JP2006042655A - Detector and detection method for harmful substance - Google Patents
Detector and detection method for harmful substance Download PDFInfo
- Publication number
- JP2006042655A JP2006042655A JP2004226387A JP2004226387A JP2006042655A JP 2006042655 A JP2006042655 A JP 2006042655A JP 2004226387 A JP2004226387 A JP 2004226387A JP 2004226387 A JP2004226387 A JP 2004226387A JP 2006042655 A JP2006042655 A JP 2006042655A
- Authority
- JP
- Japan
- Prior art keywords
- membrane
- microorganism
- microbial
- light
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
本発明は、上下水道の各処理プロセスの処理水、河川及び湖沼等の環境水、廃棄物埋立最終処分場の浸出水、産業廃棄物の溶出水、工業排水等を対象として、水中の有害物質をモニタリングすることを目的とした有害物質の検出装置及び検出方法に関する。 The present invention is intended for effluents in water and sewage treatment processes, environmental waters such as rivers and lakes, leachate from waste landfill final disposal sites, industrial waste elution water, industrial wastewater, etc. The present invention relates to a detection device and a detection method for harmful substances for the purpose of monitoring.
環境中には6〜10万種もの人為的に合成された化学物質に加え、トリハロメタン等の消毒副生成物、ダイオキシン等の燃焼副生成物といった非意図的生成物質、又は環境中での変化体等、数多くの化学物質が存在している。そのため、河川や湖沼等の環境水中には多様な化学物質が混入している。その濃度は、ごく微量であると考えられるものの、例えば、このような環境水を水道原水とする浄水場では、人体への健康影響の観点からより高度に水質を連続して監視することが求められている。 In addition to 60,000 to 100,000 artificially synthesized chemical substances in the environment, unintentional products such as disinfection by-products such as trihalomethane, combustion by-products such as dioxin, or environmental changes Many chemical substances exist. Therefore, various chemical substances are mixed in environmental waters such as rivers and lakes. Although its concentration is considered to be very small, for example, in a water purification plant that uses such environmental water as raw water, it is required to continuously monitor water quality at a higher level from the viewpoint of health effects on the human body. It has been.
また、下水処理場、廃棄物最終処分場、化学薬品を使用する工場からは、化学物質を含む排水について、オゾン処理や生物処理、活性炭処理等を行った後、河川に放流している。このため、このような処理プロセスが適切に稼動し、水中の有害物質が除去されているかを監視し、各処理プロセスの評価結果を処理プロセスにフィードバックし、さらには処理施設の改善等の措置を講じる必要がある。そのためには、処理水中の有害物質を迅速かつ簡便に検出し、さらにはどのような有害物質かを識別する必要がある。 In addition, wastewater containing chemical substances is discharged from the sewage treatment plant, waste final disposal site, and factories that use chemicals into rivers after ozone treatment, biological treatment, activated carbon treatment, and the like. For this reason, it is monitored whether such treatment processes are operating properly and harmful substances in the water are removed, evaluation results of each treatment process are fed back to the treatment processes, and measures such as improvement of treatment facilities are taken. It is necessary to take. For this purpose, it is necessary to quickly and easily detect harmful substances in the treated water, and to identify what kind of harmful substances they are.
これまで、細菌等の微生物を用いた有害物質の評価試験では微生物の増殖阻害を指標とする寒天平板法、液体培養法、又は生理活性阻害を指標とする方法等が行われている。
また、発ガン物質の短期識別法として微生物を用いたAmesテストやumuテスト等のテストが数多く報告されている。これらの方法はDNAの損傷性を色素の発色反応で検出する方法である。
Until now, in the evaluation test of harmful substances using microorganisms such as bacteria, an agar plate method, liquid culture method using microorganism growth inhibition as an index, or a method using physiological activity inhibition as an index have been performed.
In addition, many tests such as Ames test and umu test using microorganisms have been reported as short-term identification methods for carcinogens. These methods are methods for detecting DNA damage by a coloring reaction of a dye.
しかし、上述の方法は微生物をあらかじめ培養し、試験に必要な量を増殖させる必要があり結果を得るまでに長時間必要である。また、培養液の分注や希釈、色素の発色反応で検出する試験においては発色試薬の分注や色素の抽出等の操作が煩雑であり、多量の試料を処理することが困難である等、簡便さという点で問題があった。
このような問題に対し、微生物の運動阻害を指標とし、より簡便・迅速に有害物質の検出を行うようにした提案もなされている(特許文献1)。しかし、この提案においても、実際のところ上記した従来の問題点は解消されていなかった。
In order to solve such a problem, a proposal has been made to detect toxic substances more simply and quickly using movement inhibition of microorganisms as an index (Patent Document 1). However, even in this proposal, the conventional problems described above have not been solved.
本発明は、上述の問題点に鑑み、有害物質の存在で蛍光タンパク質を発現する微生物を用い、この微生物を膜状に固定化した微生物膜の蛍光強度から有害物質を迅速かつ簡便に検出でき、さらには有害物質の種類そのものを識別できるようにした有害物質の検出装置及び検出方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention uses a microorganism that expresses a fluorescent protein in the presence of a harmful substance, and can quickly and easily detect a harmful substance from the fluorescence intensity of a microorganism film in which the microorganism is immobilized in a film. Furthermore, it aims at providing the detection apparatus and detection method of a hazardous | toxic substance which enabled identification of the kind of hazardous | toxic substance itself.
上記目的を達成するために、本発明に係る有害物質の検出装置は、有害物質の存在下で蛍光タンパク質を発現する遺伝子組換え微生物を、微孔性膜と光透過性膜との間に薄膜状に固定化した微生物膜と、該微生物膜に試料を接触させるために該微生物膜を設置する試料容器と、該微生物膜に励起光を照射するための励起光照射部と、蛍光測定部とを備え、該微生物膜の蛍光強度を測定することによって有害物質を検出するようにしたことを特徴とする。上記微孔性膜は、微生物が漏出せず、かつ少なくとも試料が透過できる微孔性膜とし、上記光透過性膜は、微生物からの蛍光を透過できる光透過性膜とすることが好適である。上記微孔性膜は、試料、栄養成分、酸素等を透過できるポアサイズを備え、一般的には、親水性であることが好ましい。試料は、一般的には試料液として供給され、最も一般的には試料水として提供される。上記微孔性膜は、微生物からの蛍光を透過できるように、透明、又は透明に近く、蛍光の透過に支障のない材質で構成する。 In order to achieve the above-mentioned object, the harmful substance detection apparatus according to the present invention is a thin film between a microporous film and a light-transmitting film. A microbial membrane immobilized in a shape, a sample container in which the microbial membrane is placed to bring the sample into contact with the microbial membrane, an excitation light irradiation unit for irradiating the microbial membrane with excitation light, a fluorescence measurement unit, And a harmful substance is detected by measuring the fluorescence intensity of the microbial membrane. The microporous membrane is preferably a microporous membrane that does not allow microorganisms to leak and at least allows the sample to pass therethrough, and the light transmissive membrane is preferably a light permeable membrane that can transmit fluorescence from the microorganism. . The microporous membrane has a pore size that can permeate a sample, nutrient components, oxygen, and the like, and is generally preferably hydrophilic. The sample is generally supplied as a sample solution and most commonly provided as sample water. The microporous membrane is made of a material that is transparent or nearly transparent and does not interfere with fluorescence transmission so that fluorescence from microorganisms can be transmitted.
本発明に係る有害物質の検出装置では、好適な実施の形態で、上記光透過性膜を上記試料容器の外側に向けて設置し、上記光透過性膜側から上記微生物膜に励起光を照射し、微生物膜の蛍光を測定するようにすることができる。一般的には、上記微孔性膜を上方に向けて試料容器の底部に設置し、上記光透過性膜を下方に向け、励起光の照射を受けることができるようにする。 In a hazardous substance detection apparatus according to the present invention, in a preferred embodiment, the light permeable film is placed facing the outside of the sample container, and the microorganism film is irradiated with excitation light from the light permeable film side. In addition, the fluorescence of the microbial membrane can be measured. In general, the microporous membrane is placed on the bottom of the sample container with the top facing upward, and the light-transmitting membrane is directed downward so that it can be irradiated with excitation light.
さらに、別の好適な実施の形態において、本発明に係る有害物質の検出装置は、二以上の互いに異なる有害物質を検出するために、それぞれの有害物質に対応する二以上の微生物膜を上記試料容器に設置することとしている。 Furthermore, in another preferred embodiment, the hazardous substance detection apparatus according to the present invention uses two or more microbial membranes corresponding to each harmful substance in order to detect two or more different harmful substances. It is supposed to be installed in a container.
本発明は、別の側面において、有害物質の検出方法であり、該検出方法は、有害物質の存在下で蛍光タンパク質を発現する遺伝子組換え微生物を、微孔性膜と光透過性膜との間に薄膜状に固定化することによって微生物膜を構成し、該微生物膜に試料を接触させ、該微生物膜の蛍光強度を測定することによって有害物質を検出するようにしたことを特徴とする。上記微孔性膜は、微生物が漏出せず、かつ少なくとも試料が透過できる微孔性膜とし、上記光透過性膜は、微生物からの蛍光を透過できる光透過性膜とすることが好適である。上記微孔性膜は、試料、栄養成分、酸素等を透過できるポアサイズを備え、一般的には、親水性であることが好ましい。試料は、一般的には試料液として供給され、最も一般的には試料水として提供される。上記微孔性膜は、微生物からの蛍光を透過できるように、透明、又は透明に近く、蛍光の透過に支障のない材質で構成する。 In another aspect, the present invention is a method for detecting a harmful substance, which comprises a genetically modified microorganism that expresses a fluorescent protein in the presence of a harmful substance, a microporous membrane and a light-transmitting membrane. A microbial membrane is formed by immobilizing it in the form of a thin film, a sample is brought into contact with the microbial membrane, and a harmful substance is detected by measuring the fluorescence intensity of the microbial membrane. The microporous membrane is preferably a microporous membrane that does not allow microorganisms to leak and at least allows the sample to pass therethrough, and the light transmissive membrane is preferably a light permeable membrane that can transmit fluorescence from the microorganism. . The microporous membrane has a pore size that can permeate a sample, nutrient components, oxygen, and the like, and is generally preferably hydrophilic. The sample is generally supplied as a sample solution and most commonly provided as sample water. The microporous membrane is made of a material that is transparent or nearly transparent and does not interfere with fluorescence transmission so that fluorescence from microorganisms can be transmitted.
本発明に係る有害物質の検出方法では、好適な実施の形態で、上記微生物膜の上記微孔性膜を試料容器内の試料に接触させ、上記光透過性膜を上記試料容器の外側に向けて設置し、上記光透過性膜側から上記微生物膜に励起光を照射し、微生物膜の蛍光を測定するようにすることができる。一般的には、上記微孔性膜を上方に向けて試料容器の底部に設置し、上記光透過性膜を下方に向け、励起光の照射を受けることができるようにする。 In a method for detecting a harmful substance according to the present invention, in a preferred embodiment, the microporous membrane of the microbial membrane is brought into contact with a sample in a sample container, and the light permeable membrane is directed to the outside of the sample container. And irradiating the microbial membrane with excitation light from the light permeable membrane side to measure fluorescence of the microbial membrane. In general, the microporous membrane is placed on the bottom of the sample container with the top facing upward, and the light-transmitting membrane is directed downward so that it can be irradiated with excitation light.
さらに、別の好適な実施の形態において、本発明に係る有害物質の検出方法は、それぞれの有害物質に対応する二以上の微生物膜を上記試料容器に設置し、二以上の互いに異なる有害物質を検出することとしている。 Furthermore, in another preferred embodiment, the method for detecting a hazardous substance according to the present invention includes installing two or more microbial membranes corresponding to each harmful substance in the sample container, and providing two or more different harmful substances. Trying to detect.
本発明によれば、有害物質を迅速かつ簡便に検出でき、さらには有害物質の種類そのものを識別できるようにした有害物質の検出装置及び検出方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the hazardous | toxic substance detection apparatus and the detection method which can detect a hazardous | toxic substance rapidly and simply, and also enabled it to identify the kind of harmful substance itself are provided.
以下に、添付した図面を参照して、本発明に係る有害物質の検出装置及び検出方法の一実施の形態を説明する。
まず、本発明に係る有害物質の検出装置に用いられる微生物膜について説明する。図1に、係る微生物膜について、その一実施の形態を示す。
図示のように、本実施の形態に係る微生物膜6は、微生物1を微孔性膜2と光透過性膜3との間に挟み込み、膜状に固定化している。微孔性膜2と光透過性膜3との間には両面テープ4を介在させている。図1の左は、微孔性膜2を外した状態を示している。また、図1の右は、微孔性膜2を貼り合わせた状態を示している。
Hereinafter, an embodiment of a hazardous substance detection apparatus and detection method according to the present invention will be described with reference to the accompanying drawings.
First, a microbial membrane used in the hazardous substance detection apparatus according to the present invention will be described. FIG. 1 shows an embodiment of such a microbial membrane.
As shown in the figure, the
微生物1は、有害物質の存在下で蛍光タンパク質を発現する遺伝子組換え微生物である。
このような微生物1は、有害物質の存在によって機能する制御遺伝子と、蛍光タンパク質をコードする遺伝子を連結したプラスミドDNAを宿主微生物に導入し、形質転換を行う遺伝子組換え操作により作製できる。
ここで、有害物質の存在によって機能する制御遺伝子としては、遺伝子損傷性物質によるDNA損傷の修復に関与するumuDC遺伝子を例示することができる。もっとも、本発明で用いることができる制御遺伝子は、これに限定されるものではなく、様々な有害物質ごとに機能する制御遺伝子を利用することができる。umuDC遺伝子は、遺伝子損傷性物質によって微生物のDNAが損傷を受けるとSOS応答により損傷したDNAを修復するために機能する遺伝子である。このumuDC遺伝子の下流に蛍光タンパク質を発現する遺伝子を連結すれば、SOS応答とともに蛍光タンパク質が合成される。
上記有害物質としては、遺伝子損傷性物質、内分泌攪乱物質、重金属等を挙げることができる。
上記遺伝子損傷性物質としては、例えば、4−ニトロキノリン−N−オキシド、ベンゾ(a)ピレン、2−(2−フリル)−3−(5−ニトロ−2−フリル)アクリルアミドを挙げることができる。
上記内分泌攪乱物質としては、例えば、17β−エストラジオール、ビスフェノールA、ノニルフェノールを挙げることができる。
上記重金属としては、例えば、水銀、カドニウム、6価クロム、ヒ素挙げることができる。
The
Such a
Here, examples of the control gene that functions depending on the presence of harmful substances include the umuDC gene involved in the repair of DNA damage caused by genetic damage substances. However, the control gene that can be used in the present invention is not limited to this, and a control gene that functions for each of various harmful substances can be used. The umuDC gene is a gene that functions to repair DNA damaged by an SOS response when microbial DNA is damaged by a gene-damaging substance. If a gene that expresses a fluorescent protein is linked downstream of the umuDC gene, the fluorescent protein is synthesized along with the SOS response.
Examples of the harmful substances include gene damaging substances, endocrine disrupting substances, heavy metals and the like.
Examples of the gene damaging substance include 4-nitroquinoline-N-oxide, benzo (a) pyrene, and 2- (2-furyl) -3- (5-nitro-2-furyl) acrylamide. .
Examples of the endocrine disrupting substance include 17β-estradiol, bisphenol A, and nonylphenol.
Examples of the heavy metal include mercury, cadmium, hexavalent chromium, and arsenic.
本発明における蛍光タンパク質には一般的に緑色蛍光を発するGFP(緑色蛍光タンパク質、Green Fluorescent Protein)が知られており、GFPは488nm付近の波長の励起光を照射すると507nm付近の蛍光を発する。GFPをコードする発現ベクターはインビトロジェン社やクロンテック社等から市販されている。また、発現される蛍光タンパク質を改良した発現ベクターも市販されており、緑色蛍光タンパク質のほかに、赤色蛍光タンパク質(励起光558nm付近、蛍光583nm付近)や黄色蛍光タンパク質(励起光513nm付近、蛍光527nm付近)、青色蛍光タンパク質(励起光433nm付近、蛍光475nm付近)も使用できる。これらの発現ベクターに前述の制御遺伝子を連結し微生物に導入すれば、有害物質を暴露するとその有害物質に対する応答とともに蛍光タンパク質が発現される。 GFP (green fluorescent protein) which emits green fluorescence is generally known as the fluorescent protein in the present invention, and GFP emits fluorescence at around 507 nm when irradiated with excitation light having a wavelength around 488 nm. Expression vectors encoding GFP are commercially available from Invitrogen and Clontech. In addition to the green fluorescent protein, an expression vector in which the fluorescent protein to be expressed is also commercially available. In addition to the green fluorescent protein, red fluorescent protein (excitation light near 558 nm, fluorescent light 583 nm) or yellow fluorescent protein (excitation light near 513 nm, fluorescent light 527 nm). Vicinity), blue fluorescent protein (excitation light near 433 nm, fluorescence near 475 nm) can also be used. When the aforementioned control gene is linked to these expression vectors and introduced into microorganisms, a fluorescent protein is expressed with a response to the harmful substance when exposed to the harmful substance.
蛍光タンパク質を発現する宿主微生物としては、大腸菌(Esherichia coli)やチフス菌(Salmonella typhimurium)等のサルモネラ属細菌、緑膿菌(Pseudomonas aeruginosa)等を挙げることができる。これらの宿主微生物に制御遺伝子と蛍光タンパク質を連結したプラスミドベクターを導入することで、本発明に用いる蛍光タンパク質を発現する微生物1を作製できる。
Examples of host microorganisms that express fluorescent proteins include Salmonella bacteria such as Esherichia coli and Salmonella typhimurium , and Pseudomonas aeruginosa . By introducing a plasmid vector in which a control gene and a fluorescent protein are linked to these host microorganisms, a
上記微孔性膜2としては、親水性を有し、微生物1を固定化後には、該微生物1が漏出しないようなポアサイズを有する物が好適である。ポアサイズは、好適には、0.2〜1.0μmである。また、試料、栄養成分、酸素等が透過できるような親水性の材料であることが望ましい。なお、試料は、一般的には試料液、最も一般的には試料水として供給される。
As the
微孔性膜2を構成する好適な材料としては、ニトロセルロース、親水性ポリ塩化ビニリデンクロライド、ポリカーボネート等を挙げることができる。強度、保持することのできる菌体量の観点からは、ニトロセルロースが最も好適である。
Examples of suitable materials constituting the
一般に、例えば細菌を微生物1として用いる場合、細菌の捕捉に用いられる膜材料のポアサイズは、0.2μm、0.45μm、1.0μmのものが用いられる。ここで、後述するように、微生物膜6を作製する際には、細菌の培養液を吸引ろ過する。ポアサイズは、細菌を用いる場合、0.45μmが最適である。少なくともこのポアサイズであれば、目詰まりを起こしにくく、菌体を多く固定することができる。
In general, when bacteria are used as the
次いで、光透過性膜3としては、ガラス、石英等の無機材料、透明軟質塩化ビニル、ポリカーボネート等の有機材料を使用することができる。製膜時、又は試料容器への装着時に、割れにくい性質を持つという点からは、有機材料が好適である。さらに、光透過性膜3は、光透過性材料を打抜きポンチ等を用い所定のサイズで円形に切断する必要がある。そのため、材質は軟質のものが適しており、このような観点から、光透過性膜3としては、透明軟質塩化ビニルが最も好適なものの一つである。 Next, as the light transmissive film 3, an inorganic material such as glass or quartz, or an organic material such as transparent soft vinyl chloride or polycarbonate can be used. An organic material is preferable from the viewpoint that it is difficult to break during film formation or when attached to a sample container. Furthermore, the light-transmitting film 3 needs to be cut into a circular shape with a predetermined size using a punch or the like by punching the light-transmitting material. For this reason, a soft material is suitable, and from this point of view, transparent soft vinyl chloride is one of the most suitable as the light transmissive film 3.
本実施の形態では、前述したように、微生物1を微孔性膜2と光透過性膜3との間に挟み込み、膜状に固定化している。膜状に微生物1を固定するためには、高分子ゲル化剤を用いることが好適である。このような高分子ゲル化剤としては、アルギン酸ナトリウム、多糖類のカラギーナン、寒天、タンパク質のコラーゲン、ゼラチン等が使用でき、又高分子材料の光硬化樹脂、ポリアクリルアミド等も使用することができる。
In the present embodiment, as described above, the
上記のうち、アルギン酸ナトリウムは、塩化カルシウム溶液を添加するのみでゲル化し、ゲル化材料として好適である。アルギン酸ナトリウムを用いる場合、1%溶液の粘度が500〜600cPで分子量約10万のものであれば、酸素、栄養分の透過性を良好に保ちつつ、菌体を良好に保持することができる。 Among the above, sodium alginate gels only by adding a calcium chloride solution and is suitable as a gelling material. When sodium alginate is used, if the viscosity of the 1% solution is 500 to 600 cP and the molecular weight is about 100,000, the cells can be well maintained while maintaining good permeability of oxygen and nutrients.
次に、微生物膜の作製方法について、その一実施の形態を、図2について説明する。
まず、図2(a)に示すように、両面テープ4の片面に微孔性膜2をあらかじめ接着し、微孔性膜2側から吸引しながら、微生物1として例えば細菌の培養液を滴下し、培養液中の細菌を微孔性膜2上に保持する。
Next, an embodiment of a method for producing a microbial membrane will be described with reference to FIG.
First, as shown in FIG. 2 (a), a
続いて、 図2(b)に示すように、細菌の流動を防ぐため、高分子ゲル化剤としてのアルギン酸ナトリウム溶液21を滴下する。
Subsequently, as shown in FIG. 2 (b), a
続いて、 図2(c)に示すように、両面テープ4の反対側に光透過性膜3を張り合わせる。そして、アルギン酸ナトリウムをゲル化するため、微生物膜6を塩化カルシウム溶液に浸漬する。
なお、両面テープ4としては、ポリイミドといった材質のものを用いることができ、例えば、日東電工社製の両面接着テープを用いることができる。
Subsequently, as shown in FIG. 2C, the light transmissive film 3 is bonded to the opposite side of the double-
As the double-
次に、上記のような微生物膜6を用いた有害物質の検出装置について、その一実施の形態を、図3を参照して説明する。
本実施の形態に係る有害物質の検出装置は、主たる構成要素として、微生物膜6、試料容器7、励起光照射部、蛍光測定部、及び演算部17を備える。
試料容器7は、試料(試料水)5を注入するための円筒状の容器であり、底部に微生物膜6が装着されている。微生物膜6は、微孔性膜2を上方に向けて試料容器7に接着することによって装着されているが、試料容器7と微生物膜6とで容器を形成し、試料が漏れない構造であれば、固定方法は問わない。
Next, an embodiment of a harmful substance detection apparatus using the
The harmful substance detection apparatus according to the present embodiment includes a
The
上記励起光照射部は、対物レンズ8、励起側フィルター9、集光レンズ10、励起用光源11、及びダイクロミックミラー12を主たる構成要素としている。対物レンズ8及び集光レンズ10は、通常の光学レンズである。励起用光源11は、一般的には水銀ランプであり、主波長として254nm、313nm、405nm、436nmなどが効率良く放射される。励起側フィルター9は、蛍光物質の励起に必要な光を励起光源から抽出するためのフィルターである。また、ダイクロミックミラー12は、励起光を反射して集光レンズ10に向けると共に蛍光を透過するためのミラーである。
The excitation light irradiating unit mainly includes an objective lens 8, an
上記蛍光測定部は、対物レンズ8、蛍光側フィルター13、結像レンズ14、撮像素子15を主たる構成要素としている。蛍光側フィルター13は、微生物膜の蛍光タンパク質による蛍光のみを透過するためのフィルターである。結像レンズ14は、通常の光学レンズである。撮像素子15は、例えば、CCDカメラ等の光学センサーで構成されている。
なお、本実施の形態に係る有害物質の検出装置は、上記励起光照射部及び上記蛍光測定部を制御するための演算部17をさらに備える。なお、この演算部が、上記励起光照射部又は上記蛍光測定部の一部として構成されている形態も本発明に含まれる。
The fluorescence measuring unit includes the objective lens 8, the
The harmful substance detection apparatus according to the present embodiment further includes a
次に、図3の実施の形態に係る有害物質の検出装置を用いた有害物質の検出方法について説明する。
まず、試料容器7には、非測定状態では、培養液が注入され、微孔性膜2を透過して培養液中の栄養成分、酸素が、固定化された微生物膜6内の微生物1(細菌)に供給される。
有害物質を測定する際には、培養液を除去し、試料容器7に試料5を注入する。これによって、微生物膜6に試料5が接触する。試料5は、一般的に試料液(試料水)として注入される。試料5は、微孔性膜2を透過する。ここで、試料5に、例えば青酸等の有害物質が存在すると、SOS反応が起こり、蛍光タンパク質が発現する。
Next, a harmful substance detection method using the harmful substance detection apparatus according to the embodiment of FIG. 3 will be described.
First, in a non-measurement state, the culture solution is injected into the
When measuring harmful substances, the culture solution is removed and the
このような蛍光タンパク質を励起するため、演算部17の指示により、励起用光源11から励起光が発せられ、該励起光は、集光レンズ10によって平行光となる。平行光は、励起側フィルター9を経て、ダイクロミックミラー12で反射され、対物レンズ8を介して微生物膜6に照射される。そして、励起した蛍光タンパク質からの蛍光は、蛍光は対物レンズ8で平行光となる。平行光は、ダイクロミックミラー12を通過し、蛍光側フィルター13、結像レンズ14を介して撮像素子15に捉えられる。
撮像素子15によって捕らえられた蛍光に関する測定情報は、演算部17に伝達される。
これにより微生物膜6からの蛍光を受けて、蛍光強度が測定でき、試料5中に混入している有害物質を検出できる。
In order to excite such a fluorescent protein, excitation light is emitted from the
Measurement information about the fluorescence captured by the
Thereby, the fluorescence intensity can be measured by receiving the fluorescence from the
さらに、図4は、本発明に係る有害物質の検出装置について他の実施の形態を示す。
制御遺伝子としては、遺伝子損傷性物質に応答する遺伝子、内分泌攪乱物質に応答する遺伝子、重金属に応答する遺伝子等のように、有害物質ごとに異なる遺伝子を、有害物質の存在によって機能する制御遺伝子として採用することができる。このような異なる遺伝子ごとに、下流に蛍光タンパク質を発現する遺伝子を連結すれば、有害物質ごとに応答を生じさせることができる。すなわち、相異なる有害物質に応じて蛍光タンパク質を発現する遺伝子組換え微生物を、このような相異なる有害物質に対応して複数種用いることもできる。
このように複数の有害物質を含有する試料について、複数の微生物膜を用い、それらの蛍光強度から試料中に含まれる複数の有害物質が同時に検出できる。
FIG. 4 shows another embodiment of the harmful substance detection apparatus according to the present invention.
As a control gene, a gene that is different for each harmful substance, such as a gene that responds to a gene-damaging substance, a gene that responds to an endocrine disruptor, a gene that responds to heavy metals, etc. Can be adopted. If such a different gene is linked downstream with a gene that expresses a fluorescent protein, a response can be generated for each harmful substance. That is, a plurality of types of genetically modified microorganisms that express fluorescent proteins according to different harmful substances can be used corresponding to such different harmful substances.
As described above, a plurality of harmful substances contained in a sample can be simultaneously detected from the fluorescence intensity of a sample containing a plurality of harmful substances using a plurality of microbial films.
図4に、このような有害物質の検出装置の一実施の形態を示す。この有害物質の検出装置では、試料30を注入する試料容器31の底部に五の微生物膜32〜36を装着している。そして、励起光照射部及び蛍光測定部から成る測定ユニット37が、試料容器31の下で移動可能に設置されている。測定ユニット37は、図3の検出装置と同様の構成を備え、演算部38に制御されながら、各微生物膜32〜36の蛍光強度を測定する。測定操作については、図3の検出装置について説明したものと基本的に同様である。
この実施の形態に係る有害物質の検出装置を用いた検出方法によれば、試料30中に五種のいずれの有害物質に関しても、それらの蛍光強度をほぼ同時に検出することができる。
FIG. 4 shows an embodiment of such a harmful substance detection apparatus. In this harmful substance detection apparatus, five
According to the detection method using the harmful substance detection apparatus according to this embodiment, the fluorescence intensity of any of the five kinds of harmful substances in the
1 微生物
2 微孔性膜
3 光透過性膜
4 両面テープ
5 試料
6 微生物膜
7 試料容器
8 対物レンズ
9 励起側フィルター
10 集光レンズ
11 励起光用光源
12 ダイクロミックミラー
13 蛍光側フィルター
14 結像レンズ
15 撮像素子
16 蛍光フィルター
17 演算部
30 試料
31 試料容器
32、33、34、35、36 微生物膜
37 測定ユニット
38 演算部
DESCRIPTION OF
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004226387A JP4503390B2 (en) | 2004-08-03 | 2004-08-03 | Hazardous substance detection device and detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004226387A JP4503390B2 (en) | 2004-08-03 | 2004-08-03 | Hazardous substance detection device and detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006042655A true JP2006042655A (en) | 2006-02-16 |
JP4503390B2 JP4503390B2 (en) | 2010-07-14 |
Family
ID=36021906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004226387A Expired - Lifetime JP4503390B2 (en) | 2004-08-03 | 2004-08-03 | Hazardous substance detection device and detection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4503390B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008035819A (en) * | 2006-08-09 | 2008-02-21 | Daikin Ind Ltd | Vessel for use in promoter assay, plate comprising the vessel, and promoter assay using the plate |
WO2014030729A1 (en) * | 2012-08-24 | 2014-02-27 | 株式会社サタケ | Method for examining microorganism and device for same |
JP2014042463A (en) * | 2012-08-24 | 2014-03-13 | Satake Corp | Method of testing microorganism and device thereof |
JP2014055796A (en) * | 2012-09-11 | 2014-03-27 | Satake Corp | Inspection method and apparatus of microorganism |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104386831B (en) * | 2014-12-03 | 2016-03-30 | 西南科技大学 | A kind of method for the treatment of based on immobilized microorganisms hexavalent chromium wastewater |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004191356A (en) * | 2002-11-26 | 2004-07-08 | National Institute For Environmental Studies | Harmful substance detection method |
-
2004
- 2004-08-03 JP JP2004226387A patent/JP4503390B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004191356A (en) * | 2002-11-26 | 2004-07-08 | National Institute For Environmental Studies | Harmful substance detection method |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008035819A (en) * | 2006-08-09 | 2008-02-21 | Daikin Ind Ltd | Vessel for use in promoter assay, plate comprising the vessel, and promoter assay using the plate |
WO2014030729A1 (en) * | 2012-08-24 | 2014-02-27 | 株式会社サタケ | Method for examining microorganism and device for same |
JP2014042463A (en) * | 2012-08-24 | 2014-03-13 | Satake Corp | Method of testing microorganism and device thereof |
US9915601B2 (en) | 2012-08-24 | 2018-03-13 | Satake Corporation | Method for examining microorganisms and examination apparatus for microorganisms |
JP2014055796A (en) * | 2012-09-11 | 2014-03-27 | Satake Corp | Inspection method and apparatus of microorganism |
Also Published As
Publication number | Publication date |
---|---|
JP4503390B2 (en) | 2010-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101512321B (en) | Method and apparatus for the detection of living phytoplankton cells in water | |
US9927418B2 (en) | Device and method for the determination and monitoring of water toxicity | |
US10486991B2 (en) | Systems and methods for continuous measurement of an analyte | |
US9637770B2 (en) | Methods and devices for handling biofouling | |
JPH06500627A (en) | Reservoir chemical sensor with optional removable storage cell | |
Prest et al. | Quantitative measurement and visualization of biofilm O2 consumption rates in membrane filtration systems | |
JP4503390B2 (en) | Hazardous substance detection device and detection method | |
JP2008107330A (en) | Device for evaluating biofouling generation risk | |
JP2007033353A (en) | Microorganism detecting system | |
CA2607073C (en) | Rapid bacterial quantification | |
US8993972B2 (en) | Fluorescence based sensors utilizing a mirrored cavity | |
JP2004317350A (en) | Living matter sludge monitoring device | |
Veltman et al. | Whole-cell-based fiber-optic biosensors | |
JP4045780B2 (en) | Toxic substance detection method and detection device | |
KR100994691B1 (en) | Method of manufacturing thereof for carbon dioxide sensing membrane containing fluorescent basic dyes | |
JP2007232382A (en) | Microorganism detection method and microorganism detection device | |
CN213813350U (en) | Device for detecting harmful substances in water environment in real time | |
Wang | Towards the development of an automated, portable enterococcus faecalis biosensor for recreational waters | |
CN210690409U (en) | Integrity detection device for fluorescence monitoring reverse osmosis membrane assembly | |
CN117413170A (en) | Optical system for analyte detection | |
CN117255939A (en) | Optical system for analyte detection | |
JP2006266922A (en) | Water quality monitoring apparatus and method | |
Sethi | Assessment and development of low-pressure membrane integrity monitoring tools | |
CN117280198A (en) | Fluorescent-based chemical sensor | |
CN117178183A (en) | Fluorescent-based chemical sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070315 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080314 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20080314 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20080317 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20080619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080619 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100226 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100330 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100421 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4503390 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130430 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140430 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |