JPH04281441A - Lighting device - Google Patents

Lighting device

Info

Publication number
JPH04281441A
JPH04281441A JP3044732A JP4473291A JPH04281441A JP H04281441 A JPH04281441 A JP H04281441A JP 3044732 A JP3044732 A JP 3044732A JP 4473291 A JP4473291 A JP 4473291A JP H04281441 A JPH04281441 A JP H04281441A
Authority
JP
Japan
Prior art keywords
light
light source
parallel
optical axis
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3044732A
Other languages
Japanese (ja)
Other versions
JP2543260B2 (en
Inventor
Teruaki Shigeta
照明 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3044732A priority Critical patent/JP2543260B2/en
Publication of JPH04281441A publication Critical patent/JPH04281441A/en
Application granted granted Critical
Publication of JP2543260B2 publication Critical patent/JP2543260B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To irradiate an object surface with all light which is emitted by a light source in all directions by surrounding the light source with the concave reflecting mirror which consists of an elliptic surface and a circular arcuate surface and making the light incident on a parallel light converting lens from an opening provided in the circular arcuate surface as to the lighting device which lights the surface with the light from the light source efficiently in a specific direction and in parallel or nearly in parallel. CONSTITUTION:The concave reflecting surface is so sectioned as to have the circular arcuate surface having the opening centering on the optical axis is front of the light source and the elliptic surface behind the light source; and the light source is arranged at an a 1st nearly focus position of the elliptic surface and the circular arcuate surface is positioned at a 2nd nearly focus position. The elliptic surface and the circular arcuate surface have the 1st nearly focus position and the nearly focus position at the same position.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光源からの光を特定の
方向に効率よく、かつ、平行もしくは平行に近い状態で
照射する照明装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lighting device that efficiently irradiates light from a light source in a specific direction and in a parallel or nearly parallel state.

【0002】0002

【従来の技術】従来、液晶の背面から光を照射し、その
液晶に提示される画像を投写光学系により拡大投写する
液晶投写形画像表示装置などにおいては、液晶に光を照
射するための照明装置の性能として、液晶の光入射角度
特性の関係から、液晶の各画素に対して垂直方向、すな
わちできるだけ平行な光を照射できることが要求される
[Prior Art] Conventionally, in a liquid crystal projection type image display device, etc., in which light is irradiated from the back of a liquid crystal and the image presented on the liquid crystal is enlarged and projected by a projection optical system, lighting for irradiating the liquid crystal with light is used. The performance of the device is required to be able to irradiate each pixel of the liquid crystal with light in the perpendicular direction, that is, as parallel as possible, due to the light incident angle characteristics of the liquid crystal.

【0003】この目的を達する照明装置の集光光学系と
して、 (1)図7に示すように点状の光源1(例えば、ハロゲ
ン電球やメタルハライドランプあるいはショートアーク
タイプのキセノンランプなど)と、光軸に対する断面形
状が放物面で光源1を一部包囲するように配置した放物
面反射鏡2とを組み合わせて、放物面反射鏡2の焦点位
置Aに前記光源1を配置し、光源1からの照射光の一部
を放物面反射鏡2により反射させることにより、液晶な
どの被照射面3に平行光を照射する集光光学系、(2)
図8に示すように光源1と、光軸に対する断面形状が円
弧面で光源1の一部を包囲する円弧面反射鏡4および正
レンズ(凸レンズ)5とを組み合わせて、円弧面反射鏡
4の焦点と正レンズ5の焦点とが同一になる焦点位置B
に前記光源1を配置し、光源1からの照射光の一部を円
弧面反射鏡4により反射させ、焦点位置Bを通過させた
後、光源1からの残りの照射光とを合成して正レンズ5
に入射させることにより、被照射面3に平行光を照射す
る集光光学系(特公昭59−42404号公報)、 (3)図9に示すように光源1と、光軸に対する断面形
状が楕円面で光源1の一部を包囲する楕円面反射鏡6お
よび正レンズ7とを組み合わせて、楕円面反射鏡6の一
方の焦点位置Cに前記光源1を配置し、光源1からの照
射光の一部を楕円面反射鏡6により反射・集光させ、そ
の光を楕円面反射鏡6の他方の焦点と正レンズ7の焦点
とが同一になる焦点位置Dを通過させた後、正レンズ7
に入射させることにより、被照射面3に平行光を照射す
る集光光学系(特公平1−25046号公報)、などが
知られており、いずれの集光光学系も2次曲面からなる
反射鏡の焦点またはその近傍(略焦点)に光源を配置し
、光源から照射される光の一部を、反射鏡により被照射
面に直接照射するか、反射鏡と正レンズを組み合わせて
被照射面に照射するもので、光源からの照射光を反射鏡
や正レンズなどにより、効率よく集光する光学系である
As a condensing optical system for an illumination device that achieves this purpose, (1) as shown in FIG. The light source 1 is placed at the focal position A of the parabolic reflector 2 in combination with a parabolic reflector 2 whose cross-sectional shape with respect to the axis is a paraboloid and is arranged so as to partially surround the light source 1. (2) a condensing optical system that irradiates parallel light onto an irradiated surface 3 such as a liquid crystal by reflecting a part of the irradiated light from 1 by a parabolic reflector 2;
As shown in FIG. 8, a light source 1 is combined with an arcuate reflector 4 and a positive lens (convex lens) 5 whose cross-sectional shape with respect to the optical axis is an arcuate surface and surrounds a part of the light source 1. Focal position B where the focal point and the focal point of the positive lens 5 are the same
The light source 1 is placed at lens 5
(3) As shown in FIG. 9, the light source 1 has an elliptical cross-sectional shape with respect to the optical axis. The light source 1 is placed at one focal point C of the ellipsoidal reflector 6 by combining an ellipsoidal reflector 6 that surrounds a part of the light source 1 with a surface and a positive lens 7, and the light source 1 is A part of the light is reflected and condensed by the ellipsoidal reflector 6, and after passing through a focal point D where the other focus of the ellipsoidal reflector 6 and the focus of the positive lens 7 are the same, the positive lens 7
A condensing optical system (Japanese Patent Publication No. 1-25046) is known, which irradiates parallel light onto the irradiated surface 3 by making it incident on the irradiated surface. A light source is placed at or near the focal point of the mirror (approximately the focal point), and a portion of the light emitted from the light source is directly irradiated onto the irradiated surface using a reflecting mirror, or a portion of the light emitted from the light source is irradiated directly onto the irradiated surface using a combination of a reflecting mirror and a positive lens. It is an optical system that efficiently condenses the irradiated light from the light source using a reflecting mirror, positive lens, etc.

【0004】0004

【発明が解決しようとする課題】前記従来の集光光学系
において、光源1は理論的にあらゆる方向(図7から図
9において、角度αが360度になる)に均等に光を照
射する特性をもつものであれば、被照射面3に対し光源
1から角度360度のすべての光を照射することで、光
源1の光の利用効率は100%となる。
[Problems to be Solved by the Invention] In the conventional condensing optical system, the light source 1 theoretically has the characteristic of emitting light evenly in all directions (angle α is 360 degrees in FIGS. 7 to 9). If the surface 3 is irradiated with all the light at an angle of 360 degrees from the light source 1, the light utilization efficiency of the light source 1 becomes 100%.

【0005】しかし、前記従来のいずれの集光光学系も
、反射鏡や正レンズの光学特性の関係から、光源1から
照射される光のうち、角度αが360度より狭い範囲の
光しか反射鏡あるいは正レンズに入射させることが出来
ず、残りの角度β(=360度−α)からの光すなわち
光源1からの直射光の一部は捨てざるを得ないのが実情
であるため、光源1における光の利用効率を100%に
することが出来ないという問題がある。
However, in all of the conventional condensing optical systems described above, out of the light emitted from the light source 1, only light within a range where the angle α is narrower than 360 degrees is reflected due to the optical characteristics of the reflecting mirror and the positive lens. The reality is that the light from the remaining angle β (=360 degrees - α), that is, a part of the direct light from light source 1, cannot be made to enter a mirror or positive lens, so the light source There is a problem in that the light utilization efficiency in No. 1 cannot be made 100%.

【0006】また、光源1には、一般的にハロゲン電球
やメタルハライドランプあるいはショートアークタイプ
のキセノンランプなどを用いることから、被照射面3に
は可視光のほか、紫外線や赤外線も一緒に照射されるた
め、被照射面3に配置される液晶などにそれらによる障
害(特性の劣化や損傷など)を与える恐れがあった。
Furthermore, since the light source 1 generally uses a halogen bulb, metal halide lamp, short arc type xenon lamp, etc., the irradiated surface 3 is irradiated not only with visible light but also with ultraviolet rays and infrared rays. Therefore, there is a risk that they may cause trouble (deterioration of characteristics, damage, etc.) to the liquid crystal etc. arranged on the irradiated surface 3.

【0007】[0007]

【課題を解決するための手段】本発明は、発光部分が点
状の光源と、断面形状が楕円面と円弧面の複合曲面で、
かつ前記光源を包囲する凹面反射鏡と、この凹面反射鏡
からの反射光と前記光源からの照射光を平行光に変換す
る平行光変換レンズとから構成し、凹面反射鏡は、前記
光源の前側が光軸中心部に開口をもつ円弧面、また前記
光源の後側が楕円面であり、かつ、前記楕円面の第1略
焦点位置に光源を、第2略焦点位置に円弧面を配置する
とともに、楕円面の第1略焦点位置と円弧面の略焦点位
置とを同一にする照明装置である。
[Means for Solving the Problems] The present invention includes a light source whose light emitting portion is point-like, and whose cross-sectional shape is a compound curved surface of an elliptical surface and an arc surface.
and a concave reflecting mirror that surrounds the light source, and a parallel light conversion lens that converts the reflected light from the concave reflecting mirror and the irradiated light from the light source into parallel light, and the concave reflecting mirror is arranged in front of the light source. The side is an arcuate surface having an opening at the center of the optical axis, and the rear side of the light source is an elliptical surface, and the light source is arranged at a first approximate focal position of the ellipsoidal surface, and the arcuate surface is arranged at a second approximate focal position of the ellipsoidal surface. , is an illumination device in which the first approximate focal point position of the ellipsoidal surface and the approximately focal position of the circular arc surface are made the same.

【0008】また、本発明は凹面反射鏡において円弧面
の光軸中心部に設けた開口の大きさを可変することを特
徴とする。
The present invention is also characterized in that the size of the aperture provided at the center of the optical axis of the arcuate surface of the concave reflecting mirror is variable.

【0009】さらに、本発明は凹面反射鏡において楕円
面は紫外線と赤外線を透過し可視光を反射する特性を、
円弧面は紫外線と可視光および赤外線のいずれも反射す
る特性を、平行光変換レンズは可視光を透過し紫外線と
赤外線を反射する特性をそれぞれもたせることを特徴と
する。
Furthermore, the present invention has the characteristic that the elliptical surface of the concave reflector transmits ultraviolet rays and infrared rays and reflects visible light.
The arcuate surface has a characteristic of reflecting ultraviolet rays, visible light, and infrared rays, and the parallel light conversion lens has a characteristic of transmitting visible light and reflecting ultraviolet rays and infrared rays.

【0010】また、光源と凹面反射鏡と平行光変換レン
ズとを同一の光軸上に配置し、かつ平行光変換レンズを
前記光軸に対して平行に移動させることを特徴とする。
The present invention is also characterized in that the light source, the concave reflecting mirror, and the parallel light conversion lens are arranged on the same optical axis, and the parallel light conversion lens is moved parallel to the optical axis.

【0011】[0011]

【作用】本発明においては、凹面反射鏡において、光源
からの照射光のうち被照射面と離れる方向(光源の後側
)に照射される光は、楕円面により第2略焦点位置に集
光された後、平行光変換レンズに入射し平行光として被
照射面に集光される。一方、被照射面に近づく方向(光
源の前側)に照射される光の大部分は、円弧面により光
源位置(円弧面の略焦点位置および楕円面の第1略焦点
位置と同位置)に戻され、楕円面により第2略焦点位置
に集光された後、平行光変換レンズに入射し被照射面に
平行光として集光される。さらに光源からの照射光のう
ち、被照射面に近づく方向に照射される残りの光は、直
接、円弧面の開口を出射して平行光変換レンズに入射す
る。以上の作用により光源からあらゆる方向に照射され
る光をすべて被照射面に照射することができる。
[Operation] In the present invention, in the concave reflecting mirror, the light irradiated from the light source in the direction away from the irradiated surface (to the rear side of the light source) is focused at the second approximate focal point by the elliptical surface. After that, the light enters the parallel light conversion lens and is focused on the irradiated surface as parallel light. On the other hand, most of the light emitted in the direction approaching the irradiated surface (in front of the light source) is returned to the light source position by the arc surface (approximately the focal position of the arc surface and the same position as the first approximately focal position of the ellipsoid surface). After the light is focused at a second approximate focal point by the elliptical surface, it enters the parallel light conversion lens and is focused on the irradiated surface as parallel light. Further, of the light irradiated from the light source, the remaining light irradiated in a direction approaching the irradiated surface directly exits the aperture of the arcuate surface and enters the parallel light conversion lens. Due to the above-mentioned effects, all the light radiated from the light source in all directions can be irradiated onto the irradiated surface.

【0012】また、凹面反射鏡において、円弧面の光軸
中心部に設けた開口の大きさを調整・可変することによ
り、光源がある程度の大きさを有していても、光源から
の照射光の一部が円弧面の開口で遮られることなく、平
行光変換レンズに有効に入射させることができる。
In addition, by adjusting and varying the size of the aperture provided at the center of the optical axis of the arcuate surface of the concave reflecting mirror, even if the light source has a certain size, the irradiation light from the light source can be adjusted. A part of the parallel light can be effectively input to the parallel light conversion lens without being blocked by the arcuate aperture.

【0013】さらに、凹面反射鏡において、光源から照
射される光のうち楕円面では紫外線と赤外線が透過し可
視光のみが反射して平行光変換レンズに入射するととも
に、円弧面では紫外線,可視光,赤外線がいずれも反射
して光源位置に戻された後に楕円面に到達し、紫外線と
赤外線が透過し可視光のみが反射されて平行光変換レン
ズに入射するため、被照射面には可視光のみを照射する
ことができる。
Furthermore, in the concave reflecting mirror, of the light irradiated from the light source, the elliptical surface transmits ultraviolet rays and infrared rays, only visible light is reflected and enters the parallel light conversion lens, and the arcuate surface transmits ultraviolet rays and visible rays. , Infrared rays reach the ellipsoidal surface after being reflected and returned to the light source position, and ultraviolet rays and infrared rays are transmitted, and only visible light is reflected and enters the parallel light conversion lens, so visible light does not appear on the irradiated surface. can only be irradiated.

【0014】また、光源と凹面反射鏡と平行光変換レン
ズとを同一の光軸上に配置し、かつ平行光変換レンズを
前記光軸に対して平行に移動させることにより、平行光
変換レンズと略焦点位置との距離が変化して平行光変換
レンズからの照射光の一部が収斂したり発散するため、
被照射面の持つ光入射角度特性に合致した光を照射する
ことができるだけでなく、被照射面への光の強度(明る
さ)を任意に調整できる。
Furthermore, by arranging the light source, the concave reflecting mirror, and the parallel light conversion lens on the same optical axis, and moving the parallel light conversion lens parallel to the optical axis, the parallel light conversion lens and As the distance from the approximate focal point changes, part of the irradiated light from the parallel light conversion lens converges or diverges.
Not only can it irradiate light that matches the light incident angle characteristics of the irradiated surface, but also the intensity (brightness) of the light to the irradiated surface can be adjusted arbitrarily.

【0015】[0015]

【実施例】以下、本発明の第1の実施例について、添付
図面にもとづいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the accompanying drawings.

【0016】図1は本発明の照明装置用集光光学系の構
成を示す断面図である。図1において8は発光部分が点
状の光源(例えば、ハロゲン電球やメタルハライドラン
プあるいはショートアークタイプのキセノンランプなど
)で、あらゆる方向(360度)に均等に光を照射する
ものとする。この光源8を包囲するようにして、回転2
次曲面である凹面反射鏡9を配置している。この凹面反
射鏡9は光源8より後側半分が楕円面10に、また前側
半分が円弧面11の曲面から構成しており、さらに円弧
面11の光軸中心部Eには開口φが設けられている。 このような条件において、楕円面10の第1略焦点位置
と円弧面11の略焦点位置を同一にし、ここを略焦点位
置Fとするとともに、前記光源8を略焦点位置Fに配置
する。
FIG. 1 is a sectional view showing the configuration of a condensing optical system for an illumination device according to the present invention. In FIG. 1, 8 is a light source with a point-like light emitting portion (for example, a halogen bulb, a metal halide lamp, or a short arc type xenon lamp), which irradiates light evenly in all directions (360 degrees). Rotate 2 so as to surround this light source 8.
A concave reflecting mirror 9 having a curved surface is arranged. This concave reflecting mirror 9 has an ellipsoidal surface 10 in its rear half from the light source 8 and a curved arc surface 11 in its front half, and an aperture φ is provided at the center E of the optical axis of the arcuate surface 11. ing. Under such conditions, the first approximate focal position of the ellipsoidal surface 10 and the approximate focal position of the arcuate surface 11 are made the same and are defined as the approximate focal position F, and the light source 8 is arranged at the approximate focal position F.

【0017】一方、楕円面10の第2略焦点位置には円
弧面11が重なるように配置している。この位置は、円
弧面11の開口φと同一位置であるため、ここを略焦点
位置E(=光軸中心部E)とする。
On the other hand, an arcuate surface 11 is arranged so as to overlap the second approximate focal point position of the ellipsoidal surface 10. Since this position is the same as the aperture φ of the arcuate surface 11, this position is defined as a substantially focal position E (=optical axis center E).

【0018】凹面反射鏡9において、楕円面10と円弧
面11との接合点をGとし、前記略焦点位置Eとのなす
立体角をγとし、この立体角γと相対する範囲内に平行
光変換レンズ12を配置する。この時に平行光変換レン
ズ12の焦点を略焦点位置Eと同一の位置にしている。
In the concave reflecting mirror 9, the junction point between the ellipsoidal surface 10 and the arcuate surface 11 is G, the solid angle formed with the approximate focal point E is γ, and parallel light is generated within the range opposite to this solid angle γ. A conversion lens 12 is arranged. At this time, the focal point of the parallel light conversion lens 12 is set to approximately the same position as the focal point position E.

【0019】なお図1において、光源8,凹面反射鏡9
,楕円面10,円弧面11,平行光変換レンズ12はい
ずれも光学的に同一の光軸上(図1においてP−P)に
配置している。
Note that in FIG. 1, a light source 8, a concave reflecting mirror 9
, the ellipsoidal surface 10, the arcuate surface 11, and the parallel light conversion lens 12 are all optically arranged on the same optical axis (P-P in FIG. 1).

【0020】このような構成において、平行光を得るた
めの原理を次に説明する。光源8より後側から楕円面1
0に向かう光の照射経路を考えると、光源8からの照射
光は、楕円面10で反射した後、円弧面11の開口φす
なわち略焦点位置Eに向かって収斂する。
The principle for obtaining parallel light in such a configuration will be explained below. Elliptical surface 1 from behind light source 8
Considering the irradiation path of the light toward 0, the irradiation light from the light source 8 is reflected by the ellipsoidal surface 10 and then converged toward the aperture φ of the arcuate surface 11, that is, toward the approximate focal point E.

【0021】次に、光源8より前側から円弧面11に向
かう光の照射経路を考えると、光源8からの照射光の大
部分は、円弧面11で反射した後、略焦点位置Fすなわ
ち光源8に戻って収斂(図1において、破線で示す)し
、あたかも光源8から照射した如く楕円面10に向かう
。楕円面10では前記と同様に楕円面10で反射した後
、円弧面11の開口φすなわち略焦点位置Eに向かって
収斂する。
Next, considering the irradiation path of light from the front side of the light source 8 toward the arcuate surface 11, most of the irradiation light from the light source 8, after being reflected by the arcuate surface 11, reaches the approximate focal point F, that is, the light source 8. The light returns to , converges (indicated by the broken line in FIG. 1), and heads toward the ellipsoidal surface 10 as if it were irradiated from the light source 8. After being reflected at the ellipsoidal surface 10 in the same manner as described above, the light converges toward the aperture φ of the arcuate surface 11, that is, toward the approximate focal point E.

【0022】さらに、光源8より前側から円弧面11に
向かう光の一部分は直接、略焦点位置Eに向かう。
Further, a portion of the light directed toward the arcuate surface 11 from the front side of the light source 8 directly travels to approximately the focal point E.

【0023】以上のように、光源8からの照射光はどの
方向の光も、凹面反射鏡9において楕円面10または円
弧面11により最終的に略焦点位置Eに収斂しようとす
ることがわかる。
As described above, it can be seen that the irradiated light from the light source 8 in any direction tends to finally converge at the approximate focal point E by the ellipsoidal surface 10 or the circular arc surface 11 in the concave reflecting mirror 9.

【0024】略焦点位置Eからの照射光は再度発散して
平行光変換レンズ12に入射し、最終的に平行光に変換
して液晶などの被照射面13を照射することになる。
The irradiated light from the approximate focal position E diverges again and enters the parallel light conversion lens 12, and is finally converted into parallel light to irradiate the illuminated surface 13 such as a liquid crystal.

【0025】次に、本発明の第2の実施例について、添
付図面にもとづいて説明する。図2は本発明の照明装置
用集光光学系の構成を示す断面図である。図2において
、構成する部品の基本的な位置関係と名称は先に述べた
第1の実施例と同様であり、本実施例においてはその説
明を省略する。
Next, a second embodiment of the present invention will be explained based on the attached drawings. FIG. 2 is a sectional view showing the configuration of a condensing optical system for a lighting device according to the present invention. In FIG. 2, the basic positional relationships and names of the constituent parts are the same as in the first embodiment described above, and their explanation will be omitted in this embodiment.

【0026】第2の実施例において第1の実施例と異な
るのは、凹面反射鏡9の円弧面10に設けた開口φの大
きさφDが、光軸P−Pに直交する方向に対して変化す
る構成にしていることである。
The difference in the second embodiment from the first embodiment is that the size φD of the opening φ provided in the arcuate surface 10 of the concave reflecting mirror 9 is different from the direction perpendicular to the optical axis PP. The structure is designed to change.

【0027】本発明の第1の実施例において光源8を点
状の光源としているが、現実には光源の発光部はある程
度の大きさをもつ。
In the first embodiment of the present invention, the light source 8 is a point light source, but in reality, the light emitting portion of the light source has a certain size.

【0028】本発明の第2の実施例は、上記のように光
源8がある大きさをもつ場合において、被照射面13に
平行光を照射させる集光光学系を提示するもので、以下
にその原理を述べる。
The second embodiment of the present invention presents a condensing optical system that irradiates parallel light onto the irradiated surface 13 when the light source 8 has a certain size as described above. I will explain its principle.

【0029】図2において、光源8は光軸P−P方向に
xの大きさをもち、かつ略焦点位置Fに配置されている
。このような条件において、光源8の楕円面10側に寄
った部分(図2においてXrの部分)から楕円面10に
向かう光は、楕円面10で反射した後、略焦点位置Eに
対して平行光変換レンズ12に寄った位置Efに収斂し
ようとする(図2において照射光の経路を破線で示す)
In FIG. 2, the light source 8 has a size x in the direction of the optical axis P--P, and is located approximately at a focal position F. Under these conditions, the light directed toward the ellipsoid 10 from the part of the light source 8 closer to the ellipsoid 10 (the part Xr in FIG. 2) is reflected by the ellipsoid 10 and then becomes substantially parallel to the focal point E. It attempts to converge to a position Ef close to the light conversion lens 12 (the path of the irradiated light is shown by a broken line in FIG. 2).
.

【0030】次に、光源8の円弧面11側に寄った部分
(図2においてXfの部分)から楕円面10に向かう光
は、楕円面10で反射した後、略焦点位置Eに対して光
源8に寄った位置Erに収斂しようとする(図2におい
て二点鎖線で示す)。
Next, the light directed toward the ellipsoidal surface 10 from the portion of the light source 8 that is closer to the arcuate surface 11 (the portion Xf in FIG. 8 (indicated by the two-dot chain line in FIG. 2).

【0031】光源8が理想的な点状光源であれば、略焦
点位置Eにおいて円弧面11の開口φの大きさφDは、
光源8と同様に点状すなわちピンホール程度であればよ
い。しかし、本発明のように光源8がxの大きさをもつ
場合には、φDがあまり小さいと光源8からの照射光が
開口φを通過できずに、一部の光が遮られてしまうこと
になる。このため光源8の大きさxに合わせて、開口φ
の大きさφDを光軸P−Pに対して直交する方向に拡大
させる(変化させる)。このようにすることにより、光
源8からの照射光が開口φを効率的に通過でき、平行光
変換レンズ12に入射できることから、最終的には被照
射面13に平行光を照射することができるものである。
If the light source 8 is an ideal point light source, the size φD of the aperture φ of the circular arc surface 11 at the approximate focal point E is as follows.
As with the light source 8, it is sufficient if it is point-like, that is, pinhole-like. However, when the light source 8 has a size x as in the present invention, if φD is too small, the irradiated light from the light source 8 will not be able to pass through the aperture φ, and some of the light will be blocked. become. Therefore, according to the size x of the light source 8, the aperture φ
The size φD is expanded (changed) in a direction perpendicular to the optical axis P-P. By doing so, the irradiated light from the light source 8 can efficiently pass through the aperture φ and enter the parallel light conversion lens 12, so that the irradiated surface 13 can finally be irradiated with parallel light. It is something.

【0032】なお本発明において、開口φの大きさφD
を変化させる方法について詳述していないが、例えば、
φDが異なる開口φを単独の部品として数種類用意して
おき、これを光源8の大きさxに合わせて円弧面11に
設置したり、円弧面の開口φの部分を複数枚の絞り羽根
から構成した絞り機構にすることにより、前記開口φの
大きさφDを変化させることができる。
In the present invention, the size of the opening φD
Although it does not detail how to change the
It is possible to prepare several types of apertures φ with different φD as individual parts and install them on the arcuate surface 11 according to the size x of the light source 8, or to construct the aperture φ portion of the arcuate surface from a plurality of aperture blades. By using such a diaphragm mechanism, the size φD of the aperture φ can be changed.

【0033】次に、本発明の第3の実施例について、添
付図面にもとづいて説明する。図3は本発明の照明装置
用集光光学系の構成を示す断面図である。図3において
、構成する部品の基本的な位置関係と名称は先に述べた
第1の実施例と同様であり、本実施例においてはその説
明を省略する。
Next, a third embodiment of the present invention will be explained based on the attached drawings. FIG. 3 is a sectional view showing the configuration of a condensing optical system for a lighting device according to the present invention. In FIG. 3, the basic positional relationships and names of the constituent parts are the same as in the first embodiment described above, and their explanation will be omitted in this embodiment.

【0034】第3の実施例において第1の実施例と異な
るのは、(1)凹面反射鏡9の楕円面10が、光源8か
ら照射される光のうち紫外線と赤外線を透過し、可視光
のみを反射する特性を有すること。(2)平行光変換レ
ンズ12が、光源8から照射される光のうち紫外線と赤
外線を反射し、可視光のみを透過する特性を有すること
。である。
The third embodiment differs from the first embodiment in that (1) the ellipsoidal surface 10 of the concave reflecting mirror 9 transmits ultraviolet and infrared rays of the light emitted from the light source 8, and transmits visible light; have the property of reflecting only (2) The parallel light conversion lens 12 has a characteristic of reflecting ultraviolet rays and infrared rays of the light emitted from the light source 8 and transmitting only visible light. It is.

【0035】一般的に、ハロゲン電球やメタルハライド
ランプおよびキセノンランプなどは、その分光パワー分
布特性として近紫外線〜可視光〜赤外線の幅広い波長の
光を放射(照射)する特性を持つ。そのため、これらの
光源を液晶投写形画像表示装置の集光光学系に組み込む
場合には、当然のことながら、被照射面である液晶には
前記の幅広い波長の光が照射されることになり、紫外線
や赤外線により、液晶に特性劣化や損傷などの障害を与
えることで問題となる。
In general, halogen bulbs, metal halide lamps, xenon lamps, and the like have a spectral power distribution characteristic of emitting (irradiating) light with a wide range of wavelengths from near ultraviolet to visible light to infrared. Therefore, when these light sources are incorporated into the condensing optical system of a liquid crystal projection image display device, the liquid crystal, which is the surface to be illuminated, will of course be irradiated with light of the aforementioned wide wavelength range. Problems arise when ultraviolet and infrared rays cause problems such as deterioration of characteristics and damage to liquid crystals.

【0036】本発明の第3の実施例は、この紫外線と赤
外線を被照射面に照射させずに可視光のみを照射させる
集光光学系を提示するもので、以下にその原理を述べる
The third embodiment of the present invention presents a condensing optical system that irradiates only visible light without irradiating the surface to be irradiated with ultraviolet rays and infrared rays, and the principle thereof will be described below.

【0037】図3において、光源8からは主として可視
光(図3において、実線で示す)と併せて紫外線と赤外
線(図3において、破線で示す)が照射される。
In FIG. 3, a light source 8 emits mainly visible light (indicated by a solid line in FIG. 3) as well as ultraviolet rays and infrared rays (indicated by a broken line in FIG. 3).

【0038】まず、光源8から楕円面10への光の照射
経路を考えると、光源8からの照射光は、楕円面10で
光学的に可視光と紫外線,赤外線に分離され、可視光の
み反射した後、略焦点位置Eに向かって収斂するととも
に、紫外線と赤外線は楕円面10を透過して発散する。
First, considering the irradiation path of light from the light source 8 to the ellipsoidal surface 10, the irradiated light from the light source 8 is optically separated into visible light, ultraviolet rays, and infrared rays at the ellipsoidal surface 10, and only the visible light is reflected. After that, the ultraviolet rays and infrared rays converge toward the approximate focal point E, and the ultraviolet rays and infrared rays pass through the ellipsoidal surface 10 and diverge.

【0039】次に、光源8から円弧面11への光の照射
経路を考えると、光源8からの照射光の大部分は、円弧
面11により紫外線,可視光,赤外線のいずれも反射さ
れた後、略焦点位置Fすなわち光源8に向かって収斂し
、あたかも光源8から照射した如く楕円面10に向かい
、前記と同様に楕円面10により紫外線と赤外線は透過
され、可視光のみが反射された後、略焦点位置Eに向か
って収斂する。
Next, considering the irradiation path of light from the light source 8 to the arcuate surface 11, most of the irradiated light from the light source 8 is reflected by the arcuate surface 11 after all of the ultraviolet rays, visible light, and infrared rays. , converges toward the approximate focal point F, that is, the light source 8, and heads toward the ellipsoidal surface 10 as if irradiated from the light source 8, and as before, ultraviolet and infrared rays are transmitted by the ellipsoidal surface 10, and only visible light is reflected. , converge toward approximately the focal position E.

【0040】さらに、光源8より前側から円弧面11に
向かう光の一部分は直接、略焦点位置Eに向かい、平行
光変換レンズ12に入射する。平行光変換レンズ12で
は光源8からの照射光のうち紫外線と赤外線が反射され
、可視光のみが透過される。
Furthermore, a portion of the light that travels from the front side of the light source 8 toward the arcuate surface 11 directly travels toward approximately the focal point E and enters the parallel light conversion lens 12 . The parallel light converting lens 12 reflects the ultraviolet rays and infrared rays of the light emitted from the light source 8, and transmits only the visible light.

【0041】以上のように、光源8からの照射光、すな
わち紫外線,可視光,赤外線は、最終的に可視光のみ選
択されて略焦点位置Eに収斂しようとすることがわかる
。その後の可視光の照射経路は第1の実施例と同様で、
略焦点位置Eからの照射光は再度発散して平行光変換レ
ンズ12に入射し、最終的に平行光となって被照射面1
3に対して可視光のみが照射されることになる。
As described above, it can be seen that among the irradiated light from the light source 8, that is, ultraviolet rays, visible light, and infrared rays, only visible light is ultimately selected and tends to converge at approximately the focal point E. The subsequent visible light irradiation path is the same as in the first embodiment,
The irradiated light from the approximate focal point E diverges again and enters the parallel light conversion lens 12, and finally becomes parallel light and hits the irradiated surface 1.
3 will be irradiated with only visible light.

【0042】なお本発明において、可視光と紫外線・赤
外線とを分離する手段を詳述していないが、一般的には
多層金属蒸着膜による方法などが知られている。
In the present invention, the means for separating visible light from ultraviolet and infrared rays is not described in detail, but methods using multilayer metal vapor deposition films are generally known.

【0043】次に、本発明の第4の実施例について、添
付図面にもとづいて説明する。図4は本発明の照明装置
用集光光学系の構成を示す断面図である。図4において
、構成する部品の基本的な位置関係と名称は先に述べた
第1の実施例と同様であり、本実施例においてはその説
明を省略する。第4の実施例において第1の実施例と異
なるのは、略焦点位置Eを基準として、平行光変換レン
ズ12を光軸P−Pに対して平行移動させる(略焦点位
置Eに近づけたり、離したりする)ことである。
Next, a fourth embodiment of the present invention will be explained based on the attached drawings. FIG. 4 is a sectional view showing the configuration of a condensing optical system for an illumination device according to the present invention. In FIG. 4, the basic positional relationships and names of the constituent parts are the same as in the first embodiment described above, and their explanation will be omitted in this embodiment. The difference between the fourth embodiment and the first embodiment is that the parallel light conversion lens 12 is moved parallel to the optical axis P-P with the approximate focal position E as a reference (closer to the approximate focal position E, ).

【0044】図4において、平行光変換レンズ12を二
点鎖線で示しているのは、略焦点位置Eと平行光変換レ
ンズ12の端面との距離Lに対し、平行光変換レンズ1
2を被照射面13の方にΔLだけ平行移動させた状態(
略焦点位置Eから平行光変換レンズ12を離した状態)
であり、この時の略焦点位置Eと平行光変換レンズ12
との距離はL+ΔLとなる。
In FIG. 4, the parallel light converting lens 12 is indicated by a chain double-dashed line.
2 is moved in parallel by ΔL towards the irradiated surface 13 (
(state where the parallel light conversion lens 12 is separated from the approximate focal position E)
At this time, the approximate focal position E and the parallel light conversion lens 12
The distance from this point is L+ΔL.

【0045】同様に図4において、平行光変換レンズ1
2を破線で示しているのは、略焦点位置Eと平行光変換
レンズ12の端面との距離Lに対し、平行光変換レンズ
12を略焦点位置Eの方にΔLだけ平行移動させた状態
(略焦点位置Eに平行光変換レンズ12を近づけた状態
)であり、この時の略焦点位置Eと平行光変換レンズ1
2との距離はL−ΔLとなる。
Similarly, in FIG. 4, parallel light conversion lens 1
2 is shown by a broken line when the parallel light conversion lens 12 is translated by ΔL toward the approximate focal position E with respect to the distance L between the approximate focal position E and the end surface of the parallel light conversion lens 12 ( The parallel light conversion lens 12 is brought close to the approximate focal position E), and the approximate focal position E and the parallel light conversion lens 1 at this time are
The distance from 2 is L-ΔL.

【0046】上記の条件において、光源8から平行光変
換レンズ12を経て被照射面13に至る光の照射経路を
考えると、まず平行光変換レンズ12を略焦点位置Eか
ら△Lだけ離した場合(L+△L)には、光源8からの
照射光は、略焦点位置Eに一端収斂した後に平行光変換
レンズ12に入射する。ここで、平行光変換レンズ12
は略焦点位置Eから離れていくため、被照射面13に対
して、わずかに収斂した光(図4において、二点鎖線で
示す)として照射される。これは、被照射面13に対し
、光軸P−Pの近傍をより明るくし、光軸から離れた部
分をより暗くする働きをもつ。
Under the above conditions, considering the irradiation path of light from the light source 8 to the irradiated surface 13 via the parallel light conversion lens 12, first, when the parallel light conversion lens 12 is separated from the approximate focal point E by ΔL. At (L+ΔL), the irradiated light from the light source 8 is incident on the parallel light conversion lens 12 after being converged to approximately the focal position E. Here, the parallel light conversion lens 12
Since the light moves away from the approximate focal point E, the irradiated surface 13 is irradiated with slightly converged light (indicated by a two-dot chain line in FIG. 4). This has the function of making the irradiated surface 13 brighter in the vicinity of the optical axis P-P and darker in the area away from the optical axis.

【0047】次に、平行光変換レンズ12を略焦点位置
Eに近づけた場合(L−△L)には、光源8からの照射
光は、略焦点位置Eに一端収斂した後に平行光変換レン
ズ12に入射する。ここで、平行光変換レンズ12は略
焦点位置Eに近づいていくため、被照射面13に対して
、わずかに発散した光(図4において、破線で示す)と
して照射される。これは、被照射面13に対して、光軸
P−Pの近傍をより暗くし、光軸P−Pから離れた部分
をより明るくする働きをもつ。
Next, when the parallel light conversion lens 12 is brought close to the approximate focal position E (L-△L), the irradiated light from the light source 8 converges at the approximate focal position E and then passes through the parallel light conversion lens. 12. Here, since the parallel light conversion lens 12 approaches approximately the focal point E, the irradiated surface 13 is irradiated with slightly divergent light (indicated by a broken line in FIG. 4). This has the function of making the irradiated surface 13 darker in the vicinity of the optical axis PP and brighter in the area away from the optical axis PP.

【0048】以上の構成により、平行光変換レンズ12
の位置を光軸P−P方向に変化させて、照射光の一部を
わずかに収斂させたり発散させるなどの調整を行なうこ
とにより、被照射面13の持つ光入射角度特性に合致し
た光を照射することができるだけでなく、被照射面13
への光の強度(明るさ)を任意に調整できるものである
With the above configuration, the parallel light conversion lens 12
By changing the position of the light in the direction of the optical axis P-P and making adjustments such as slightly converging or diverging a part of the irradiated light, light that matches the light incident angle characteristics of the irradiated surface 13 can be produced. Not only can it be irradiated, but also the irradiated surface 13
The intensity (brightness) of the light can be adjusted arbitrarily.

【0049】次に、本発明の第5の実施例について、添
付図面にもとづいて説明する。図5は本発明の照明装置
用集光光学系の構成を示す断面図である。図5において
、構成する部品の基本的な位置関係と名称は先に述べた
第2の実施例と同様であり、本実施例においてはその説
明を省略する。
Next, a fifth embodiment of the present invention will be explained based on the attached drawings. FIG. 5 is a sectional view showing the configuration of a condensing optical system for an illumination device according to the present invention. In FIG. 5, the basic positional relationships and names of the constituent parts are the same as in the second embodiment described above, and their explanation will be omitted in this embodiment.

【0050】第5の実施例において第2の実施例と異な
るのは、平行光変換レンズ12の端面を基準として、凹
面反射鏡9を光軸P−Pに対して平行移動させる(平行
光変換レンズ12に近づけたり、離したりする)ことで
ある。図5において、凹面反射鏡9を二点鎖線で示して
いるのは、平行光変換レンズ12の端面と略焦点位置E
との距離Lに対し、凹面反射鏡9を光源8の方にΔMだ
け平行移動させた状態(平行光変換レンズ12から凹面
反射鏡9を離した状態)であり、この時の平行光変換レ
ンズ12と凹面反射鏡9との距離はL+ΔMとなる。
The difference between the fifth embodiment and the second embodiment is that the concave reflecting mirror 9 is moved parallel to the optical axis P-P with the end face of the parallel light conversion lens 12 as a reference (parallel light conversion (bringing it closer to or away from the lens 12). In FIG. 5, the concave reflecting mirror 9 is indicated by a chain double-dashed line, and the end surface of the parallel light conversion lens 12 and the approximate focal point E.
The concave reflecting mirror 9 is moved in parallel by ΔM toward the light source 8 with respect to the distance L from the parallel light converting lens 12 (the concave reflecting mirror 9 is separated from the parallel light converting lens 12). 12 and the concave reflecting mirror 9 is L+ΔM.

【0051】同様に図5において、凹面反射鏡9を破線
で示しているのは、平行光変換レンズ12の端面と略焦
点位置Eとの距離Lに対し、凹面反射鏡9を平行光変換
レンズ12の方にΔMだけ平行移動させた状態(平行光
変換レンズ12に凹面反射鏡9を近づけた状態)であり
、この時の平行光変換レンズ12と凹面反射鏡9との距
離はL−ΔMとなる。
Similarly, in FIG. 5, the concave reflecting mirror 9 is indicated by a broken line because the concave reflecting mirror 9 is indicated by a broken line with respect to the distance L between the end surface of the parallel light converting lens 12 and the approximate focal point E. 12 (the concave reflecting mirror 9 is brought close to the parallel light converting lens 12), and the distance between the parallel light converting lens 12 and the concave reflecting mirror 9 at this time is L - ΔM. becomes.

【0052】上記の条件において、光源8から平行光変
換レンズ12を経て被照射面13に至る光の照射経路を
考えると、まず凹面反射鏡9を平行光変換レンズ12か
ら△Mだけ離した場合には、光源8からの照射光は、楕
円面10および円弧面11で反射した後、略焦点位置E
rに向かって収斂し、平行光変換レンズ12に入射する
。ここで、凹面反射鏡9は平行光変換レンズ12から離
れていくため、被照射面13に対して、わずかに収斂し
た光(図5において、二点鎖線で示す)として照射され
る。これは、被照射面13に対し、光軸P−Pの近傍を
より明るくする働きをもつ。
Under the above conditions, considering the irradiation path of light from the light source 8 to the irradiated surface 13 via the parallel light conversion lens 12, first, if the concave reflector 9 is separated from the parallel light conversion lens 12 by ΔM. , the irradiated light from the light source 8 is reflected by the elliptical surface 10 and the circular arc surface 11, and then reaches the approximate focal point E.
The light converges toward r and enters the parallel light conversion lens 12. Here, since the concave reflecting mirror 9 moves away from the parallel light conversion lens 12, the irradiated surface 13 is irradiated with slightly convergent light (indicated by a two-dot chain line in FIG. 5). This has the effect of making the area near the optical axis PP brighter on the irradiated surface 13.

【0053】次に、凹面反射鏡9を平行光変換レンズ1
2に△Mだけ近づけた場合には、光源8からの照射光は
、楕円面10および円弧面11で反射した後、略焦点位
置Efに向かって収斂し、平行光変換レンズ12に入射
する。ここで、凹面反射鏡9は平行光変換レンズ12に
近づいていくため、被照射面13に対して、わずかに発
散した光(図5において、破線で示す)として照射され
る。これは、被照射面13に対して、光軸P−Pから離
れた部分をより明るくする働きをもつ。
Next, the concave reflecting mirror 9 is replaced with a parallel light converting lens 1.
2 by ΔM, the irradiated light from the light source 8 is reflected by the ellipsoidal surface 10 and the circular arc surface 11, converges toward the approximate focal point Ef, and enters the parallel light conversion lens 12. Here, since the concave reflecting mirror 9 approaches the parallel light conversion lens 12, the irradiated surface 13 is irradiated with slightly divergent light (indicated by a broken line in FIG. 5). This has the effect of making the portions of the irradiated surface 13 farther away from the optical axis PP brighter.

【0054】以上の構成により、凹面反射鏡9の位置を
変化させて、平行光変換レンズ12からの照射光の一部
をわずかに収斂させたり発散させるなどの調整を行なう
ことにより、被照射面13の持つ光入射角度特性に合致
した光を照射することができるだけでなく、被照射面1
3への光の強度(明るさ)を任意に調整できるものであ
る。
With the above configuration, by changing the position of the concave reflecting mirror 9 and making adjustments such as slightly converging or diverging a part of the irradiated light from the parallel light conversion lens 12, the irradiated surface can be adjusted. Not only can it irradiate light that matches the light incident angle characteristics of 13, but also the irradiated surface 1
The intensity (brightness) of the light to 3 can be adjusted arbitrarily.

【0055】次に、本発明の第6の実施例について、添
付図面にもとづいて説明する。図6は本発明の照明装置
用集光光学系の構成を示す断面図である。図6において
、構成する部品の基本的な位置関係と名称は先に述べた
第2の実施例と同様であり、本実施例においてはその説
明を省略する。第6の実施例において第2の実施例と異
なるのは、略焦点位置Eを基準として、光源8を光軸P
−Pに対して平行移動させる(略焦点位置Eに近づけた
り、離したりする)ことである。
Next, a sixth embodiment of the present invention will be described based on the accompanying drawings. FIG. 6 is a sectional view showing the configuration of a condensing optical system for a lighting device according to the present invention. In FIG. 6, the basic positional relationships and names of the constituent parts are the same as in the second embodiment described above, and their explanation will be omitted in this embodiment. The difference between the sixth embodiment and the second embodiment is that the light source 8 is moved along the optical axis P with the approximate focal point E as a reference.
−P (to move it closer to or away from the approximate focal point E).

【0056】本発明の第1から第5の実施例において、
光源8は凹面反射鏡9の略焦点位置Fに配置するという
条件でその構成・原理を述べたが、光源8を配置する位
置精度の関係から、必ずしも略焦点位置Fに配置される
とは限らない。
In the first to fifth embodiments of the present invention,
Although the configuration and principle have been described under the condition that the light source 8 is arranged at approximately the focal position F of the concave reflecting mirror 9, it is not necessarily arranged at approximately the focal position F due to the positional accuracy of the arrangement of the light source 8. do not have.

【0057】本発明の第6の実施例は、上記のように光
源8が略焦点位置Fからずれた位置に配置された場合に
おいて、被照射面13に平行光を照射させる集光光学系
を提示するもので、以下にその原理を述べる。
In the sixth embodiment of the present invention, when the light source 8 is disposed at a position shifted from the approximate focal point F as described above, a condensing optical system is used to irradiate the irradiated surface 13 with parallel light. The principle is described below.

【0058】図6において、略焦点位置Fより楕円面1
0側に寄った位置Frに光源8を破線で示しているのは
、光源8を楕円面10の方にΔNだけ平行移動させた状
態を示すもので、この時の略焦点位置Eと光源8との距
離は略焦点位置Fと略焦点位置Eとの距離Nに対してN
+ΔNとなる。
In FIG. 6, from the approximate focal point F, the ellipsoidal surface 1
The broken line showing the light source 8 at the position Fr closer to the 0 side shows the state where the light source 8 has been moved in parallel by ΔN towards the ellipsoidal surface 10, and the approximate focal position E and the light source 8 at this time are The distance is N with respect to the distance N between the approximate focal position F and the approximate focal position E.
+ΔN.

【0059】同様に図6において、略焦点位置Fより円
弧面11側に寄った位置Ffに光源8を破線で示してい
るのは、光源8を円弧面11の方に光軸P−P上をΔN
だけ平行移動させた状態を示すもので、この時の略焦点
位置Eと光源8との距離は略焦点位置Fと略焦点位置E
との距離Nに対してN−ΔNとなる。
Similarly, in FIG. 6, the reason why the light source 8 is indicated by a broken line at a position Ff closer to the arcuate surface 11 than the approximate focal point F is to move the light source 8 toward the arcuate surface 11 on the optical axis P-P. ΔN
The distance between the approximate focal position E and the light source 8 at this time is the approximate focal position F and the approximate focal position E.
The distance N between the two points is N - ΔN.

【0060】上記の条件において、光源8から平行光変
換レンズ12を経て被照射面13に至る光の照射経路を
考えると、まず光源8が略焦点位置Frに配置された場
合には、光源8からの照射光は楕円面10で反射した後
、略焦点位置Efに向かって収斂し、平行光変換レンズ
12に入射する。ここで、光源8は略焦点位置Eより平
行光変換レンズ12に近づいているため、被照射面13
に対して、わずかに発散したした光(図6において、破
線で示す)として照射される。これは、被照射面13に
対して光軸P−Pの近傍をより暗くし、光軸P−Pから
離れた部分をより明るくする働きをもつ。
Under the above conditions, considering the irradiation path of light from the light source 8 to the irradiated surface 13 via the parallel light conversion lens 12, first, when the light source 8 is placed at approximately the focal position Fr, the light source 8 After being reflected by the ellipsoidal surface 10, the irradiated light is converged toward approximately the focal point Ef and enters the parallel light conversion lens 12. Here, since the light source 8 is closer to the parallel light conversion lens 12 than the approximate focal point E, the irradiated surface 13
In contrast, the light is irradiated as slightly divergent light (indicated by a broken line in FIG. 6). This has the function of making the area near the optical axis PP darker with respect to the irradiated surface 13, and making the area farther away from the optical axis PP brighter.

【0061】次に、光源8が略焦点位置Ffに配置され
た場合には、光源8からの照射光は楕円面10で反射し
た後、略焦点位置Erに向かって収斂し、平行光変換レ
ンズ12に入射する。ここで、光源8は略焦点位置Eよ
り平行光変換レンズ12から離れるため、被照射面13
に対して、わずかに収斂した光(図6において、二点鎖
線で示す)として照射される。これは、被照射面13に
対して光軸P−Pの近傍をより明るくし、光軸P−Pか
ら離れた部分をより暗くする働きをもつ。
Next, when the light source 8 is placed at approximately the focal position Ff, the irradiated light from the light source 8 is reflected by the ellipsoidal surface 10, and then converged toward the approximately focal position Er, and the parallel light converting lens 12. Here, since the light source 8 is away from the parallel light conversion lens 12 from the approximate focal point E, the irradiated surface 13
The light is irradiated as slightly convergent light (indicated by a two-dot chain line in FIG. 6). This has the function of making the area near the optical axis PP brighter on the irradiated surface 13, and making the area farther away from the optical axis PP darker.

【0062】以上の構成により、光源8の位置のばらつ
きにより、光源の位置が光軸P−P上を変化しても、こ
の位置を調整して平行光変換レンズ12からの照射光の
一部をわずかに収斂させたり発散させるなどの調整を行
なうことにより、被照射面13の持つ光入射角度特性に
合致した光を照射することができるだけでなく、被照射
面13への光の強度(明るさ)を任意に調整できるもの
である。
With the above configuration, even if the position of the light source 8 changes on the optical axis P-P due to variations in the position of the light source 8, this position can be adjusted and a part of the irradiated light from the parallel light conversion lens 12 can be changed. By making adjustments such as slightly converging or diverging, it is possible not only to irradiate light that matches the light incident angle characteristics of the irradiated surface 13, but also to increase the intensity (brightness) of the light to the irradiated surface 13. ) can be adjusted arbitrarily.

【0063】なお、本発明の第4の実施例から第6の実
施例において、光源8,凹面反射鏡9,平行光変換レン
ズ10を光軸P−Pと平行に移動させる手段を詳述して
いないが、直線運動によるスライド機構や回転運動によ
る繰り出し機構を用い、この機構系とモータやバネある
いは手動などの駆動系と組み合わせることにより実現で
きる。
In the fourth to sixth embodiments of the present invention, the means for moving the light source 8, concave reflecting mirror 9, and parallel light conversion lens 10 in parallel to the optical axis P-P will be described in detail. However, it can be realized by using a sliding mechanism using linear motion or a feeding mechanism using rotational motion, and combining this mechanical system with a drive system such as a motor, a spring, or a manual drive system.

【0064】[0064]

【発明の効果】以上のように本発明においては、次に示
す効果が得られる。
[Effects of the Invention] As described above, in the present invention, the following effects can be obtained.

【0065】(1) 凹面反射鏡の形状を、光源の前側
が光軸中心部に開口をもつ円弧面、光源の後側が楕円面
とし、前記楕円面の第1略焦点位置に光源を、第2略焦
点位置に円弧面を配置するとともに、楕円面の第1略焦
点位置と円弧面の略焦点位置とを同一にすることにより
、光源からあらゆる方向に照射される光をすべて被照射
面に照射することができる。
(1) The shape of the concave reflecting mirror is such that the front side of the light source is an arcuate surface with an opening at the center of the optical axis, and the rear side of the light source is an ellipsoidal surface, and the light source is placed at the first approximate focal point of the ellipsoidal surface. By arranging the arcuate surface at the second approximate focal point and making the first approximate focal point of the elliptical surface and the approximate focal point of the arcuate surface the same, all the light emitted from the light source in all directions can be directed to the irradiated surface. It can be irradiated.

【0066】(2) 凹面反射鏡において、円弧面の光
軸中心部に設けた開口の大きさを調整・可変することに
より、光源がある程度の大きさを有していても、光源か
らの照射光の一部が円弧面の開口で遮られることなく、
平行光変換レンズに有効に入射させることができる。
(2) In a concave reflecting mirror, by adjusting and varying the size of the aperture provided at the center of the optical axis of the arcuate surface, even if the light source has a certain size, the irradiation from the light source can be controlled. Part of the light is not blocked by the arcuate opening,
The parallel light can be effectively input to the parallel light conversion lens.

【0067】(3) 凹面反射鏡において、光源から照
射される光のうち楕円面では紫外線と赤外線が透過し可
視光のみが反射して平行光変換レンズに入射するととも
に、円弧面では紫外線,可視光,赤外線がいずれも反射
して光源位置に戻された後に楕円面に到達し、紫外線と
赤外線が透過し可視光のみが反射されて平行光変換レン
ズに入射するため、被照射面には可視光のみを照射する
ことができる。
(3) In a concave reflecting mirror, of the light emitted from the light source, the elliptical surface transmits ultraviolet and infrared rays, only visible light is reflected and enters the parallel light conversion lens, and the arcuate surface transmits ultraviolet and visible light. Both light and infrared rays are reflected and returned to the light source position before reaching the ellipsoidal surface, where ultraviolet rays and infrared rays are transmitted, and only visible light is reflected and enters the parallel light conversion lens, so there is no visible light on the irradiated surface. Only light can be irradiated.

【0068】(4) 光源と凹面反射鏡と平行光変換レ
ンズとを同一の光軸上に配置し、かつ平行光変換レンズ
を前記光軸に対して平行に移動させることにより、平行
光変換レンズと略焦点位置との距離が変化して平行光変
換レンズからの照射光の一部が収斂したり発散するため
、被照射面の持つ光入射角度特性に合致した光を照射す
ることができるだけでなく、被照射面への光の強度(明
るさ)を任意に調整できる。
(4) By arranging a light source, a concave reflecting mirror, and a parallel light conversion lens on the same optical axis, and moving the parallel light conversion lens parallel to the optical axis, a parallel light conversion lens can be formed. As the distance between the focal point and the focal point changes, part of the irradiated light from the parallel light conversion lens converges or diverges, so it is possible to irradiate light that matches the light incident angle characteristics of the irradiated surface. The intensity (brightness) of the light to the illuminated surface can be adjusted arbitrarily.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例における照明装置の構成
FIG. 1 is a configuration diagram of a lighting device in a first embodiment of the present invention.

【図2】本発明の第2の実施例において、円弧面の開口
の大きさを変える照明装置の構成図
FIG. 2 is a configuration diagram of a lighting device that changes the size of the aperture of an arcuate surface in a second embodiment of the present invention.

【図3】本発明の第3の実施例において、可視光のみを
被照射面に照射させる装置の構成図
FIG. 3 is a configuration diagram of a device that irradiates only visible light onto an irradiated surface in a third embodiment of the present invention.

【図4】本発明の第4の実施例において、平行光変換レ
ンズを光軸と平行に移動させる照明装置の構成図
FIG. 4 is a configuration diagram of an illumination device that moves a parallel light conversion lens parallel to the optical axis in a fourth embodiment of the present invention.

【図5
】本発明の第5の実施例において、凹面反射鏡を光軸と
平行に移動させる照明装置の構成図
[Figure 5
] A configuration diagram of an illumination device that moves a concave reflecting mirror parallel to the optical axis in a fifth embodiment of the present invention.

【図6】本発明の第
6の実施例において、光源を光軸と平行に移動させる照
明装置の構成図
FIG. 6 is a configuration diagram of an illumination device that moves a light source parallel to the optical axis in a sixth embodiment of the present invention.

【図7】従来の放物面反射鏡を用いた集光光学系の構成
[Figure 7] Configuration diagram of a condensing optical system using a conventional parabolic reflector

【図8】従来の円弧面反射鏡と正レンズとを用いた集光
光学系の構成図
[Figure 8] Configuration diagram of a condensing optical system using a conventional arcuate reflector and a positive lens

【図9】従来の楕円面反射鏡と正レンズとを用いた集光
光学系の構成図
[Figure 9] Configuration diagram of a condensing optical system using a conventional ellipsoidal reflector and a positive lens

【符号の説明】[Explanation of symbols]

8  光源 9  凹面反射鏡 10  楕円面 11  円弧面 12  平行光変換レンズ 13  被照射面 8 Light source 9 Concave reflector 10 Ellipsoid 11 Arc surface 12 Parallel light conversion lens 13 Irradiated surface

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  発光部分が点状の光源と、断面形状が
楕円面と円弧面の複合曲面で、かつ前記光源を包囲する
凹面反射鏡と、この凹面反射鏡からの反射光と前記光源
からの照射光を平行光に変換する平行光変換レンズとか
ら構成し、前記凹面反射鏡は、前記光源の前側が光軸中
心部に開口をもつ円弧面、また前記光源の後側が楕円面
であり、かつ、前記楕円面の第1略焦点位置に前記光源
を、第2略焦点位置に前記円弧面を配置するとともに、
前記楕円面の第1略焦点位置と前記円弧面の略焦点位置
とを同一にしたことを特徴とする照明装置。
1. A light source with a point-like light emitting portion, a concave reflector whose cross-sectional shape is a compound curved surface of an elliptical surface and an arcuate surface and surrounds the light source, and light reflected from the concave reflector and from the light source. and a parallel light conversion lens that converts the irradiated light of , and disposing the light source at a first approximate focal position of the ellipsoidal surface, and arranging the arcuate surface at a second approximately focal position of the ellipsoidal surface,
An illumination device characterized in that a first approximate focal point position of the ellipsoidal surface and an approximately focal position of the arcuate surface are made the same.
【請求項2】  凹面反射鏡において、円弧面の開口の
大きさを可変するようにした請求項1記載の照明装置。
2. The illumination device according to claim 1, wherein the concave reflecting mirror has a variable opening size.
【請求項3】  凹面反射鏡において、楕円面は紫外線
と赤外線を透過し可視光を反射する特性を、円弧面は紫
外線と可視光および赤外線のいずれも反射する特性を、
平行光変換レンズは可視光を透過し紫外線と赤外線を反
射する特性をそれぞれ有する請求項1または2記載の照
明装置。
3. In a concave reflecting mirror, the elliptical surface has the property of transmitting ultraviolet rays and infrared rays and reflecting visible light, and the arcuate surface has the property of reflecting both ultraviolet rays, visible light, and infrared rays.
3. The illumination device according to claim 1, wherein the parallel light converting lens has characteristics of transmitting visible light and reflecting ultraviolet rays and infrared rays, respectively.
【請求項4】  光源と凹面反射鏡の光軸と平行光変換
レンズの光軸がいずれも同一の光軸上にあり、かつ平行
光変換レンズが前記光軸に対して平行に移動する請求項
1、2または3記載の照明装置。
4. The optical axis of the light source, the concave reflecting mirror, and the parallel light conversion lens are all on the same optical axis, and the parallel light conversion lens moves parallel to the optical axis. 3. The lighting device according to 1, 2 or 3.
【請求項5】  光源と凹面反射鏡の光軸と平行光変換
レンズの光軸がいずれも同一の光軸上にあり、かつ凹面
反射鏡が前記光軸に対して平行に移動する請求項1、2
、3または4記載の照明装置。
5. The optical axis of the light source, the concave reflecting mirror, and the parallel light conversion lens are all on the same optical axis, and the concave reflecting mirror moves parallel to the optical axis. ,2
, 3 or 4. The lighting device according to .
【請求項6】  光源と凹面反射鏡の光軸と平行光変換
レンズの光軸がいずれも同一の光軸上にあり、かつ光源
が前記光軸に対して平行に移動する請求項1から5のい
ずれかに記載の照明装置。
6. The optical axis of the light source, the concave reflecting mirror, and the parallel light conversion lens are all on the same optical axis, and the light source moves parallel to the optical axis. The lighting device according to any one of.
JP3044732A 1991-03-11 1991-03-11 Lighting equipment Expired - Lifetime JP2543260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3044732A JP2543260B2 (en) 1991-03-11 1991-03-11 Lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3044732A JP2543260B2 (en) 1991-03-11 1991-03-11 Lighting equipment

Publications (2)

Publication Number Publication Date
JPH04281441A true JPH04281441A (en) 1992-10-07
JP2543260B2 JP2543260B2 (en) 1996-10-16

Family

ID=12699622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3044732A Expired - Lifetime JP2543260B2 (en) 1991-03-11 1991-03-11 Lighting equipment

Country Status (1)

Country Link
JP (1) JP2543260B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167513A (en) * 1995-12-15 1997-06-24 Kuraray Co Ltd Surface light source element
JP2010161033A (en) * 2009-01-09 2010-07-22 Optics:Kk Illumination device
JP2014042463A (en) * 2012-08-24 2014-03-13 Satake Corp Method of testing microorganism and device thereof
JP2014055796A (en) * 2012-09-11 2014-03-27 Satake Corp Inspection method and apparatus of microorganism
US9915601B2 (en) 2012-08-24 2018-03-13 Satake Corporation Method for examining microorganisms and examination apparatus for microorganisms

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4251499B2 (en) 2003-04-18 2009-04-08 パナソニック株式会社 Light source device, illumination device, and projection display device
JP4915581B2 (en) * 2007-07-25 2012-04-11 パナソニック株式会社 Light source unit and spotlight including the same
KR101897620B1 (en) * 2018-03-21 2018-09-12 주식회사 옵토전자 Smart iot lighting apparatus and system thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196134A (en) * 1989-12-26 1991-08-27 Nippon Sheet Glass Co Ltd Illuminating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196134A (en) * 1989-12-26 1991-08-27 Nippon Sheet Glass Co Ltd Illuminating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167513A (en) * 1995-12-15 1997-06-24 Kuraray Co Ltd Surface light source element
JP2010161033A (en) * 2009-01-09 2010-07-22 Optics:Kk Illumination device
JP2014042463A (en) * 2012-08-24 2014-03-13 Satake Corp Method of testing microorganism and device thereof
US9915601B2 (en) 2012-08-24 2018-03-13 Satake Corporation Method for examining microorganisms and examination apparatus for microorganisms
JP2014055796A (en) * 2012-09-11 2014-03-27 Satake Corp Inspection method and apparatus of microorganism

Also Published As

Publication number Publication date
JP2543260B2 (en) 1996-10-16

Similar Documents

Publication Publication Date Title
JP4792486B2 (en) Optical system for Fresnel lens light, especially spotlight or floodlight
US4755918A (en) Reflector system
TWI486699B (en) Illumination system
US5966250A (en) Method and light collection system for producing uniform arc image size
JP2003065805A (en) Illumination, and display
JP2004524581A (en) Projector display device
TW200419101A (en) Illumination apparatus
WO2001053743A1 (en) Light source
JP2002358806A (en) Head lamp
US5309340A (en) Lighting apparatus
KR100385606B1 (en) Vehicle Lamp
JPH04281441A (en) Lighting device
JP4199727B2 (en) Fresnel lens spotlight
JPH07107596B2 (en) Liquid crystal projection type image display lighting device
JP2018045847A (en) Spotlight using led
JP4169304B2 (en) head lamp
JP7125473B2 (en) lighting unit
US6768127B1 (en) Device and method for wavelength dependent light outcoupling
AU707784B2 (en) Device for distributing light on an image frame
JP2821691B2 (en) Light source device for projector
JPH10319504A (en) Projection display device
JPH0547201A (en) Projection illuminating device
US2014039A (en) Light controlling apparatus
JPH0772419A (en) Illuminating optical system
JPH11327047A (en) Projecting device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110725

Year of fee payment: 15