JP2014042881A - Solidification material for coal ash and method for producing solidified matter using the same - Google Patents

Solidification material for coal ash and method for producing solidified matter using the same Download PDF

Info

Publication number
JP2014042881A
JP2014042881A JP2012186987A JP2012186987A JP2014042881A JP 2014042881 A JP2014042881 A JP 2014042881A JP 2012186987 A JP2012186987 A JP 2012186987A JP 2012186987 A JP2012186987 A JP 2012186987A JP 2014042881 A JP2014042881 A JP 2014042881A
Authority
JP
Japan
Prior art keywords
coal ash
solidified
product
mixture
caco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012186987A
Other languages
Japanese (ja)
Other versions
JP6059469B2 (en
Inventor
Naoya Shigemoto
直也 重本
Yuki Hiraga
由起 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP2012186987A priority Critical patent/JP6059469B2/en
Publication of JP2014042881A publication Critical patent/JP2014042881A/en
Application granted granted Critical
Publication of JP6059469B2 publication Critical patent/JP6059469B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

PROBLEM TO BE SOLVED: To provide a solidification material for coal ash where the coal ash mixed with water and the like can be molded into an arbitrary shape and firmly solidified and where the elution of a cation and an anion containing a heavy metal and the like can be suppressed and to provide a method for producing solidified matter which can be used in a wide range of applications such as building and civil engineering materials and the like.SOLUTION: A solidification material for coal ash includes the burned product of a mixture of at least one of Ca(OH)and CaCOand Al(OH). The solidification material for coal ash is blended with the coal ash, water and another raw material if necessary, kneaded and made pasty. Solidified matter can be produced by that a pasty material is molded into an arbitrary shape and solidified.

Description

本発明は、石炭灰用固化材及びそれを用いた固化物の製造方法に関し、詳しくは、石炭灰を強固に固化させるとともに、重金属イオン等の溶出を防止することができる石炭灰用固化材と、建築・土木材料等として広範に利用することができる固化物を製造する方法に関する。   The present invention relates to a solidified material for coal ash and a method for producing a solidified product using the same, and specifically, a solidified material for coal ash capable of solidifying coal ash and preventing elution of heavy metal ions and the like. The present invention relates to a method for producing a solidified material that can be widely used as a construction / civil engineering material.

石炭を燃料として使用する火力発電所等では、多量の石炭灰が発生するため、従来からその有効利用方法が検討されているが、最も一般的には、石炭灰をセメントに5〜30質量%程度混合して、いわゆるフライアッシュセメントとし、モルタルやコンクリートの原料として使用されている。
しかし、石炭にはその種類や産地によってホウ素や重金属等の環境汚染の要因となり得る物質が含まれている場合がある。これらの物質は、石炭の燃焼に伴う化学反応により、鉄イオン(Fe3+)や銅(Cu2+)等のような水溶性の陽イオンを形成するものと、オキシアニオン(例えば、ホウ酸イオン(B(OH)4 )、クロム酸イオン(CrO4 2−)、セレン酸イオン(SeO4 2−)、モリブデン酸イオン(MoO4 2−)、ヒ酸イオン(AsO3 2−)等)のような水溶性の陰イオンを形成するものとがあり、さらに鉛のように、陽イオン(Pb2+)と陰イオン(PbO2 2−)の両方を形成するものもある。
これら重金属及びその他の物質を含む陽イオン及び陰イオン(以下併せて「重金属等イオン」ともいう。)は、その多くが石炭灰に付着しているため、石炭灰を各種の用途に使用する場合には、環境保全のために、重金属等イオンのうち規制対象となっているものについて溶出・拡散しないよう対策を講ずる必要がある。
In a thermal power plant using coal as fuel, a large amount of coal ash is generated, and thus, an effective utilization method has been conventionally studied. Most commonly, 5-30 mass% of coal ash is used as cement. The so-called fly ash cement is mixed to a certain degree and used as a raw material for mortar and concrete.
However, coal may contain substances that can cause environmental pollution, such as boron and heavy metals, depending on the type and place of production. These substances can form water-soluble cations, such as iron ions (Fe 3+ ) and copper (Cu 2+ ), and oxyanions (for example, borate ions (for example, borate ions ( B (OH) 4 ), chromate ions (CrO 4 2− ), selenate ions (SeO 4 2 − ), molybdate ions (MoO 4 2 − ), arsenate ions (AsO 3 2 − ), etc.) Some of them form such water-soluble anions, and others, like lead, form both cations (Pb 2+ ) and anions (PbO 2 2− ).
Cations and anions containing these heavy metals and other substances (hereinafter also referred to as “heavy metal ions”) are mostly attached to coal ash, so when coal ash is used for various purposes. In order to protect the environment, it is necessary to take measures to prevent elution and diffusion of ions subject to regulation among ions such as heavy metals.

石炭灰のうち、重金属等イオンが付着していないものや付着量の少ないものについては、前記のとおりモルタルやコンクリートの原料として使用することが可能である。一般にモルタルやコンクリートは水密の状態に固化するため、原料に重金属等イオンが含まれていても、少量であれば、固化したモルタルやコンクリート内に封じ込められて保持されるため、外部への溶出を防ぐことができる。
しかし、重金属等イオンの付着量が多い石炭灰については、そのままの状態でモルタルやコンクリートの原料に使用すると、重金属等イオンがモルタルやコンクリート内から外部へ溶出する恐れがある。さりとて、石炭灰から重金属等イオンを取り除いてから使用することは、処理コストが高額となるため現実的ではない。このように、重金属等イオンの付着量が多い石炭灰には経済性に見合った利用方法がなく、その多くが産業廃棄物として廃棄処分されている。
Among the coal ash, those not adhering to ions such as heavy metals or those having a small amount of adhesion can be used as raw materials for mortar and concrete as described above. In general, mortar and concrete solidify in a watertight state, so even if ions such as heavy metals are contained in the raw material, if the amount is small, it will be contained in the solidified mortar or concrete and retained, so it will not be eluted to the outside. Can be prevented.
However, when coal ash with a large amount of heavy metal ions is used as it is as a raw material for mortar or concrete, ions such as heavy metals may be eluted from the inside of the mortar or concrete. In the meantime, it is not practical to use after removing ions such as heavy metals from coal ash because the processing cost becomes high. As described above, coal ash having a large amount of ions such as heavy metals does not have a method of use commensurate with economic efficiency, and many of them are disposed of as industrial waste.

また、石炭灰を原料として、各種物質が溶出し難い固化物を製造する技術が提案されている。
例えば、特許文献1には、石炭灰に生石灰や消石灰等を加えて混合し、得られた粉体混合物に高圧力を加えて所定の形状に圧縮成形した後、高温高圧下で水蒸気加熱して水熱合成させ、さらに高温下で乾燥させることにより重金属等が溶出し難い固化体を製造する方法が開示されている。そして、製造された固化体は、舗装材等の建設材料等として使用できるとされている。
Moreover, the technique which manufactures the solidified material from which various substances cannot elute easily using coal ash as a raw material is proposed.
For example, in Patent Document 1, quick lime or slaked lime is added to and mixed with coal ash, and the resulting powder mixture is compressed into a predetermined shape by applying high pressure, and then heated with steam under high temperature and high pressure. A method for producing a solidified body in which heavy metals and the like are hardly eluted by hydrothermal synthesis and further drying at a high temperature is disclosed. And it is supposed that the manufactured solidified body can be used as construction materials, such as a paving material.

また、特許文献2には、石炭灰と生石灰の混合物に水を添加し消化反応を起こさせる調合工程と、得られた混合物に高圧力を加えて摩擦熱を生じさせながら圧縮固化させる圧縮合成工程とからなる、重金属等の溶出が抑制された固化物を製造する方法が開示されている。そして、製造された固化物は、その形態は小さな顆粒状あるいはフレーク状(板状)等であるが、その具体的な用途は開示されていない。   Patent Document 2 discloses a blending step in which water is added to a mixture of coal ash and quicklime to cause a digestion reaction, and a compression synthesis step in which high pressure is applied to the resulting mixture to generate frictional heat and solidify by compression. A method for producing a solidified product in which elution of heavy metals or the like is suppressed is disclosed. The produced solidified product is in the form of small granules or flakes (plate), but its specific use is not disclosed.

特開平10−296205号公報JP-A-10-296205 特開2006−61751号公報JP 2006-61751 A

しかしながら、特許文献1に記載の固化体の製造方法では、石炭灰と生石灰等の粉体原料同士を混合するため、均一に混合することは難しく、さらに、混合した粉体混合物に10〜40MPa程度の高圧力を加えて圧縮成形するが、得られた成形物は、粉体を物理的に押し固めたものに過ぎないため、脆く崩れ易く、複雑な形状に成形することは困難である。
また、かかる成形物を固化させるには、オートクレーブを用いて110〜200℃の高温高圧下で2〜24時間程度の水蒸気加熱を行なって水熱合成反応を起こさせるが、その際、成形物の内部まで水蒸気を浸透させる必要があるため、成形物の体積が大きい場合には、製造効率が極めて悪く、さらに固化不良を生ずる恐れがある。
そして、かかる固化体の製造方法の実施には、大型の圧縮成形装置やオートクレーブ等の高額でかつエネルギーコストの高い設備が必要であるという問題もある。
However, in the method for producing a solidified body described in Patent Document 1, since powder raw materials such as coal ash and quicklime are mixed with each other, it is difficult to uniformly mix them. Furthermore, the mixed powder mixture is about 10 to 40 MPa. However, since the obtained molded product is only a product obtained by physically compacting the powder, it is fragile and easily collapsed, and it is difficult to mold it into a complicated shape.
Moreover, in order to solidify such a molded product, a hydrothermal synthesis reaction is caused by performing steam heating for about 2 to 24 hours under a high temperature and high pressure of 110 to 200 ° C. using an autoclave. Since it is necessary to infiltrate water vapor to the inside, when the volume of the molded product is large, the production efficiency is extremely poor, and there is a risk of causing poor solidification.
And the implementation of such a method for producing a solidified body also has a problem that expensive and high energy cost facilities such as a large compression molding apparatus and an autoclave are required.

また、特許文献2に記載の固化物の製造方法では、石炭灰と生石灰とを混合し水を添加して消化反応を起こさせて得られた混合物に対し、49〜294MPa程度の高圧力を加えて摩擦熱を発生させ、その摩擦熱により合成反応を起こさせ固化させるため、混合物の全体に亘って十分な摩擦熱を発生させる必要がある。したがって、製造できる固化物は、その形態が10mm程度の顆粒状や厚さ3mm程度のフレーク状等の小さく薄い形態に限られ、用途が極めて限定されるという問題がある。   Moreover, in the manufacturing method of the solidified material of patent document 2, high pressure of about 49-294 MPa is added with respect to the mixture obtained by mixing coal ash and quicklime and adding water, and causing digestion reaction. Thus, it is necessary to generate sufficient frictional heat throughout the mixture in order to generate frictional heat and cause a synthetic reaction by the frictional heat to cause solidification. Therefore, the solidified product that can be produced has a problem that its form is limited to small and thin forms such as granules having a thickness of about 10 mm and flakes having a thickness of about 3 mm.

そこで、本発明は前記先行技術の問題点を解決すべく、石炭灰と混合し、任意の形状及び大きさに成形して強固に固化させることができ、また、石炭灰に重金属やその他の物質を含む陽イオン及び陰イオンが多く付着している場合でも、これらの重金属等イオンの溶出を十分に抑制できる石炭灰用固化材を提供し、さらに、建築・土木材料等として広範な用途に利用できる固化物を製造する方法を提供することを目的とする。   Therefore, the present invention can be mixed with coal ash, formed into an arbitrary shape and size, and solidified firmly to solve the problems of the prior art, and heavy metals and other substances can be added to the coal ash. We provide a solidified material for coal ash that can sufficiently suppress the elution of ions such as heavy metals even when many cations and anions containing sucrose are attached, and can be used for a wide range of applications such as construction and civil engineering materials. An object is to provide a method for producing a solidified product.

前記の目的を達成する本発明のうち、特許請求の範囲の請求項1に記載する発明は、Ca (OH)2及びCaCO3の少なくとも一方とAl(OH)3との混合物の焼成物を含むことを特徴とする石炭灰用固化材である。 Of the present invention that achieves the above object, the invention described in claim 1 of the present invention includes a fired product of a mixture of at least one of Ca (OH) 2 and CaCO 3 and Al (OH) 3. This is a solidified material for coal ash.

同じく請求項2に記載する発明は、前記混合物の焼成物において、CaとAlのモル比(Ca/Al)が、1〜10の範囲であることを特徴とする請求項1に記載の石炭灰用固化材である。   Similarly, the invention according to claim 2 is the coal ash according to claim 1, wherein in the fired product of the mixture, the molar ratio of Ca to Al (Ca / Al) is in the range of 1 to 10. It is a solidifying material.

同じく請求項3に記載する発明は、前記混合物の焼成物において、CaとAlのモル比(Ca/Al)が、2〜5の範囲であることを特徴とする請求項1に記載の石炭灰用固化材である。   Similarly, the invention described in claim 3 is the coal ash according to claim 1, wherein the calcined product of the mixture has a Ca to Al molar ratio (Ca / Al) in the range of 2 to 5. It is a solidifying material.

同じく請求項4に記載する発明は、前記焼成物の焼成温度が600℃以上であることを特徴とする請求項1から3のいずれか1項に記載の石炭灰用固化材である。   Similarly, the invention described in claim 4 is the solidified material for coal ash according to any one of claims 1 to 3, wherein the baking temperature of the fired product is 600 ° C or higher.

同じく請求項5に記載する発明は、前記焼成物の焼成温度が800〜1200℃であることを特徴とする請求項1から3のいずれか1項に記載の石炭灰用固化材である。   Similarly, the invention described in claim 5 is the solidified material for coal ash according to any one of claims 1 to 3, characterized in that the firing temperature of the fired product is 800 to 1200 ° C.

同じく請求項6に記載する発明は、請求項1から5のいずれか1項に記載の石炭灰用固化材と、石炭灰、水、及び必要に応じて他の原料とを配合して混練しペースト状物とし、該ペースト状物を所定の形状に成形して固化させることを特徴とする固化物の製造方法である。   Similarly, the invention according to claim 6 is a mixture of the coal ash solidifying material according to any one of claims 1 to 5 with coal ash, water, and other raw materials as necessary, and kneaded. A method for producing a solidified product, characterized in that the paste-like product is formed into a predetermined shape and solidified.

同じく請求項7に記載する発明は、前記石炭灰用固化材を、該石炭灰用固化材に含まれる前記焼成物の質量が、該焼成物と前記石炭灰の質量の合計に対して30〜60質量%となるように配合することを特徴とする請求項6に記載の固化物の製造方法である。   Similarly, in the invention described in claim 7, the mass of the fired product included in the coal ash solidified material is 30 to the total mass of the fired product and the coal ash. It mix | blends so that it may become 60 mass%, It is a manufacturing method of the solidified material of Claim 6.

同じく請求項8に記載する発明は、前記ペースト状物を60℃以上の温度で水蒸気養生して固化させることを特徴とする請求項6又は7に記載の固化物の製造方法である。   Similarly, the invention described in claim 8 is the method for producing a solidified product according to claim 6 or 7, wherein the paste-like material is solidified by steam curing at a temperature of 60 ° C. or higher.

本発明の石炭灰用固化材によれば、これに石炭灰と水とを配合して混練することで適度な流動性を有するペースト状物になるため、このペースト状物を任意の形状の型枠内に流し入れて静置することにより、任意形状かつ水密の状態に固化した固化物を製造することができる。すなわち、一般的なモルタルやコンクリートと同じように取り扱うことができるため、作業性が極めて高く、かつ安価である。
また、混練の際に配合する石炭灰用固化材、石炭灰及び水の配合量を適宜調節することにより、ペースト状物の粘度を任意に変更することができるため扱い易く、また、必要に応じて砂や砂利等を配合することにより、よりモルタルやコンクリートに近似した性状を付与することが可能である。
According to the solidified material for coal ash of the present invention, a paste-like material having appropriate fluidity can be obtained by blending and kneading coal ash and water. By pouring into a frame and allowing to stand, a solidified product solidified in an arbitrary shape and in a watertight state can be produced. That is, since it can be handled in the same way as general mortar and concrete, workability is extremely high and inexpensive.
In addition, by adjusting the blending amount of coal ash, coal ash and water to be blended during kneading, the viscosity of the paste can be changed arbitrarily, so that it is easy to handle. By adding sand, gravel, etc., it is possible to impart properties that more closely resemble mortar and concrete.

さらに、本発明の石炭灰用固化材は、重金属及びその他の物質を含む陽イオン及び陰イオンを吸着して不溶化する特性を有する。したがって、本発明の石炭灰用固化材によれば、石炭灰に重金属等イオンが多く付着している場合であっても、例えば、重金属等イオンを吸着して不溶化する特性と、水密な状態の固化物を形成して重金属等イオンを固化物内に封じ込める特性とが相乗的に作用すると考えられ、重金属等イオンの溶出抑制効果が高い固化物を製造することができる。   Furthermore, the solidified material for coal ash of the present invention has a property of adsorbing and insolubilizing cations and anions containing heavy metals and other substances. Therefore, according to the solidified material for coal ash of the present invention, even when a large amount of ions such as heavy metals are attached to the coal ash, for example, the characteristics of adsorbing and insolubilizing ions such as heavy metals and watertight state It is considered that the property of forming a solidified product to contain ions such as heavy metals in the solidified product acts synergistically, and a solidified product having a high effect of suppressing elution of ions such as heavy metals can be produced.

また、本発明の固化物の製造方法によれば、任意の形状及び大きさに成形でき、圧縮強度(N/mm2)が高くて丈夫であり、かつ重金属等イオンの溶出抑制効果が高い固化物を容易に製造することができる。
したがって、本発明の製造方法によって得られる固化物は、道路舗装用の平板及び縁石、U字形側溝、駐車場の車止めブロック、人口漁礁、テトラポッド(消波ブロック)等の建築・土木材料等として広範な用途に利用することが可能である。
また、本発明の製造方法によって得られる固化物は、一般的な灰色のコンクリート製品よりも色が薄く白色に近いので、見た目にも美しく、また、各種顔料等を配合することにより、任意の色彩や風合いを付与してより審美性を高めることができる。
Further, according to the method for producing a solidified product of the present invention, it can be molded into an arbitrary shape and size, has a high compressive strength (N / mm 2 ) and is strong, and has a high effect of suppressing the elution of ions such as heavy metals. Things can be easily manufactured.
Therefore, the solidified material obtained by the production method of the present invention is used as a construction / civil engineering material such as a flat plate and curb for road paving, a U-shaped side groove, a parking block for a parking lot, artificial fishing reef, tetrapod (wave-dissipating block), etc. It can be used for a wide range of applications.
In addition, the solidified product obtained by the production method of the present invention is lighter in color than a general gray concrete product and is almost white, so that it is also beautiful in appearance, and by adding various pigments, any color can be obtained. It is possible to enhance the aesthetics by adding a texture and texture.

Ca(OH)2とAl(OH)3の混合物のTGのグラフの一例である。It is an example of the graph of TG of the mixture of Ca (OH) 2 and Al (OH) 3 . Ca(OH)2とAl(OH)3の混合物のXRDのパターンの一例である。It is an example of the XRD pattern of the mixture of Ca (OH) 2 and Al (OH) 3 . Ca(OH)2とAl(OH)3の混合物のXRDのパターンのその他の例である。It is another example of the XRD pattern of the mixture of Ca (OH) 2 and Al (OH) 3 . CaCO3とAl(OH)3の混合物のTGのグラフの一例である。Is an example of a graph of TG of a mixture of CaCO 3 and Al (OH) 3. CaCO3とAl(OH)3の混合物のXRDのパターンの一例である。Is an example of the XRD pattern of a mixture of CaCO 3 and Al (OH) 3. CaCO3とAl(OH)3の混合物のXRDのパターンのその他の例である。It is another example of the XRD pattern of the mixture of CaCO 3 and Al (OH) 3 . 各種焼成物のホウ素吸着量の一例を示すグラフである。It is a graph which shows an example of the boron adsorption amount of various baked products. 各種焼成物のホウ素吸着量のその他の例を示すグラフである。It is a graph which shows the other example of the boron adsorption amount of various baked products. 各種焼成物のCr6+の吸着量の一例を示すグラフである。It is a graph which shows an example of the adsorption amount of Cr6 + of various baked products. 各種焼成物のCr6+の吸着量のその他の例を示すグラフである。It is a graph which shows the other example of the adsorption amount of Cr6 + of various baked products. 各種焼成物のCr3+の吸着量の一例を示すグラフである。It is a graph which shows an example of the adsorption amount of Cr3 + of various baked products. 各種固化物の圧縮強度の一例を示すグラフである。It is a graph which shows an example of the compressive strength of various solidified material. 各種固化物のXRDのパターンの一例である。It is an example of the XRD pattern of various solidified material.

以下、本発明の実施の形態を説明する。なお、本発明の趣旨に反しない限り、本発明はこれらの実施の形態に限定されるものではない。
本発明の石炭灰用固化材は、Ca (OH)2及びCaCO3の少なくとも一方とAl(OH)3との混合物の焼成物を含むが、かかる混合物は、Ca(OH)2とAl(OH)3の混合物、CaCO3とAl(OH)3の混合物、又はCa(OH)2、CaCO3及びAl(OH)3の三者の混合物のいずれであってもよく、さらに、本発明の石炭灰用固化材の効果を阻害しない範囲であれば、Ca(OH)2、CaCO3及びAl(OH)3以外の他の物質を含んでいても差し支えない。
Embodiments of the present invention will be described below. It should be noted that the present invention is not limited to these embodiments unless contrary to the spirit of the present invention.
The solidified material for coal ash of the present invention includes a fired product of a mixture of at least one of Ca (OH) 2 and CaCO 3 and Al (OH) 3, and such a mixture includes Ca (OH) 2 and Al (OH 3 ), a mixture of CaCO 3 and Al (OH) 3 or a mixture of three of Ca (OH) 2 , CaCO 3 and Al (OH) 3 , and the coal of the present invention. Other materials than Ca (OH) 2 , CaCO 3 and Al (OH) 3 may be included as long as the effects of the solidifying material for ash are not impaired.

また、前記混合物の焼成物において、CaとAlのモル比(Ca/ Al)は、特に制限されないが、例えば1〜10の範囲とすれば、石炭灰等と混合して固化物を製造した際に、圧縮強度(N/mm2)が高く、かつ重金属等イオンの溶出抑制効果が高い固化物を得ることができるため好ましく、より好ましい範囲は2〜5である。
さらに、前記焼成物の焼成温度は、特に制限されないが、例えば600℃以上とすれば、石炭灰等と混合して固化物を製造した際に、圧縮強度が高く、かつ重金属等イオンの溶出抑制効果が高い固化物を得ることができるため好ましく、より好ましくは800〜1200℃である。
Moreover, in the baked product of the mixture, the molar ratio of Ca to Al (Ca / Al) is not particularly limited. For example, when the range is 1 to 10, when solidified product is produced by mixing with coal ash or the like. In addition, a solidified product having a high compressive strength (N / mm 2 ) and a high elution suppression effect of ions such as heavy metals can be obtained, and a more preferable range is 2 to 5.
Furthermore, the firing temperature of the fired product is not particularly limited. For example, if it is set to 600 ° C. or higher, when the solidified product is produced by mixing with coal ash or the like, the compression strength is high and the elution control of ions such as heavy metals is suppressed. Since the solidified product with a high effect can be obtained, it is preferable, and it is 800-1200 degreeC more preferably.

本発明の石炭灰用固化材は、CaO、Ca(OH)2、Ca12Al14O33、CaAl4O7、CaAl2O4、Ca5Al6O14及びCa9Al6O18等の化合物を含んでいる。これらの化合物は、主にCa(OH)2及びCaCO3とAl(OH)3との化学反応によって生成したものであり、これらの化合物の生成量は、CaとAlのモル比及び焼成温度等によって変化する。
なお、本発明の石炭灰用固化材は、前記焼成物以外の物質を含んでいてもよく、例えば、他の固化材や他の重金属等イオンの吸着材を含んでいても差し支えない。
The solidified material for coal ash of the present invention includes CaO, Ca (OH) 2 , Ca 12 Al 14 O 33 , CaAl 4 O 7 , CaAl 2 O 4 , Ca 5 Al 6 O 14 and Ca 9 Al 6 O 18 . Contains compounds. These compounds are mainly produced by the chemical reaction of Ca (OH) 2 and CaCO 3 with Al (OH) 3, and the amount of these compounds produced is the molar ratio of Ca and Al, the firing temperature, etc. It depends on.
In addition, the solidified material for coal ash of the present invention may contain a substance other than the fired product. For example, the solidified material for coal ash may contain an adsorbent of ions such as other solidified materials and other heavy metals.

次に、本発明の石炭灰用固化材を使用して固化物を製造する方法を説明する。まず、本発明の石炭灰用固化材、石炭灰及び水を所定量ずつ配合して混練しペースト状物を調製する。
ここで使用する石炭灰は、火力発電所の石炭燃焼ボイラ等で石炭を燃焼させた際に生じる砂粒状又はれき状の灰であり、フライアッシュ又はクリンカアッシュとも呼ばれる。日本工業規格には、コンクリート用フライアッシュ、クリンカアッシュ等の規格が定められているが、本発明で使用可能な石炭灰はこれらに限られず、規格外のものも広く使用することができ、また、石炭の種類、産地及び成分等によって限定されるものではない。
Next, a method for producing a solidified product using the solidified material for coal ash of the present invention will be described. First, the solidified material for coal ash of the present invention, coal ash and water are blended in predetermined amounts and kneaded to prepare a paste.
The coal ash used here is sand-like or crushed ash generated when coal is burned in a coal-fired boiler or the like of a thermal power plant, and is also called fly ash or clinker ash. The Japanese industrial standards include standards such as fly ash for concrete and clinker ash, but the coal ash that can be used in the present invention is not limited to these, and non-standard coal ash can be widely used. It is not limited by the type of coal, the production area and the components.

石炭灰用固化材と石炭灰の配合量については特に制限されないが、例えば、石炭灰用固化材の配合量を、その石炭灰用固化材に含まれる前記焼成物の質量がその焼成物と石炭灰の質量の合計に対して30〜60質量%となるようにすると、強度が高く、かつ重金属等イオンの溶出抑制効果が高い固化物を製造することができるため好ましい。
また、水の配合量についても特に制限されないが、例えば、水の配合量を、石炭灰用固化材に含まれる前記焼成物と石炭灰の質量の合計に対して0.6〜1.2(質量比)とすれば、ペースト状物を、コンクリートやモルタルのように扱い易い粘度に調製することができ、また、強度が高い固化物を製造できるため好ましい。
The blending amount of the coal ash solidifying material and the coal ash is not particularly limited. For example, the blending amount of the coal ash solidifying material is the same as that of the calcined product and the coal. It is preferable to be 30 to 60% by mass with respect to the total mass of ash, since a solidified product having high strength and a high effect of suppressing elution of ions such as heavy metals can be produced.
Moreover, although it does not restrict | limit especially about the compounding quantity of water, For example, the compounding quantity of water is 0.6-1.2 (with respect to the sum total of the mass of the said baked material and coal ash contained in the solidification material for coal ash. The mass ratio is preferable because the paste can be prepared to have a viscosity that is easy to handle, such as concrete and mortar, and a solidified product having high strength can be produced.

さらに、前記ペースト状物の調製に際し、石炭灰用固化材、石炭灰及び水に加えて、他の物質を配合することもできる。例えば、砂や砂利等を配合すれば、ペースト状物に対してよりモルタルやコンクリートに近似した性状を付与することが可能である。また、他の固化材や重金属イオンの吸着材を配合しても良く、さらに、各種顔料等を配合すれば、任意の色彩や風合いが付与された固化物を製造することができる。
前記の各原料を混練する方法としては、調製するペースト状物が少量であれば、いわゆるトロ舟と練りクワ等のコンクリートやモルタルを手練りする際に使用する道具等を用いて混練すれば良い。また、ペースト状物が多量であれば、一般的なコンクリートミキサーやモルタルミキサーを使用して混練すれば良い。
Furthermore, in preparing the paste-like material, other substances can be blended in addition to the coal ash solidifying material, coal ash and water. For example, if sand, gravel, or the like is blended, it is possible to impart properties closer to mortar or concrete to the paste-like material. Moreover, you may mix | blend another solidification material and the adsorption material of heavy metal ion, and also if various pigments are mix | blended, the solidified material to which arbitrary colors and textures were provided can be manufactured.
As a method of kneading the respective raw materials, as long as the paste-like material to be prepared is small, it may be kneaded by using a tool or the like used when kneading concrete or mortar such as so-called Toro boat and kneaded mulberry. . If the amount of paste is large, it may be kneaded using a general concrete mixer or mortar mixer.

次に、前記の方法により調製したペースト状物を、所定の形状に成形して固化させる。
調製したペースト状物は、セメントやモルタルのように適度な粘度と流動性を有するため、任意の形状の型枠に流し込んで成形することができ、また、コテやヘラ等を使って他の物品や構造物上に塗り付けて成形したり、他の物品や構造物の隙間や割れ目に注入して成形したりすることができる。
前記ペースト状物を型枠に流し込んで成形する場合には、一般的なコンクリートを同じように、型枠の隅々まで流入させることができるので、複雑な形状にも成形することが可能であり、また、大きな型枠に流し込んで成形することもできる。
このように、任意の形状に成形されたペースト状物は、常温でそのまま静置することで水密な状態に固化させることができる。しかし、水蒸気の存在下で60℃以上の温度で加熱して水蒸気養生することにより、より早く固化させることができ、また、強度が高い固化物を製造することができるため好ましい。
Next, the paste-like material prepared by the above method is molded into a predetermined shape and solidified.
The prepared paste-like material has an appropriate viscosity and fluidity like cement and mortar, so it can be poured into a mold of any shape and molded, and other articles using a trowel, spatula, etc. It can be applied by coating on a structure, or can be molded by injecting gaps or cracks in other articles or structures.
When the paste-like material is poured into a mold and molded, general concrete can be poured into every corner of the mold in the same way, so that it can be molded into a complicated shape. Alternatively, it can be molded by pouring into a large mold.
Thus, the paste-like material molded into an arbitrary shape can be solidified into a watertight state by leaving it as it is at room temperature. However, heating at a temperature of 60 ° C. or higher in the presence of water vapor to cure with water vapor is preferable because it can be solidified more quickly and a solidified product with high strength can be produced.

本発明の石炭灰用固化材と石炭灰等とが、強度が高く、かつ重金属等イオンの溶出抑制効果が高い固化物を生成する際の化学反応については、その全体像は明らかでないが、例えば、本発明の石炭灰用固化材、石炭灰及び水を混練することにより、石炭灰用固化材に含まれるCaOが水と反応してCa(OH)2となり、これがAlを含む化合物及び石炭灰に含まれるSiO2と化学反応してCa3Al2(SiO4)(OH)8等が生成することにより、強固かつ水密な状態に固化するものと推定される。
また、固化物は水密な状態に固化するため、例えば、石炭灰に付着している重金属等イオンは固化物内に封じ込められ、さらに、本発明の石炭灰用固化材に含まれる化合物(CaO 、Ca(OH)2、Ca12Al14O33、CaAl4O7、CaAl2O4、Ca5Al6O14及びCa9Al6O18等)のいくつかが重金属等イオンを吸着し不溶化することにより、固化物からの重金属等イオンの溶出が抑制されるものと推定される。なお、これらの推定は本発明を限定するものではない。
About the chemical reaction when the solidified material for coal ash of the present invention and coal ash, etc. are high in strength and produce a solidified product having a high elution suppression effect of ions such as heavy metals, the overall picture is not clear. By kneading the coal ash solidifying material, coal ash and water of the present invention, CaO contained in the coal ash solidifying material reacts with water to become Ca (OH) 2 , which is a compound containing Al and coal ash. It is presumed that when Ca 3 Al 2 (SiO 4 ) (OH) 8 and the like are produced by a chemical reaction with SiO 2 contained in the material, it is solidified into a strong and water-tight state.
Further, since the solidified product is solidified in a watertight state, for example, ions such as heavy metals adhering to the coal ash are contained in the solidified product, and further, the compound (CaO 2, (Ca (OH) 2 , Ca 12 Al 14 O 33 , CaAl 4 O 7 , CaAl 2 O 4 , Ca 5 Al 6 O 14, Ca 9 Al 6 O 18, etc.) adsorb heavy metal ions and insolubilize them. Thus, it is estimated that elution of ions such as heavy metals from the solidified product is suppressed. Note that these estimations do not limit the present invention.

下記(1)〜(21)に示す各試験例及び(22)に示す試験例総括によって本発明の実施例を説明する。なお、本発明はかかる実施例により限定されるものではない。   Examples of the present invention will be described by the following test examples shown in (1) to (21) and the test example summary shown in (22). In addition, this invention is not limited by this Example.

(1) Ca(OH) 2 /Al(OH) 3 混合物の熱質量(TG)分析
Ca/Alモル比=5のCa(OH)2/Al(OH)3の混合物を10℃/minの昇温速度で100℃〜1000℃まで昇温し、熱質量分析装置(製品名TG 8101D、リガク社製)を用いて質量変化を測定した。その結果を図1に示す。図示のように、100〜250℃付近まではほぼ一定の質量を示し、その後、250〜270℃の間で急激に質量が減少した後、270〜390℃の間でほぼ一定の質量を示した。さらに、390〜440℃の間で急激に質量が減少した後、440〜660℃の間でゆるやかに質量が減少した。その後、660〜1000℃の間ではほぼ一定の質量を示した。
(1) Thermal mass (TG) analysis of Ca (OH) 2 / Al (OH) 3 mixture
A mixture of Ca (OH) 2 / Al (OH) 3 with a Ca / Al molar ratio = 5 was heated to 100 ° C. to 1000 ° C. at a temperature rising rate of 10 ° C./min, and a thermal mass spectrometer (product name TG 8101D , Manufactured by Rigaku Corporation), and the mass change was measured. The result is shown in FIG. As shown in the figure, the mass was almost constant up to around 100 to 250 ° C., and then the mass suddenly decreased between 250 and 270 ° C., and then the mass was almost constant between 270 and 390 ° C. . Furthermore, after the mass rapidly decreased between 390 and 440 ° C., the mass gradually decreased between 440 and 660 ° C. Thereafter, the mass was almost constant between 660 and 1000 ° C.

(2) 焼成温度の異なるCa(OH) 2 /Al(OH) 3 混合物のX線回折(XRD)分析
前記TG分析で質量がほぼ一定となった温度(350℃、500℃、800℃及び1000℃)でCa(OH)2/Al(OH)3混合物を焼成し、そのXRD分析により生成する結晶性化合物を同定した。その結果を図2に示す。図示のように、焼成温度350℃ではCa(OH)2に由来するシャープなピークが検出され、500℃ではCa(OH)2に由来するがブロードなピークが検出された。したがって、350℃では結晶性のCa(OH)2が存在し、加熱に伴い500℃では結晶性Ca(OH)2が非晶質化したことになる。さらに、焼成温度800℃では非晶性Ca(OH)2の他に、わずかではあるがCaO由来のピークが検出された。さらに高い焼成温度1000℃ではCaO由来のピーク強度が大きくなると同時にCa12Al14O33に由来するピークが明瞭に検出された。
(2) X-ray diffraction (XRD) analysis of Ca (OH) 2 / Al (OH) 3 mixtures with different firing temperatures Temperatures (350 ° C, 500 ° C, 800 ° C and 1000 ° C ) at which mass was almost constant in the TG analysis The Ca (OH) 2 / Al (OH) 3 mixture was calcined at 0 ° C., and the crystalline compound produced by XRD analysis was identified. The result is shown in FIG. As shown, the detected sharp peak derived from the firing temperature 350 ° C. The Ca (OH) 2 is, but from 500 ° C. At Ca (OH) 2 was detected broad peak. Therefore, crystalline Ca (OH) 2 exists at 350 ° C., and crystalline Ca (OH) 2 becomes amorphous at 500 ° C. with heating. Furthermore, a slight CaO-derived peak was detected in addition to amorphous Ca (OH) 2 at a calcination temperature of 800 ° C. At a higher firing temperature of 1000 ° C., the peak intensity derived from CaO was increased, and at the same time, the peak derived from Ca 12 Al 14 O 33 was clearly detected.

(3) Ca(OH) 2 /Al(OH) 3 モル比の異なる混合物の1000℃焼成物のXRD分析
Ca/Alモル比を0.5〜15の間で変化させたCa(OH)2/Al(OH)3混合物を1000℃で焼成したものについてX線回折装置(製品名D8 ADVANCE TXS、BRUKER AXS社製)を用いてXRD分析を行った。その結果を、図3に示す。図示のように、Ca/Alモル比=0.5及び1.0では、結晶性化合物としてCaOの他に、Ca12Al14O33が検出され、さらに、低濃度ながらCaAl4O7及びCaAl2O4も検出された。Ca/Alモル比2以上では、CaO及びCa12Al14O33に帰属されるピークが検出されたが、Ca/Alモル比の増加に伴いCaOのピーク強度は増加し、Ca12Al14O33のピーク強度は低下した。このことから、Ca/Alモル比の増加に伴いCaOの生成量が増加し、Ca12Al14O33の生成量は低下したと考えられる。
(3) XRD analysis of 1000 ° C calcined mixture of Ca (OH) 2 / Al (OH) 3 molar ratios
An X-ray diffractometer (product name: D8 ADVANCE TXS, BRUKER AXS) obtained by firing a Ca (OH) 2 / Al (OH) 3 mixture with a Ca / Al molar ratio changed between 0.5 and 15 at 1000 ° C. XRD analysis was performed. The result is shown in FIG. As shown in the figure, at a Ca / Al molar ratio of 0.5 and 1.0, in addition to CaO, Ca 12 Al 14 O 33 is detected as a crystalline compound, and while CaAl 4 O 7 and CaAl are low in concentration. 2 O 4 was also detected. When the Ca / Al molar ratio was 2 or more, peaks attributed to CaO and Ca 12 Al 14 O 33 were detected, but as the Ca / Al molar ratio increased, the peak intensity of CaO increased, and Ca 12 Al 14 O The peak intensity of 33 decreased. From this, it is considered that the amount of CaO produced increased with the increase of the Ca / Al molar ratio, and the amount of Ca 12 Al 14 O 33 produced decreased.

(4) CaCO 3 /Al(OH) 3 混合物のTG分析
Ca/Alモル比=5のCaCO3/Al(OH)3混合物を10℃/minの昇温速度で100℃〜1000℃まで昇温し、前述と同じ装置で質量変化を測定した。その結果を図4に示す。図示のように、100〜250℃付近まではほぼ一定の質量を示し、その後、250〜270℃の間で急激に質量が減少した後、270〜600℃の間で徐々に質量が減少し、600〜770℃の間で急激に質量が減少し、それ以降(770〜1000℃)ではほぼ一定の質量を示した。
(4) TG analysis of CaCO 3 / Al (OH) 3 mixture
The CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio of 5 was heated to 100 ° C. to 1000 ° C. at a temperature rising rate of 10 ° C./min, and the mass change was measured using the same apparatus as described above. The result is shown in FIG. As shown in the figure, it shows a substantially constant mass up to around 100 to 250 ° C., after which the mass rapidly decreases between 250 and 270 ° C., and then gradually decreases between 270 and 600 ° C., Mass decreased rapidly between 600-770 degreeC, and showed the substantially constant mass after that (770-1000 degreeC).

(5) 焼成温度の異なるCaCO 3 /Al(OH) 3 混合物のXRD分析
前述したTG分析結果をもとに、質量がほぼ一定となった温度でCaCO3/Al(OH)3混合物を焼成し、前述の装置を用い、XRD分析を行った。その結果を図5に示す。図示のように、焼成温度350℃では原料中に存在するCaCO3に由来するシャープなピークが検出され、800℃ではシャープなCaOのピークと、ピーク強度が低くブロードなCa(OH)2に由来するピークが検出された。このことから、少なくとも350〜800℃の間で、CaCO3の熱分解(CaCO3→CaO+CO2)が起きたことが推定される。Ca(OH)2はCaOが空気中の湿分を吸収して生成したと推定される(CaO+H2O→Ca(OH)2)。さらに、高い焼成温度1000℃ではCaOに由来するシャープなピークのほかにCa9Al6O18やCa5Al6O14に由来する強度の低いピークが観測された。この場合、結晶性化合物としてCaOが主成分で、Ca5Al6O14及びCa9Al6O18が低濃度で含まれることになる。なお、前記推定は、本発明を制限及び限定しない。
(5) XRD analysis of CaCO 3 / Al (OH) 3 mixtures with different firing temperatures Based on the TG analysis results described above, the CaCO 3 / Al (OH) 3 mixture was fired at a temperature where the mass was almost constant. XRD analysis was performed using the above-mentioned apparatus. The result is shown in FIG. As shown in the figure, a sharp peak derived from CaCO 3 present in the raw material was detected at a firing temperature of 350 ° C., and a sharp CaO peak at 800 ° C. and a broad peak of Ca (OH) 2 with low peak intensity. A peak was detected. Therefore, between at least 350 to 800 ° C., thermal decomposition of CaCO 3 (CaCO 3 → CaO + CO 2) It is estimated that happened. It is presumed that Ca (OH) 2 was produced by CaO absorbing moisture in the air (CaO + H 2 O → Ca (OH) 2 ). Furthermore, at a high calcination temperature of 1000 ° C., in addition to a sharp peak derived from CaO, low intensity peaks derived from Ca 9 Al 6 O 18 and Ca 5 Al 6 O 14 were observed. In this case, CaO is a main component as a crystalline compound, and Ca 5 Al 6 O 14 and Ca 9 Al 6 O 18 are contained at a low concentration. The estimation does not limit or limit the present invention.

(6) CaCO 3 /Al(OH) 3 モル比の異なる混合物の1000℃焼成物のXRD分析
Ca/Alモル比を変化させたCaCO3/Al(OH)3混合物を1000℃で焼成したものについて、前述の装置を用いて、XRD分析した。その結果を図6に示す。図示のように、Ca/Alモル比=0.5では、結晶性化合物としてCaOに加え、微量の Ca5Al6O14,CaAl4O7及びCaAl2O4が検出された。Ca/Alモル比=1.0では、CaOに加え、微量の Ca5Al6O14及びCaAl2O4が検出された。Ca/Alモル比1.5以上では、 CaOとCa9Al6O18に加え、微量のCa5Al6O14が検出された。Ca/Alモル比の増加に伴いCaOに由来するピークの強度は増加の傾向を示したが、Ca9Al6O18に由来するピークの強度はCa/Alモル比の増加により増加し、Ca/Alモル比=3で最も高くなり、さらにCa/Alモル比が増加するとピーク強度は低下し、Ca/Alモル比=10以上ではCa9Al6O18に由来するピークは観測されなかった。これらのことから、Ca/Alモル比の増加に伴いCaO生成量は増加し、Ca9Al6O18生成量はCa/Alモル比=3で最大となり、さらにCa/Alモル比を増加させるとCa9Al6O18生成量は低下し、Ca/Alモル比=10以上では消失したと推定される。ただし、本発明は前記推定により限定及び制限されない。
(6) XRD analysis of 1000 ° C calcined mixture of CaCO 3 / Al (OH) 3 molar ratios
A CaCO 3 / Al (OH) 3 mixture having a changed Ca / Al molar ratio was calcined at 1000 ° C. and subjected to XRD analysis using the above-mentioned apparatus. The result is shown in FIG. As shown in the figure, in the Ca / Al molar ratio = 0.5, trace amounts of Ca 5 Al 6 O 14 , CaAl 4 O 7 and CaAl 2 O 4 were detected as crystalline compounds in addition to CaO. At a Ca / Al molar ratio of 1.0, trace amounts of Ca 5 Al 6 O 14 and CaAl 2 O 4 were detected in addition to CaO. At a Ca / Al molar ratio of 1.5 or more, a trace amount of Ca 5 Al 6 O 14 was detected in addition to CaO and Ca 9 Al 6 O 18 . As the Ca / Al molar ratio increased, the intensity of the peak derived from CaO tended to increase, but the intensity of the peak derived from Ca 9 Al 6 O 18 increased as the Ca / Al molar ratio increased. When the Ca / Al molar ratio increases to 3, the peak intensity decreases, and when the Ca / Al molar ratio increases to 10 or higher, no peak derived from Ca 9 Al 6 O 18 is observed. . From these facts, the CaO production increases as the Ca / Al molar ratio increases, the Ca 9 Al 6 O 18 production reaches its maximum when the Ca / Al molar ratio = 3, and further increases the Ca / Al molar ratio. And the production amount of Ca 9 Al 6 O 18 decreases, and it is presumed that it disappeared when the Ca / Al molar ratio was 10 or more. However, the present invention is not limited or limited by the estimation.

(7) 各種焼成物によるホウ素の吸着
ホウ酸(H3BO3)水溶液(B濃度=11mg/L)50mLに、各種焼成物0.5gを添加し、よく混合したのち、1日間、室温で放置した。その後、溶液中の沈殿物をろ過し、ろ液中に残存するホウ素濃度をICPプラズマ発光法により測定した。初期ホウ素濃度(=11mg/L)と各種焼成物添加後の残存ホウ素濃度の差を各種焼成物のホウ素吸着量(mg/g-焼成物)とした。
(7) Adsorption of boron by various baked products Add 0.5 g of various baked products to 50 mL of boric acid (H 3 BO 3 ) aqueous solution (B concentration = 11 mg / L), mix well, and then at room temperature for 1 day. I left it alone. Thereafter, the precipitate in the solution was filtered, and the concentration of boron remaining in the filtrate was measured by ICP plasma emission method. The difference between the initial boron concentration (= 11 mg / L) and the residual boron concentration after the addition of various calcined products was defined as the boron adsorption amount (mg / g-calcined product) of the various calcined products.

Ca(OH)2/Al(OH)3混合物(Ca/Al=2及び5)及びCaCO3/Al(OH)3混合物(Ca/Al=2及び5)の焼成物に対するホウ素吸着量の焼成温度依存性を図7に示す。図示のように、Ca/Alモル比に拘わらず、1273K(約1000℃)付近で最も高いホウ素吸着量を示した。また、Ca(OH)2/Al(OH)3混合物及びCaCO3/Al(OH)3混合物を1273Kで焼成したもののホウ素吸着量のCa/Alモル比依存性を図8に示す。図示のように、Ca/Alモル比=2〜5付近で最大のホウ素吸着量を示した。これらのことから、これらの焼成物ではCa/Alモル比=2〜5付近で高いホウ素吸着量を示し、焼成温度はより高い方が高いホウ素吸着量を示すと言える。 Calcination temperature of boron adsorption amount for calcined products of Ca (OH) 2 / Al (OH) 3 mixture (Ca / Al = 2 and 5) and CaCO 3 / Al (OH) 3 mixture (Ca / Al = 2 and 5) The dependency is shown in FIG. As shown in the figure, the highest boron adsorption amount was shown around 1273 K (about 1000 ° C.) regardless of the Ca / Al molar ratio. Further, FIG. 8 shows the Ca / Al molar ratio dependency of the boron adsorption amount of the Ca (OH) 2 / Al (OH) 3 mixture and the CaCO 3 / Al (OH) 3 mixture fired at 1273K. As shown in the figure, the maximum boron adsorption amount was shown around the Ca / Al molar ratio = 2-5. From these facts, it can be said that these calcined products show a high boron adsorption amount at a Ca / Al molar ratio of around 2 to 5, and a higher calcining temperature indicates a high boron adsorption amount.

(8) 各種焼成物によるクロムイオン(6価クロム)の吸着
酸化クロム(CrO3)を溶解した水溶液(Cr濃度=51mg/L)50mLに各種焼成物0.5gを添加し、よく混合したのち、1日間、室温で放置した。その後、溶液中の沈殿物をろ過し、ろ液中に残存するCr濃度をICPプラズマ発光法により測定した。初期Cr濃度(=51mg/L)と各種焼成物添加後の残存Cr濃度の差を、各種焼成物のCr6+吸着量(mg/g-焼成物)とした。
(8) Adsorption of chromium ions (hexavalent chromium) by various calcined products After adding 0.5 g of various calcined products to 50 mL of an aqueous solution (Cr concentration = 51 mg / L) in which chromium oxide (CrO 3 ) is dissolved, mix well. Left at room temperature for 1 day. Thereafter, the precipitate in the solution was filtered, and the Cr concentration remaining in the filtrate was measured by ICP plasma emission method. The difference between the initial Cr concentration (= 51 mg / L) and the residual Cr concentration after addition of various calcined products was defined as the Cr 6+ adsorption amount (mg / g-calcined product) of the various calcined products.

Ca(OH)2/Al(OH)3混合物(Ca/Al=2及び5)及びCaCO3/Al(OH)3混合物(Ca/Al=2及び5)の焼成物に対するCr6+吸着量の焼成温度依存性を、図9に示す。図示のように、Ca/Alモル比に拘わらず、1273K(約1000℃)付近で最も高いCr6+吸着量を示した。また、Ca(OH)2/Al(OH)3混合物及びCaCO3/Al(OH)3混合物を1273Kで焼成したもののCr6+吸着量のCa/Alモル比依存性を、図10に示す。同図には吸着条件として、焼成物/水溶液=0.5g/50mL=10g/Lの場合のほか、焼成物/水溶液=0.1g/50mL=2g/Lの場合の結果も併せて示す。図示のように、Ca/Alモル比=2〜5付近で最大のCr6+吸着量=25.5mg/g-焼成物を示した。これらのことから、これらの焼成物ではCa/Alモル比=2〜5付近で高いCr6+吸着量を示し、焼成温度はより高い方が高いCr6+吸着量を示すことがわかった。 Of Cr 6+ adsorption on calcined products of Ca (OH) 2 / Al (OH) 3 mixture (Ca / Al = 2 and 5) and CaCO 3 / Al (OH) 3 mixture (Ca / Al = 2 and 5) The firing temperature dependence is shown in FIG. As shown in the figure, the highest Cr 6+ adsorption amount was shown around 1273 K (about 1000 ° C.) regardless of the Ca / Al molar ratio. In addition, FIG. 10 shows the Ca / Al molar ratio dependence of the Cr 6+ adsorption amount of the Ca (OH) 2 / Al (OH) 3 mixture and the CaCO 3 / Al (OH) 3 mixture fired at 1273K. In the same figure, as the adsorption condition, in addition to the case of calcined product / aqueous solution = 0.5 g / 50 mL = 10 g / L, the result in the case of calcined product / aqueous solution = 0.1 g / 50 mL = 2 g / L is also shown. As shown in the figure, the maximum Cr 6+ adsorption amount = 25.5 mg / g-calcined product was shown when the Ca / Al molar ratio = 2-5. From these facts, it was found that these calcined products showed a high Cr 6+ adsorption amount at a Ca / Al molar ratio of around 2 to 5, and a higher calcining temperature showed a higher Cr 6+ adsorption amount.

(9) 各種焼成物によるクロムイオン(3価クロム)の吸着
塩化クロム(CrCl3)を溶解した水溶液(Cr濃度=52mg/L)50mLに各種焼成物0.5gを添加し、よく混合したのち、1日間、室温で放置した。その後、溶液中の沈殿物をろ過し、ろ液中に残存するCr濃度をICPプラズマ発光法により測定した。初期Cr濃度(=52mg/L)と各種焼成物添加後の残存Cr濃度の差を、各種焼成物のCr3+吸着量(mg/g-焼成物)とした。各種焼成物作成時の原料中のCa/Alモル比がCr3+吸着量に及ぼす影響を図11に示す。
(9) Adsorption of chromium ions (trivalent chromium) by various calcined products After adding 0.5 g of various calcined products to 50 mL of an aqueous solution (Cr concentration = 52 mg / L) in which chromium chloride (CrCl 3 ) is dissolved, mix well. Left at room temperature for 1 day. Thereafter, the precipitate in the solution was filtered, and the Cr concentration remaining in the filtrate was measured by ICP plasma emission method. The difference between the initial Cr concentration (= 52 mg / L) and the residual Cr concentration after addition of various calcined products was defined as the Cr 3+ adsorption amount (mg / g-calcined product) of the various calcined products. FIG. 11 shows the influence of the Ca / Al molar ratio in the raw material on the amount of Cr 3+ adsorbed when various fired products are produced.

図示のように、Ca(OH)2/Al(OH)3混合物の焼成物のうち、焼成温度600、800及び1000℃で焼成したものは、いずれもCa/Alモル比=0.5〜15の間で、Ca/Alモル比によらず溶液中に添加したCr3+の全量を吸着し、最大のCr3+吸着量=5.2mg/g-焼成物を示した。CaCO3/Al(OH)3混合物の焼成物においても、高いCr3+吸着量を示すと推定される。但し、前記推定は、本発明を制限及び限定しない。 As shown in the figure, among the calcined products of the Ca (OH) 2 / Al (OH) 3 mixture, those calcined at a calcining temperature of 600, 800 and 1000 ° C. are all Ca / Al molar ratio = 0.5-15. In the meantime, the entire amount of Cr 3+ added to the solution was adsorbed regardless of the Ca / Al molar ratio, and the maximum amount of Cr 3+ adsorbed = 5.2 mg / g-calcined product was shown. It is presumed that the CaCO 3 / Al (OH) 3 mixture fired product also shows a high Cr 3+ adsorption amount. However, the estimation does not limit or limit the present invention.

(10) Ca(OH) 2 /Al(OH) 3 混合物(Ca/Al=5)の焼成物によるホウ素及びクロム以外のイオンの吸着
表1に示すように、所定量の1mmol/Lの各種化合物(吸着対象イオンの発生源)の水溶液にCa(OH)2/Al(OH)3混合物(Ca/Al=5)の焼成物(焼成温度:1000℃)を所定量添加し、よく混合した後、1日間、室温で放置した。その後、溶液中の沈殿物をろ過し、ろ液中に残存する各種化合物由来の各種イオンの濃度をICPプラズマ発光法により測定した。各種イオンの初期濃度とCa(OH)2/Al(OH)3混合物(Ca/Al=5)の焼成物の添加後に残存した各種イオンの濃度の差を、かかる焼成物の各種イオン吸着量(mg/g-焼成物)とした。表1に示すとおり、かかる焼成物は、ホウ素及びクロム以外のイオンも吸着することがわかった。なお、表1において、最大吸着量は、溶液中の各種イオンが全て吸着したと仮定した場合の理論計算値である。
(10) Adsorption of ions other than boron and chromium by a calcined product of Ca (OH) 2 / Al (OH) 3 mixture (Ca / Al = 5) As shown in Table 1, a predetermined amount of various compounds of 1 mmol / L After adding a predetermined amount of a calcined product (calcining temperature: 1000 ° C.) of a Ca (OH) 2 / Al (OH) 3 mixture (Ca / Al = 5) to the aqueous solution of (adsorption target ion source) and mixing well Left at room temperature for 1 day. Thereafter, the precipitate in the solution was filtered, and the concentrations of various ions derived from various compounds remaining in the filtrate were measured by ICP plasma emission method. The difference between the initial concentration of various ions and the concentration of various ions remaining after addition of the calcined product of Ca (OH) 2 / Al (OH) 3 mixture (Ca / Al = 5) mg / g-baked product). As shown in Table 1, it was found that the fired product also adsorbs ions other than boron and chromium. In Table 1, the maximum adsorption amount is a theoretical calculation value assuming that all the various ions in the solution are adsorbed.

(11) CaCO 3 /Al(OH) 3 混合物(Ca/Al=5)の焼成物によるホウ素及びクロム以外のイオンの吸着
表2に示すように、所定量の1mmol/Lの各種化合物(吸着対象イオンの発生源)の水溶液にCaCO3/Al(OH)3混合物(Ca/Al=5)の焼成物(焼成温度:1000℃)を所定量添加し、よく混合した後、1日間、室温で放置した。その後、溶液中の沈殿物をろ過し、ろ液中に残存する各種化合物由来の各種イオンの濃度をICPプラズマ発光法により測定した。各種イオンの初期濃度とCaCO3/Al(OH)3混合物(Ca/Al=5)の焼成物の添加後に残存した各種イオンの濃度の差を、かかる焼成物の各種イオン吸着量(mg/g-焼成物)とした。表2に示すとおり、かかる焼成物は、ホウ素及びクロム以外のイオンも吸着することがわかった。なお、表2において、最大吸着量は、溶液中の各種イオンが全て吸着したと仮定した場合の理論計算値である。
(11) Adsorption of ions other than boron and chromium by the calcined CaCO 3 / Al (OH) 3 mixture (Ca / Al = 5) As shown in Table 2, 1 mmol / L of various compounds (adsorption target) A predetermined amount of a calcined product of CaCO 3 / Al (OH) 3 mixture (Ca / Al = 5) (calcination temperature: 1000 ° C.) is added to the aqueous solution of the ion source) and mixed well, and then at room temperature for 1 day. I left it alone. Thereafter, the precipitate in the solution was filtered, and the concentrations of various ions derived from various compounds remaining in the filtrate were measured by ICP plasma emission method. The difference between the initial concentration of various ions and the concentration of various ions remaining after addition of the calcined product of CaCO 3 / Al (OH) 3 mixture (Ca / Al = 5) -Fired product). As shown in Table 2, it was found that the fired product also adsorbs ions other than boron and chromium. In Table 2, the maximum adsorption amount is a theoretical calculation value when it is assumed that all the various ions in the solution have been adsorbed.

(12) Ca/Alモル比の異なるCaCO 3 /Al(OH) 3 混合物の焼成物を配合して製造した各種固化物の圧縮強度
表3に示すとおりCa/Alモル比を0.5〜10の間で変化させた5種類のCaCO3/Al(OH)3混合物を、それぞれ1000℃で焼成して5種類の焼成物を得た。次いで、得られた各焼成物と石炭灰(JIS A6201 2種適合品)と水とを、表3に示す各配合量(質量比)によって配合し、混練して5種類のペースト状物を調製した。次に、各ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、5種類の固化物の試験体を製造した。
なお、試験体ごとに水の配合量が異なるのは、ペースト状物の調製時に、混練し易く扱い易い粘度に仕上げるために、ペースト状物の状態を確認しながら水を徐々に加えつつ混練したため、結果的に水の配合量に差異が生じることになったことによる。
次に、各固化物の試験体について、JIS A1108に準拠し、圧縮強度試験機(JTトーシ社製、ABM200S)を用いて圧縮強度を(N/mm2)を測定した。測定結果を表3に示す。
(12) Compressive strength of various solidified products prepared by blending calcined CaCO 3 / Al (OH) 3 mixtures having different Ca / Al molar ratios As shown in Table 3, the Ca / Al molar ratio is 0.5 to 10 The five types of CaCO 3 / Al (OH) 3 mixtures varied between the two were fired at 1000 ° C. to obtain five types of fired products. Next, each fired product, coal ash (JIS A6201 type 2 compliant product) and water are blended according to each blending amount (mass ratio) shown in Table 3, and kneaded to prepare five types of pastes. did. Next, after pouring each paste-like product into a molding container (cylindrical shape having a diameter of 50 mm × height of 100 mm), it is sealed in a desiccator with water in the lower part, and the desiccator is heated to 75 ° C. in an electric heater. The mixture was allowed to stand for 3 days in the presence of steam and steam cured to produce five types of solidified specimens.
In addition, the blending amount of water is different for each specimen because, when preparing the paste-like material, kneading while gradually adding water while confirming the state of the paste-like material in order to finish the viscosity to be easy to knead and handle. As a result, there is a difference in the blending amount of water.
Next, the compression strength (N / mm 2 ) of each solidified specimen was measured using a compressive strength tester (manufactured by JT Toshi Co., ABM200S) in accordance with JIS A1108. Table 3 shows the measurement results.

表3に示す測定結果から、Ca/Alモル比が1〜10の範囲のCaCO3/Al(OH)3混合物の焼成物を配合して製造した固化物は、圧縮強度が5.8N/mm2以上と高く、Ca/Alモル比が1〜5の範囲であれば、圧縮強度が8.9N/mm2以上とさらに高いことがわかる。 From the measurement results shown in Table 3, the solidified product produced by blending a calcined CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio in the range of 1 to 10 has a compressive strength of 5.8 N / mm. If the Ca / Al molar ratio is in the range of 1 to 5 as high as 2 or more, it can be seen that the compressive strength is as high as 8.9 N / mm 2 or more.

(13) 焼成温度の異なるCaCO 3 /Al(OH) 3 混合物の焼成物を配合して製造した各種固化物の圧縮強度
Ca/Alモル比=5のCaCO3/Al(OH)3混合物を、表4に示す異なる温度で焼成して4種類の焼成物を得た。次いで、得られた各焼成物と石炭灰(JIS A6201 2種適合品)と水とを、表4に示す各配合量(質量比)によって配合し、混練して4種類のペースト状物を調製した。次に、各ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、4種類の固化物の試験体を製造した。
なお、試験体ごとに水の配合量が異なるのは、前記のとおりペースト状物の調製時の加水方法に依るが、特に本試験において、焼成物の焼成温度が高くなるほど水の配合量が大幅に増えているのは、焼成温度が高くなるほど水和成分がより多く生成することによると考えられる。
次に、各固化物の試験体について前記試験例(12)と同じ方法で圧縮強度を測定した。測定結果を表4に示す。
(13) Compressive strength of various solidified products produced by blending calcined CaCO 3 / Al (OH) 3 mixtures with different firing temperatures
The CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio of 5 was fired at different temperatures shown in Table 4 to obtain four kinds of fired products. Next, each fired product, coal ash (JIS A6201 type 2 compliant product) and water are blended according to each blending amount (mass ratio) shown in Table 4 and kneaded to prepare four types of pastes. did. Next, after pouring each paste-like product into a molding container (cylindrical shape having a diameter of 50 mm × height of 100 mm), it is sealed in a desiccator with water in the lower part, and the desiccator is heated to 75 ° C. in an electric heater. The mixture was allowed to stand for 3 days in the presence of steam, and steam curing was carried out to produce four types of solid specimens.
In addition, although the blending amount of water differs for each specimen, it depends on the hydration method at the time of preparing the paste-like material as described above. In particular, in this test, the blending amount of water becomes larger as the firing temperature of the fired product becomes higher. It is thought that the increase is due to the fact that the higher the firing temperature, the more hydration components are produced.
Next, the compressive strength was measured by the same method as the said test example (12) about the test body of each solidified material. Table 4 shows the measurement results.

表4に示す測定結果から、焼成温度が800〜1200℃のCaCO3/Al(OH)3混合物の焼成物を配合して製造した固化物は、圧縮強度が3.6N/mm2以上と高いことがわかる。 From the measurement results shown in Table 4, the solidified product produced by blending the calcined CaCO 3 / Al (OH) 3 mixture having a calcining temperature of 800 to 1200 ° C. has a high compressive strength of 3.6 N / mm 2 or more. I understand that.

(14) CaCO 3 /Al(OH) 3 混合物の焼成物等の配合量が異なる各種固化物の圧縮強度
1.CaCO3/Al(OH)3混合物の焼成物を配合した固化物
Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物と、石炭灰(JIS A6201 2種適合品)及び水とを、表5の試験体5-a、5-b、5-c及び5-dの各欄に示す配合量(質量比)によって配合し、混練して4種類のペースト状物を調製した。次に、各ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、4種類の固化物の試験体を製造した。
各固化物の試験体について前記試験例(12)と同じ方法で圧縮強度を測定した。測定結果を表5の試験体5-a、5-b、5-c及び5-dの各欄に示す。
(14) Compressive strength of various solidified products with different blending amounts such as calcined CaCO 3 / Al (OH) 3 mixture Solidified product containing calcined CaCO 3 / Al (OH) 3 mixture
The calcined product obtained by calcining a CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio of 5 at 1000 ° C., coal ash (JIS A6201 type 2 compliant product), and water are shown in Table 5. Blending was carried out according to the blending amount (mass ratio) shown in each column of 5-a, 5-b, 5-c, and 5-d, and kneaded to prepare four types of pastes. Next, after pouring each paste-like product into a molding container (cylindrical shape having a diameter of 50 mm × height of 100 mm), it is sealed in a desiccator with water in the lower part, and the desiccator is heated to 75 ° C. in an electric heater. The mixture was allowed to stand for 3 days in the presence of steam, and steam curing was carried out to produce four types of solid specimens.
The compression strength of each solidified specimen was measured by the same method as in Test Example (12). The measurement results are shown in the columns of test specimens 5-a, 5-b, 5-c and 5-d in Table 5.

2.アルミナセメントを配合した固化物
アルミナセメント(AGCセラミックス社製、アサヒ アルミナセメント1号(AC-1))と石炭灰(JIS
A6201 2種適合品)と水とを、表5の試験体5-e、5-f、5-g及び5-hの各欄に示す配合量(質量比)によって配合し、混練して4種類のペースト状物を調製した。次に、各ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、4種類の固化物の試験体を製造した。
各固化物の試験体について、前記試験例(12)と同じ方法で圧縮強度を測定した。測定結果を表5の試験体5-e、5-f、5-g及び5-hの各欄に示す。
2. Solidified product containing alumina cement Alumina cement (AGC Ceramics, Asahi Alumina Cement No. 1 (AC-1)) and coal ash (JIS
A6201 2 types) and water are blended according to the blending amount (mass ratio) shown in each column of the specimens 5-e, 5-f, 5-g and 5-h in Table 5 and kneaded. Different types of pastes were prepared. Next, after pouring each paste-like product into a molding container (cylindrical shape having a diameter of 50 mm × height of 100 mm), it is sealed in a desiccator with water in the lower part, and the desiccator is heated to 75 ° C. in an electric heater. The mixture was allowed to stand for 3 days in the presence of steam, and steam curing was carried out to produce four types of solid specimens.
The compression strength of each solidified specimen was measured by the same method as in Test Example (12). The measurement results are shown in the columns of test specimens 5-e, 5-f, 5-g and 5-h in Table 5.

3.ポルトランドセメントを配合した固化物
ポルトランドセメントと石炭灰(JIS A6201 2種適合品)と水とを、表5の試験体5-i、5-j、5-k及び5-lの各欄に示す配合量(質量比)によって配合し、混練して4種類のペースト状物を調製した。次に、各ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、4種類の固化物の試験体を製造した。
各固化物の試験体について、前記試験例(12)と同じ方法で圧縮強度を測定した。測定結果を表5の試験体5-i、5-j、5-k及び5-lの各欄に示す。
なお、図12は表5の記載内容をグラフで表したものである。
3. Solidified material blended with Portland cement Portland cement, coal ash (JIS A6201 type 2 compliant product) and water are shown in each column of specimens 5-i, 5-j, 5-k and 5-l in Table 5. They were blended according to the blending amount (mass ratio) and kneaded to prepare four types of pastes. Next, after pouring each paste-like product into a molding container (cylindrical shape having a diameter of 50 mm × height of 100 mm), it is sealed in a desiccator with water in the lower part, and the desiccator is heated to 75 ° C. in an electric heater. The mixture was allowed to stand for 3 days in the presence of steam, and steam curing was carried out to produce four types of solid specimens.
The compression strength of each solidified specimen was measured by the same method as in Test Example (12). The measurement results are shown in each column of the test specimens 5-i, 5-j, 5-k and 5-l in Table 5.
In addition, FIG. 12 represents the description content of Table 5 with the graph.

表5及び図12から、CaCO3/Al(OH)3混合物の焼成物を配合した固化物は、その配合量に関らず、アルミナセメントやポルトランドセメントを配合した固化物よりも圧縮強度が高いことがわかる。特に、前記焼成物の配合量を、焼成物と石炭灰の配合量の合計に対して30〜60質量%に調整した固化物(試験体5-a〜5-d)は、アルミナセメントやポルトランドセメントを配合した固化物よりも、圧縮強度が格段に高いことがわかる。 From Table 5 and FIG. 12, the solidified material blended with the calcined CaCO 3 / Al (OH) 3 mixture has higher compressive strength than the solidified material blended with alumina cement or Portland cement, regardless of the blending amount. I understand that. In particular, a solidified product (test bodies 5-a to 5-d) in which the blended amount of the fired product is adjusted to 30 to 60% by mass with respect to the total blended amount of the fired product and coal ash is alumina cement or Portland cement. It can be seen that the compressive strength is remarkably higher than that of the solidified product containing the surfactant.

(15) 各種固化物のXRD分析
表5に示す固化物の試験体5-c、5-g、5-kについて、前記のX線回析装置を用いてXRD分析を行った。その結果を図13に示す。なお、試験体5-c、5-g、5-kはそれぞれ図13中の(a)、(b)、(c)に該当する。
図示のとおり、CaCO3/Al(OH)3混合物の焼成物を配合した固化物((a)、5-c)からは、Ca(OH)2及びCa3Al2(SiO4)(OH)8が検出されたが、アルミナセメントを配合した固化物((b)、5-g)とポルトランドセメントを配合した固化物((c)、5-k)からは、これらの化合物は検出されなかった。したがって、CaCO3/Al(OH)3混合物の焼成物が、アルミナセメントやポルトランドセメントよりも圧縮強度の高い固化物を形成し得るのは、例えば、CaCO3/Al(OH)3混合物の焼成物と石炭灰と水とを混練することにより、この焼成物に含まれるCaOが水と反応してCa(OH)2となり、これがAlを含む化合物及び石炭灰に含まれるSiO2と化学反応してCa3Al2(SiO4)(OH)8等が生成するためであるると推定される。なお、かかる推定は本発明を限定するものではない。
(15) XRD analysis of various solidified products XRD analysis was performed on the test pieces 5-c, 5-g, and 5-k of the solidified products shown in Table 5 using the X-ray diffraction apparatus. The result is shown in FIG. The specimens 5-c, 5-g, and 5-k correspond to (a), (b), and (c) in FIG.
As shown in the figure, from the solidified product ((a), 5-c) containing the calcined CaCO 3 / Al (OH) 3 mixture, Ca (OH) 2 and Ca 3 Al 2 (SiO 4 ) (OH) 8 was detected, but these compounds were not detected from the solidified product containing alumina cement ((b), 5-g) and the solidified product containing Portland cement ((c), 5-k). It was. Therefore, the burned material of CaCO 3 / Al (OH) 3 mixture, the may form a high solidified product compressive strength than alumina cement and Portland cement, for example, CaCO 3 / Al (OH) 3 the calcined product of the mixture By mixing the coal ash and water, CaO contained in the fired product reacts with water to become Ca (OH) 2 , which chemically reacts with the compound containing Al and SiO 2 contained in the coal ash. This is presumed to be due to the formation of Ca 3 Al 2 (SiO 4 ) (OH) 8 or the like. Note that such estimation does not limit the present invention.

(16) 石炭灰に代えて砂を配合した固化物の圧縮強度
Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物と、砂(JIS R5201 セメント強さ試験用標準砂、(社)セメント協会)及び水とを、100:100:124(質量比)の配合量によって配合し混練してペースト状物を調製した。次に、ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、固化物の試験体を製造した。
得られた固化物の試験体について、前記試験例(12)と同じ方法で圧縮強度を測定したところ、圧縮強度は0.1N/mm2と低く、脆く崩れやすい状態であった。
(16) Compressive strength of solidified material containing sand instead of coal ash
A calcined product obtained by calcining a CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio = 5 at 1000 ° C., sand (JIS R5201 standard sand for cement strength test, Cement Association) and water Were mixed at a blending amount of 100: 100: 124 (mass ratio) and kneaded to prepare a paste. Next, the paste-like material is poured into a molding container (cylindrical shape with a diameter of 50 mm and a height of 100 mm), and then sealed in a desiccator with water in the lower part, and the desiccator is placed in an electric heater heated to 75 ° C. Then, the mixture was allowed to stand for 3 days in the presence of water vapor to cure the water vapor to produce a solidified specimen.
When the compressive strength of the obtained solid specimen was measured by the same method as in Test Example (12), the compressive strength was as low as 0.1 N / mm 2 and was brittle and easily collapsed.

(17) 種別の異なる石炭灰を配合した各種固化物の圧縮強度
Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物と、3種類の石炭灰(JIS A6201 1種、2種及び4種適合品)及び水とを、それぞれ100:100:149(質量比)の割合で配合し混練して3種類のペースト状物を調製した。次に、それぞれのペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、3種類の固化物の試験体を製造した。
なお、使用した3種類の石炭灰は、それぞれ粒径等が異なり、コンクリートに配合した場合には、固化後の圧縮強度が、一般に1種が最も高くなり、2種、4種の順に低下するとされている。
次に、得られた固化物の試験体について、前記試験例(12)と同じ方法で圧縮強度を測定した。測定結果を表6に示す。
(17) Compressive strength of various solidified products containing different types of coal ash
A calcined product obtained by calcining a CaCO 3 / Al (OH) 3 mixture with a Ca / Al molar ratio = 5 at 1000 ° C., three types of coal ash (compliance with JIS A6201, Type 1, Type 2 and Type 4), and Water was blended at a ratio of 100: 100: 149 (mass ratio) and kneaded to prepare three types of paste. Next, each paste-like material is poured into a molding container (a cylindrical shape with a diameter of 50 mm and a height of 100 mm), and then sealed in a desiccator with water in the lower part, and the desiccator is heated to 75 ° C. The mixture was allowed to stand for 3 days in the presence of water vapor, and then steam-cured to produce three types of solidified specimens.
The three types of coal ash used have different particle sizes, etc., and when mixed with concrete, the compression strength after solidification is generally the highest in type 1, and decreases in the order of type 2 and type 4. Has been.
Next, the compressive strength of the obtained solidified specimen was measured by the same method as in Test Example (12). Table 6 shows the measurement results.

表6に示す測定結果から、CaCO3/Al(OH)3混合物の焼成物によれば、石炭灰の種類に関わらず、高い圧縮強度を有する固化物を製造できるが、特に2種及び4種の石炭灰を配合した場合に固化物の圧縮強度が高くなることがわかる。 From the measurement results shown in Table 6, according to the calcined product of the CaCO 3 / Al (OH) 3 mixture, a solidified product having high compressive strength can be produced regardless of the type of coal ash. It turns out that the compressive strength of a solidified substance becomes high when the coal ash of this is mix | blended.

(18) 養生条件の異なる各種固化物の圧縮強度
Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物と、石炭灰(JIS A6201 2種適合品)及び水とを、それぞれ100:100:154(質量比)の割合で配合し混練してペースト状物を調製した。次に、得られたペースト状物を4個の成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、これらのペースト状物が入った成形容器を下部に水を入れたデシケータ中に密閉し、デシケータごとそれぞれ40℃、60℃、75℃及び90℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、表7に示す7-aから7-dの4種類の固化物の試験体を製造した。
(18) Compressive strength of various solidified products with different curing conditions
A calcined product obtained by calcining a CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio = 5 at 1000 ° C., coal ash (JIS A6201 type 2 compatible product) and water are each 100: 100: The mixture was blended at a ratio of 154 (mass ratio) and kneaded to prepare a paste. Next, after pouring the obtained paste-like material into four molding containers (cylindrical shape having a diameter of 50 mm × height of 100 mm), a desiccator in which water is placed in the lower portion of the molding container containing these paste-like materials. Sealed inside and placed in an electric heater heated to 40 ° C, 60 ° C, 75 ° C and 90 ° C together with the desiccator and allowed to stand for 3 days in the presence of water vapor for steam curing, 7-a shown in Table 7 4 kinds of solidified specimens of 7-d were produced.

得られた各試験体について、前記試験例(12)と同じ方法で圧縮強度を測定したところ、60℃以上の範囲で養生して製した試験体である7-b、7-c及び7-dは、いずれも約9N/mm2以上の高い圧縮強度を示した。
About each obtained test body, when compressive strength was measured by the same method as the said test example (12), 7-b, 7-c, and 7- which are test bodies which were cured and manufactured in the range of 60 degreeC or more d showed a high compressive strength of about 9 N / mm 2 or more.

Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物と、石炭灰(JIS A6201 2種適合品)及び水とを、100:100:154(質量比)または100:100:172(質量比)の割合で配合し混練して2種類のペースト状物を調製した。次に、得られた2種類のペースト状物をそれぞれ4個の成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、これらをビニール袋に入れて密閉し、表8に示す各所定期間室内(室温約25℃)に放置して、8-aから8-hの8種類の固化物の試験体を製造した。 A calcined product obtained by calcining a CaCO 3 / Al (OH) 3 mixture having a Ca / Al molar ratio of 5 at 1000 ° C., coal ash (JIS A6201 type 2 compliant product) and water are used in 100: 100: 154. (Mass ratio) or 100: 100: 172 (mass ratio) were blended and kneaded to prepare two types of paste. Next, after pouring each of the two types of pastes obtained into four molding containers (cylindrical shape with a diameter of 50 mm and a height of 100 mm), these were put in a plastic bag and sealed, as shown in Table 8. Eight types of solidified specimens from 8-a to 8-h were produced by leaving them in the room (room temperature: about 25 ° C.) for each predetermined period.

得られた各試験体について、前記試験例(12)と同じ方法で圧縮強度を測定したところ、表8に示すとおり、放置期間の日数にほぼ比例して圧縮強度が高くなることがわかった。
The compressive strength of each of the obtained specimens was measured by the same method as in Test Example (12). As shown in Table 8, it was found that the compressive strength increased almost in proportion to the number of days in the standing period.

(19) CaCO 3 /Al(OH) 3 混合物の焼成物を配合した各種固化物による重金属等イオンの溶出抑制
下記の方法により、重金属等を含むオキソ酸塩を付着させた石炭灰等を配合して各種固化物を製造し、これらの固化物からの重金属等イオンの溶出量を測定した。
1.重金属等を含むオキソ酸塩を付着させた石炭灰の調製
石炭灰(JIS
A6201 2種適合品)に、CrO3、H3BO3、Na2HAsO4・7H2O及びNa2SeO4を溶解させた各種オキソ酸塩の混合水溶液を噴霧して乾燥することにより、各種オキソ酸塩を付着させた石炭灰を調製した。オキソ酸塩の付着量は、表9に示すとおり0.1〜50mmol/100g-石炭灰の間で変化させ、付着量の異なる4種類の石炭灰を得た。
(19) Suppression of elution of ions such as heavy metals by various solidified products containing calcined CaCO 3 / Al (OH) 3 mixture By the following method, coal ash or the like to which oxo acid salts containing heavy metals are adhered is blended. Various solidified products were manufactured, and the elution amount of ions such as heavy metals from these solidified products was measured.
1. Preparation of coal ash to which oxo acid salts containing heavy metals are attached Coal ash (JIS
A6201 two types of compatible products) are sprayed with various aqueous oxo acid salts in which CrO 3 , H 3 BO 3 , Na 2 HAsO 4 · 7H 2 O and Na 2 SeO 4 are dissolved and dried. Coal ash with oxo acid salt attached was prepared. As shown in Table 9, the adhesion amount of the oxoacid salt was changed between 0.1 to 50 mmol / 100 g-coal ash to obtain four types of coal ash having different adhesion amounts.

2.固化物の製造
得られた4種類の石炭灰と、Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物及び水とを、表9の試験体9-b、9-d、9-f及び9-hの各欄に示す配合量(質量比)によって配合し、混練して4種類のペースト状物を調製した。また、オキソ酸塩を付着させていない石炭灰(JIS A6201 2種適合品)と、Ca/Alモル比=5のCaCO3/Al(OH)3混合物を1000℃で焼成して得た焼成物及び水とを、表9の試験体9-j欄に示す配合量(質量比)によって配合し混練してペースト状物を調製した。
これら5種類のペースト状物をそれぞれ成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、5種類の固化物の試験体を製造した。
2. Production of solidified product The four types of coal ash obtained and the calcined product and water obtained by calcining a CaCO 3 / Al (OH) 3 mixture with a Ca / Al molar ratio = 5 at 1000 ° C. Four kinds of pastes were prepared by blending according to the blending amounts (mass ratio) shown in the respective columns of the test specimens 9-b, 9-d, 9-f and 9-h. In addition, calcined product obtained by calcining coal ash (JIS A6201 type 2 compliant product) without adhering oxo acid salt and CaCO 3 / Al (OH) 3 mixture with Ca / Al molar ratio = 5 at 1000 ° C. And water were blended according to the blending amount (mass ratio) shown in the column 9-j of Table 9 and kneaded to prepare a paste.
After pouring these five kinds of pastes into a molding container (cylindrical shape with a diameter of 50 mm and a height of 100 mm), they were sealed in a desiccator with water in the lower part, and the desiccator was heated to 75 ° C. And cured by steaming in the presence of water vapor for 3 days to produce 5 types of solidified specimens.

3.重金属等イオンの溶出量測定
得られた5種類の固化物をそれぞれ粉砕し、篩にかけて粒径2mm以下の粉砕物を得た。次いで、各粉砕物100gをそれぞれ脱イオン水1L中に懸濁させ、6時間振とうさせた後ろ過し、ろ液中に含まれるB、As及びSeの各濃度を、ICP発光分析装置(セイコーナノテクノロジー社製、品番SPS3100)を用いて測定した。また、Cr(六価クロム)の濃度を、工場排水試験方法(JIS K0102)に示された吸光光度法により、吸光光度計(日立製作所社製、品番U-2000)を用いて測定した。測定結果を表9の試験体9-b、9-d、9-f、9-h及び9-jの各欄に示す。
また、前記4種類のオキソ酸塩を付着させた石炭灰と、オキソ酸塩を付着させていない石炭灰について、各石炭灰100gをそれぞれ脱イオン水1L中に懸濁させ、6時間振とうさせた後ろ過し、ろ液中に含まれるB、As、Se及びCr(六価クロム)の各濃度を、前記と同じ方法により測定した。測定結果を表9の試験体9-a、9-c、9-e、9-g及び9-iの各欄に示す。
3. Measurement of elution amount of ions such as heavy metals The obtained 5 kinds of solidified products were pulverized and sieved to obtain pulverized products having a particle size of 2 mm or less. Next, 100 g of each pulverized product was suspended in 1 L of deionized water, shaken for 6 hours, and then filtered. The concentrations of B, As, and Se contained in the filtrate were determined using an ICP emission analyzer (Seiko). It was measured using a nanotechnology company, product number SPS3100). Further, the concentration of Cr (hexavalent chromium) was measured by an absorptiometer (manufactured by Hitachi, Ltd., product number U-2000) by an absorptiometry shown in a factory drainage test method (JIS K0102). The measurement results are shown in the columns of test specimens 9-b, 9-d, 9-f, 9-h and 9-j in Table 9.
In addition, 100 g of each coal ash is suspended in 1 L of deionized water and the mixture is shaken for 6 hours with respect to the coal ash to which the four types of oxo acid salts are attached and the coal ash to which no oxo acid salt is attached. After filtration, each concentration of B, As, Se and Cr (hexavalent chromium) contained in the filtrate was measured by the same method as described above. The measurement results are shown in the columns of test specimens 9-a, 9-c, 9-e, 9-g and 9-i in Table 9.

表9に示す測定結果から、CaCO3/Al(OH)3混合物の焼成物を配合した固化物は、石炭灰に付着して固化物中に混入した重金属等イオンの溶出を、十分に抑制できることがわかる(試験体9-b、9-d、9-f、9-h及び9-j)。特に、石炭灰に付着した重金属等イオンの濃度が非常に高い場合(試験体9-b及び9-d)であっても優れた溶出抑制効果を示し、さらに、As及びCr(六価クロム)に対する溶出抑制効果が著しく高いことがわかる。 From the measurement results shown in Table 9, the solidified product containing the calcined product of the CaCO 3 / Al (OH) 3 mixture can sufficiently suppress the elution of ions such as heavy metals adhering to the coal ash and mixed in the solidified product. (Specimens 9-b, 9-d, 9-f, 9-h and 9-j). In particular, even when the concentration of ions such as heavy metals adhering to coal ash is very high (specimens 9-b and 9-d), it shows excellent elution suppression effects, and As and Cr (hexavalent chromium) It can be seen that the elution inhibitory effect on is extremely high.

(20) セメントを配合した固化物による重金属等イオンの溶出抑制
下記の方法により、重金属等を含むオキソ酸塩を付着させた石炭灰とセメントとを配合して2種類の固化物を製造し、これらの固化物からの重金属等イオンの溶出量を測定した。
1.重金属等を含むオキソ酸塩を付着させた石炭灰の調製
前記試験例(19)と同じ方法により、石炭灰に各種オキソ酸塩(CrO3、H3BO3、Na2HAsO4・7H2O及びNa2SeO4)を10mmol/100g-石炭灰の割合で付着させた石炭灰を調製した。
(20) Suppression of elution of ions such as heavy metals by solidified material containing cement By the following method, coal ash to which oxo acid salt containing heavy metal etc. is adhered and cement are mixed to produce two types of solidified materials, The amount of elution of ions such as heavy metals from these solidified products was measured.
1. Preparation of coal ash to which oxo acid salt containing heavy metal and the like was attached By using the same method as in the test example (19), various oxo acid salts (CrO 3 , H 3 BO 3 , Na 2 HAsO 4 · 7H 2 O And Na 2 SeO 4 ) at a rate of 10 mmol / 100 g-coal ash was prepared.

2.固化物の製造
得られたオキソ酸塩を付着させた石炭灰と、アルミナセメント又はポルトランドセメントと水とを、それぞれ表10の試験体10-a及び10-bの各欄に示す配合量(質量比)によって配合し、混練して2種類のペースト状物を調製した。次に、これらのペースト状物をそれぞれ成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、2種類の固化物の試験体を製造した。
2. Manufacture of solidified material The blended amount (mass) shown in each column of the specimens 10-a and 10-b in Table 10 is the coal ash to which the obtained oxo acid salt is adhered, alumina cement or Portland cement and water, respectively. Ratio) and kneaded to prepare two types of paste. Next, each of these pastes was poured into molding containers (cylindrical shape with a diameter of 50 mm and a height of 100 mm), and then sealed in a desiccator with water in the lower part, and the desiccator was heated to 75 ° C. It was placed in a vessel and allowed to stand for 3 days in the presence of water vapor to cure the water vapor to produce two types of solidified specimens.

3.重金属等イオンの溶出量測定
得られた2種類の固化物をそれぞれ粉砕し、篩にかけて粒径2mm以下の粉砕物を得た。次いで、各粉砕物100gをそれぞれ脱イオン水1L中に懸濁させ、6時間振とうさせた後ろ過し、ろ液中に含まれるB、As、Se及びCr(六価クロム)の各濃度を、前記試験例(19)と同じ方法により測定した。測定結果を表10の試験体10-a及び10-bの各欄に示す。
なお、表10には、前記試験例(19)で得られた試験体9-c及び9-dの測定結果も併せて記載した。
3. Measurement of elution amount of ions such as heavy metals The obtained two kinds of solidified products were pulverized and sieved to obtain pulverized products having a particle size of 2 mm or less. Next, 100 g of each pulverized product is suspended in 1 liter of deionized water, shaken for 6 hours, and then filtered. Each concentration of B, As, Se, and Cr (hexavalent chromium) contained in the filtrate is determined. The measurement was performed by the same method as in Test Example (19). The measurement results are shown in each column of the test specimens 10-a and 10-b in Table 10.
Table 10 also shows the measurement results of the specimens 9-c and 9-d obtained in the test example (19).

表10に示す測定結果から、アルミナセメント又はポルトランドセメントを配合した固化物は、石炭灰に付着して固化物中に混入した重金属等イオンの溶出をある程度抑制できるが、その効果は、CaCO3/Al(OH)3混合物の焼成物を配合した固化物よりも低いことがわかる。
このように効果上の差異が生ずる理由は、CaCO3/Al(OH)3混合物の焼成物を配合した固化物は、各種セメントと同様に、水密な状態の固化物を形成して重金属等イオンを固化物内に封じ込めることができるだけでなく、各種セメントと異なり、重金属等イオンを吸着し不溶化させる特性を有することによると推定される。なお、かかる推定は本発明を限定するものではない。
From the measurement results shown in Table 10, the solidified product blended with alumina cement or Portland cement can suppress the elution of ions such as heavy metals adhering to the coal ash and mixed in the solidified product to some extent, but the effect is CaCO 3 / It can be seen that it is lower than the solidified product containing the burned product of the Al (OH) 3 mixture.
The reason for this difference in effect is that the solidified product blended with the calcined CaCO 3 / Al (OH) 3 mixture forms a watertight solidified product like various cements, resulting in heavy metal ions, etc. It is presumed that this is because it has the property of adsorbing and insolubilizing ions such as heavy metals unlike various cements. Note that such estimation does not limit the present invention.

(21) Ca(OH) 2 /Al(OH) 3 混合物の焼成物を配合して製造した固化物の圧縮強度
Ca/Alモル比=5のCa(OH)2/Al(OH)3混合物を1000℃で焼成して焼成物を得た。次いで、得られた焼成物と石炭灰(JIS A6201 2種適合品)と水とを、100:100:160(質量比)の配合量によって配合し混練してペースト状物を調製した。次に、ペースト状物を成形用容器(直径50mm×高さ100mmの円筒形状)に流し入れた後、下部に水を入れたデシケータ中に密閉し、デシケータごと75℃に加熱した電気加熱器に入れ、水蒸気存在下で3日間静置することにより水蒸気養生し、固化物の試験体を製造した。
得られた固化物の試験体について前記試験例(12)と同じ方法で圧縮強度を測定したところ、圧縮強度は6.9N/mm2と高い数値を示した。
(21) Compressive strength of solidified product prepared by blending calcined Ca (OH) 2 / Al (OH) 3 mixture
A Ca (OH) 2 / Al (OH) 3 mixture having a Ca / Al molar ratio of 5 was fired at 1000 ° C. to obtain a fired product. Next, the obtained calcined product, coal ash (JIS A6201 type 2 compatible product) and water were blended at a blending amount of 100: 100: 160 (mass ratio) and kneaded to prepare a paste. Next, the paste-like material is poured into a molding container (cylindrical shape with a diameter of 50 mm and a height of 100 mm), and then sealed in a desiccator with water in the lower part, and the desiccator is placed in an electric heater heated to 75 ° C. Then, the mixture was allowed to stand for 3 days in the presence of water vapor to cure the water vapor to produce a solidified specimen.
When the compressive strength of the obtained solidified specimen was measured by the same method as in Test Example (12), the compressive strength was as high as 6.9 N / mm 2 .

(22) 試験例(1)〜(21)の総括
試験例(1)〜(6)より、Ca (OH)2又はCaCO3とAl(OH)3との混合物の焼成物を含む本発明の石炭灰用固化材は、CaO
、Ca(OH)2、Ca12Al14O33、CaAl4O7、CaAl2O4、Ca5Al6O14及びCa9Al6O18等の化合物を含有していることが理解できる。
また、試験例(7)〜(11)より、Ca (OH)2又はCaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材は、重金属及びその他の物質を含む陽イオン及び陰イオンを吸着し不溶化する特性を有することが理解できる。さらに、かかる特性は、前記混合物の焼成物において、CaとAlのモル比(Ca/Al)が2〜5の範囲であればより優れており、また、前記焼成物の焼成温度が600℃以上であればより優れていることが理解できる。
(22) From the general test examples (1) to (6) of the test examples (1) to (21), the present invention includes a calcined product of a mixture of Ca (OH) 2 or CaCO 3 and Al (OH) 3 . The solidified material for coal ash is CaO
It can be understood that compounds such as Ca (OH) 2 , Ca 12 Al 14 O 33 , CaAl 4 O 7 , CaAl 2 O 4 , Ca 5 Al 6 O 14, and Ca 9 Al 6 O 18 are contained.
In addition, from Test Examples (7) to (11), the solidified material for coal ash containing a calcined product of Ca (OH) 2 or a mixture of CaCO 3 and Al (OH) 3 is a positive material containing heavy metals and other substances. It can be understood that it has the property of adsorbing and insolubilizing ions and anions. Further, such characteristics are better when the molar ratio of Ca to Al (Ca / Al) is in the range of 2 to 5 in the fired product of the mixture, and the firing temperature of the fired product is 600 ° C. or higher. If so, it can be understood that it is superior.

試験例(12)〜(14)より、CaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材と、石炭灰及び水とを配合して製造した固化物は、圧縮強度が高く丈夫であることが理解できる。かかる固化物の圧縮強度は、前記混合物の焼成物において、CaとAlのモル比(Ca/Al)が1〜10の範囲であればより高く、また、前記焼成物の焼成温度が800〜1200℃であればより高いことが理解できる。
さらに、前記石炭灰用固化材を配合した固化物は、アルミナセメントやポルトランドセメントを配合した固化物よりも圧縮強度が高く、特に、前記石炭灰用固化材の配合量を、その石炭灰用固化材に含まれる前記焼成物の質量がその焼成物と石炭灰の質量の合計に対して30〜60質量%となるように調整して製造した固化物は、アルミナセメントやポルトランドセメントを配合した固化物よりも、圧縮強度が格段に高いことが理解できる。
From Test Examples (12) to (14), a solidified product produced by blending a solidified material for coal ash containing a fired product of a mixture of CaCO 3 and Al (OH) 3 with coal ash and water is compressed. It can be understood that it is strong and strong. The compression strength of the solidified product is higher when the molar ratio of Ca to Al (Ca / Al) is in the range of 1 to 10 in the fired product of the mixture, and the firing temperature of the fired product is 800 to 1200. It can be understood that the temperature is higher at ° C.
Furthermore, the solidified material blended with the coal ash solidifying material has higher compressive strength than the solidified material blended with alumina cement or Portland cement. The solidified product prepared by adjusting the mass of the calcined product contained in the material to be 30 to 60% by mass with respect to the total mass of the calcined product and coal ash is a solidified mixture of alumina cement or Portland cement. It can be understood that the compressive strength is much higher than that of the product.

試験例(15)及び(16)より、CaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材を配合した固化物には、Ca(OH)2及びCa3Al2(SiO4)(OH)8等のアルミナセメントやポルトランドセメントを配合した固化物には含まれていない化合物が含まれており、また、前記石炭灰用固化材は、石炭灰に代えて砂を配合した場合に圧縮強度の高い固化物を製造することができないなど、アルミナセメントやポルトランドセメントとは異なる特性を有していることが理解できる。 From Test Examples (15) and (16), the solidified product containing the solidified material for coal ash containing the fired product of the mixture of CaCO 3 and Al (OH) 3 includes Ca (OH) 2 and Ca 3 Al 2. (SiO 4 ) (OH) 8 and other solidified compounds containing alumina cement and Portland cement are included, and the coal ash solidified material is made of sand instead of coal ash. It can be understood that when blended, a solidified product having a high compressive strength cannot be produced, such as having properties different from those of alumina cement and Portland cement.

試験例(17)より、CaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材によれば、使用する石炭灰の種類に関わらず、圧縮強度の高い固化物を製造できることが理解できる。
また、試験例(18)より、CaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材によれば、固化物を製造する際に、室温(約25℃)で静置して固化させることが可能であり、さらに、60℃以上の温度で水蒸気養生して固化させると、圧縮強度のより高い固化物を短期間で製造できることが理解できる。
From the test example (17), according to the solidified material for coal ash containing a fired product of a mixture of CaCO 3 and Al (OH) 3 , a solidified product with high compressive strength is produced regardless of the type of coal ash used. I understand what I can do.
Further, according to the test example (18), according to the solidified material for coal ash containing the calcined product of the mixture of CaCO 3 and Al (OH) 3 , when producing the solidified product, It can be understood that a solidified product with higher compressive strength can be produced in a short period of time by solidifying by steam curing at a temperature of 60 ° C. or higher.

試験例(19)及び(20)より、CaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材を配合した固化物は、石炭灰に付着して固化物中に混入した重金属等イオンの溶出抑制に効果があり、特に、石炭灰に付着した重金属等イオンの濃度が非常に高い場合であっても、十分な溶出抑制効果を示すことが理解できる。
また、前記石炭灰用固化材を配合した固化物の重金属等イオンの溶出抑制効果は、アルミナセメント又はポルトランドセメントを配合した固化物よりも格段に高いことが理解できる。
From Test Examples (19) and (20), the solidified material blended with the solidified material for coal ash containing the calcined product of the mixture of CaCO 3 and Al (OH) 3 adheres to the coal ash and is mixed into the solidified material. It can be understood that it is effective in suppressing elution of ions such as heavy metals, and in particular, even when the concentration of ions such as heavy metals adhering to coal ash is very high, it exhibits a sufficient elution suppression effect.
Moreover, it can be understood that the elution suppression effect of ions such as heavy metals of the solidified material blended with the solidified material for coal ash is much higher than the solidified material blended with alumina cement or Portland cement.

試験例(21)より、Ca(OH)2とAl(OH)3との混合物の焼成物を含む石炭灰用固化材は、前記のCaCO3とAl(OH)3との混合物の焼成物を含む石炭灰用固化材と同様に、石炭灰及び水を配合し混練して固化させることにより、圧縮強度が高い固化物を製造できることが理解できる。 From the test example (21), the solidified material for coal ash containing the calcined product of the mixture of Ca (OH) 2 and Al (OH) 3 is the calcined product of the mixture of CaCO 3 and Al (OH) 3. It can be understood that a solidified product having a high compressive strength can be produced by blending coal ash and water, kneading and solidifying in the same manner as the coal ash solidifying material included.

本発明は、石炭灰及び水等と混合し任意形状に成形して強固に固化させることができ、また、重金属等を含む陽イオン及び陰イオンの溶出を抑制できる石炭灰用固化材を提供することに有用性が認められ、また、建築・土木材料等として広範な用途に利用できる固化物を製造する方法を提供することに有用性が認められる。
The present invention provides a solidified material for coal ash that can be mixed with coal ash and water, etc., molded into an arbitrary shape and solidified firmly, and can suppress elution of cations and anions containing heavy metals and the like. Especially usefulness is recognized, and usefulness is recognized in providing the method of manufacturing the solidified material which can be utilized for a wide range of uses, such as a construction and civil engineering material.

Claims (8)

Ca (OH)2及びCaCO3の少なくとも一方とAl(OH)3との混合物の焼成物を含むことを特徴とする石炭灰用固化材。 A solidified material for coal ash, comprising a fired product of a mixture of at least one of Ca (OH) 2 and CaCO 3 and Al (OH) 3 . 前記混合物の焼成物において、CaとAlのモル比(Ca/Al)が、1〜10の範囲であることを特徴とする請求項1に記載の石炭灰用固化材。   2. The solidified material for coal ash according to claim 1, wherein the calcined product of the mixture has a Ca to Al molar ratio (Ca / Al) in the range of 1 to 10. 3. 前記混合物の焼成物において、CaとAlのモル比(Ca/Al)が、2〜5の範囲であることを特徴とする請求項1に記載の石炭灰用固化材。   2. The coal ash solidified material according to claim 1, wherein a molar ratio of Ca to Al (Ca / Al) is in a range of 2 to 5 in the fired product of the mixture. 前記焼成物の焼成温度が600℃以上であることを特徴とする請求項1から3のいずれか1項に記載の石炭灰用固化材。   The solidified material for coal ash according to any one of claims 1 to 3, wherein a firing temperature of the fired product is 600 ° C or higher. 前記焼成物の焼成温度が800〜1200℃であることを特徴とする請求項1から3のいずれか1項に記載の石炭灰用固化材。   The solidification material for coal ash according to any one of claims 1 to 3, wherein a firing temperature of the fired product is 800 to 1200 ° C. 請求項1から5のいずれか1項に記載の石炭灰用固化材と、石炭灰、水、及び必要に応じて他の原料とを配合して混練しペースト状物とし、該ペースト状物を所定の形状に成形して固化させることを特徴とする固化物の製造方法。   A solidified material for coal ash according to any one of claims 1 to 5, coal ash, water, and, if necessary, other raw materials are blended and kneaded to form a paste, A method for producing a solidified product, characterized by forming into a predetermined shape and solidifying. 前記石炭灰用固化材を、該石炭灰用固化材に含まれる前記焼成物の質量が、該焼成物と前記石炭灰の質量の合計に対して30〜60質量%となるように配合することを特徴とする請求項6に記載の固化物の製造方法。   Compounding the solidified material for coal ash such that the mass of the fired product contained in the solidified material for coal ash is 30 to 60% by mass with respect to the total mass of the calcined product and the coal ash. The manufacturing method of the solidified material of Claim 6 characterized by these. 前記ペースト状物を60℃以上の温度で水蒸気養生して固化させることを特徴とする請求項6又は7に記載の固化物の製造方法。   The method for producing a solidified product according to claim 6 or 7, wherein the paste-like material is solidified by steam curing at a temperature of 60 ° C or higher.
JP2012186987A 2012-08-27 2012-08-27 Solidified material for coal ash and method for producing a solidified product using the same Active JP6059469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186987A JP6059469B2 (en) 2012-08-27 2012-08-27 Solidified material for coal ash and method for producing a solidified product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186987A JP6059469B2 (en) 2012-08-27 2012-08-27 Solidified material for coal ash and method for producing a solidified product using the same

Publications (2)

Publication Number Publication Date
JP2014042881A true JP2014042881A (en) 2014-03-13
JP6059469B2 JP6059469B2 (en) 2017-01-11

Family

ID=50394562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186987A Active JP6059469B2 (en) 2012-08-27 2012-08-27 Solidified material for coal ash and method for producing a solidified product using the same

Country Status (1)

Country Link
JP (1) JP6059469B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259052A (en) * 1997-03-21 1998-09-29 Matsushita Electric Works Ltd Production of inorganic hardened body
JPH11228199A (en) * 1997-11-13 1999-08-24 Sumitomo Metal Mining Co Ltd Artificial lightweight aggregate and its pruduction
JP2000034148A (en) * 1998-07-17 2000-02-02 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained thereby
JP2001348254A (en) * 2000-06-02 2001-12-18 Sumitomo Metal Mining Co Ltd Method for manufacturing lightweight aggregate from coal ash
JP2002241183A (en) * 2001-02-14 2002-08-28 Kawashima:Kk Porous ceramic particle and its production process
JP2002241166A (en) * 2000-12-11 2002-08-28 Taiheiyo Cement Corp Hydraulic composition
JP2005270790A (en) * 2004-03-24 2005-10-06 Toda Kogyo Corp Adsorbent adsorbing fluorine and/or boron
JP2006224025A (en) * 2005-02-18 2006-08-31 Toda Kogyo Corp Method for immobilizing fluorine and/or boron
JP2006272144A (en) * 2005-03-29 2006-10-12 Sumitomo Osaka Cement Co Ltd Heavy metal insolubilizing material and method of treating heavy metal
JP2006314893A (en) * 2005-05-11 2006-11-24 Toda Kogyo Corp Insolubilization agent for heavy metal and insolubilization method of heavy metal in fly ash
JP2008104941A (en) * 2006-10-25 2008-05-08 Kawasaki Plant Systems Ltd Method of and apparatus for manufacturing granular solidified body using coal ash as raw material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259052A (en) * 1997-03-21 1998-09-29 Matsushita Electric Works Ltd Production of inorganic hardened body
JPH11228199A (en) * 1997-11-13 1999-08-24 Sumitomo Metal Mining Co Ltd Artificial lightweight aggregate and its pruduction
JP2000034148A (en) * 1998-07-17 2000-02-02 Sumitomo Metal Mining Co Ltd Production of artificial lightweight aggregate and artificial lightweight aggregate obtained thereby
JP2001348254A (en) * 2000-06-02 2001-12-18 Sumitomo Metal Mining Co Ltd Method for manufacturing lightweight aggregate from coal ash
JP2002241166A (en) * 2000-12-11 2002-08-28 Taiheiyo Cement Corp Hydraulic composition
JP2002241183A (en) * 2001-02-14 2002-08-28 Kawashima:Kk Porous ceramic particle and its production process
JP2005270790A (en) * 2004-03-24 2005-10-06 Toda Kogyo Corp Adsorbent adsorbing fluorine and/or boron
JP2006224025A (en) * 2005-02-18 2006-08-31 Toda Kogyo Corp Method for immobilizing fluorine and/or boron
JP2006272144A (en) * 2005-03-29 2006-10-12 Sumitomo Osaka Cement Co Ltd Heavy metal insolubilizing material and method of treating heavy metal
JP2006314893A (en) * 2005-05-11 2006-11-24 Toda Kogyo Corp Insolubilization agent for heavy metal and insolubilization method of heavy metal in fly ash
JP2008104941A (en) * 2006-10-25 2008-05-08 Kawasaki Plant Systems Ltd Method of and apparatus for manufacturing granular solidified body using coal ash as raw material

Also Published As

Publication number Publication date
JP6059469B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
CN103396026B (en) Preparation method and new application of dolomite complex admixture
CN105316001A (en) Red mud particle soil repairing adhesives and preparation method thereof
JP2017149595A (en) Hardening method of waste gypsum
JP5599061B2 (en) Neutral solidifying material additive, neutral solidifying material and method for suppressing elution of heavy metals
CN104072048B (en) Alkaline residue is utilized to prepare the formula of building materials and products thereof
CN102083764A (en) Binder composition
KR101659257B1 (en) A Composite of Hauyne cement by using fly ash of fluidize-bed boiler and Waste Aluminium Powder and manufacturing method thereof
WO2012143221A1 (en) Mineral composition for producing electric heating layers
CN1884183A (en) High-strength waterproof gypsum brick and method for preparing same
KR101787416B1 (en) Artificial aggregates with self-hardening properties comprising mine powders with high specific gravity and fluidized-bed boiler ashes and Manufacturing method thereof
RU2504527C1 (en) Method of making all-purpose slab
KR101151605B1 (en) A composition of waste gypsum block for pubric works, waste gypsum block using the same and a manufacturing method thereof
KR101468899B1 (en) Cement and concrete composition
US20050288174A1 (en) Construction material
Luo et al. Preparation and characterization of ferrous oxalate cement—a novel acid‐base cement
JP6059469B2 (en) Solidified material for coal ash and method for producing a solidified product using the same
CN113924281A (en) Adhesive manufacturing method
CN103466982A (en) Modified gypsum
CN102807333B (en) Method for preparing sulphoaluminate cement by using fluorine-containing sludge
CN104129971A (en) Waste incineration fly ash resource method based on magnesium potassium phosphate adhesive
KR101515756B1 (en) Phosphoic acid anhydrous gypsum for cement
JP4556026B2 (en) Formaldehyde gas treating agent and formaldehyde gas treating method
Kandeel et al. Effect of type of mixing water and sand on the physico–mechanical properties of magnesia cement masonry units
CN101319126A (en) Inorganic adhesive agent, preparation and application thereof
KR20100088237A (en) The construction material utilizing sludge and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161209

R150 Certificate of patent or registration of utility model

Ref document number: 6059469

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250