JP2014041789A - Induction heating apparatus, and induction heating method - Google Patents

Induction heating apparatus, and induction heating method Download PDF

Info

Publication number
JP2014041789A
JP2014041789A JP2012184250A JP2012184250A JP2014041789A JP 2014041789 A JP2014041789 A JP 2014041789A JP 2012184250 A JP2012184250 A JP 2012184250A JP 2012184250 A JP2012184250 A JP 2012184250A JP 2014041789 A JP2014041789 A JP 2014041789A
Authority
JP
Japan
Prior art keywords
induction heating
diameter side
raceway
conductor
outer diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012184250A
Other languages
Japanese (ja)
Inventor
Hideyuki Tobitaka
秀幸 飛鷹
Kazuki Tamura
一輝 田村
Juntaro Sawara
淳太郎 佐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012184250A priority Critical patent/JP2014041789A/en
Publication of JP2014041789A publication Critical patent/JP2014041789A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency heat treatment device and a high frequency heat treatment method, which can manufacture a bearing: having life characteristics excellent in durability against any of breakage modes due to internal fatigue and surface fatigue; and excellent in fracture strength.SOLUTION: An induction heating apparatus 10 has a surface induction-heating coil 20 that heats an entire surface and a raceway surface induction-heating coil 30 that heats a raceway surface, both provided on a circle. The surface induction-heating coil 20 is disposed so that a plurality of pairs of an inner diameter side pillar conductor 21 and an outer diameter side pillar conductor 22, extending together in an axial direction so as to interpose a raceway ring therebetween on a virtual straight line extending in a radial direction from the center of the raceway ring, are arranged at a predetermined interval in a circumferential direction. Through the inner diameter side pillar conductor 21 and the outer diameter side pillar conductor 22 of each pair, current flows in an opposite direction to each other.

Description

本発明は、円周上に複数の誘導加熱コイルを有し、軸受の軌道輪を誘導加熱する誘導加熱装置及びそれを用いた誘導加熱方法に関する。   The present invention relates to an induction heating apparatus that includes a plurality of induction heating coils on a circumference and induction heats a bearing ring of a bearing, and an induction heating method using the same.

転がり軸受には寿命と靭性が要求される。特に高い荷重や衝撃的な荷重がかかることが多い産業用の軸受に関しては、両者のバランスが重要視される。   Rolling bearings are required to have longevity and toughness. Especially for industrial bearings, which are often subjected to high loads or shock loads, the balance between them is regarded as important.

転がり軸受の転がり寿命は内部起点型のはく離と表面起点型のはく離に大別される。前者は鋼中に含まれる非金属介在物を起点とするため、鋼材の酸素量を低減させる手法により長寿命化が行われてきた。これまで様々な製鋼プロセスの改善により酸素量の低減が図られているが、化学成分においては、炭素量が多いことが酸素量の低下に関して望ましい。実際に中炭素鋼であるS53Cに比べてSUJ2に代表される軸受鋼は高い清浄度を示すことが知られている。   The rolling life of rolling bearings is roughly classified into internal origin type peeling and surface origin type peeling. Since the former is based on non-metallic inclusions contained in the steel, the life has been extended by a technique for reducing the oxygen content of the steel material. Until now, the amount of oxygen has been reduced by improving various steelmaking processes. However, it is desirable that the chemical component has a large amount of carbon with respect to a decrease in the amount of oxygen. In fact, it is known that bearing steel represented by SUJ2 exhibits higher cleanliness than S53C, which is medium carbon steel.

後者の表面起点型はく離に関しては、油中に含まれる金属紛などの異物のかみ込みによって生じる圧痕の縁の応力集中によりはく離が生じるため、これを緩和する目的で残留オーステナイト量を制御し、長寿命化を測ってきた。一般に表面起点型はく離は内部起点型はく離に比べて明らかに短寿命であることから、長寿命軸受の開発は表面起点型はく離に関するものが多い。しかし、残留オーステナイトを多量に析出させるためには、表面に炭素や窒素の富化領域を形成させる必要が有り、そのためには浸炭や浸炭窒化などの特殊なガス雰囲気化での焼入れ処理が必要となる。さらに多量の残留オーステナイトの析出は転がり軸受に最も必要な表面硬度の低下をもたらすので、これを硬質の炭窒化物で補う必要が有り、そのために、Moなどの高価な合金元素が添加される場合もある。   With regard to the latter surface-origin type peeling, since the peeling occurs due to stress concentration at the edge of the indentation caused by the inclusion of foreign matter such as metal powder contained in the oil, the amount of retained austenite is controlled for the purpose of mitigating this, We have measured the lifetime. In general, surface-origin-type delamination has a significantly shorter life than internal-origin-type delamination, so the development of long-life bearings is mostly related to surface-origin-type delamination. However, in order to precipitate a large amount of retained austenite, it is necessary to form a carbon or nitrogen-enriched region on the surface, which requires a quenching treatment in a special gas atmosphere such as carburizing or carbonitriding. Become. Furthermore, the precipitation of a large amount of retained austenite brings about the decrease in the surface hardness that is most necessary for rolling bearings. Therefore, it is necessary to supplement this with hard carbonitrides. For this reason, when expensive alloy elements such as Mo are added. There is also.

一方、靭性に関しては材料の硬度とトレードオフの関係がある。したがって、靭性を向上させるためには硬度の低い領域をできるだけ多く確保することが基本的な方針になる。このような視点から低・中炭素鋼に浸炭あるいは浸炭窒化処理を施して、表面のみ硬化させた浸炭軸受が開発されている。ただし、浸炭鋼は鉄鋼用の軸受など比較的大きな軸受に使用されることが多く、焼入れ性を確保するために、NiやMo、Crといった比較的高価な合金元素を添加することが主流であり、浸炭処理などの熱処理の煩雑さと併せて、生産コストの増大を招いているのが現状である。   On the other hand, the toughness has a trade-off relationship with the hardness of the material. Therefore, in order to improve toughness, it is a basic policy to secure as many regions with low hardness as possible. From this point of view, carburized bearings have been developed in which only the surface is hardened by carburizing or carbonitriding the low and medium carbon steel. However, carburized steel is often used for relatively large bearings such as steel bearings, and in order to ensure hardenability, it is mainstream to add relatively expensive alloy elements such as Ni, Mo and Cr. The present situation is that the production cost is increased together with the complicated heat treatment such as carburizing treatment.

以上のような諸問題を受けて、近年では必要な部分を表面だけ焼入れ硬化する高周波熱処理が着目されている。これは、1つの部品の中で高い面圧に耐える硬化層と、靭性に優れた非硬化層を作り出すことで寿命と靭性を両立させる手法である。さらに、非硬化層を有することで、表面の硬化層には圧縮の残留応力を付与し、寿命およびクラックの伝播抑制に効果があると考えられている。また、焼入れ処理の有無で硬度をコントロールできるので、高合金の低炭素鋼でなく、清浄度に優れた、汎用の軸受鋼に代表される高炭素鋼を使用することができる。ところで、表面損傷に関して、残留オーステナイトが有効であることは先に示したが、高周波焼入れの特性上、電流密度は表面が高く、母材の炭素濃度が0.7%程度あれば、極表層のみに浸炭鋼並みの残留オーステナイトを確保することもできる。多量の残留オーステナイトは寸法変化という負の要因の一つになることも知られているが、深さ方向に見ると急激に残留オーステナイト量が低下するので、最大せん断応力深さ以下の極表面部には多量に存在させつつ、全体の体積率は低く抑えられるという利点も存在する。すなわち、軸受鋼に代表される高炭素鋼を用いて、高周波焼入れすることによって、内部疲労、表面疲労いずれの破損形態にも優れた寿命特性を有し、耐割れ強度に優れた軸受を製造できると考えられる。   In response to the above-described problems, in recent years, high-frequency heat treatment has been attracting attention in which only a necessary portion is quenched and hardened. This is a technique for achieving both life and toughness by creating a hardened layer that can withstand high surface pressure and a non-hardened layer having excellent toughness in one part. Furthermore, it is considered that by having a non-cured layer, a compressive residual stress is imparted to the cured layer on the surface, and it is effective in suppressing the life and propagation of cracks. In addition, since the hardness can be controlled by the presence or absence of quenching treatment, high carbon steel represented by general-purpose bearing steel having excellent cleanliness can be used instead of high alloy low carbon steel. By the way, with respect to surface damage, it has been shown earlier that retained austenite is effective. However, due to the characteristics of induction hardening, if the surface has a high current density and the carbon concentration of the base material is about 0.7%, only the extreme surface layer is present. In addition, retained austenite comparable to carburized steel can be secured. It is also known that a large amount of retained austenite is one of the negative factors of dimensional change, but when viewed in the depth direction, the amount of retained austenite decreases rapidly, so the extreme surface area below the maximum shear stress depth There is also an advantage that the entire volume ratio can be kept low while being present in a large amount. That is, by using high-carbon steel typified by bearing steel and induction hardening, it is possible to manufacture a bearing having excellent life characteristics in both internal fatigue and surface fatigue failure modes and excellent crack resistance. it is conceivable that.

ただし、軸受に高周波焼入れを適用する場合に問題点も存在する。これは製造方法に関する物であり、高周波熱処理が非常に短時間の処理であること、および加熱される領域がコイルの形状に依存する点に起因している。したがって、高周波熱処理法に関する文献は、高周波に適した鋼材に関するもの、前熱処理に関する物、装置に関する物など数多く報告されている。   However, there are problems when applying induction hardening to bearings. This relates to the manufacturing method, and is caused by the fact that the high-frequency heat treatment is a very short time treatment and that the region to be heated depends on the shape of the coil. Therefore, many literatures relating to the high frequency heat treatment method have been reported, such as those relating to steel materials suitable for high frequency, items relating to pre-heat treatment, and items relating to equipment.

例えば、特許文献1においては、環状部材の加熱において、円周方向に複数のコイルを配置し、それらのコイルとワークとの距離を調整することによって均一加熱を実現したことが報告されている。   For example, Patent Document 1 reports that in heating an annular member, uniform heating is realized by arranging a plurality of coils in the circumferential direction and adjusting the distance between the coils and the workpiece.

特許第4365311号公報Japanese Patent No. 4365311

本発明では転がり軸受の機能が浸炭等で作製された表面疲労に対して長寿命を有する製品を対象としており、軌道面の残留オーステナイトを15%以上確保する必要がある。その一方で、残留オーステナイトの総量が多くなる鋼では、長時間の使用による寸法安定性の劣化が避けられないため、軌道面以外の部分の残留オーステナイトはできるだけ低く抑える必要がある。しかしながら、特許文献1に記載の誘導加熱コイルを用いた場合、軌道面以外の部分(例えばはめ合い面やコイルがかかっている端面)まで均一に加熱されるため、長寿命の軸受として軌道面の残留オーステナイト量のみを増加させることが難しい。また、円周方向には同一形状のコイルを配置しているため、軌道面のみの温度を上昇させるような調整が難しい。   In the present invention, the product of the rolling bearing has a long life against surface fatigue produced by carburizing or the like, and it is necessary to secure 15% or more of retained austenite on the raceway surface. On the other hand, in steel with a large total amount of retained austenite, deterioration of dimensional stability due to long-term use is inevitable, so it is necessary to keep the retained austenite in portions other than the raceway surface as low as possible. However, when the induction heating coil described in Patent Document 1 is used, it is heated uniformly to a portion other than the raceway surface (for example, a fitting surface or an end surface on which the coil is applied). It is difficult to increase only the amount of retained austenite. Moreover, since coils having the same shape are arranged in the circumferential direction, it is difficult to make adjustments that raise the temperature of only the raceway surface.

このように、表面疲労による寿命延長が求められるような軸受に対する高周波熱処理方法は確立されていないのが現状である。   Thus, the present condition is that the high frequency heat processing method with respect to the bearing for which the life extension by surface fatigue is calculated | required is not established.

本発明は、前述した課題に鑑みてなされたものであり、その目的は、内部疲労、表面疲労いずれの破損形態にも優れた寿命特性を有し、耐割れ強度に優れた軸受を製造可能な高周波熱処理装置及び高周波熱処理方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and its purpose is to produce a bearing having excellent life characteristics in both internal fatigue and surface fatigue failure modes and excellent crack resistance. An object is to provide a high-frequency heat treatment apparatus and a high-frequency heat treatment method.

高周波熱処理では、ワークに対してコイルが正対した部分に渦電流が流れ、それがワークの発熱をもたらすために、加熱部と非加熱部を区別して部分的に加熱できる反面、電流の流れ方の制御が適切でないと特定部分に多く電流が流れてその部分だけ極端に温度が上昇するオーバーヒートと呼ばれる現象が起こる。オーバーヒートが発生すると、その部分の結晶粒が著しく粗大化し、靭性を中心とした機械的特性が劣化する。一方、加熱温度が不足すると、炭素の基地への溶け込みが不十分となる。転動疲労や摩耗に対して硬度は非常に重要な特性であり、その硬度は軸受鋼を含む構造用鋼と呼ばれる成分範囲では基地の炭素量に依存するため、必要な部位には炭素を十分に溶け込ませる必要がある。すなわち、ワークの温度が高い部分と低い部分の差が無いコイルほど、出力条件によってワークの熱処理品質を調整しやすい良いコイルと言える。   In high-frequency heat treatment, eddy current flows in the part where the coil is directly facing the work, which causes heat generation of the work. If this control is not appropriate, a phenomenon called overheating occurs in which a large amount of current flows through a specific portion and the temperature rises extremely in that portion. When overheating occurs, the crystal grains in that portion are remarkably coarsened, and the mechanical properties centering on toughness are deteriorated. On the other hand, when the heating temperature is insufficient, the penetration of carbon into the base becomes insufficient. Hardness is a very important characteristic for rolling fatigue and wear, and its hardness depends on the amount of carbon in the base in the component range called structural steel, including bearing steel. Need to be dissolved in That is, it can be said that a coil having a difference between a high temperature part and a low temperature part of the workpiece is a good coil that easily adjusts the heat treatment quality of the workpiece according to the output condition.

一方、軸受は特定のワークをのぞいて、つば部など凹凸部が存在し、凸部には熱が集中しやすく、凹部は熱が入りにくいことが知られている。本発明者らは、種々のつば部のある円錘内輪ワークに対して種々のコイルを用いて試作を繰り返した結果、つば部の過熱は円周方向に流れる電流が多いほど起こりやすいことを見出した。例えば、ターンコイル(ワークと同心円状にコイルを配置する)と上記が非常に極端に生じ、つば部のみに加熱が集中し、その近傍は電流が流れずに極端なオーバーヒートが発生する。   On the other hand, it is known that the bearing has a concave and convex portion such as a collar except for a specific workpiece, heat tends to concentrate on the convex portion, and the concave portion is difficult to receive heat. As a result of repeating trial production using various coils for an inner ring workpiece having various collar portions, the present inventors have found that overheating of the collar portion is more likely to occur as the current flowing in the circumferential direction increases. It was. For example, a turn coil (coil is arranged concentrically with a workpiece) and the above occur extremely extremely, and heating concentrates only on the collar portion, and no excessive current is generated in the vicinity without current flowing.

これを解決するためには、ワーク断面方向に均一に電流を流すことが必要である。具体的には、ワークを上から見た場合に、同一円周角度方向について、中心線から直線上にコイル→ワーク→コイルの順に並んでおり、なおかつ内径側のコイルと外径側のコイルの電流の向きが逆になっている必要があることが分かった。このようにコイルを制御することにより、ワーク断面に置いて電流は擬似的に閉回路として流れるため、ワーク表面は凹凸に限らず均一な電流が流れやすくなる。   In order to solve this, it is necessary to flow a current uniformly in the workpiece cross-sectional direction. Specifically, when the work is viewed from above, the same circumferential angle direction is arranged in the order of coil → work → coil in a straight line from the center line, and the inner diameter side coil and the outer diameter side coil It turns out that the direction of the current needs to be reversed. By controlling the coil in this way, the current flows in a pseudo closed circuit on the workpiece cross section, so that the workpiece surface is not limited to irregularities, and a uniform current can easily flow.

一方、上記はワーク表面全体を均一加熱するためのコイルであるが、転がり軸受の場合、転動体が転がる軌道面にはさらに厳密な品質管理が求められる。具体的には、残留オーステナイト量を15〜40体積%に制御しつつ、旧オーステナイト粒径を30μm以下に制御する必要がある。これを達成するためには、上記の表面均一加熱コイルに加えて、軌道面のみの温度を上げることができるコイルが必要である。このコイルは軌道面に正確に正対し、隣接するつば部などへの電流の流れを最小限にする必要がある。   On the other hand, although the above is a coil for uniformly heating the entire workpiece surface, in the case of a rolling bearing, more strict quality control is required for the raceway surface on which the rolling element rolls. Specifically, it is necessary to control the prior austenite grain size to 30 μm or less while controlling the residual austenite amount to 15 to 40% by volume. In order to achieve this, in addition to the surface uniform heating coil described above, a coil capable of raising the temperature of only the raceway surface is required. This coil must face the raceway accurately and minimize the flow of current to the adjacent collar.

本発明は、本発明者らの鋭意検討の結果得られたこれらの知見に基づいて、上記目的を達成する下記の構成を提供するものである。
(1) 円周上に複数の誘導加熱コイルを有し、軸受の軌道輪を誘導加熱する誘導加熱装置であって、
前記複数の誘導加熱コイルは、表面全体を加熱する表面誘導加熱コイルと、軌道面を加熱する軌道面誘導加熱コイルと、を含み、
前記表面誘導加熱コイルは、前記軌道輪の中心から径方向に延びる仮想直線上に前記軌道輪を挟むように共に軸方向に延びる内径側柱部導体と外径側柱部導体とを有するコイルを一組として、複数組が周方向に所定の間隔で配置され、
各組の前記内径側柱部導体と前記外径側柱部導体には逆向きの電流が流れることを特徴とする誘導加熱装置。
(2) 隣り合う組の前記内径側柱部導体同士及び前記外径側柱部導体同士には逆向きの電流が流れることを特徴とする(1)に記載の誘導加熱装置。
(3) 隣り合う組の前記内径側柱部導体同士及び前記外径側柱部導体同士を軸方向同じ側において接続導体で連結し、
前記接続導体が周方向で軸方向一方側と軸方向他方側で交互に配置し、
周方向一端側に位置する組の前記内径側柱部導体と前記外径側柱部導体は前記接続導体が連結されていない側で接続され、
周方向他端側に位置する組の前記内径側柱部導体と前記外径側柱部導体は前記接続導体が連結されていない側が電源に接続されることを特徴とする(2)に記載の誘導加熱装置。
(4) 前記内径側柱部導体と前記軌道輪との径方向距離及び前記外径側柱部導体と前記軌道輪との径方向距離とは等しく、
前記接続導体と前記軌道輪との軸方向距離は、前記径方向距離の2倍以上であることを特徴とする(3)に記載の誘導加熱装置。
(5) (1)〜(4)のいずれかに記載の誘導加熱装置を用いた誘導加熱方法であって、
前記軌道輪を回転させながら、前記表面誘導加熱コイルで心部が残存し表面が全て硬化するように加熱し、その後、前記軌道面誘導加熱コイルで前記軌道面を加熱することを特徴とする誘導加熱方法。
(6) 円周上に複数の誘導加熱コイルを有し、軸受の軌道輪を誘導加熱する誘導加熱装置であって、
前記複数の誘導加熱コイルは、表面全体を加熱する表面誘導加熱コイルと、軌道面を加熱する軌道面誘導加熱コイルと、を含み、
前記表面誘導加熱コイルは、前記軌道輪の中心から外径側に延びる仮想直線上に内径側柱部導体と外径側柱部導体とが前記軌道輪を挟むように配置され、
前記内径側柱部導体と前記外径側柱部導体には逆向きの電流が流れることを特徴とする誘導加熱装置。
(7) (6)に記載の誘導加熱装置を用いた誘導加熱方法であって、
前記軌道輪を回転させながら、前記表面誘導加熱コイルで心部が残存し表面が全て硬化するように加熱し、その後、前記軌道面誘導加熱コイルで前記軌道面を加熱することを特徴とする誘導加熱方法。
The present invention provides the following configuration that achieves the above object, based on these findings obtained as a result of intensive studies by the present inventors.
(1) An induction heating device having a plurality of induction heating coils on the circumference and induction heating the bearing raceway,
The plurality of induction heating coils include a surface induction heating coil that heats the entire surface, and a raceway surface induction heating coil that heats the raceway surface,
The surface induction heating coil includes a coil having an inner diameter side columnar conductor and an outer diameter side columnar conductor both extending in the axial direction so as to sandwich the raceway on a virtual straight line extending in the radial direction from the center of the bearing ring. As a set, a plurality of sets are arranged at predetermined intervals in the circumferential direction,
An induction heating apparatus, wherein a reverse current flows through the inner diameter side columnar conductor and the outer diameter side columnar conductor of each set.
(2) The induction heating device according to (1), wherein a current in a reverse direction flows between the inner diameter side columnar conductors and the outer diameter side columnar conductors of adjacent groups.
(3) The adjacent inner diameter side columnar conductors and the outer diameter side columnar conductors of the adjacent sets are connected with a connecting conductor on the same side in the axial direction,
The connecting conductors are alternately arranged in the circumferential direction on one axial side and the other axial side,
The inner diameter side columnar conductor and the outer diameter side columnar conductor of the set located on one end side in the circumferential direction are connected on the side where the connection conductor is not connected,
The inner diameter side columnar conductor and the outer diameter side columnar conductor of the set located on the other end side in the circumferential direction are connected to a power source on the side where the connection conductor is not connected. Induction heating device.
(4) A radial distance between the inner diameter side columnar conductor and the raceway and a radial distance between the outer diameter side columnar conductor and the raceway are equal,
The induction heating apparatus according to (3), wherein an axial distance between the connection conductor and the raceway is at least twice the radial distance.
(5) An induction heating method using the induction heating device according to any one of (1) to (4),
The induction is characterized in that, while rotating the raceway, the surface induction heating coil is heated so that the core remains and the entire surface is hardened, and then the raceway surface is heated by the raceway induction heating coil. Heating method.
(6) An induction heating device having a plurality of induction heating coils on the circumference and induction heating the bearing raceway,
The plurality of induction heating coils include a surface induction heating coil that heats the entire surface, and a raceway surface induction heating coil that heats the raceway surface,
The surface induction heating coil is arranged so that an inner diameter side columnar conductor and an outer diameter side columnar conductor sandwich the raceway on a virtual straight line extending from the center of the raceway to the outer diameter side,
An induction heating apparatus, wherein a reverse current flows through the inner diameter side columnar conductor and the outer diameter side columnar conductor.
(7) An induction heating method using the induction heating device according to (6),
The induction is characterized in that, while rotating the raceway, the surface induction heating coil is heated so that the core remains and the entire surface is hardened, and then the raceway surface is heated by the raceway induction heating coil. Heating method.

本発明の誘導加熱装置及び誘導加熱方法によれば、表面全体を加熱する表面誘導加熱コイルにより高い面圧に耐える硬化層と、靱性に優れた非硬化層とを形成することができ、さらに軌道面を加熱する軌道面誘導加熱コイルにより表面損傷に強い残留オーステナイト量を確保することができる。これにより、内部疲労、表面疲労いずれの破損形態にも優れた寿命特性を有し、耐割れ強度に優れた軸受を製造することができる。   According to the induction heating apparatus and the induction heating method of the present invention, a hardened layer that can withstand high surface pressure and a non-hardened layer having excellent toughness can be formed by a surface induction heating coil that heats the entire surface. The amount of retained austenite resistant to surface damage can be ensured by the raceway surface induction heating coil for heating the surface. Thereby, it is possible to produce a bearing having excellent life characteristics in both internal fatigue and surface fatigue failure modes and excellent crack resistance.

本発明に係る一実施形態の誘導加熱装置を模式的に示す斜視図である。It is a perspective view showing typically the induction heating device of one embodiment concerning the present invention. 表面誘導加熱コイルを軸方向一方側から見た、表面誘導加熱コイル説明図である。It is surface induction heating coil explanatory drawing which looked at the surface induction heating coil from the axial direction one side.

以下、本発明の軸受の軌道輪を誘導加熱する誘導加熱装置の誘導加熱方法について、図面に基づいて詳細に説明する。図1は本発明に係る一実施形態の誘導加熱装置を模式的に示す斜視図であり、図2は表面誘導加熱コイルを軸方向一方側から見た、表面誘導加熱コイル説明図である。   Hereinafter, an induction heating method of an induction heating apparatus for induction heating the bearing ring of the bearing of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view schematically showing an induction heating apparatus according to an embodiment of the present invention, and FIG. 2 is an explanatory view of a surface induction heating coil when the surface induction heating coil is viewed from one side in the axial direction.

本発明の一実施形態の誘導加熱装置10は、図1に示すように、加工対象である軸受の軌道輪Wの円周方向に異なる役割を有する2つの誘導加熱コイル20,30を、備えている。図1では、軸受の軌道輪Wとして、外周面に軌道面Waを有する内輪を示している。   As shown in FIG. 1, the induction heating device 10 according to an embodiment of the present invention includes two induction heating coils 20 and 30 having different roles in the circumferential direction of the bearing ring W of a bearing to be processed. Yes. In FIG. 1, an inner ring having a raceway surface Wa on the outer peripheral surface is shown as the bearing ring W of the bearing.

誘導加熱コイル20は軌道輪Wの表面全体を加熱する表面誘導加熱コイルであり、誘導加熱コイル30は軌道輪Wの軌道面Waを加熱する軌道面誘導加熱コイルである。以下、誘導加熱コイル20を表面誘導加熱コイルと、誘導加熱コイル30を軌道面誘導加熱コイルと呼ぶ。   The induction heating coil 20 is a surface induction heating coil that heats the entire surface of the raceway ring W, and the induction heating coil 30 is a raceway surface induction heating coil that heats the raceway surface Wa of the raceway ring W. Hereinafter, the induction heating coil 20 is referred to as a surface induction heating coil, and the induction heating coil 30 is referred to as a raceway surface induction heating coil.

先ず、図2も参照しながら表面誘導加熱コイル20について説明する。
表面を均一に加熱するためには軌道輪Wの断面内で電流を流すこと、言い換えれば、つば部に周方向の電流を流さないことが重要である。そのため、表面誘導加熱コイル20には、軌道輪Wの中心Oから径方向に延びる仮想直線P上に軌道輪Wを挟むように共に軸方向に延びる内径側柱部導体21と外径側柱部導体22とを有するコイルを一組として、4組のコイル23A〜23Dが周方向に所定の間隔で形成されている。各組のコイルは、内径側柱部導体21から軌道輪Wの内周面までの距離L1と、外径側柱部導体22から軌道輪Wの外周面までの距離L2が等しくなるように配置される(L1=L2)。
First, the surface induction heating coil 20 will be described with reference to FIG.
In order to heat the surface uniformly, it is important to pass a current in the cross section of the raceway ring W, in other words, not to flow a current in the circumferential direction to the collar portion. Therefore, the surface induction heating coil 20 includes an inner diameter side columnar conductor 21 and an outer diameter side column portion that extend in the axial direction so as to sandwich the raceway ring W on a virtual straight line P extending in the radial direction from the center O of the raceway ring W. Four sets of coils 23 </ b> A to 23 </ b> D are formed at a predetermined interval in the circumferential direction, with a set of coils having a conductor 22. The coils of each set are arranged such that the distance L1 from the inner diameter side columnar conductor 21 to the inner circumferential surface of the race ring W and the distance L2 from the outer diameter side columnar conductor 22 to the outer circumferential surface of the race ring W are equal. (L1 = L2).

また、軌道輪Wの断面内で電流を流すためには、軌道輪Wを挟んだ各組の内径側柱部導体21と外径側柱部導体22に電流を逆向きに流す必要がある。また、独立した複数の閉回路を形成するためには、隣り合う組の内径側柱部導体21,21同士、外径側柱部導体22,22同士には逆向きの電流が流れるように接続する必要がある。そのため、隣り合う組の内径側柱部導体21,21同士及び外径側柱部導体同士22,22は軸方向同じ側において接続導体24で接続される。   Further, in order to pass a current in the cross section of the raceway ring W, it is necessary to feed a current in the opposite direction to each set of the inner diameter side columnar conductor 21 and the outer diameter side columnar conductor 22 across the raceway ring W. Further, in order to form a plurality of independent closed circuits, the adjacent inner diameter side column conductors 21 and 21 and the outer diameter side column conductors 22 and 22 are connected so that reverse currents flow between them. There is a need to. Therefore, the adjacent inner diameter side columnar conductors 21 and 21 and the outer diameter side columnar conductors 22 and 22 are connected by the connection conductor 24 on the same side in the axial direction.

より具体的に説明すると、周方向一端側に位置する第1組コイル23Aから角度αの位置に第2組コイル23Bが配置され、第2組コイル23Bから角度αの位置に第3組コイル23Cが配置され、さらに第3組コイル23Cから角度αの位置に第4組コイル23Dが配置されている。従って、隣り合う組の内径側柱部導体21間距離L3は、隣り合う組の外径側柱部導体22間距離L4よりも短くなる(L3<L4)。   More specifically, the second assembled coil 23B is arranged at a position with an angle α from the first assembled coil 23A located on one end side in the circumferential direction, and the third assembled coil 23C is disposed at a position with an angle α from the second assembled coil 23B. And a fourth coil assembly 23D is disposed at an angle α from the third coil assembly 23C. Therefore, the distance L3 between the inner diameter side columnar conductors 21 of the adjacent sets is shorter than the distance L4 between the outer diameter side columnar conductors 22 of the adjacent sets (L3 <L4).

第1組コイル23Aの内径側柱部導体21と第2組コイル23Bの内径側柱部導体21同士、及び、第1組コイル23Aの外径側柱部導体22と第2組コイル23Bの外径側柱部導体22同士は、軸方向一方側(図1中下方)で接続導体24で接続される。第2組コイル23Bの内径側柱部導体21と第3組コイル23Cの内径側柱部導体21同士、及び、第2組コイル23Bの外径側柱部導体22と第3組コイル23Cの外径側柱部導体22同士は、軸方向他方側(図1中上方)で接続導体24で接続される。第3組コイル23Cの内径側柱部導体21と第4組コイル23Dの内径側柱部導体21同士、及び、第3組コイル23Cの外径側柱部導体22と第4組コイル23Dの外径側柱部導体22同士は、軸方向一方側(図1中下方)で接続導体24で接続される。即ち、接続導体24は、周方向で軸方向一方側(図1中下方)と軸方向他方側(図1中上方)で交互に配置されている。   The inner diameter side columnar conductor 21 of the first assembled coil 23A and the inner diameter side columnar conductor 21 of the second assembled coil 23B, and the outer diameter side columnar conductor 22 of the first assembled coil 23A and the outside of the second assembled coil 23B. The radial columnar conductors 22 are connected to each other by a connection conductor 24 on one side in the axial direction (downward in FIG. 1). The inner diameter side columnar conductor 21 of the second assembled coil 23B and the inner diameter side columnar conductor 21 of the third assembled coil 23C, and the outer diameter side columnar conductor 22 of the second assembled coil 23B and the outside of the third assembled coil 23C. The radial columnar conductors 22 are connected to each other by a connecting conductor 24 on the other axial side (upper side in FIG. 1). The inner diameter side columnar conductor 21 of the third assembled coil 23C and the inner diameter side columnar conductor 21 of the fourth assembled coil 23D, and the outer diameter side columnar conductor 22 of the third assembled coil 23C and the outside of the fourth assembled coil 23D. The radial columnar conductors 22 are connected to each other by a connection conductor 24 on one side in the axial direction (downward in FIG. 1). That is, the connection conductors 24 are alternately arranged on the one axial side (lower side in FIG. 1) and the other axial side (upper side in FIG. 1) in the circumferential direction.

周方向一端側に位置する第1組コイル23Aは、接続導体24が連結されていない側である軸方向他方側(図1中上方)で接続導体24により内径側柱部導体21と外径側柱部導体22とが接続され、周方向他端側に位置する第4組コイル23Dは、接続導体24が連結されていない側である軸方向他方側(図1中上方)で不図示の電源に接続される。   The first coil assembly 23A located on one end side in the circumferential direction is connected to the inner diameter side columnar conductor 21 and the outer diameter side by the connecting conductor 24 on the other axial side (upper side in FIG. 1) that is not connected to the connecting conductor 24. The fourth coil assembly 23D connected to the columnar conductor 22 and located on the other circumferential end is a power source (not shown) on the other axial side (upper side in FIG. 1) that is not connected to the connecting conductor 24. Connected to.

接続導体24と軌道輪Wとの軸方向距離L5は、内径側柱部導体21又は外径側柱部導体22と軌道輪Wとの径方向距離(L1、L2)の2倍以上確保される(L5≧2×L1(L2))。接続導体24も磁界を発生させ、軌道輪Wに作用すると発熱をもたらすが、接続導体24による発熱は軌道輪Wのつば部などを余分に発熱させ過熱の原因になりやすいため、その役割は電気的な接続に限定すべきである。   The axial distance L5 between the connection conductor 24 and the raceway ring W is secured at least twice the radial distance (L1, L2) between the inner diameter side columnar conductor 21 or the outer diameter side columnar conductor 22 and the raceway ring W. (L5 ≧ 2 × L1 (L2)). The connection conductor 24 also generates a magnetic field and generates heat when it acts on the raceway ring W. However, the heat generated by the connection conductor 24 causes excessive heat generation at the collar portion of the raceway ring W and is likely to cause overheating. Should be limited to typical connections.

このように構成された表面誘導加熱コイル20に電流を流すと、第1組コイル23Aの内径側柱部導体21、第2組コイル23Bの外径側柱部導体22、第3組コイル23Cの内径側柱部導体21、第4組コイル23Dの外径側柱部導体22に同じ向きの電流が流れ、これと逆向きの電流が第1組コイル23Aの外径側柱部導体22、第2組コイル23Bの内径側柱部導体21、第3組コイル23Cの外径側柱部導体22、第4組コイル23Dの内径側柱部導体21に流れる。   When a current is passed through the surface induction heating coil 20 configured in this way, the inner diameter side columnar conductor 21 of the first assembled coil 23A, the outer diameter side columnar conductor 22 of the second assembled coil 23B, and the third assembled coil 23C A current in the same direction flows through the inner diameter side columnar conductor 21 and the outer diameter side columnar conductor 22 of the fourth set coil 23D, and a current in the opposite direction flows to the outer diameter side columnar conductor 22 of the first set coil 23A. It flows to the inner diameter side columnar conductor 21 of the second set coil 23B, the outer diameter side columnar conductor 22 of the third set coil 23C, and the inner diameter side columnar conductor 21 of the fourth set coil 23D.

即ち、各組の内径側柱部導体21と外径側柱部導体22には逆向きの電流が流れると共に、隣り合う組の内径側柱部導体21,21同士、外径側柱部導体22,22同士には逆向きの電流が流れ、擬似的な4つの独立した閉回路が形成される。   That is, a current in the opposite direction flows through the inner diameter side columnar conductor 21 and the outer diameter side columnar conductor 22 of each set, and the inner diameter side columnar conductors 21, 21 of the adjacent groups, the outer diameter side columnar conductor 22. , 22 flow in opposite directions, and form four pseudo independent closed circuits.

一方で、軌道輪Wの品質を確保するために、転動体が通過する軌道面Waの温度をその他の部分よりも高くする必要がある。そのため、軌道面誘導加熱コイル30には、軌道面のみを加熱するように軌道面Waに沿った円弧状コイル31が軌道面Waから等距離に配置される。円弧状コイル31の周方向両端側で不図示の電源に接続される。   On the other hand, in order to ensure the quality of the raceway ring W, the temperature of the raceway surface Wa through which the rolling elements pass needs to be higher than that of the other portions. Therefore, in the raceway surface induction heating coil 30, the arc-shaped coil 31 along the raceway surface Wa is arranged at an equal distance from the raceway surface Wa so as to heat only the raceway surface. The arc-shaped coil 31 is connected to a power source (not shown) at both ends in the circumferential direction.

続いて、この誘導加熱装置10を用いた誘導加熱方法について説明する。
先ず、軌道輪Wを回転台(不図示)にのせ、回転中心を確保した後に、表面誘導加熱コイル20と軌道面誘導加熱コイル30を所定の位置になるように移動する。ついで、軌道輪Wを回転させ、定常状態になったことを確認した後、表面誘導加熱コイル20に電流を流し、加熱を開始する。所定の時間加熱した後に、軌道面誘導加熱コイル30に電力を投入し、所定の時間経過後、電力をカットし、水冷を行う。
Then, the induction heating method using this induction heating apparatus 10 is demonstrated.
First, after placing the race ring W on a turntable (not shown) and securing the center of rotation, the surface induction heating coil 20 and the raceway surface induction heating coil 30 are moved to a predetermined position. Next, after rotating the race ring W and confirming that it has reached a steady state, an electric current is passed through the surface induction heating coil 20 to start heating. After heating for a predetermined time, electric power is supplied to the raceway surface induction heating coil 30, and after a predetermined time has elapsed, the power is cut and water cooling is performed.

ワークとしての軌道輪Wは、汎用の高炭素クロム鋼(SUJ2、SUJ3、SUJ4、SUJ5)に代表される過共析組成のずぶ焼き鋼が好ましい。表面誘導加熱コイル20により、つば部の過熱を抑制した上で軌道輪Wの表面温度をA1変態点以上に表面全体を加熱することで、心部が残存しかつ表面が全て硬化されるように高周波熱処理が施される。また、軌道面誘導加熱コイル30により、軌道面Waに対して加熱を追加することで、軌道面表面の残留オーステナイトおよび大きなせん断応力を受ける領域の組織を制御することができる。軌道面Waの残留オーステナイトを15〜40%に制御し、旧オーステナイト粒径を30μm以下に制御する。以上の手法により、軌道面Waの転がり耐久性を確保しながら短時間で高品質の軸受の製造が可能となり、異物混入潤滑環境下など寿命の低下が懸念されるような用途において長寿命を示す転がり軸受を製造することができる。   The bearing ring W as a workpiece is preferably a baked steel having a hypereutectoid composition represented by general-purpose high carbon chrome steel (SUJ2, SUJ3, SUJ4, SUJ5). The surface induction heating coil 20 suppresses overheating of the collar portion, and the surface temperature of the race ring W is heated to the A1 transformation point or higher so that the core remains and the entire surface is cured. Induction heat treatment is performed. Further, by adding heating to the raceway surface Wa by the raceway surface induction heating coil 30, it is possible to control the structure of the retained austenite on the raceway surface and the region subjected to a large shear stress. The retained austenite on the raceway surface Wa is controlled to 15 to 40%, and the prior austenite grain size is controlled to 30 μm or less. By the above method, it becomes possible to manufacture a high-quality bearing in a short time while ensuring the rolling durability of the raceway surface Wa, and it shows a long life in applications where there is a concern about a decrease in the life such as in a lubricating environment containing foreign matter. Rolling bearings can be manufactured.

尚、本発明は、前述した各実施形態に限定されるものではなく、適宜、変形、改良、等が可能である。
例えば、表面誘導加熱コイル20は、上記実施形態では、4組のコイル23A〜23Dをから構成したが、1組以上のコイルから構成されていればよく、ワークサイズの大きさ、各々のコイルの加熱能力に応じてその数を必要分だけ増加させてもよい。
また、ワークとしての軌道輪Wが外輪の場合には、軌道面誘導加熱コイル30の円弧状コイル31は軌道輪Wの内側に配置される。
In addition, this invention is not limited to each embodiment mentioned above, A deformation | transformation, improvement, etc. are possible suitably.
For example, the surface induction heating coil 20 is composed of four sets of coils 23A to 23D in the above embodiment, but may be composed of one or more sets of coils. The number may be increased by a necessary amount depending on the heating capacity.
Further, when the raceway ring W as the workpiece is an outer race, the arc-shaped coil 31 of the raceway surface induction heating coil 30 is disposed inside the raceway ring W.

10 誘導加熱装置
20 表面誘導加熱コイル
21 内径側柱部導体
22 外径側柱部導体
24 接続導体
30 軌道面誘導加熱コイル
W 軌道輪
Wa 軌道面
DESCRIPTION OF SYMBOLS 10 Induction heating apparatus 20 Surface induction heating coil 21 Inner diameter side column part conductor 22 Outer diameter side column part conductor 24 Connection conductor 30 Track surface induction heating coil W Track ring Wa Track surface

Claims (7)

円周上に複数の誘導加熱コイルを有し、軸受の軌道輪を誘導加熱する誘導加熱装置であって、
前記複数の誘導加熱コイルは、表面全体を加熱する表面誘導加熱コイルと、軌道面を加熱する軌道面誘導加熱コイルと、を含み、
前記表面誘導加熱コイルは、前記軌道輪の中心から径方向に延びる仮想直線上に前記軌道輪を挟むように共に軸方向に延びる内径側柱部導体と外径側柱部導体とを有するコイルを一組として、複数組が周方向に所定の間隔で配置され、
各組の前記内径側柱部導体と前記外径側柱部導体には逆向きの電流が流れることを特徴とする誘導加熱装置。
An induction heating device having a plurality of induction heating coils on the circumference and induction heating the bearing raceway,
The plurality of induction heating coils include a surface induction heating coil that heats the entire surface, and a raceway surface induction heating coil that heats the raceway surface,
The surface induction heating coil includes a coil having an inner diameter side columnar conductor and an outer diameter side columnar conductor both extending in the axial direction so as to sandwich the raceway on a virtual straight line extending in the radial direction from the center of the bearing ring. As a set, a plurality of sets are arranged at predetermined intervals in the circumferential direction,
An induction heating apparatus, wherein a reverse current flows through the inner diameter side columnar conductor and the outer diameter side columnar conductor of each set.
隣り合う組の前記内径側柱部導体同士及び前記外径側柱部導体同士には逆向きの電流が流れることを特徴とする請求項1に記載の誘導加熱装置。   2. The induction heating device according to claim 1, wherein currents in opposite directions flow between the inner diameter side columnar conductors and the outer diameter side columnar conductors of adjacent sets. 隣り合う組の前記内径側柱部導体同士及び前記外径側柱部導体同士を軸方向同じ側において接続導体で連結し、
前記接続導体が周方向で軸方向一方側と軸方向他方側で交互に配置し、
周方向一端側に位置する組の前記内径側柱部導体と前記外径側柱部導体は前記接続導体が連結されていない側で接続され、
周方向他端側に位置する組の前記内径側柱部導体と前記外径側柱部導体は前記接続導体が連結されていない側が電源に接続されることを特徴とする請求項2に記載の誘導加熱装置。
The adjacent inner diameter side column part conductors and the outer diameter side column part conductors of the adjacent sets are connected with a connection conductor on the same side in the axial direction,
The connecting conductors are alternately arranged in the circumferential direction on one axial side and the other axial side,
The inner diameter side columnar conductor and the outer diameter side columnar conductor of the set located on one end side in the circumferential direction are connected on the side where the connection conductor is not connected,
The said inner diameter side column part conductor and the said outer diameter side column part conductor of the group located in the other end side of the circumferential direction are connected to a power source on the side where the connection conductor is not connected. Induction heating device.
前記内径側柱部導体と前記軌道輪との径方向距離及び前記外径側柱部導体と前記軌道輪との径方向距離とは等しく、
前記接続導体と前記軌道輪との軸方向距離は、前記径方向距離の2倍以上であることを特徴とする請求項3に記載の誘導加熱装置。
The radial distance between the inner diameter side columnar conductor and the raceway and the radial distance between the outer diameter side columnar conductor and the raceway are equal,
The induction heating device according to claim 3, wherein an axial distance between the connection conductor and the raceway is twice or more of the radial distance.
請求項1〜4のいずれか1項に記載の誘導加熱装置を用いた誘導加熱方法であって、
前記軌道輪を回転させながら、前記表面誘導加熱コイルで心部が残存し表面が全て硬化するように加熱し、その後、前記軌道面誘導加熱コイルで前記軌道面を加熱することを特徴とする誘導加熱方法。
An induction heating method using the induction heating device according to any one of claims 1 to 4,
The induction is characterized in that, while rotating the raceway, the surface induction heating coil is heated so that the core remains and the entire surface is hardened, and then the raceway surface is heated by the raceway induction heating coil. Heating method.
円周上に複数の誘導加熱コイルを有し、軸受の軌道輪を誘導加熱する誘導加熱装置であって、
前記複数の誘導加熱コイルは、表面全体を加熱する表面誘導加熱コイルと、軌道面を加熱する軌道面誘導加熱コイルと、を含み、
前記表面誘導加熱コイルは、前記軌道輪の中心から外径側に延びる仮想直線上に内径側柱部導体と外径側柱部導体とが前記軌道輪を挟むように配置され、
前記内径側柱部導体と前記外径側柱部導体には逆向きの電流が流れることを特徴とする誘導加熱装置。
An induction heating device having a plurality of induction heating coils on the circumference and induction heating the bearing raceway,
The plurality of induction heating coils include a surface induction heating coil that heats the entire surface, and a raceway surface induction heating coil that heats the raceway surface,
The surface induction heating coil is arranged so that an inner diameter side columnar conductor and an outer diameter side columnar conductor sandwich the raceway on a virtual straight line extending from the center of the raceway to the outer diameter side,
An induction heating apparatus, wherein a reverse current flows through the inner diameter side columnar conductor and the outer diameter side columnar conductor.
請求項6に記載の誘導加熱装置を用いた誘導加熱方法であって、
前記軌道輪を回転させながら、前記表面誘導加熱コイルで心部が残存し表面が全て硬化するように加熱し、その後、前記軌道面誘導加熱コイルで前記軌道面を加熱することを特徴とする誘導加熱方法。
An induction heating method using the induction heating device according to claim 6,
The induction is characterized in that, while rotating the raceway, the surface induction heating coil is heated so that the core remains and the entire surface is hardened, and then the raceway surface is heated by the raceway induction heating coil. Heating method.
JP2012184250A 2012-08-23 2012-08-23 Induction heating apparatus, and induction heating method Pending JP2014041789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184250A JP2014041789A (en) 2012-08-23 2012-08-23 Induction heating apparatus, and induction heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184250A JP2014041789A (en) 2012-08-23 2012-08-23 Induction heating apparatus, and induction heating method

Publications (1)

Publication Number Publication Date
JP2014041789A true JP2014041789A (en) 2014-03-06

Family

ID=50393882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184250A Pending JP2014041789A (en) 2012-08-23 2012-08-23 Induction heating apparatus, and induction heating method

Country Status (1)

Country Link
JP (1) JP2014041789A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017213A (en) * 2014-07-09 2016-02-01 株式会社ジェイテクト High frequency induction heating device
CN105506258A (en) * 2015-12-14 2016-04-20 江苏南方轴承股份有限公司 Automobile steering bearing component induction heat treatment tool
US9709099B2 (en) 2014-10-17 2017-07-18 Jtekt Corporation Bearing ring and rolling bearing
KR101891001B1 (en) * 2016-12-09 2018-09-28 경일대학교산학협력단 Induction Heat coil apparatus, Induction Heat treatment equipment and Induction Heat treatment method
CN108746911A (en) * 2018-06-20 2018-11-06 西迪技术股份有限公司 A kind of preparation facilities of diamond compact journal bearing
US20180347623A1 (en) * 2015-10-29 2018-12-06 Ntn Corporation Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
US10538821B2 (en) 2014-10-17 2020-01-21 Jtekt Corporation Heat treatment apparatus and heat treatment method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179359A (en) * 2004-12-24 2006-07-06 High Frequency Heattreat Co Ltd Induction heating coil and induction heating method for heating annular member from inner and outer periphery
JP2009270172A (en) * 2008-05-09 2009-11-19 Nsk Ltd Method for manufacturing bearing ring for rolling bearing
JP2012149304A (en) * 2011-01-19 2012-08-09 Nsk Ltd Heat treatment method of track member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179359A (en) * 2004-12-24 2006-07-06 High Frequency Heattreat Co Ltd Induction heating coil and induction heating method for heating annular member from inner and outer periphery
JP2009270172A (en) * 2008-05-09 2009-11-19 Nsk Ltd Method for manufacturing bearing ring for rolling bearing
JP2012149304A (en) * 2011-01-19 2012-08-09 Nsk Ltd Heat treatment method of track member

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017213A (en) * 2014-07-09 2016-02-01 株式会社ジェイテクト High frequency induction heating device
US9709099B2 (en) 2014-10-17 2017-07-18 Jtekt Corporation Bearing ring and rolling bearing
US10538821B2 (en) 2014-10-17 2020-01-21 Jtekt Corporation Heat treatment apparatus and heat treatment method
US11319605B2 (en) 2014-10-17 2022-05-03 Jtekt Corporation Heat treatment apparatus and heat treatment method
US20180347623A1 (en) * 2015-10-29 2018-12-06 Ntn Corporation Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
US10718377B2 (en) * 2015-10-29 2020-07-21 Ntn Corporation Method for producing bearing ring, double row tapered roller bearing, and method for producing double row tapered roller bearing
CN105506258A (en) * 2015-12-14 2016-04-20 江苏南方轴承股份有限公司 Automobile steering bearing component induction heat treatment tool
CN105506258B (en) * 2015-12-14 2018-02-27 江苏南方轴承股份有限公司 Motor turning bearing portion part induction heat treatment frock
KR101891001B1 (en) * 2016-12-09 2018-09-28 경일대학교산학협력단 Induction Heat coil apparatus, Induction Heat treatment equipment and Induction Heat treatment method
CN108746911A (en) * 2018-06-20 2018-11-06 西迪技术股份有限公司 A kind of preparation facilities of diamond compact journal bearing
CN108746911B (en) * 2018-06-20 2020-09-18 西迪技术股份有限公司 Preparation device for radial bearing with diamond compact

Similar Documents

Publication Publication Date Title
JP2014041789A (en) Induction heating apparatus, and induction heating method
US20170089470A1 (en) Pressure Pumping Valves And Methods Of Making Such Valves
US8820615B2 (en) Method for manufacturing a steel component, a weld seam, a welded steel component, and a bearing component
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP2015010260A (en) Method of high-frequency heating of rolling bearing and induction heating coil
EP2666875A1 (en) Method for manufacturing bearing ring, bearing ring, and rolling bearing
EP2772555A1 (en) Ring-shaped member heat treatment method and ring-shaped member manufacturing method
WO2014069068A1 (en) Rolling bearing
JP5298683B2 (en) Rolling bearing and manufacturing method thereof
CN102943168A (en) Heat treatment process for rolling bearing
JP2010025311A (en) Rolling bearing and method of manufacturing the same
JP2021110032A (en) Production method of bearing ring of rolling bearing
JP5994377B2 (en) Radial rolling bearing inner ring and manufacturing method thereof
JP2019039044A (en) Rolling slide member and rolling bearing
JP2021110342A (en) Bearing ring of rolling bearing
JP2008174821A (en) Thrust bearing
JP2006200019A (en) Method for manufacturing bearing washer of thrust bearing and method for manufacturing thrust bearing
JP2016151352A (en) Rolling bearing
US20170138400A1 (en) Bainite hardened stack bearing
JP2006200724A (en) Thrust bearing for automatic transmission
JP2008064159A (en) Method of manufacturing track member, method of manufacturing valve gear, and track member
JP6044744B2 (en) Ball screw device
JP2009204025A (en) Large rolling bearing
JP2017106077A (en) Manufacturing method of steel for machine component excellent in rolling motion fatigue life
JP2017002359A (en) Method of manufacturing rolling shaft

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018