて再設定手段により新たな基準筒状容器内水位を再設定する請求項1に記載の薄層浚渫方法。
The flow rate control means includes a water level adjustment mechanism that adjusts the water level in the cylindrical container by pouring and drainage, and a resetting means that resets a preset reference water level in the cylindrical container,
While measuring the flow velocity in the suction pipe by the flow velocity measuring means, when the measured value by the flow velocity measuring means is faster than the required flow velocity by the water level adjusting mechanism, water is poured into the cylindrical container, and the measured value is When the flow rate is slower than the required flow rate, the flow rate in the suction pipe is adjusted by draining from the cylindrical container,
Thereafter, the water level in the cylindrical container after the flow velocity adjustment is measured, and a new reference cylindrical container water level is reset by the resetting means based on the measured value.浚 渫 Method.
前記流速制御手段は、前記吸引管の途中に流量調節可能な開閉弁を備え、前記流速計測手段による計測値が前記所要の流速より速い際に、前記開閉弁を動作させて前記流量を減少させ、
前記流速計測手段による計測値が前記所要の流速より遅い際に、前記開閉弁を動作させて前記流量を増加させる請求項1に記載の薄層浚渫方法。
The flow rate control means includes an on-off valve capable of adjusting the flow rate in the middle of the suction pipe, and when the measured value by the flow rate measurement means is faster than the required flow rate, the on-off valve is operated to reduce the flow rate. ,
The thin-layer dredge method according to claim 1, wherein when the measured value by the flow velocity measuring means is slower than the required flow velocity, the flow rate is increased by operating the on-off valve.
前記筒状容器内底部にポンプを備え、該ポンプにより前記筒状容器内に吸引された土砂成分を周囲の水とともに排出する請求項1、2又は3に記載の薄層浚渫方法。   The thin-layer dredging method according to claim 1, 2 or 3, wherein a pump is provided at the bottom of the cylindrical container, and the earth and sand component sucked into the cylindrical container by the pump is discharged together with surrounding water. 上端開口部が水上に突出した状態に水中に設置される逆流用筒状容器と、該逆流用筒状容器の下端部と前記吸引管とを連通させる開閉可能な連通路とを備え、前記逆流用筒状容器内の水位を記逆流用筒状容器外の水位より高くし、前記前記逆流用筒状容器内外水位の水頭差を利用して前記吸引管内に水底側に向けた流れを生じさせる請求項1〜3又は4に記載の薄層浚渫方法。   A reverse flow cylindrical container installed in water in a state in which the upper end opening protrudes above the water, and an openable and closable communication path that connects the lower end of the reverse flow cylindrical container and the suction pipe. The water level in the tubular container for use is made higher than the water level outside the tubular container for reverse flow, and the water head difference between the water levels inside and outside the tubular container for reverse flow is used to generate a flow toward the bottom in the suction pipe. The thin-layer wrinkle method according to claim 1 or 3. 前記吸引口は、水平方向に向けて開口した形状に形成されてなる請求項1〜4又は5に記載の薄層浚渫方法。   The thin-layer punching method according to claim 1, wherein the suction port is formed in a shape opened in a horizontal direction. 前記吸引口に所要粒径以上の土砂成分の通過を規制するフィルターを設けてなる請求項1〜5又は6に記載の薄層浚渫方法。
The thin-layer dredging method according to claim 1, wherein a filter for restricting passage of earth and sand components having a particle size greater than or equal to a required particle diameter is provided at the suction port.
JP2012185204A 2012-08-24 2012-08-24 Thin layer method Active JP5988206B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012185204A JP5988206B2 (en) 2012-08-24 2012-08-24 Thin layer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185204A JP5988206B2 (en) 2012-08-24 2012-08-24 Thin layer method

Publications (2)

Publication Number Publication Date
JP2014043680A true JP2014043680A (en) 2014-03-13
JP5988206B2 JP5988206B2 (en) 2016-09-07

Family

ID=50395144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185204A Active JP5988206B2 (en) 2012-08-24 2012-08-24 Thin layer method

Country Status (1)

Country Link
JP (1) JP5988206B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549039B1 (en) * 2014-12-29 2015-09-08 관악산업 주식회사 Geo-tube charging system and geo-tube charging method for spoil
JP2020029646A (en) * 2018-08-20 2020-02-27 あおみ建設株式会社 Dredge device and method
CN112482338A (en) * 2020-11-26 2021-03-12 邵阳学院 River course clearance is with anti-clogging device that draws water based on rivers change

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628946A (en) * 1979-08-15 1981-03-23 Mitsubishi Heavy Ind Ltd Dredging device of automatically-controlled series pump type
JPH07259123A (en) * 1994-03-24 1995-10-09 Toyo Constr Co Ltd Floating-mud removing device
JP2003138598A (en) * 2001-11-01 2003-05-14 Tom Jacobsen Method and device for dredging by use of pipe having opening part in bent part
JP2004522877A (en) * 2000-12-27 2004-07-29 ゲーテーオー−サブシー・アーエス Hydraulic submersible dredging
JP2008175017A (en) * 2007-01-22 2008-07-31 Tokyo Kiyuuei:Kk Sediment separating removing head
JP2009280960A (en) * 2008-05-19 2009-12-03 Tokai Univ Pumping mechanism and sea bottom resource recovering apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5628946A (en) * 1979-08-15 1981-03-23 Mitsubishi Heavy Ind Ltd Dredging device of automatically-controlled series pump type
JPH07259123A (en) * 1994-03-24 1995-10-09 Toyo Constr Co Ltd Floating-mud removing device
JP2004522877A (en) * 2000-12-27 2004-07-29 ゲーテーオー−サブシー・アーエス Hydraulic submersible dredging
JP2003138598A (en) * 2001-11-01 2003-05-14 Tom Jacobsen Method and device for dredging by use of pipe having opening part in bent part
JP2008175017A (en) * 2007-01-22 2008-07-31 Tokyo Kiyuuei:Kk Sediment separating removing head
JP2009280960A (en) * 2008-05-19 2009-12-03 Tokai Univ Pumping mechanism and sea bottom resource recovering apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549039B1 (en) * 2014-12-29 2015-09-08 관악산업 주식회사 Geo-tube charging system and geo-tube charging method for spoil
JP2020029646A (en) * 2018-08-20 2020-02-27 あおみ建設株式会社 Dredge device and method
JP7015749B2 (en) 2018-08-20 2022-02-03 あおみ建設株式会社 Dredging device and method
CN112482338A (en) * 2020-11-26 2021-03-12 邵阳学院 River course clearance is with anti-clogging device that draws water based on rivers change
CN112482338B (en) * 2020-11-26 2022-04-08 邵阳学院 River course clearance is with anti-clogging device that draws water based on rivers change

Also Published As

Publication number Publication date
JP5988206B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
CA2534156C (en) Sediment removal apparatus and method for removing sediment from open waterways
AU2010240899B2 (en) Dredging vessel and method for loading the dredging vessel with dredged material
JP5988206B2 (en) Thin layer method
JP6499515B2 (en) Dredge device and management device for dredge device
WO1998020208A1 (en) Dredging method and dredging apparatus
CN112673135B (en) Device for removing sludge and/or sand from the bottom of a wetland
EP3333327A1 (en) Autonomous dredging vehicle for dredging a dam reservoir
JP2004522877A (en) Hydraulic submersible dredging
JPS59659B2 (en) dredger
US7089693B2 (en) Dredging method and apparatus
JP4195214B2 (en) A dredge apparatus using a pipe having an opening at a bent portion
JP6516120B2 (en) Agate and soil disposal method
JP7015749B2 (en) Dredging device and method
JP5100705B2 (en) Sediment flow transfer equipment
KR200233363Y1 (en) Device for removing sediment
JP2005016294A (en) Suction flowing facility for deposit
KR20110117453A (en) Dredge device for sludge in the sea
JP4082269B2 (en) Reservoir sand discharging method and sand discharging device
JP3532039B2 (en) Method and apparatus for preventing diffusion of polluted water during landfill work
JPH0853854A (en) Device for removing and recovering sludge on bottom of reservoir or the like
RU2796876C2 (en) Device for removing sediment and/or sand from the bottom of a swampy area
JP2006118228A (en) Sand discharging apparatus and sand discharging method
JP4314598B2 (en) Water bottom casting device for fluid mud
KR20020071343A (en) Method and Device for removing sediment
CN114960614A (en) Foundation treatment method combining flocculation grouting with vacuum preloading

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5988206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250