JP2014041783A - Method for manufacturing solid state battery - Google Patents

Method for manufacturing solid state battery Download PDF

Info

Publication number
JP2014041783A
JP2014041783A JP2012184052A JP2012184052A JP2014041783A JP 2014041783 A JP2014041783 A JP 2014041783A JP 2012184052 A JP2012184052 A JP 2012184052A JP 2012184052 A JP2012184052 A JP 2012184052A JP 2014041783 A JP2014041783 A JP 2014041783A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
positive electrode
solid electrolyte
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012184052A
Other languages
Japanese (ja)
Other versions
JP5900244B2 (en
Inventor
Takamasa Otomo
崇督 大友
Koji Kawamoto
浩二 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012184052A priority Critical patent/JP5900244B2/en
Publication of JP2014041783A publication Critical patent/JP2014041783A/en
Application granted granted Critical
Publication of JP5900244B2 publication Critical patent/JP5900244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To increase charge/discharge capacity in a solid state battery having a Si negative electrode; and to provide porous carbon capable of providing a metal air battery improved in output characteristics while securing high capacity, and a metal air battery including the porous carbon in a positive electrode.SOLUTION: A method for manufacturing a solid state battery that includes a negative electrode containing Si as an active material, a positive electrode, and a Li-containing solid electrolyte disposed between the negative electrode and the positive electrode includes an initial charge/discharge treatment where an initial charging after the battery has been configured is performed while kept at a constant voltage for 20 hours or more so that a potential of a Si negative electrode becomes 20 mV(vs.Li/Li) or less, and then discharging is performed.

Description

本発明は、充電比容量の高い固体電池の製造方法に関する。   The present invention relates to a method for manufacturing a solid battery having a high charge specific capacity.

パソコン、ビデオカメラ、携帯電話等の小型化に伴い、情報関連機器、通信機器の分野では、これらの機器に用いる電源として、高エネルギー密度であるという理由から、リチウム二次電池が実用化され広く普及するに至っている。また一方で、自動車の分野においても、環境問題、資源問題から電気自動車やハイブリッド自動車の開発が急がれており、この電気自動車用やハイブリッド自動車の電源としても、リチウム二次電池が検討されている。   With the miniaturization of personal computers, video cameras, mobile phones, etc., in the fields of information-related equipment and communication equipment, lithium secondary batteries have been put into practical use because of their high energy density as the power source used for these equipment. It has become widespread. On the other hand, in the field of automobiles, development of electric vehicles and hybrid vehicles is urgently caused by environmental problems and resource issues. Lithium secondary batteries are also being considered as power sources for electric vehicles and hybrid vehicles. Yes.

現在、リチウム二次電池の負極には、負極活物質として炭素材料が一般的に用いられている。炭素材料は、安価で入手が容易であるものの、Liの吸蔵量が少なく、充分な充放電容量を有するリチウム二次電池を得ることができないという問題があった。   Currently, carbon materials are generally used as negative electrode active materials for negative electrodes of lithium secondary batteries. Although the carbon material is inexpensive and easily available, there is a problem that a lithium secondary battery having a small amount of occlusion of Li and having a sufficient charge / discharge capacity cannot be obtained.

このような問題に対して、炭素材料以外の材料を負極活物質として用いる研究がなされている。例えば特許文献1においては、Siを含む負極から形成された二次電池用負極が開示されている。   In order to solve such a problem, research using a material other than a carbon material as a negative electrode active material has been conducted. For example, Patent Document 1 discloses a negative electrode for a secondary battery formed from a negative electrode containing Si.

特開2000−340216号公報JP 2000-340216 A

Si負極は高容量電極であり、上記のSiを含む負極を用いた電池において、高エネルギー密度化を期待することができる。一方、引用文献1に記載の二次電池は、可燃性の有機溶媒を溶媒とする有機電解液を使用しており、短絡時の温度上昇を抑える安全装置の取付けや短絡防止のための構造・材料面での改善が必要となる。このような問題を解消するため、近年、液体電解質を固体電解質に変更した固体電池が提案されているが、固体電池にSi負極を用いた場合、充放電容量が小さいという問題がある。   The Si negative electrode is a high-capacity electrode, and high energy density can be expected in a battery using the above-described negative electrode containing Si. On the other hand, the secondary battery described in the cited document 1 uses an organic electrolyte solution that uses a flammable organic solvent as a solvent, and has a structure for preventing the installation of a safety device and preventing a short circuit that suppresses a temperature rise during a short circuit. Improvements in materials are necessary. In order to solve such a problem, a solid battery in which the liquid electrolyte is changed to a solid electrolyte has been proposed in recent years. However, when a Si negative electrode is used for the solid battery, there is a problem that the charge / discharge capacity is small.

上記問題点を解決するために本発明によれば、Siを活物質として含む負極と、正極と、前記負極と正極の間に配置された固体電解質を備えた固体電池の製造方法において、電池構成後の初回の充電を、Si負極の電位が20mV(vs.Li/Li+)以下で20時間以上保持して行い、次いで放電する初回充放電処理を含むことを特徴とする。 In order to solve the above problems, according to the present invention, in a method for manufacturing a solid battery comprising a negative electrode containing Si as an active material, a positive electrode, and a solid electrolyte disposed between the negative electrode and the positive electrode, It is characterized in that it includes a first charge / discharge treatment in which the subsequent first charge is performed by holding the potential of the Si negative electrode at 20 mV (vs. Li / Li + ) or less for 20 hours or more and then discharging.

本発明の固体電池の製造方法によれば、初回充電処理を行うことによって充放電容量が増大する。   According to the method for producing a solid state battery of the present invention, the charge / discharge capacity is increased by performing the initial charging process.

本発明の固体電池の略断面図である。It is a schematic sectional drawing of the solid battery of this invention. 実施例及び比較例における電池の負極の充電比容量の測定結果を示すグラフである。It is a graph which shows the measurement result of the charge specific capacity of the negative electrode of the battery in an Example and a comparative example.

図1に本発明の固体電池の構成を示す。この固体電池10は、Siを活物質として含む負極1と、正極2と、前記負極と正極の間に配置されたLiを含む固体電解質3を備えている。   FIG. 1 shows the configuration of the solid state battery of the present invention. The solid battery 10 includes a negative electrode 1 containing Si as an active material, a positive electrode 2, and a solid electrolyte 3 containing Li disposed between the negative electrode and the positive electrode.

負極1はSiを活物質として含む材料から形成される。このSiを活物質として含む材料としては、結晶質もしくは非晶質のケイ素単体、又はケイ素を含む化合物を用いることができる。ケイ素化合物としては、酸化ケイ素等の無機ケイ素化合物や、シリコーン樹脂、含ケイ素高分子化合物等の有機ケイ素化合物様の、非酸化雰囲気で分解又は還元されてケイ素に変化し得る材料が挙げられる。これらのなかでも特にケイ素単体が好ましい。またこの負極1は、Siを含む負極材料粉末を圧縮して形成してもよく、この粉末の粒径は特に限定されないが、操作性等の観点から、0.01μm以上、100μm以下であることが好ましい。   The negative electrode 1 is formed from a material containing Si as an active material. As the material containing Si as an active material, crystalline or amorphous silicon alone or a compound containing silicon can be used. Examples of the silicon compound include inorganic silicon compounds such as silicon oxide, and organic silicon compounds such as silicone resins and silicon-containing polymer compounds that can be decomposed or reduced in a non-oxidizing atmosphere to change into silicon. Of these, silicon alone is particularly preferable. Further, the negative electrode 1 may be formed by compressing a negative electrode material powder containing Si, and the particle size of the powder is not particularly limited, but from the viewpoint of operability and the like, it may be 0.01 μm or more and 100 μm or less. preferable.

正極2を構成する材料は、正極活物質としての機能を有するものであれば特に限定されるものではなく、一般的な固体リチウム二次電池に用いられるものを用いることができる。例えば、LiCoO2、LiNiO2、LiMn24、LiMn2-xNix4、LiMn2-xCox4、LiMn2-x-yNixCoy4、LiFePO4、LiMnPO4、LiNiPO4、LiM1-x-yxy2等を用いることができる。ここで、一般式LiM1-x-yxy2中の「M」は、Co,Ni,Mn等からなる群から選ばれる少なくとも1種である。「B」は、「M」もしくは「A」である。上記の中で、LiCoO2およびLiNiO2が好ましく、LiCoO2が特に好ましい。一般的に、LiCoO2は正極用の活物質として良好な特性を有し、汎用されているからである。 The material which comprises the positive electrode 2 will not be specifically limited if it has a function as a positive electrode active material, The thing used for a general solid lithium secondary battery can be used. For example, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMn 2−x Ni x O 4 , LiMn 2−x Co x O 4 , LiMn 2−xy Ni x Co y O 4 , LiFePO 4 , LiMnPO 4 , LiNiPO 4 it can be used LiM 1-xy a x B y O 2 or the like. Here, the general formula LiM 1-xy A x B y "M" O 2 is at least one selected from the group consisting of Co, Ni, Mn or the like. “B” is “M” or “A”. Among the above, LiCoO 2 and LiNiO 2 are preferable, and LiCoO 2 is particularly preferable. This is because LiCoO 2 generally has good characteristics as a positive electrode active material and is widely used.

固体電解質3は、固体電解質としての機能を有するものであれば特に限定されるものではなく、一般的な固体リチウム二次電池に用いられるものと同様のものを用いることができる。例えば、硫化物系固体電解質、チオリシコン、酸化物系固体電解質等を用いることができる。上記の中で、硫化物系固体電解質およびチオリシコンを用いることが好ましく、硫化物系固体電解質材料を用いることが好ましい。硫化物系固体電解質は、高いイオン伝導性を有するため、固体電池10を高出力化することができるからである。負極1及び正極2にも、同様の固体電解質が含まれてもよい。具体的には、Li2S−P25(Li2S:P25=50:50〜100:0)、Li2S−P25−LiI、Li2S−P25−Li2O−LiI、Li2S−SiS2、Li2S−SiS2−LiI、Li2S−SiS2−LiBr、Li2S−SiS2−LiCl、Li2S−SiS2−B23−LiI、Li2S−SiS2−P25−LiI、Li2S−B23、Li2S−P25−Zmn(Z=Ge、Zn、Ga)、Li2S−GeS2、Li2S−SiS2−Li3PO4、Li2S−SiS2−LixMOy(M=P、Si、Ge、B、Al、Ga、In)等を挙げることができる。この固体電解質は、固体電解質粉末を圧縮してなるものであることが好ましい。 The solid electrolyte 3 is not particularly limited as long as it has a function as a solid electrolyte, and the same one as that used for a general solid lithium secondary battery can be used. For example, a sulfide-based solid electrolyte, thiosilicone, an oxide-based solid electrolyte, or the like can be used. Among the above, it is preferable to use a sulfide-based solid electrolyte and thiolithicone, and it is preferable to use a sulfide-based solid electrolyte material. This is because the sulfide-based solid electrolyte has high ionic conductivity, so that the output of the solid battery 10 can be increased. The negative electrode 1 and the positive electrode 2 may also contain the same solid electrolyte. Specifically, Li 2 S—P 2 S 5 (Li 2 S: P 2 S 5 = 50: 50 to 100: 0), Li 2 S—P 2 S 5 —LiI, Li 2 S—P 2 S 5 -Li 2 O-LiI, Li 2 S-SiS 2, Li 2 S-SiS 2 -LiI, Li 2 S-SiS 2 -LiBr, Li 2 S-SiS 2 -LiCl, Li 2 S-SiS 2 -B 2 S 3 -LiI, Li 2 S -SiS 2 -P 2 S 5 -LiI, Li 2 S-B 2 S 3, Li 2 S-P 2 S 5 -Z m S n (Z = Ge, Zn, Ga ), Li 2 S-GeS 2 , Li 2 S-SiS 2 -Li 3 PO 4, Li 2 S-SiS 2 -Li x MO y (M = P, Si, Ge, B, Al, Ga, In) or the like Can be mentioned. This solid electrolyte is preferably formed by compressing a solid electrolyte powder.

本発明においては、負極1と、正極2と、固体電解質3を図1に示すように配置することにより、電池が構成される。そして本発明においては、この電池構成後、初回の充電を通常より低い電流密度となるように、Si負極の電位が20mV(vs.Li/Li+)以下、好ましくは10mV以下となるように、10時間以上、好ましくは20時間以上保持するように定電圧充電を行い、次いで放電する初回充放電処理を行って製造される。このような低い電流密度であらかじめ充電をおこなっておくことにより、Si負極が活性化され、また負極と固体電解質の界面が良好に接合され、さらにSi合金がアモルファス化され、利用可能な容量が大きくなると考えられる。 In the present invention, a battery is configured by disposing the negative electrode 1, the positive electrode 2, and the solid electrolyte 3 as shown in FIG. In the present invention, after this battery configuration, the potential of the Si negative electrode is 20 mV (vs. Li / Li + ) or less, preferably 10 mV or less, so that the initial charge has a lower current density than usual. Manufactured by performing a constant voltage charge so as to hold for 10 hours or more, preferably 20 hours or more, and then performing a first charge / discharge treatment for discharging. By charging in advance at such a low current density, the Si negative electrode is activated, the interface between the negative electrode and the solid electrolyte is satisfactorily bonded, the Si alloy is amorphized, and the available capacity is large. It is considered to be.

実施例1
30LiI・70(0.08Li2O・0.67Li2S・0.25P25)mol%の組成となるように、Li2S(日本化学工業)、P25(アルドリッチ)、LiI(アルドリッチ)及びLi2O(高純度化学研究所)を45mlのZrO2製容器に入れ、φ10mmのZrO2製ボールを10個いれ、台盤回転数370rpmで40時間処理して固体電解質を得た。正極はIn箔(ニラコ製、φ10mm、厚さ0.1mmにLi箔(本庄ケミカル)を貼り付けて作製した。また負極は、Si粉末(高純度化学研究所)と上記で作製した電解質粉末、及びデンカブラック(電気化学工業)を75.6:19.5:4.9の重量比でメノウ乳鉢中で混合し、負極粉末を得た。
Example 1
30LiI · 70 (0.08Li 2 O · 0.67Li 2 S · 0.25P 2 S 5) so that the mol% of the composition, Li 2 S (Nippon Chemical Industrial), P 2 S 5 (Aldrich), LiI (Aldrich) And Li 2 O (High Purity Chemical Laboratory) was put in a 45 ml ZrO 2 container, 10 ZrO 2 balls having a diameter of 10 mm were added, and the solid electrolyte was obtained by treatment at a platen rotation speed of 370 rpm for 40 hours. The positive electrode was made by attaching an In foil (Nilaco, φ10 mm, 0.1 mm thick Li foil (Honjo Chemical), and the negative electrode was made of Si powder (High Purity Chemical Laboratory) and the electrolyte powder produced above, Denka Black (Electrochemical Industry) was mixed in an agate mortar at a weight ratio of 75.6: 19.5: 4.9 to obtain a negative electrode powder.

マコール製のシリンダ(内径φ10mm)に、上記の電解質30LiI・70(0.08Li2O・0.67Li2S・0.25P25)を80mg入れ、1トン/cm2でプレスした。次に、シリンダの中に上記負極粉末を2mg入れて、4トン/cm2でプレスした。最後に、正極のLiIn箔を、負極と反対側の電解質上に乗せ、1トン/cm2でプレスし、6Ncmでボルト締めすることにより、電池セルを作製した。 80 mg of the above-mentioned electrolyte 30LiI · 70 (0.08Li 2 O · 0.67Li 2 S · 0.25P 2 S 5 ) was placed in a cylinder made of Macor (inner diameter φ10 mm) and pressed at 1 ton / cm 2 . Next, 2 mg of the negative electrode powder was put in a cylinder and pressed at 4 ton / cm 2 . Finally, the LiIn foil of the positive electrode was placed on the electrolyte opposite to the negative electrode, pressed at 1 ton / cm 2 , and bolted at 6 Ncm to produce a battery cell.

こうして構成した電池について、-0.60〜1V(0.02〜1.62Vvs.Li/Li+)の範囲で1サイクル定電流−定電圧放電(初期充放電処理)を行った(電流密度0.03〜0.3mA/cm2)。ここで、定電流値は0.3mA、定電圧値は放電時に0.02V(vs. Li/Li+)、充電時に1.62V(vs. Li/Li+)とした。この後、0.02〜1.62V(vs.Li/Li+)の範囲で0.3mAにて3サイクル定電流充放電を行った。 The battery thus constructed was subjected to one cycle constant current-constant voltage discharge (initial charge / discharge treatment) in the range of −0.60 to 1 V (0.02 to 1.62 V vs. Li / Li + ) (current density 0.03 to 0.3 mA / cm). 2 ). The constant current value is 0.3 mA, the constant voltage value 0.02V during discharge (vs. Li / Li +) , was 1.62V (vs. Li / Li + ) during charging. Thereafter, charging and discharging were performed for 3 cycles at a current of 0.3 mA in the range of 0.02 to 1.62 V (vs. Li / Li + ).

比較例1
実施例1と同様にして電池セルを作製し、実施例1における初期充放電処理を行うことなく、0.02〜1.62V(vs.Li/Li+)の範囲で0.3mAにて3サイクル定電流充放電を行った。
Comparative Example 1
A battery cell was prepared in the same manner as in Example 1 and charged at a constant current of 3 cycles at 0.3 mA in the range of 0.02 to 1.62 V (vs. Li / Li + ) without performing the initial charge / discharge treatment in Example 1. Discharge was performed.

こうして得られた電池について、東洋システム(株)製の充放電評価装置TOSCAT−3200を用いて充放電評価を行った。充電比容量は、得られた充電容量をSi負極に含まれるSi重量当たりの容量として計算した。その結果を図2に示す。   The battery thus obtained was subjected to charge / discharge evaluation using a charge / discharge evaluation apparatus TOSCAT-3200 manufactured by Toyo System Co., Ltd. The charge specific capacity was calculated as the capacity per unit weight of Si contained in the Si negative electrode. The result is shown in FIG.

上記のように、実施例1では初期に1回のみ、通常よりも低いレートとなるように、Si負極が20mV(vs.Li/Li+)となるように20時間以上定電圧で保持して充放電処理を行い、その後0.3mAにて定電流充放電を行ったのに対し、比較例1では初期充放電処理を行うことなく0.3mAにて定電流充放電を行った。その結果、図1に示すように、実施例1では比較例1に比べ大きな容量が得られた。これは、一度充放電を行うことにより負極のSi活物質が活性化され、利用率が向上し、またSi活物質と固体電解質の界面が良好に接合され、利用率が向上したためであるからと考えられる。さらに、結晶のSi負極は約0.1VでLi合金化するが、一度合金化するとアモルファス化し、Li合金化電位が約0.3Vから起こるため、カットオフ電位に到達しにくくなるためであるとも考えられる。 As described above, in Example 1, it was held at a constant voltage for 20 hours or more so that the Si negative electrode was 20 mV (vs. Li / Li + ) only once in the initial stage so that the rate was lower than usual. While charging / discharging treatment was performed and then constant current charging / discharging was performed at 0.3 mA, in Comparative Example 1, constant current charging / discharging was performed at 0.3 mA without performing initial charging / discharging treatment. As a result, as shown in FIG. 1, a larger capacity was obtained in Example 1 than in Comparative Example 1. This is because once the charge / discharge is performed, the Si active material of the negative electrode is activated, the utilization rate is improved, and the interface between the Si active material and the solid electrolyte is well bonded, and the utilization rate is improved. Conceivable. Furthermore, although the crystalline Si negative electrode is alloyed with Li at about 0.1 V, it becomes amorphous once alloyed and the Li alloying potential starts from about 0.3 V, which is considered to be difficult to reach the cutoff potential. .

1 負極
2 正極
3 固体電解質
1 Negative electrode 2 Positive electrode 3 Solid electrolyte

Claims (4)

Siを活物質として含む負極と、正極と、前記負極と正極の間に配置されたLiを含む固体電解質を備えた固体電池の製造方法であって、電池構成後の初回の充電をSi負極の電位が20mV(Li/Li+)以下となるように20時間以上行い、次いで放電する初回充放電処理を含むことを特徴とする、固体電池の製造方法。 A method of manufacturing a solid battery comprising a negative electrode containing Si as an active material, a positive electrode, and a solid electrolyte containing Li disposed between the negative electrode and the positive electrode, wherein the first charge after the battery configuration is performed on the Si negative electrode A method for producing a solid state battery, comprising a first charge / discharge treatment in which a potential is 20 mV (Li / Li + ) or less for 20 hours or more and then discharged. 初回の充電を定電圧で保持して行う、請求項1記載の方法。   The method according to claim 1, wherein the initial charging is performed while maintaining a constant voltage. 前記負極が、Siを含む負極材料粉末を圧縮してなるものである、請求項1記載の方法。   The method according to claim 1, wherein the negative electrode is formed by compressing a negative electrode material powder containing Si. 前記固体電解質が、固体電解質粉末を圧縮してなるものである、請求項1記載の方法。   The method according to claim 1, wherein the solid electrolyte is formed by compressing a solid electrolyte powder.
JP2012184052A 2012-08-23 2012-08-23 Solid battery manufacturing method Active JP5900244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012184052A JP5900244B2 (en) 2012-08-23 2012-08-23 Solid battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012184052A JP5900244B2 (en) 2012-08-23 2012-08-23 Solid battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2014041783A true JP2014041783A (en) 2014-03-06
JP5900244B2 JP5900244B2 (en) 2016-04-06

Family

ID=50393877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012184052A Active JP5900244B2 (en) 2012-08-23 2012-08-23 Solid battery manufacturing method

Country Status (1)

Country Link
JP (1) JP5900244B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
EP3142174A2 (en) 2015-09-14 2017-03-15 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
JP2017059534A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 All-solid battery system and method for manufacturing the same
JP2017084500A (en) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 All-solid battery system
JP2018190529A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery
US10714737B2 (en) 2017-01-25 2020-07-14 Toyota Jidosha Kabushiki Kaisha Anode layer and all solid lithium battery
US10818977B2 (en) 2018-04-16 2020-10-27 Toyota Jidosha Kabushiki Kaisha Method for producing all solid state battery, all solid state battery and all solid state battery system
US10847836B2 (en) 2018-02-23 2020-11-24 Toyota Jidosha Kabushiki Kaisha Method for producing solid-state secondary battery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2005166684A (en) * 2005-02-07 2005-06-23 Ube Ind Ltd Non-aqueous secondary battery
JP2007042393A (en) * 2005-08-02 2007-02-15 Toshiba Corp Nonaqueous electrolyte battery and anode active material
US20090239151A1 (en) * 2008-03-17 2009-09-24 Tetsuo Nakanishi Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000036323A (en) * 1998-05-13 2000-02-02 Fuji Photo Film Co Ltd Non-aqueous secondary battery
JP2005166684A (en) * 2005-02-07 2005-06-23 Ube Ind Ltd Non-aqueous secondary battery
JP2007042393A (en) * 2005-08-02 2007-02-15 Toshiba Corp Nonaqueous electrolyte battery and anode active material
US20090239151A1 (en) * 2008-03-17 2009-09-24 Tetsuo Nakanishi Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP2013222530A (en) * 2012-04-13 2013-10-28 Idemitsu Kosan Co Ltd All solid state battery and method for charging/discharging all solid state battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058232A (en) * 2014-09-09 2016-04-21 トヨタ自動車株式会社 Method for manufacturing solid electrolyte battery
EP3142174A2 (en) 2015-09-14 2017-03-15 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
JP2017059534A (en) * 2015-09-14 2017-03-23 トヨタ自動車株式会社 All-solid battery system and method for manufacturing the same
EP3293802A1 (en) 2015-09-14 2018-03-14 Toyota Jidosha Kabushiki Kaisha Method of manufacturing an all-solid-state battery system
US10128675B2 (en) 2015-09-14 2018-11-13 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
US10651667B2 (en) 2015-09-14 2020-05-12 Toyota Jidosha Kabushiki Kaisha All-solid-state battery system and method of manufacturing the same
JP2017084500A (en) * 2015-10-23 2017-05-18 トヨタ自動車株式会社 All-solid battery system
US10714737B2 (en) 2017-01-25 2020-07-14 Toyota Jidosha Kabushiki Kaisha Anode layer and all solid lithium battery
JP2018190529A (en) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 Laminate battery
US10847836B2 (en) 2018-02-23 2020-11-24 Toyota Jidosha Kabushiki Kaisha Method for producing solid-state secondary battery system
US10818977B2 (en) 2018-04-16 2020-10-27 Toyota Jidosha Kabushiki Kaisha Method for producing all solid state battery, all solid state battery and all solid state battery system

Also Published As

Publication number Publication date
JP5900244B2 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5900244B2 (en) Solid battery manufacturing method
JP5660210B2 (en) Solid electrolyte material, solid battery, and method for producing solid electrolyte material
US10193185B2 (en) Sulfide solid electrolyte material and lithium solid state battery
US11804598B2 (en) Negative electrode active material and method for producing the same, negative electrode, and battery
Yang et al. Ionic liquid enhanced composite solid electrolyte for high-temperature/long-life/dendrite-free lithium metal batteries
JP2014035987A (en) METHOD FOR MANUFACTURING Si-CONTAINING ACTIVE MATERIAL LAYER, METHOD FOR MANUFACTURING SOLID-STATE BATTERY, Si-CONTAINING ACTIVE MATERIAL LAYER, AND SOLID-STATE BATTERY
CN115799601A (en) Lithium ion battery
KR20160104769A (en) Separator for secondary battery, method of fabricating the same, and lithium secondary battery comprising the same
JP2015201388A (en) Cathode active material for non-aqueous secondary battery and manufacturing method for the same
JP5286516B2 (en) Positive electrode material for all-solid-state lithium batteries
JP2014041811A (en) Alkali metal-sulfur-based secondary battery
CN116231091A (en) Electrolyte for lithium secondary battery, and electricity using device
KR20170092296A (en) Anode, all solid lithium secondary batteries including the same and manufacturing method for the same
JP2010282815A (en) Totally solid battery system
JP2013033638A (en) Solid-state secondary battery, and battery system
KR20230046273A (en) Secondary batteries, battery modules, battery packs and electrical devices
JP2014157666A (en) Lithium battery system
JP2014220115A (en) Sodium secondary battery
JP2021026836A (en) Positive electrode mixture material
CN111105938A (en) Lithium pre-embedding method for negative electrode of lithium ion super capacitor
JP5664460B2 (en) Solid secondary battery system
JP2012114027A (en) Negative electrode material for metal secondary battery, negative electrode for metal secondary battery, and metal secondary battery
CN112490500A (en) Electrolyte for electricity storage device, and method for manufacturing electricity storage device
JP2020109735A (en) Secondary battery
Liu et al. Stable Cycling of Solid-State Lithium Metal Batteries at Room Temperature via Reducing Electrode/Electrolyte Interfacial Resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R151 Written notification of patent or utility model registration

Ref document number: 5900244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151