JP2014042463A - Method of testing microorganism and device thereof - Google Patents

Method of testing microorganism and device thereof Download PDF

Info

Publication number
JP2014042463A
JP2014042463A JP2012185523A JP2012185523A JP2014042463A JP 2014042463 A JP2014042463 A JP 2014042463A JP 2012185523 A JP2012185523 A JP 2012185523A JP 2012185523 A JP2012185523 A JP 2012185523A JP 2014042463 A JP2014042463 A JP 2014042463A
Authority
JP
Japan
Prior art keywords
light
sample
microorganisms
sample container
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012185523A
Other languages
Japanese (ja)
Other versions
JP6201285B2 (en
Inventor
Akiko Nakada
明子 中田
Maya Fushida
真矢 伏田
Satoshi Eto
聡 江藤
Masanori Matsuda
真典 松田
Yukio Hosaka
幸男 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Satake Engineering Co Ltd
Satake Corp
Original Assignee
Satake Engineering Co Ltd
Satake Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Satake Engineering Co Ltd, Satake Corp filed Critical Satake Engineering Co Ltd
Priority to JP2012185523A priority Critical patent/JP6201285B2/en
Priority to TW102129843A priority patent/TWI619809B/en
Priority to AU2013306701A priority patent/AU2013306701B2/en
Priority to DK13830429.0T priority patent/DK2889365T3/en
Priority to CN201380043829.3A priority patent/CN104619828B/en
Priority to US14/423,134 priority patent/US9915601B2/en
Priority to SG11201501343PA priority patent/SG11201501343PA/en
Priority to PCT/JP2013/072521 priority patent/WO2014030729A1/en
Priority to EP13830429.0A priority patent/EP2889365B1/en
Priority to KR1020157007121A priority patent/KR102024974B1/en
Priority to SG10201701430XA priority patent/SG10201701430XA/en
Publication of JP2014042463A publication Critical patent/JP2014042463A/en
Application granted granted Critical
Publication of JP6201285B2 publication Critical patent/JP6201285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a device of testing microorganisms which can measure the amount of microorganisms in ballast water easily, rapidly and accurately, by using a batch-type measurement cell.SOLUTION: A device 1 of testing microorganisms for measuring the amount of microorganisms in a sample solution is equipped with; agitating and mixing means 7 for agitating and mixing a sample solution in which a sample and a fluorescent dye reagent are added in a batch-type sample container 5 formed of a translucent material; an excitation light source 10 equipped with a light source which irradiates a surface to be irradiated on the sample container 5 with excitation light while the sample solution 5 is agitated by the agitating and mixing means 7; light receiving means 14 for detecting fluorescent light excited by the excitation light from the excitation light source 10; and control means 23 which converts the light detected by the light receiving means 14 into electric signals to detect the number of light, and calculates the amount of microorganisms included in the sample in the sample container 5 from the number of light.

Description

本発明は、微生物の検査方法及びその装置に関し、特にバラスト水等に含まれて生存しているプランクトン等の微生物を検出するのに適した微生物の検査方法及びその装置に関する。   The present invention relates to a microorganism testing method and apparatus, and more particularly to a microorganism testing method and apparatus suitable for detecting microorganisms such as plankton that are contained in ballast water and are alive.

荷物を積載していない船舶は、当該船舶を安定させるためにバラスト水を搭載して航行し、荷物を積載する海域において前記バラスト水を排出する。
バラスト水は、通常、搭載する海域と異なる海域に排出されるため、該バラスト水に含まれるプランクトンや細菌等の微生物を本来の生息地以外の海域に運び、生態系を破壊する等の問題を引き起こす虞がある。
In order to stabilize the ship, the ship that is not loaded with cargo travels with ballast water and discharges the ballast water in the sea area where the luggage is loaded.
Ballast water is usually discharged into a sea area different from the sea area on which it is mounted. Therefore, problems such as the destruction of ecosystems by transporting microbes such as plankton and bacteria contained in the ballast water to sea areas other than their original habitats. There is a risk of causing it.

このような問題に対処するため、バラスト水の規制に関する国際的なルールが策定され、「船舶のバラスト水および沈殿物の規制および管理のための国際条約(バラスト水管理条約)」が採択されている。   In order to deal with such problems, international rules regarding the regulation of ballast water have been formulated, and the “International Convention for the Regulation and Management of Ship Ballast Water and Sediment (Ballast Water Management Convention)” has been adopted. Yes.

上記バラスト水管理条約に関連する「バラスト水サンプリングに関するガイドライン(G2)」は、「バラスト水排出基準(D−2)」において、船舶から排出されるバラスト水に含まれて生存している微生物の許容個体数を、例えば、最小サイズが50μm以上の微生物(以下、「Lサイズ生物」という。)については10個/m以下、最小サイズが10μm以上50μm未満の微生物(以下、「Sサイズ生物」という。)については10個/mL以下と、前記微生物の最小サイズにより区分して規定している。 The “Guidelines for Ballast Water Sampling (G2)” related to the above Ballast Water Management Convention is based on the “Ballast Water Emission Standard (D-2)”. For example, for a microorganism having a minimum size of 50 μm or more (hereinafter referred to as “L size organism”), the allowable number of individuals is 10 / m 3 or less, and a microorganism having a minimum size of 10 μm or more and less than 50 μm (hereinafter referred to as “S size organism”). “)” Is defined as 10 pieces / mL or less according to the minimum size of the microorganism.

現在までに、上記バラスト水を排出する際に上記排出基準を満たしているか否かを確認するための手法として、送水ポンプで汲み上げた海水をフローセルに通水して画像計測するもの(例えば、特許文献1)、送水ポンプで汲み上げた海水を目開きの異なるフィルタユニットに通水してフィルタ上の微生物を発光させて微生物を計数するもの(例えば、特許文献2)などの微生物検査装置が知られている。   To date, as a method for confirming whether or not the above discharge standards are satisfied when discharging the above ballast water, the seawater pumped up by the water pump is passed through the flow cell and image measurement is performed (for example, patents) Literature 1), known is a microorganism testing apparatus such as a device that counts microorganisms by passing seawater pumped by a water pump through filter units with different openings and causing the microorganisms on the filter to emit light (for example, Patent Document 2). ing.

上記特許文献1に記載の微生物検査装置によれば、液体の検体を流しつつ該検体中に存在する生細胞を持つ生物を染色する染色部と、前記染色が施された検体を流しつつ前記生物の濃度を高めるように濃縮する濃縮部と、前記濃縮された検体中の前記生物を含む個体の画像情報を取得する個体計測部と、前記個体計測部より出力された前記個体の画像情報より前記生物の測定を行う制御手段とを備えたことを特徴とするものである。
これにより、検体の液体中の生物の染色工程、液体中の生物の濃縮工程、液体中の生物の情報取得の工程等をフロー方式で行えるため、各方式をバッチ方式で行う手法と比べて、ひとつの工程を終えた検体の一部が次の工程に進むまでの待機時間を大幅に短縮、または0とすることができ、待機時間での染色の状態の劣化を防ぐ意味で安定した生物の生死の情報を取得することができるといったメリットがある。
According to the microorganism testing apparatus described in Patent Document 1, a staining unit that stains a living organism having living cells present in the sample while flowing a liquid sample, and the organism that flows the stained sample. The concentration unit for concentrating so as to increase the concentration of the individual, the individual measurement unit for acquiring image information of the individual including the organism in the concentrated specimen, and the image information of the individual output from the individual measurement unit And a control means for measuring a living thing.
As a result, the process of staining organisms in the liquid of the specimen, the process of concentrating organisms in the liquid, the process of acquiring information on organisms in the liquid, etc. can be performed by the flow method. The waiting time until a part of a sample that has completed one process proceeds to the next process can be greatly reduced or reduced to zero, and stable organisms can be prevented in order to prevent deterioration of the staining state during the waiting time. There is an advantage that life and death information can be acquired.

しかしながら、上記特許文献1記載の微生物検査装置にあっては、送水ポンプで汲み上げた海水を各種工程に順次通水させるものであり、装置が大掛かりとなり、また、製造コスト高となる問題がある。そして、各種工程に順次通水させて待機時間が短縮されるものであるが、測定が完了するには少なくとも数時間かかるといった問題がある。   However, in the microorganism testing apparatus described in Patent Document 1, seawater pumped up by a water pump is sequentially passed through various processes, and there is a problem that the apparatus becomes large and the manufacturing cost is high. And although it is made to pass water sequentially to various processes and waiting time is shortened, there exists a problem that it takes at least several hours to complete a measurement.

また、上記特許文献2に記載の微生物検査装置は、海水を目開きの異なる3種のフィルタを直列に配置してなるフィルタユニットに通水する工程と、フィルタに補集され生存している微生物による発色、発光および蛍光のうちいずれかを発生させる工程と、発色、発光および蛍光のうちいずれかを検出して画像解析によってバラスト水または海水中の微生物数を計数する工程とをそなえたことを特徴とするものである。
これにより、段階的なサイズごとの微生物の捕捉を実現でき、その結果、サイズごとの基準で規制された許容残存基準を満たしているかどうかを迅速に測定できるといったメリットがある。
Moreover, the microorganism testing apparatus described in Patent Document 2 includes a step of passing seawater through a filter unit in which three types of filters having different openings are arranged in series, and a microorganism that is collected and survives in the filter. A process of generating any one of coloration, luminescence, and fluorescence due to the above, and a process for detecting the coloration, luminescence, and fluorescence and counting the number of microorganisms in the ballast water or seawater by image analysis. It is a feature.
As a result, it is possible to realize capture of microorganisms for each step size, and as a result, there is an advantage that it is possible to quickly measure whether or not the allowable residual standard regulated by the standard for each size is satisfied.

しかしながら、特許文献2記載の微生物検査装置にあっても、特許文献1と同様に送水ポンプで汲み上げた海水を各種工程に順次通水させるものであり、装置が大掛かりとなり、製造コスト高になる問題点があった。   However, even in the microorganism testing apparatus described in Patent Document 2, the seawater pumped up by the water pump is sequentially passed through various processes in the same manner as Patent Document 1, and the apparatus becomes large and the manufacturing cost increases. There was a point.

特開2009−85898JP 2009-85898 A 特開2007−135582JP2007-135582

本発明は上記問題点にかんがみ、バッチ式の測定セルを利用することにより、バラスト水中の微生物の量を簡便かつ短時間で、しかも高精度に測定することができる微生物の検査方法及びその装置を提供することを技術的課題とする。   In view of the above problems, the present invention provides a microorganism testing method and apparatus capable of measuring the amount of microorganisms in ballast water simply, in a short time, and with high accuracy by using a batch type measurement cell. Providing is a technical issue.

上記課題を解決するため本発明は、試料溶液中の微生物量を測定するための微生物の検査装置であって、光を透過する材質で形成されたバッチ式の試料容器に試料と蛍光染色試薬とを添加して試料溶液の撹拌・混合を行う撹拌混合手段と、該撹拌混合手段により前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を照射させる光源を備えた励起光源と、該励起光源からの励起光により蛍光発光された光を検知する受光手段と、該受光手段により検知した光を電気信号に変換して発光数を検出し、該発光数から前記試料容器中の試料に含まれる微生物量を算出する制御手段と、を備える、という技術的手段を講じた。   In order to solve the above problems, the present invention is a microorganism testing apparatus for measuring the amount of microorganisms in a sample solution, wherein a sample and a fluorescent staining reagent are placed in a batch-type sample container formed of a light-transmitting material. A stirring and mixing unit that stirs and mixes the sample solution by adding a light source, and an excitation light source that includes a light source that irradiates the irradiated surface of the sample container while stirring the sample solution by the stirring and mixing unit; Light receiving means for detecting the light emitted by the excitation light from the excitation light source, and detecting the number of emitted light by converting the light detected by the light receiving means into an electrical signal, and the sample in the sample container from the number of emitted light And a control means for calculating the amount of microorganisms contained in the product.

また、請求項2記載の発明は、前記励起光源が、前記試料容器の被照射面に対して直交する励起光が照射されるように配置する一方、前記受光手段が、前記励起光源の励起光と直交した角度で蛍光発光を受光する受光面が配置されていることを特徴とする。   The invention according to claim 2 is arranged such that the excitation light source is irradiated with excitation light orthogonal to the surface to be irradiated of the sample container, while the light receiving means is excitation light of the excitation light source. A light receiving surface for receiving fluorescent light emission at an angle orthogonal to is arranged.

そして、請求項3記載の発明は、前記受光手段と前記試料容器との間に、観察範囲を規制するためのスリットを設けたことを特徴とする。   The invention described in claim 3 is characterized in that a slit for regulating an observation range is provided between the light receiving means and the sample container.

さらに、請求項4記載の発明は、前記励起光源と前記試料容器との間に、光源からの拡散光を一面に向かって同じ角度で均一に照射される平行光に変換する平行光変換手段を設けたことを特徴とする。   Furthermore, the invention according to claim 4 further comprises a parallel light converting means for converting the diffused light from the light source into parallel light that is uniformly irradiated at the same angle toward one surface between the excitation light source and the sample container. It is provided.

そして、請求項5記載の発明は、前記平行光変換手段が、所定厚さの平板に所定径のねじ切孔を穿設して形成したものであることを特徴とする。   The invention according to claim 5 is characterized in that the parallel light converting means is formed by drilling a threaded hole having a predetermined diameter in a flat plate having a predetermined thickness.

請求項6記載の発明は、前記平行光変換手段が、凸レンズで形成したものであることを特徴とする。   The invention according to claim 6 is characterized in that the parallel light converting means is formed of a convex lens.

請求項7記載の発明は、試料溶液中の微生物量を測定するための微生物の検査方法であって、バッチ式の試料容器内で試料に蛍光染色試薬を添加した試料溶液の撹拌・混合を行う撹拌混合工程と、前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を照射する励起工程と、前記励起光により蛍光発光した微生物の蛍光をカウントする受光工程と、該受光工程により検出した発光数から試料容器中の試料に含まれる微生物量を算出する微生物数推定工程と、を備えたものである。   The invention according to claim 7 is a method for inspecting microorganisms for measuring the amount of microorganisms in a sample solution, and stirring and mixing the sample solution in which a fluorescent staining reagent is added to the sample in a batch type sample container. A stirring and mixing step, an excitation step of irradiating the irradiated surface of the sample container with excitation light while stirring the sample solution, a light receiving step of counting fluorescence of microorganisms that emit fluorescence by the excitation light, and the light receiving step. A microorganism number estimation step of calculating the amount of microorganisms contained in the sample in the sample container from the detected number of luminescence.

請求項1記載の発明によれば、バッチ式の試料容器に試料と蛍光染色試薬とを添加した後、撹拌混合手段により試料溶液の撹拌・混合を行い、次いで、前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を入射させ、さらに、受光手段により微生物の蛍光発光を受光するため、撹拌しないで静置して計測するものと比較すれば、極めて短時間で微生物が明るく発光し、バラスト水中の微生物の量を簡便かつ短時間で計測することが可能となる。そして、本発明の装置はバッチ式であるため装置を小型化することが可能となり、製造コストも安価となる。   According to the invention of claim 1, after adding the sample and the fluorescent staining reagent to the batch type sample container, the sample solution is stirred and mixed by the stirring and mixing means, and then the sample solution is stirred while the sample solution is stirred. The excitation light is incident on the irradiated surface of the sample container, and the fluorescent light emission of the microorganisms is received by the light receiving means, so that the microorganisms emit light brightly in a very short time compared to the measurement without standing and stirring. In addition, the amount of microorganisms in the ballast water can be measured easily and in a short time. Since the apparatus of the present invention is a batch type, the apparatus can be miniaturized and the manufacturing cost can be reduced.

また、請求項2記載の発明によれば、前記励起光源を、前記試料容器の被照射面に対して直交した励起光が入射されるように配設する一方、前記受光手段は、その受光面が前記励起光源の励起光と直交した角度で蛍光発光が受光されるように配置されているため、励起光源からの励起光が直接受光手段の受光面に入射することがなく、また、蛍光発光の厚み部分が薄くなる(例えば、図2のように、発光部分の幅が従来20mm〜30mmであったものが、幅M(3mm)のように狭くなり、厚み部分が薄くなる。)ため、バックグラウンドと微生物の蛍光発光との光量の差異が極めて明確になり、微生物の蛍光発光の検出精度が向上するものとなる。   According to a second aspect of the present invention, the excitation light source is disposed so that excitation light orthogonal to the surface to be irradiated of the sample container is incident, while the light receiving means has its light receiving surface. Is arranged so that the fluorescence emission is received at an angle orthogonal to the excitation light of the excitation light source, the excitation light from the excitation light source does not directly enter the light receiving surface of the light receiving means, and the fluorescence emission (For example, as shown in FIG. 2, the light emitting portion having a conventional width of 20 to 30 mm is narrowed to have a width M (3 mm) and the thickness portion is thin). The difference in the amount of light between the background and the fluorescence emission of the microorganism becomes very clear, and the detection accuracy of the fluorescence emission of the microorganism is improved.

請求項3記載の発明によれば、前記受光手段と前記試料容器との間に、観察範囲を規制するためのスリットを設けてあるから、ノイズとなるバックグラウンドの蛍光発光の面積が狭まるため、バックグラウンドの蛍光発光に対する微生物の蛍光発光の信号の比が向上し、微生物の蛍光発光の検出精度が向上するものとなる。   According to the invention of claim 3, since the slit for regulating the observation range is provided between the light receiving means and the sample container, the area of background fluorescent light emission that becomes noise is narrowed. The ratio of the fluorescence emission signal of the microorganism to the background fluorescence emission is improved, and the detection accuracy of the fluorescence emission of the microorganism is improved.

請求項4記載の発明によれば、前記励起光源と前記試料容器との間に、光源からの拡散光を一面に向かって同じ角度で均一に照射される平行光に変換する平行光変換手段を設けてあるから、励起光源からの励起光の広がりを抑えて、平行光で記試料容器の被照射面に照射されるため、バックグラウンドの蛍光発光の厚み部分が薄くなり、バックグラウンドの蛍光発光に対する微生物の蛍光発光の信号の比が向上し、微生物の蛍光発光の検出精度が向上するものである。   According to a fourth aspect of the invention, there is provided parallel light conversion means for converting the diffused light from the light source into parallel light that is uniformly irradiated at the same angle toward one surface between the excitation light source and the sample container. Because it is provided, the spread of the excitation light from the excitation light source is suppressed and the irradiated surface of the sample container is irradiated with parallel light, so that the thickness of the background fluorescence emission is reduced, and the background fluorescence emission The ratio of the fluorescence emission signal of the microorganism to that of the microorganism is improved, and the detection accuracy of the fluorescence emission of the microorganism is improved.

請求項5記載の発明によれば、前記平行光変換手段が、所定厚さの平板に所定径のねじ切孔を穿設して形成したものであるから、安価な材料によって励起光源からの励起光がねじ切孔によって角度が矯正され、ねじ切孔から照射された光の指向角を狭くすることができる。このため、バックグラウンドの蛍光発光の厚み部分が薄くなるため、バックグラウンドの蛍光発光に対する微生物の蛍光発光の信号の比が向上し、微生物の蛍光発光の検出精度が向上するものである。   According to the invention described in claim 5, since the parallel light converting means is formed by drilling a threaded hole having a predetermined diameter in a flat plate having a predetermined thickness, the excitation light from the excitation light source is made of an inexpensive material. However, the angle is corrected by the threaded hole, and the directivity angle of the light emitted from the threaded hole can be narrowed. For this reason, since the thickness portion of the background fluorescent light emission becomes thin, the ratio of the fluorescent light emission signal of the microorganism to the background fluorescent light emission is improved, and the detection accuracy of the fluorescent light emission of the microorganism is improved.

請求項6記載の発明によれば、前記平行光変換手段が、凸レンズで形成したものであるから、安価な材料によって励起光源からの励起光の指向角を狭くすることができる。このため、バックグラウンドの蛍光発光の厚み部分が薄くなり、バックグラウンドの蛍光発光に対する微生物の蛍光発光の信号の比が向上し、微生物の蛍光発光の検出精度が向上するものとなる。   According to the invention described in claim 6, since the parallel light converting means is formed of a convex lens, the directivity angle of the excitation light from the excitation light source can be narrowed by an inexpensive material. For this reason, the thickness portion of the background fluorescence emission is reduced, the ratio of the fluorescence emission signal of the microorganism to the background fluorescence emission is improved, and the detection accuracy of the fluorescence emission of the microorganism is improved.

請求項7記載の発明によれば、試料溶液中の微生物量を測定するための微生物の検査方法であって、バッチ式の試料容器内で試料に蛍光染色試薬を添加した試料溶液の撹拌・混合を行う撹拌混合工程と、前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を照射する励起工程と、前記励起光により蛍光発光した微生物の蛍光をカウントする受光工程と、該受光工程により検出した発光数から試料容器中の試料に含まれる微生物量を算出する微生物数推定工程と、を備えたものであるから、撹拌しないで静置して計測するものと比較すれば、極めて短時間で微生物が明るく発光し、バラスト水中の微生物の量を簡便かつ短時間で計測することができる。また、蛍光発光の厚み部分が薄くなるため、バックグラウンドと微生物の蛍光発光との光量差が極めて明確となり、微生物の蛍光発光の検出精度を向上することができる。   According to the seventh aspect of the present invention, there is provided a microorganism testing method for measuring the amount of microorganisms in a sample solution, wherein the sample solution is stirred and mixed with a fluorescent staining reagent added to the sample in a batch type sample container. An agitation and mixing step, an excitation step of irradiating the irradiated surface of the sample container with excitation light while stirring the sample solution, a light receiving step of counting fluorescence of microorganisms that emit fluorescence by the excitation light, and the light reception And the number of microorganisms estimation step for calculating the amount of microorganisms contained in the sample in the sample container from the number of luminescence detected in the process. The microorganisms emit light brightly in a short time, and the amount of microorganisms in the ballast water can be measured easily and in a short time. In addition, since the thickness of the fluorescent light emission is reduced, the light amount difference between the background and the fluorescent light emission of the microorganism becomes extremely clear, and the detection accuracy of the fluorescent light emission of the microorganism can be improved.

本発明の一実施形態に係る微生物の検査装置の全体を示す斜視図である。It is a perspective view showing the whole microbe inspection device concerning one embodiment of the present invention. 本発明の一実施形態に係る測定部の概略平断面図である。It is a general | schematic plane sectional view of the measurement part which concerns on one Embodiment of this invention. 本発明の一実施形態に係る微生物の検査装置の全体構成を示すブロック図である。1 is a block diagram showing the overall configuration of a microorganism testing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る微生物の検査装置の測定フローを示すフロー図である。It is a flowchart which shows the measurement flow of the microbe inspection apparatus which concerns on one Embodiment of this invention. 平行光変換手段の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of a parallel light conversion means. スリットの有無により観察面が狭まることを示す作用図である。It is an effect | action figure which shows that an observation surface narrows with the presence or absence of a slit. 微生物の個体数と光電子増倍管(PMT)の受光カウントとの相関関係を示すグラフである。It is a graph which shows the correlation with the number of microorganisms and the light reception count of a photomultiplier tube (PMT). 微生物の生死によって検出が可能か否かの試験を示すグラフである。It is a graph which shows the test of whether detection is possible by the life and death of microorganisms.

本発明を実施するための形態を図面を参照しながら説明する。図1は本発明の一実施形態に係る微生物の検査装置の全体を示す斜視図であり、図2は本発明の一実施形態に係る測定部の概略平断面図であり、図3は本発明の一実施形態に係る微生物の検査装置の全体構成を示すブロック図である。   A mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an entire microorganism testing apparatus according to an embodiment of the present invention, FIG. 2 is a schematic plan sectional view of a measuring unit according to an embodiment of the present invention, and FIG. It is a block diagram which shows the whole structure of the microbe inspection apparatus which concerns on one Embodiment.

図1及び図2に示すように本発明の検査装置1は、CPU基板などの制御機構を内蔵して測定結果等の情報処理作業や統計処理作業などを行う本体部2と、該本体部2に並設した操作ボタン等の配置構成からなる操作部3と、前記測定結果等を表示するために液晶パネル等で形成された表示部4と、光を透過する透明な材質(例えば、ガラスや石英やアクリル樹脂等)で形成されたバッチ式の試料容器5を収容し、試料溶液S中の微生物数を光学的に計数する測定部6とを主要部として構成されている。符号7は試料容器4内に収容された試料溶液Sを撹拌するための回転子であり、該回転子7は前記試料容器5内に試料溶液S及び発光試薬とともに収容し、前記試料容器5を測定部6に収容したときに、該測定部5内に内蔵されたマグネティックスターラ27により回転駆動される構成となっている。これにより、試料容器5内の試料と発光試薬とからなる試料溶液Sを所定温度で撹拌混合しながら試料溶液S中の微生物数を計数することができ、撹拌しないで静置して計測するものと比較すれば、極めて短時間で微生物が明るく発光し、バラスト水中の微生物の量を簡便かつ短時間で計測することが可能となる。   As shown in FIGS. 1 and 2, an inspection apparatus 1 according to the present invention includes a main body 2 that incorporates a control mechanism such as a CPU board and performs information processing work such as measurement results and statistical processing work, and the main body 2 A display unit 4 formed of a liquid crystal panel or the like for displaying the measurement results, and a transparent material that transmits light (for example, glass or A main part is a measurement unit 6 that accommodates a batch-type sample container 5 formed of quartz, acrylic resin, or the like and optically counts the number of microorganisms in the sample solution S. Reference numeral 7 denotes a rotor for agitating the sample solution S accommodated in the sample container 4. The rotor 7 is accommodated in the sample container 5 together with the sample solution S and the luminescent reagent, and the sample container 5 is accommodated in the sample container 5. When accommodated in the measuring unit 6, the magnetic stirrer 27 built in the measuring unit 5 is rotationally driven. Thereby, the number of microorganisms in the sample solution S can be counted while stirring and mixing the sample solution S composed of the sample and the luminescent reagent in the sample container 5 at a predetermined temperature, and the sample solution S can be measured without being stirred. Compared with, the microorganisms emit light brightly in a very short time, and the amount of microorganisms in the ballast water can be measured easily and in a short time.

図1に示す検査装置1の寸法は、幅が300mm、奥行が300mm、高さが100mm、重量は約2〜4kgの範囲に形成されており、手持ちトランク(図示せず)等に収容して、どこにでも持ち運び可能であり、船舶内での測定や、屋外での測定が可能である。
そして、光を透過する透明な材質で形成されたバッチ式の試料容器5は、底面が50mm×50mm、高さが60mmの角柱状に形成され、水位が40mmのときの内容量が100ml(ミリリットル)に設定されている。試料容器5はこのような角柱状に限定されることはなく、内容量を100ml(ミリリットル)程度確保することができれば、円柱状であっても、立方体であってもよい。
The dimensions of the inspection apparatus 1 shown in FIG. 1 are 300 mm in width, 300 mm in depth, 100 mm in height, and about 2 to 4 kg in weight, and are accommodated in a handheld trunk (not shown) or the like. It can be carried anywhere and can be measured inside a ship or measured outdoors.
The batch-type sample container 5 formed of a transparent material that transmits light is formed in a prismatic shape having a bottom surface of 50 mm × 50 mm and a height of 60 mm, and has an internal volume of 100 ml (milliliter when the water level is 40 mm). ) Is set. The sample container 5 is not limited to such a prism shape, and may be cylindrical or cubic as long as the internal volume can be secured about 100 ml (milliliter).

前記測定部6は、図1、図2及び図3に示すように、試料容器5を収容して保持する試料容器収容部9と、前記試料容器5に向けて励起光を照射する光源部13と、該光源部13から照射された励起光により発光試薬に染色されて試料容器5内で漂っている微生物を観察するための受光部19とを備えている。そして、受光部19からは、試料溶液S中の微生物数を計数し、測定結果等の情報処理作業や統計処理作業などを行うCPU基板23に電気的に連絡されている。   As shown in FIGS. 1, 2, and 3, the measurement unit 6 includes a sample container storage unit 9 that stores and holds the sample container 5, and a light source unit 13 that emits excitation light toward the sample container 5. And a light receiving unit 19 for observing microorganisms that are stained in the luminescent reagent by the excitation light emitted from the light source unit 13 and drift in the sample container 5. The light receiving unit 19 is electrically connected to a CPU substrate 23 that counts the number of microorganisms in the sample solution S and performs information processing operations such as measurement results and statistical processing operations.

前記試料容器収容部9は、前記試料容器5の少なくとも二面を取り囲む保持プレート8a,8bにより形成され、前記光源部13からの光の照射を遮断しないように前記試料容器5を収容保持するものである。
そして、図2に示すように、試料容器5の被照射面Gに対して法線APによる励起光が入射されるよう光源部13が配置される。前記光源部13は、前記試料容器収容部9近傍に配置されたLED光源10と、該LED光源10の前面に配置され、拡散光を平行光に変換する平行光変換手段11(LEDは光源からランダム方向に拡散して照射される光であるため、一面に向かって同じ角度で均一に光線が当たる平行光に変換するもの)と、スリット状の平行光からなる励起光を試料容器5に照射する励起光用バンドパスフィルタ12とを備えている。
The sample container storage unit 9 is formed by holding plates 8a and 8b surrounding at least two surfaces of the sample container 5, and stores and holds the sample container 5 so as not to block light irradiation from the light source unit 13. It is.
Then, as shown in FIG. 2, the light source unit 13 is arranged so that excitation light from the normal line AP is incident on the irradiated surface G of the sample container 5. The light source unit 13 includes an LED light source 10 disposed in the vicinity of the sample container storage unit 9 and a parallel light conversion unit 11 (LED is a light source) that is disposed in front of the LED light source 10 and converts diffused light into parallel light. Since the light is diffused and irradiated in a random direction, the sample container 5 is irradiated with excitation light consisting of parallel light that is uniformly irradiated with light rays at the same angle toward one surface) and slit-shaped parallel light. And an excitation light band-pass filter 12.

図5は平行光変換手段11の一実施形態を示す概略断面図である。図5(a)に示す例は、平行光変換手段11として所定厚さの平板31に所定径のねじ切孔32を穿設して形成したものであり、光路長に合わせて平板31の厚さLとねじ切孔の孔径とが適宜設定されている。これにより、LED光源10から照射される入射角度θの散乱光は、ねじ切孔32を通過する際には平行光に変換されるものとなる。図5(a)に示す例では、θとLとの最適条件をSN比の試験により決定しており、例えば、M3(ネジ孔の外径)×0.5(ピッチ)とすれば、θが9.5°、Lが15mmのときが最適であった。   FIG. 5 is a schematic sectional view showing an embodiment of the parallel light converting means 11. In the example shown in FIG. 5A, the parallel light converting means 11 is formed by drilling a threaded hole 32 having a predetermined diameter in a flat plate 31 having a predetermined thickness, and the thickness of the flat plate 31 is adjusted to the optical path length. L and the hole diameter of the threaded hole are appropriately set. Thereby, the scattered light of the incident angle θ irradiated from the LED light source 10 is converted into parallel light when passing through the threaded hole 32. In the example shown in FIG. 5A, the optimum condition of θ and L is determined by the S / N ratio test. For example, if M3 (outer diameter of screw hole) × 0.5 (pitch), θ Was 9.5 ° and L was 15 mm.

図5(b)に示す平行光変換手段11は、LED光源10の前面に凸レンズ33を設けたものであり、LED光源10から照射された散乱光は、凸レンズ33内を通過して外部に出射する際には平行光に変換されるものとなる。   The parallel light conversion means 11 shown in FIG. 5B is provided with a convex lens 33 on the front surface of the LED light source 10, and the scattered light emitted from the LED light source 10 passes through the convex lens 33 and is emitted to the outside. In this case, the light is converted into parallel light.

なお、本実施形態の光源部13は、光源としてLED光源10を用いたが、微生物に含まれる蛍光物質を励起させることができれば、LED光源10に限らず、平行光の照射が可能な平行光LED光源やレーザ光源や電球を採用することもできる。言うまでもないが、平行光の照射が可能な平行光LEDやレーザ光源を採用するときは、前述の平行光変換手段11は不要となる。   Note that the light source unit 13 of the present embodiment uses the LED light source 10 as a light source. However, the parallel light that can be irradiated with parallel light is not limited to the LED light source 10 as long as it can excite the fluorescent substance contained in the microorganism. An LED light source, a laser light source, and a light bulb can also be employed. Needless to say, when a parallel light LED or a laser light source capable of irradiating parallel light is employed, the above-mentioned parallel light conversion means 11 is not necessary.

そして、図2に示すように、前記受光部19は、光源部13からの法線APによる励起光と直交した角度を持って受光面Fが配置されるように設けられる。また、受光部19は前記LED光源10から試料容器5に向けて励起光が照射される平行光に対し、これと直交する光軸で蛍光が受光されるように配置構成した光電子増倍管(PMT)14と、該光電子増倍管(PMT)14の前面に配置した蛍光用バンドパスフィルタ15と、該蛍光用バンドパスフィルタ15の前面に配置した集光用レンズ16と、該集光用レンズ16の前面に配置したスリット17と、該スリット17と前記試料容器5との間隙に設置され、微生物に含まれる蛍光物質を励起させ、これにより発光した蛍光を集光し結像させるためのリレーレンズ18と、を備えたものである。   As shown in FIG. 2, the light receiving unit 19 is provided such that the light receiving surface F is arranged at an angle orthogonal to the excitation light by the normal line AP from the light source unit 13. The light-receiving unit 19 is a photomultiplier tube arranged and configured to receive fluorescence with an optical axis orthogonal to the parallel light irradiated with excitation light from the LED light source 10 toward the sample container 5 ( PMT) 14, a fluorescent bandpass filter 15 disposed in front of the photomultiplier tube (PMT) 14, a condensing lens 16 disposed in front of the fluorescent bandpass filter 15, and the condensing A slit 17 disposed on the front surface of the lens 16 and a gap between the slit 17 and the sample container 5 are used to excite a fluorescent substance contained in microorganisms, thereby condensing and imaging the emitted fluorescence. And a relay lens 18.

前記光電子増倍管(PMT)14と試料容器5との間のスリット17は、観察面をスリット状に狭めるものである。すなわち、図6に示すように、(a)スリットなしの状態では、受光面Fが円で形成されるバックグラウンドを監視するのに対し、(b)スリットありの状態では、受光面Fが斜線を除いた縦長スリットで形成されるバックグラウンドを監視することになる。したがって、受光面Fの受光面積が(b)のように狭まる結果、ノイズとなるバックグラウンドの蛍光発光の面積も狭まるため、バックグラウンドの蛍光発光に対する微生物の蛍光発光の信号の比が向上し、微生物の蛍光発光の検出精度が向上するのである。   The slit 17 between the photomultiplier tube (PMT) 14 and the sample container 5 narrows the observation surface in a slit shape. That is, as shown in FIG. 6, (a) in the state without slits, the background where the light receiving surface F is formed in a circle is monitored, while (b) in the state with slits, the light receiving surface F is shaded. The background formed by the vertically long slits except for is monitored. Therefore, as a result of the light receiving area of the light receiving surface F being narrowed as shown in (b), the area of background fluorescent light emission, which becomes noise, is also narrowed. This improves the detection accuracy of the fluorescence emission of microorganisms.

なお、受光部19は、受光センサとして光電子増倍管(PMT)14を用いた例を示したが、これに限定されることはなく、シリコンフォトダイオード(SiPD)や、アヴァランシェフォトダイオード(APD)など、光電子増倍管(PMT)と同様に微生物に含まれる蛍光物質の発光を検知することができる各種の光検出器を採用することができる。   Although the light receiving unit 19 uses the photomultiplier tube (PMT) 14 as the light receiving sensor, the light receiving unit 19 is not limited to this, and is not limited to this, but a silicon photodiode (SiPD) or an avalanche photodiode (APD). As in the case of a photomultiplier tube (PMT), various types of photodetectors that can detect the emission of a fluorescent substance contained in a microorganism can be employed.

さらに、図3を参照して、本実施形態の検査装置1の電気的な制御構成を説明する。本体部2を形成する筐体20内中央には、AC電源21や二次電池22から電源の供給を受けて、前記光電子増倍管(PMT)14により光から電気に変換された出力信号を解析したり、任意の輝度範囲以上にあるか否かを判定したり、任意の輝度の信号をパルスカウントしたり、前記LED光源10のオン・オフ制御などを行うCPU基板23が配置されている。前記AC電源21と前記CPU基板23との間には、AC/DC変換器24を介在させてある。   Furthermore, with reference to FIG. 3, the electrical control structure of the inspection apparatus 1 of this embodiment is demonstrated. In the center of the housing 20 forming the main body 2, an output signal converted from light to electricity by the photomultiplier tube (PMT) 14 is supplied with power from an AC power source 21 or a secondary battery 22. A CPU board 23 is provided for performing analysis, determining whether or not it is within an arbitrary luminance range, pulse counting an arbitrary luminance signal, and controlling on / off of the LED light source 10. . An AC / DC converter 24 is interposed between the AC power source 21 and the CPU board 23.

前記CPU基板23には、前記光電子増倍管(PMT)14、前記LED光源10、読み出し書き込み用記憶部となるRAM25及び読み出し専用記憶部となるROM26がそれぞれ電気的に接続される。また、図1に示す操作部3の電源ボタン3a、測定開始ボタン3b、外部出力ボタン3c及び設定ボタン3dが電気的に接続されている。そして、前記電源ボタン3aの押下によりオン・オフの切換制御が行われ、前記測定開始ボタン3bの押下により測定が開始され、外部出力ボタン3cの押下により外部のプリンタやパソコンへデータの転送が行われ、設定ボタン3dの押下により、測定の種類の切換(Lサイズ微生物の測定かSサイズ微生物の測定かの切換)や、判定基準の設定の変更や、しきい値の設定の変更や、測定時間の設定の変更を行うことができる構成となっている。   The CPU substrate 23 is electrically connected to the photomultiplier tube (PMT) 14, the LED light source 10, a RAM 25 serving as a read / write storage unit, and a ROM 26 serving as a read-only storage unit. Further, the power button 3a, the measurement start button 3b, the external output button 3c, and the setting button 3d of the operation unit 3 shown in FIG. 1 are electrically connected. Then, on / off switching control is performed by pressing the power button 3a, measurement is started by pressing the measurement start button 3b, and data is transferred to an external printer or personal computer by pressing the external output button 3c. By pressing the setting button 3d, the measurement type is switched (L size microorganism measurement or S size microorganism measurement is switched), the judgment reference setting is changed, the threshold value setting is changed, and the measurement is performed. The time setting can be changed.

そのほか、前記CPU基板23には、前記回転子7を磁力により回転させるマグネティックスターラ27、液晶パネル等で形成された表示部4、CPU基板23など制御機器の冷却用ファン28、及びRS−232Cなど外部出力端子29を接続してある。   In addition, the CPU board 23 includes a magnetic stirrer 27 that rotates the rotor 7 by magnetic force, a display unit 4 formed of a liquid crystal panel, a cooling fan 28 for a control device such as the CPU board 23, and RS-232C. An external output terminal 29 is connected.

図4は測定フローを示すフロー図であり、図1乃至図4を参照して上記構成における作用を説明する。   FIG. 4 is a flowchart showing a measurement flow, and the operation of the above configuration will be described with reference to FIGS.

まず、作業者はピペット等を使用し、温度20℃程度のバラスト水から100ml(ミリリットル)を試料として採取し、試料容器5に投入する(図4のステップ1)。次に、試料容器5内に蛍光染色試薬を添加する(図4のステップ2)。この蛍光染色試薬は一般的に知られているカルセインAM(Calcein-AM,ドイツ国Promocell GMBH 社製)や、FDAなどを使用することができる。カルセインAMは、植物性プランクトンに対して染色しやすい傾向がある一方、FDAは、動物性プランクトンに対して染色しやすい傾向があり、このため、染色試薬による染色を、カルセインAMとFDAとを混合した試薬により染色を行うと、試薬の染色時間を短くして、染色に要する時間を従来の半分にすることが可能となる。そして、作業者は試料容器5に回転子7を投入後、検査装置1の測定部6に収容し、測定部6の蓋30を被着することで測定準備が完了する。ここで、電源ボタン3aを押下すれば、該測定部6内に内蔵されたマグネティックスターラ27の駆動により回転子7が回転し、試料溶液Sが撹拌されることになる(図4のステップ3)。   First, the operator uses a pipette or the like to collect 100 ml (milliliter) as a sample from ballast water at a temperature of about 20 ° C. and put it into the sample container 5 (step 1 in FIG. 4). Next, a fluorescent staining reagent is added into the sample container 5 (step 2 in FIG. 4). As this fluorescent staining reagent, generally known calcein AM (Calcein-AM, manufactured by Promocell GMBH, Germany), FDA or the like can be used. Calcein AM tends to stain phytoplankton, while FDA tends to stain zooplankton. Therefore, staining with a staining reagent is mixed with calcein AM and FDA. When dyeing is performed with the reagent, it is possible to shorten the dyeing time of the reagent and halve the time required for dyeing. Then, after the operator puts the rotor 7 into the sample container 5, the operator accommodates it in the measurement unit 6 of the inspection apparatus 1 and attaches the lid 30 of the measurement unit 6 to complete the measurement preparation. Here, when the power button 3a is pressed, the rotor 7 is rotated by driving the magnetic stirrer 27 built in the measuring unit 6, and the sample solution S is stirred (step 3 in FIG. 4). .

次に、作業者は操作部の測定開始ボタン3bの押下により、所定時間後LED光源10が点灯し、励起光用バンドパスフィルタ12を透過した光が試料容器5に照射されることになる。このとき、例えば、波長特性として450nm〜490nmの波長の光が照射され、試料容器5内の検体(微生物)が蛍光発光することになる(図4のステップ4)。そして、この蛍光が蛍光用バンドパスフィルタ15を透過して光電子増倍管(PMT)14により検知されることになる(図4のステップ5)。   Next, when the operator depresses the measurement start button 3b of the operation unit, the LED light source 10 is turned on after a predetermined time, and the light transmitted through the excitation light band-pass filter 12 is irradiated to the sample container 5. At this time, for example, light having a wavelength of 450 nm to 490 nm is irradiated as wavelength characteristics, and the specimen (microorganism) in the sample container 5 emits fluorescence (step 4 in FIG. 4). This fluorescence passes through the fluorescence band-pass filter 15 and is detected by the photomultiplier tube (PMT) 14 (step 5 in FIG. 4).

光電子増倍管(PMT)14は、光電効果の利用により光エネルギが電気エネルギに変換されるとともに、電流増幅機能が付加され、高感度に蛍光発光を検知することができる。検知した電気信号はCPU基板23に送られ、一定しきい値以上の受光波形がカウントされることになる(図4のステップ6)。   The photomultiplier tube (PMT) 14 converts light energy into electrical energy by utilizing the photoelectric effect, and has a current amplification function, and can detect fluorescence emission with high sensitivity. The detected electrical signal is sent to the CPU substrate 23, and the received light waveform exceeding a certain threshold value is counted (step 6 in FIG. 4).

さらに、CPU基板23では、受光波形カウント値から前記試料容器5内の水100ml(ミリリットル)中に存在する微生物数を推定して、排水基準を満たすか否かを表示部4に表示されるのである(図4のステップ)。   Further, the CPU board 23 estimates the number of microorganisms present in 100 ml (milliliter) of water in the sample container 5 from the received light wave count value, and displays on the display unit 4 whether or not the drainage standard is satisfied. Yes (step of FIG. 4).

以下、本発明の実施例について説明する。まず、上記実施形態の微生物の検査装置の検査精度の確認試験を行った。   Examples of the present invention will be described below. First, a confirmation test of the inspection accuracy of the microorganism inspection apparatus of the above embodiment was performed.

微生物の個体数と光電子増倍管(PMT)の受光カウントとの相関関係を調査した。S型シオミズツボワムシ(最小サイズ約100μm=Lサイズ生物)を複数の試料容器5(100mL容量)にそれぞれ5個体、10個体、50個体、100個体、1000個体と個体別に収容し、それぞれを蛍光染色試薬FDA(濃度0.01[ミリmol/リットル])で染色した。その結果、収容した微生物の個体数に応じて、波形のカウント数が増加してきており、5個体、10個体、50個体及び100個体の5サンプルについては直線的に応答した(図7(a)、図7(b)参照)。このため、得られた波形のカウント数からバラスト水100mL中に存在する微生物の個体数が推定できる。   The correlation between the microbial population and the photomultiplier tube (PMT) light reception count was investigated. S-type scallop worms (minimum size of about 100 μm = L size organisms) are accommodated in a plurality of sample containers 5 (100 mL capacity) by 5 individuals, 10 individuals, 50 individuals, 100 individuals, 1000 individuals, respectively. Staining was performed with a fluorescent staining reagent FDA (concentration 0.01 [millimol / liter]). As a result, the number of waveform counts increased according to the number of microorganisms accommodated, and five samples of 5, 10, 50 and 100 responded linearly (FIG. 7 (a)). FIG. 7 (b)). Therefore, the number of microorganisms present in 100 mL of ballast water can be estimated from the obtained waveform count.

微生物の生死によって検出が可能か否かの試験を行った(図8(a)〜(d)参照)。熱により殺滅処理(60℃、30分の加熱)したS型シオミズツボワムシ(最小サイズ約100μm=Lサイズ生物)を、蛍光染色試薬FDA(濃度0.01[ミリmol/リットル])で染色する。殺滅処理1時間後、殺滅処理20時間後、殺滅処理5日後の3サンプルを作成してそれぞれ測定した。その結果、殺滅処理したものはいずれも一定のしきい値以上の波形が発見されず、殺滅処理せずに微生物が存在するサンプルと殺滅処理して微生物が存在しないサンプルとの判別が可能である。   A test was conducted as to whether or not detection was possible due to the life and death of microorganisms (see FIGS. 8A to 8D). S-type rotifer (minimum size of about 100 μm = L size organism) that has been killed by heat (heated at 60 ° C. for 30 minutes) with a fluorescent staining reagent FDA (concentration 0.01 [millimol / liter]) Stain. Three samples were prepared 1 hour after the killing treatment, 20 hours after the killing treatment, and 5 days after the killing treatment. As a result, no waveform with a certain threshold value or more was found in any of the killed samples, and it was possible to discriminate between samples that contained microorganisms without killing and samples that did not contain microorganisms. Is possible.

以上のように本実施形態によれば、バッチ式の試料容器5に試料と蛍光染色試薬とを添加した後、撹拌混合手段7により試料溶液の撹拌・混合を行い、次いで、前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を入射させ、さらに、受光手段により微生物の蛍光発光を受光するため、撹拌しないで静置して計測するものと比較すれば、極めて短時間で微生物が明るく発光し、バラスト水中の微生物の量を簡便かつ短時間で計測することが可能となる。そして、本実施形態の装置はバッチ式であるため装置を小型化することが可能となり、製造コストが安価となる。
また、受光手段14が、励起光と直交した角度を持って受光面Fを配置したものであるため、励起光源10からの励起光が直接受光手段14の受光面Fに入射することがなく、バックグラウンドと微生物の蛍光発光との光量の差異が極めて明確になり、微生物の蛍光発光の検出精度が向上するという極めて顕著な作用・効果を奏する。
As described above, according to the present embodiment, after adding the sample and the fluorescent staining reagent to the batch type sample container 5, the sample solution is stirred and mixed by the stirring and mixing means 7, and then the sample solution is stirred. However, since the excitation light is incident on the irradiated surface of the sample container, and the fluorescence emission of the microorganisms is received by the light receiving means, the microorganisms can be measured in a very short time as compared with those measured by standing without stirring. Emits bright light, and the amount of microorganisms in the ballast water can be measured easily and in a short time. And since the apparatus of this embodiment is a batch type, it becomes possible to reduce the size of the apparatus and to reduce the manufacturing cost.
In addition, since the light receiving means 14 has the light receiving surface F disposed at an angle orthogonal to the excitation light, the excitation light from the excitation light source 10 does not directly enter the light receiving surface F of the light receiving means 14, The difference in the amount of light between the background and the fluorescence emission of the microorganism becomes very clear, and there is an extremely remarkable action and effect that the detection accuracy of the fluorescence emission of the microorganism is improved.

本発明は、バラスト水を排出する際に排出基準を満たしているか否かを確認するための微生物の検査装置に適用することができる。   The present invention can be applied to a microorganism testing apparatus for confirming whether or not the discharge standard is satisfied when discharging ballast water.

1 検査装置
2 本体部
3 操作部
4 表示部
5 試料容器
6 測定部
7 回転子
8 保持プレート
9 試料容器収容部
10 LED光源
11 平行光変換手段
12 励起光用バンドパスフィルタ
13 光源部
14 光電子増倍管(PMT)
15 蛍光用バンドパスフィルタ
16 集光用レンズ
17 スリット
18 リレーレンズ
19 受光部
20 筐体
21 AC電源
22 二次電池
23 CPU基板
24 AC/DC変換器
25 RAM
26 ROM
27 マグネティックスターラ
28 ファン
29 外部出力端子
30 蓋
31 平板
32 ねじ切孔
33 シリンドリカルレンズ
DESCRIPTION OF SYMBOLS 1 Inspection apparatus 2 Main body part 3 Operation part 4 Display part 5 Sample container 6 Measuring part 7 Rotor 8 Holding plate 9 Sample container accommodating part 10 LED light source 11 Parallel light conversion means 12 Excitation light band pass filter 13 Light source part 14 Photoelectron increase Double pipe (PMT)
DESCRIPTION OF SYMBOLS 15 Fluorescence band pass filter 16 Condensing lens 17 Slit 18 Relay lens 19 Light-receiving part 20 Case 21 AC power supply 22 Secondary battery 23 CPU board 24 AC / DC converter 25 RAM
26 ROM
27 Magnetic Stirrer 28 Fan 29 External Output Terminal 30 Lid 31 Flat Plate 32 Screw Cutting Hole 33 Cylindrical Lens

Claims (7)

試料溶液中の微生物量を測定するための微生物の検査装置であって、
光を透過する材質で形成されたバッチ式の試料容器に試料と蛍光染色試薬とを添加して試料溶液の撹拌・混合を行う撹拌混合手段と、
該撹拌混合手段により前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を照射させる光源を備えた励起光源と、
該励起光源からの励起光により蛍光発光された光を検知する受光手段と、
該受光手段により検知した光を電気信号に変換して発光数を検出し、該発光数から前記試料容器中の試料に含まれる微生物量を算出する制御手段と、を備えたことを特徴とする微生物の検査装置。
A microorganism testing apparatus for measuring the amount of microorganisms in a sample solution,
A stirring and mixing means for stirring and mixing the sample solution by adding the sample and the fluorescent staining reagent to a batch type sample container formed of a light transmitting material;
An excitation light source comprising a light source for irradiating the irradiated surface of the sample container with excitation light while stirring the sample solution by the stirring and mixing means;
A light receiving means for detecting light emitted by the excitation light from the excitation light source;
Control means for detecting the number of emitted light by converting the light detected by the light receiving means into an electrical signal, and calculating the amount of microorganisms contained in the sample in the sample container from the number of emitted light. Microbe inspection device.
前記励起光源は、前記試料容器の被照射面に対して直交した励起光が入射されるように配設する一方、前記受光手段は、その受光面が前記励起光源の励起光と直交した角度で蛍光発光が受光されるように配置されている請求項1記載の微生物の検査装置。   The excitation light source is arranged so that excitation light orthogonal to the irradiated surface of the sample container is incident, while the light receiving means has an angle orthogonal to the excitation light of the excitation light source. The microbe inspection apparatus according to claim 1, wherein the microbe inspection apparatus is arranged to receive fluorescent light emission. 前記受光手段と前記試料容器との間には、観察範囲を規制するためのスリットを設けてなる請求項1又は2記載の微生物の検査装置。   The microorganism testing apparatus according to claim 1 or 2, wherein a slit for regulating an observation range is provided between the light receiving means and the sample container. 前記励起光源と前記試料容器との間には、光源からの拡散光を一面に向かって同じ角度で均一に照射される平行光に変換する平行光変換手段を設けてなる請求項1から3のいずれかに記載の微生物の検査装置。   The parallel light conversion means for converting the diffused light from the light source into parallel light that is uniformly irradiated at the same angle toward one surface is provided between the excitation light source and the sample container. The microorganism testing apparatus according to any one of the above. 前記平行光変換手段が、所定厚さの平板に所定径のねじ切孔を穿設して形成したものである請求項4記載の微生物の検査装置。   5. The microorganism testing apparatus according to claim 4, wherein the parallel light converting means is formed by drilling a threaded hole having a predetermined diameter in a flat plate having a predetermined thickness. 前記平行光変換手段が、凸レンズで形成したものである請求項4記載の微生物の検査装置。   The microbe inspection apparatus according to claim 4, wherein the parallel light converting means is formed of a convex lens. 試料溶液中の微生物量を測定するための微生物の検査方法であって、
バッチ式の試料容器内で試料に蛍光染色試薬を添加した試料溶液の撹拌・混合を行う撹拌混合工程と、
前記試料溶液を撹拌しつつ前記試料容器の被照射面に励起光を照射する励起工程と、
前記励起光により蛍光発光した微生物の蛍光をカウントする受光工程と、
該受光工程により検出した発光数から試料容器中の試料に含まれる微生物量を算出する微生物数推定工程と、を備えたことを特徴とする微生物の検査方法。
A method for testing microorganisms for measuring the amount of microorganisms in a sample solution,
A stirring and mixing step of stirring and mixing a sample solution in which a fluorescent staining reagent is added to the sample in a batch type sample container;
An excitation step of irradiating the irradiated surface of the sample container with excitation light while stirring the sample solution;
A light receiving step for counting the fluorescence of the microorganisms that emit fluorescence by the excitation light;
And a microorganism number estimation step of calculating the amount of microorganisms contained in the sample in the sample container from the number of luminescence detected in the light receiving step.
JP2012185523A 2012-08-24 2012-08-24 Microorganism testing method and apparatus Active JP6201285B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2012185523A JP6201285B2 (en) 2012-08-24 2012-08-24 Microorganism testing method and apparatus
TW102129843A TWI619809B (en) 2012-08-24 2013-08-20 Method and device for inspecting microorganisms
KR1020157007121A KR102024974B1 (en) 2012-08-24 2013-08-23 Method for examining microorganism and device for same
CN201380043829.3A CN104619828B (en) 2012-08-24 2013-08-23 The inspection method and its device of microorganism
US14/423,134 US9915601B2 (en) 2012-08-24 2013-08-23 Method for examining microorganisms and examination apparatus for microorganisms
SG11201501343PA SG11201501343PA (en) 2012-08-24 2013-08-23 Method for examining microorganisms and examination apparatus for microorganisms
AU2013306701A AU2013306701B2 (en) 2012-08-24 2013-08-23 Method for examining microorganism and device for same
EP13830429.0A EP2889365B1 (en) 2012-08-24 2013-08-23 Method for examining microorganism and device for same
DK13830429.0T DK2889365T3 (en) 2012-08-24 2013-08-23 PROCEDURE FOR THE INVESTIGATION OF MICRO-ORGANISMS AND FITTING THEREOF
SG10201701430XA SG10201701430XA (en) 2012-08-24 2013-08-23 Method for examining microorganisms and examination apparatus for microorganisms
PCT/JP2013/072521 WO2014030729A1 (en) 2012-08-24 2013-08-23 Method for examining microorganism and device for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012185523A JP6201285B2 (en) 2012-08-24 2012-08-24 Microorganism testing method and apparatus

Publications (2)

Publication Number Publication Date
JP2014042463A true JP2014042463A (en) 2014-03-13
JP6201285B2 JP6201285B2 (en) 2017-09-27

Family

ID=50394240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012185523A Active JP6201285B2 (en) 2012-08-24 2012-08-24 Microorganism testing method and apparatus

Country Status (1)

Country Link
JP (1) JP6201285B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192565A1 (en) 2013-05-29 2014-12-04 株式会社サタケ Microorganism testing method
WO2018105414A1 (en) 2016-12-09 2018-06-14 株式会社サタケ Method for inspecting microorganisms, and apparatus for said method
JP2018134035A (en) * 2017-02-22 2018-08-30 株式会社サタケ Measurement device, measurement method and computer program
JP2021029168A (en) * 2019-08-23 2021-03-01 株式会社サタケ Inspection apparatus of microorganism, and method of the same

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343069A (en) * 1989-07-10 1991-02-25 Mitsubishi Heavy Ind Ltd Method for measuring live cell of microbial cell
JPH03272697A (en) * 1990-02-21 1991-12-04 Mitsubishi Heavy Ind Ltd Counting of live cell of microorganism
JPH04281441A (en) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd Lighting device
JPH1099096A (en) * 1995-12-29 1998-04-21 Ishihara Sangyo Kaisha Ltd Number counting of survived cell
WO2002034091A1 (en) * 2000-10-20 2002-05-02 Seth Murray Anchoring device for use in rock crevices during rock climbing activities
JP2004061438A (en) * 2002-07-31 2004-02-26 Bio Oriented Technol Res Advancement Inst Device and method for measuring changes of chemiluminescence and fluorescence with time
JP2004305173A (en) * 2003-04-10 2004-11-04 Sysmex Corp Method for judging bacteria, and device and program for the same
WO2005098022A1 (en) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. Bacteria counting method and bacteria counter
JP2006042655A (en) * 2004-08-03 2006-02-16 Fuji Electric Systems Co Ltd Detector and detection method for harmful substance
JP2006227117A (en) * 2005-02-15 2006-08-31 Iiyama Corp Liquid crystal display device
JP2006300632A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Excitation spectrum correction technique in fluorescencespectrophotometer
JP2006340686A (en) * 2005-06-10 2006-12-21 Olympus Corp Cell analysis method, cell analysis program and cell analysis apparatus
JP2008005840A (en) * 2006-06-27 2008-01-17 Millipore Corp Method and unit for preparing liquid sample for analyzing microorganism
JP2008029271A (en) * 2006-07-31 2008-02-14 Matsushita Electric Ind Co Ltd Apparatus and method for detecting bacterium
JP2009201421A (en) * 2008-02-28 2009-09-10 Metawater Co Ltd Method and apparatus for measuring microorganism
JP2009219455A (en) * 2008-03-18 2009-10-01 Panasonic Corp Method for analyzing nucleic acid
JP2010112809A (en) * 2008-11-06 2010-05-20 Shimadzu Corp Spectral fluorescence photometer
JP2010181205A (en) * 2009-02-03 2010-08-19 Shimadzu Corp Spectrofluorophotometer
JP2010249575A (en) * 2009-04-13 2010-11-04 Shimadzu Corp Spectrofluorophotometer
JP2011013167A (en) * 2009-07-06 2011-01-20 Hitachi High-Technologies Corp Spectrofluorometer and sample cell
US20110042582A1 (en) * 2008-02-05 2011-02-24 Pocared Diagnostics Ltd. System for Conducting the Identification of Bacteria in Biological Samples
JP2011036188A (en) * 2009-08-12 2011-02-24 Ihi Corp Microorganism-detecting device
JP2011507524A (en) * 2007-12-21 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Microbial system and fluid sample analysis method
JP2011153945A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Spectrofluorometer and fluorescence detector for liquid chromatograph

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0343069A (en) * 1989-07-10 1991-02-25 Mitsubishi Heavy Ind Ltd Method for measuring live cell of microbial cell
JPH03272697A (en) * 1990-02-21 1991-12-04 Mitsubishi Heavy Ind Ltd Counting of live cell of microorganism
JPH04281441A (en) * 1991-03-11 1992-10-07 Matsushita Electric Ind Co Ltd Lighting device
JPH1099096A (en) * 1995-12-29 1998-04-21 Ishihara Sangyo Kaisha Ltd Number counting of survived cell
WO2002034091A1 (en) * 2000-10-20 2002-05-02 Seth Murray Anchoring device for use in rock crevices during rock climbing activities
JP2004061438A (en) * 2002-07-31 2004-02-26 Bio Oriented Technol Res Advancement Inst Device and method for measuring changes of chemiluminescence and fluorescence with time
JP2004305173A (en) * 2003-04-10 2004-11-04 Sysmex Corp Method for judging bacteria, and device and program for the same
WO2005098022A1 (en) * 2004-04-06 2005-10-20 Bussan Nanotech Research Institute, Inc. Bacteria counting method and bacteria counter
JP2006042655A (en) * 2004-08-03 2006-02-16 Fuji Electric Systems Co Ltd Detector and detection method for harmful substance
JP2006227117A (en) * 2005-02-15 2006-08-31 Iiyama Corp Liquid crystal display device
JP2006300632A (en) * 2005-04-19 2006-11-02 Shimadzu Corp Excitation spectrum correction technique in fluorescencespectrophotometer
JP2006340686A (en) * 2005-06-10 2006-12-21 Olympus Corp Cell analysis method, cell analysis program and cell analysis apparatus
JP2008005840A (en) * 2006-06-27 2008-01-17 Millipore Corp Method and unit for preparing liquid sample for analyzing microorganism
JP2008029271A (en) * 2006-07-31 2008-02-14 Matsushita Electric Ind Co Ltd Apparatus and method for detecting bacterium
JP2011507524A (en) * 2007-12-21 2011-03-10 スリーエム イノベイティブ プロパティズ カンパニー Microbial system and fluid sample analysis method
US20110042582A1 (en) * 2008-02-05 2011-02-24 Pocared Diagnostics Ltd. System for Conducting the Identification of Bacteria in Biological Samples
JP2009201421A (en) * 2008-02-28 2009-09-10 Metawater Co Ltd Method and apparatus for measuring microorganism
JP2009219455A (en) * 2008-03-18 2009-10-01 Panasonic Corp Method for analyzing nucleic acid
JP2010112809A (en) * 2008-11-06 2010-05-20 Shimadzu Corp Spectral fluorescence photometer
JP2010181205A (en) * 2009-02-03 2010-08-19 Shimadzu Corp Spectrofluorophotometer
JP2010249575A (en) * 2009-04-13 2010-11-04 Shimadzu Corp Spectrofluorophotometer
JP2011013167A (en) * 2009-07-06 2011-01-20 Hitachi High-Technologies Corp Spectrofluorometer and sample cell
JP2011036188A (en) * 2009-08-12 2011-02-24 Ihi Corp Microorganism-detecting device
JP2011153945A (en) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp Spectrofluorometer and fluorescence detector for liquid chromatograph

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2004年, vol. 70, no. 8, JPN6016038640, pages 4486 - 4490, ISSN: 0003413276 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192565A1 (en) 2013-05-29 2014-12-04 株式会社サタケ Microorganism testing method
KR20160011672A (en) 2013-05-29 2016-02-01 가부시끼가이샤 사따께 Microorganism testing method
US9856506B2 (en) 2013-05-29 2018-01-02 Satake Corporation Method for examining microorganisms
KR20190094189A (en) 2016-12-09 2019-08-12 가부시끼가이샤 사따께 Microorganism testing method and device
JP2018093758A (en) * 2016-12-09 2018-06-21 株式会社サタケ Microorganism examination method and device therefor
WO2018105414A1 (en) 2016-12-09 2018-06-14 株式会社サタケ Method for inspecting microorganisms, and apparatus for said method
EP3553164A4 (en) * 2016-12-09 2020-07-15 Satake Corporation Method for inspecting microorganisms, and apparatus for said method
AU2017372183B2 (en) * 2016-12-09 2020-10-08 Satake Corporation Apparatus for inspecting microorganisms
KR102390747B1 (en) 2016-12-09 2022-04-25 가부시끼가이샤 사따께 Microorganism test method and device therefor
JP2018134035A (en) * 2017-02-22 2018-08-30 株式会社サタケ Measurement device, measurement method and computer program
JP2021029168A (en) * 2019-08-23 2021-03-01 株式会社サタケ Inspection apparatus of microorganism, and method of the same
WO2021039208A1 (en) 2019-08-23 2021-03-04 株式会社サタケ Apparatus for detecting microorganism and method therefor
KR20220045228A (en) 2019-08-23 2022-04-12 가부시끼가이샤 사따께 Microorganism test apparatus and method therefor
JP7322593B2 (en) 2019-08-23 2023-08-08 株式会社サタケ Microorganism inspection device and method

Also Published As

Publication number Publication date
JP6201285B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
KR102390747B1 (en) Microorganism test method and device therefor
TWI619809B (en) Method and device for inspecting microorganisms
WO2014192565A1 (en) Microorganism testing method
Shin et al. A portable fluorescent sensor for on-site detection of microalgae
JP6221210B2 (en) Microorganism testing method and apparatus
JP6201285B2 (en) Microorganism testing method and apparatus
JP3740019B2 (en) Microorganism weighing device
CN107991275A (en) A kind of optical fiber dissolved oxygen detection method and device based on fluorescent quenching
JP2018134035A (en) Measurement device, measurement method and computer program
JP7322593B2 (en) Microorganism inspection device and method
JP4174003B2 (en) Spectroscopic identification and quantification system
RU2781351C1 (en) Chemiluminescent analysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6201285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250