JP2014041017A - X-ray stress measurement instrument - Google Patents
X-ray stress measurement instrument Download PDFInfo
- Publication number
- JP2014041017A JP2014041017A JP2012182288A JP2012182288A JP2014041017A JP 2014041017 A JP2014041017 A JP 2014041017A JP 2012182288 A JP2012182288 A JP 2012182288A JP 2012182288 A JP2012182288 A JP 2012182288A JP 2014041017 A JP2014041017 A JP 2014041017A
- Authority
- JP
- Japan
- Prior art keywords
- ray
- unit
- irradiation unit
- measurement
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
Description
本発明は、X線応力測定装置に関するものである。 The present invention relates to an X-ray stress measurement apparatus.
従来より、金属材料の残留応力を測定する方法として、測定対象物にX線を照射して、該測定対象物で回折した回折X線を検出し、その検出した回折X線に基づいて測定する方法が知られている。 Conventionally, as a method of measuring the residual stress of a metal material, a measurement object is irradiated with X-rays, diffracted X-rays diffracted by the measurement object are detected, and measurement is performed based on the detected diffraction X-rays The method is known.
上記のX線を利用した測定装置としては、測定対象物における測定位置を位置決めするために該測定対象物に接触設置される金属治具と、該金属治具により位置決めされた測定位置に向かってX線を照射する照射部と、該測定対象物で回折した回折X線を検出する検出部とを有するものがある。
このような測定装置によれば、金属治具により測定位置を位置決めし、その後該金属治具を取り外して照射部から測定位置に向かってX線を照射し、回折した回折X線を検出部により検出して該回折X線を分析することにより、測定位置における残留応力を測定することができる。
As a measuring apparatus using the above-mentioned X-rays, a metal jig placed in contact with the measurement object for positioning the measurement position in the measurement object, and a measurement position positioned by the metal jig Some have an irradiation unit that emits X-rays and a detection unit that detects diffracted X-rays diffracted by the measurement object.
According to such a measuring apparatus, the measurement position is positioned by a metal jig, and then the metal jig is removed, X-rays are irradiated from the irradiation unit toward the measurement position, and the diffracted diffracted X-rays are detected by the detection unit. The residual stress at the measurement position can be measured by detecting and analyzing the diffracted X-ray.
また、別の装置としては、測定対象物にX線を照射するX線管と、該測定対象物で回折した回折X線を検出するX線検出器と、測定対象物の直上からレーザ光を発光する発光部と、該測定対象物で反射したレーザ光を受光する受光部とを備えるものが知られている(下記特許文献1参照)。
このような測定装置によれば、レーザ光により測定対象物までの距離を測定することができるため、測定した距離により特定された測定箇所における残留応力を推定することができる。
As another apparatus, an X-ray tube that irradiates a measurement object with X-rays, an X-ray detector that detects diffracted X-rays diffracted by the measurement object, and laser light from directly above the measurement object. A device including a light emitting unit that emits light and a light receiving unit that receives a laser beam reflected by the measurement object is known (see
According to such a measuring apparatus, since the distance to the measurement object can be measured by the laser beam, the residual stress at the measurement location specified by the measured distance can be estimated.
しかしながら、上記の測定対象物に金属治具を接触設置する方法では、測定位置の位置決めの際に測定対象物に金属治具の先端が接触して該測定対象物の表面に傷が生じてしまうため、腐食等の原因になり好ましくなかった。 However, in the method of placing the metal jig in contact with the measurement object, the tip of the metal jig contacts the measurement object when the measurement position is positioned, and the surface of the measurement object is damaged. For this reason, it is not preferable because it causes corrosion.
また、上記の特許文献1に記載の装置を用いる方法では、測定対象物の表面に凹凸があると、凹凸部分で反射したレーザーを受光部にて正確に受光することができず、正確な距離を測定することができないおそれがある。この場合、測定値に誤差が生じるため、正確な測定箇所を特定することができず、推定した残留応力にも誤差が生じるという問題点がある。
In addition, in the method using the apparatus described in
本発明は、このような事情を考慮してなされたものであり、測定対象物の表面に凹凸がある測定対象物の残留応力を該表面を傷つけることなく正確に測定することができるX線残留応力測定装置を提供するものである。 The present invention has been made in view of such circumstances, and the X-ray residue that can accurately measure the residual stress of a measurement object having unevenness on the surface of the measurement object without damaging the surface. A stress measuring device is provided.
上記目的を達成するために、本発明は以下の手段を採用している。
すなわち、本発明に係るX線応力測定装置は、測定対象の表面の測定点を通過する前記表面の法線と交差するようにX線を照射するX線照射部と、前記X線が前記測定点で回折した回折X線を検出可能とされ、前記X線照射部との相対位置が固定されたX線受光部と、前記X線照射部と一体に設けられ、前記X線と前記法線との交点を通る第一レーザを照射する第一レーザ照射部と、前記X線受光部と一体に設けられ、前記交点を通る第二レーザを照射する第二レーザ照射部と、前記X線照射部及び前記X線受光部を前記測定点に近接離間させる第一移動部とを備えることを特徴とする。
In order to achieve the above object, the present invention employs the following means.
That is, the X-ray stress measurement apparatus according to the present invention includes an X-ray irradiation unit that irradiates an X-ray so as to intersect with a normal line of the surface passing through a measurement point on the surface of the measurement target, and the X-ray is the measurement A diffracted X-ray diffracted at a point can be detected, and an X-ray light receiving unit whose relative position to the X-ray irradiation unit is fixed, and the X-ray irradiation unit are provided integrally with the X-ray and the normal line. A first laser irradiation unit that irradiates a first laser that passes through the intersection point, a second laser irradiation unit that is provided integrally with the X-ray light receiving unit and that irradiates a second laser beam that passes through the intersection point, and the X-ray irradiation. And a first moving unit that moves the X-ray light receiving unit close to and away from the measurement point.
このようなX線応力測定装置では、第一レーザ及び第二レーザは交点において交差し、第一移動部により該交点を測定対象から近接離間させることができる。よって、測定対象の表面に凹凸がある場合でも、交点を測定対象上に設けることが可能となる。したがって、測定対象の表面上にX線を照射して、回折X線を得ることができるため、この回折X線に基づいて残留応力を該表面を傷つけることなく正確に測定することができる。 In such an X-ray stress measurement apparatus, the first laser and the second laser intersect at the intersection, and the intersection can be moved closer to and away from the measurement target by the first moving unit. Therefore, even when the surface of the measurement target has irregularities, the intersection can be provided on the measurement target. Therefore, since the diffracted X-rays can be obtained by irradiating the surface to be measured with X-rays, the residual stress can be accurately measured based on the diffracted X-rays without damaging the surface.
また、本発明に係るX線応力測定装置は、前記法線、前記第一レーザ照射部及び前記第二レーザ照射部を含む第一仮想平面上において、前記測定点を中心とする同心円状に、前記X線照射部及び前記X線受光部を移動させる第二移動部を備えていることが好ましい。 Further, the X-ray stress measurement apparatus according to the present invention is a concentric circle centered on the measurement point on the first virtual plane including the normal, the first laser irradiation unit, and the second laser irradiation unit. It is preferable to include a second moving unit that moves the X-ray irradiation unit and the X-ray light receiving unit.
このようなX線応力測定装置では、第二移動部によりX線照射部及びX線受光部を同心円状に移動させることにより、測定点において所望の入射角でX線を入射させることができる。これにより得られた回折X線に基づいて残留応力を正確に測定することができる。 In such an X-ray stress measurement apparatus, the X-ray can be made incident at a desired incident angle at the measurement point by moving the X-ray irradiation unit and the X-ray light receiving unit concentrically by the second moving unit. Residual stress can be accurately measured based on the diffracted X-rays thus obtained.
また、本発明に係るX線応力測定装置は、前記X線照射部と前記X線受光部との離間方向に直交するとともに前記法線を含む第二仮想平面から第一レーザ照射部までの距離及び前記第二仮想平面から第二レーザ照射部までの距離をそれぞれ維持して、前記X線照射部及び前記X線受光部を移動させる第三移動部を備えていてもよい。 Further, the X-ray stress measurement apparatus according to the present invention is a distance from the second virtual plane including the normal line to the first laser irradiation unit that is orthogonal to the separation direction of the X-ray irradiation unit and the X-ray light receiving unit. And a third moving unit that moves the X-ray irradiation unit and the X-ray light receiving unit while maintaining a distance from the second virtual plane to the second laser irradiation unit, respectively.
このようなX線応力測定装置では、第三移動部によりX線照射部及びX線受光部を移動させることにより、測定点において所望の入射角でX線を入射させることができる。これにより得られた回折X線に基づいて残留応力を正確に測定することができる。 In such an X-ray stress measurement device, the X-ray can be made incident at a desired incident angle at the measurement point by moving the X-ray irradiation unit and the X-ray light receiving unit by the third moving unit. Residual stress can be accurately measured based on the diffracted X-rays thus obtained.
本発明に係るX線応力測定装置によれば、表面に凹凸がある測定対象物の残留応力を正確に測定することができる。 According to the X-ray stress measuring apparatus according to the present invention, it is possible to accurately measure the residual stress of a measurement object having an uneven surface.
(第一実施形態)
以下、図面を参照し、本発明の第一実施形態に係るX線応力測定装置について説明する。
X線応力測定装置は、例えば金属材料で構成された測定対象の残留応力を測定するためのものである。なお、測定対象としては、原子力発電プラントに設けられた蒸気発生器における出入口管台や原子炉容器出入口管台等が一例として挙げられる。
(First embodiment)
Hereinafter, an X-ray stress measuring apparatus according to a first embodiment of the present invention will be described with reference to the drawings.
The X-ray stress measuring device is for measuring residual stress of a measuring object made of, for example, a metal material. Examples of the measurement target include an inlet / outlet nozzle and a reactor vessel inlet / outlet nozzle in a steam generator provided in a nuclear power plant.
図1に示すように、X線応力測定装置1は、測定対象Zの測定点AにX線を照射するX線照射部10と、測定点Aにて回折したX線を検出するX線受光部20と、測定対象Zにレーザを照射する第一レーザ照射部30及び第二レーザ照射部40とを備えている。
As shown in FIG. 1, the X-ray
さらに、X線応力測定装置1は、X線照射部10、X線受光部20、第一レーザ照射部30及び第二レーザ照射部40を測定対象Zに近接離間させる第一移動部50と、該X線照射部10とX線受光部20とを連結する連結部60とを備えている。
Furthermore, the X-ray
ここで、図1に示す紙面上下方向をX方向とし、該X方向と直交する紙面左右方向をY方向とし、該X方向及びY方向と直交する紙面奥行き方向をP方向とする。 Here, the vertical direction of the paper surface shown in FIG. 1 is the X direction, the horizontal direction of the paper surface orthogonal to the X direction is the Y direction, and the depth direction of the paper surface orthogonal to the X direction and the Y direction is the P direction.
X線照射部10は、測定対象Zの表面の測定点Aを通過する該表面の法線Qと交差するようにX線X1を照射する。X線照射部10により照射されたX線X1は、測定点Aで回折した回折X線X2となる。
The
X線受光部20は、回折X線X2を検出可能とされるとともに、X線照射部10との相対位置が固定されている。本実施形態では、X線照射部10及びX線受光部20は、XY平面状にあるとともに、互いの離間距離が距離L1に設定されている。
The X-ray
第一レーザ照射部30は、X線照射部10と一体に設けられ、X線X1と法線Qとの交点Bと通る第一レーザR1を照射する。図1では、測定点Aと交点Bとが一致している。
The first
第二レーザ照射部40は、X線受光部20と一体に設けられ、交点Bを通る第二レーザR2を照射する。
The second
第一移動部50は、X線照射部10及びX線受光部20を測定点Aに近接離間させる方向、本実施形態ではX方向に移動する。例えば、図示しないアクチュエータ等により、第一移動部50は、X線照射部10、X線受光部20、第一レーザ照射部30、第二レーザ照射部40及び連結部60を一体として移動可能としている。
The first moving
連結部60は、X線照射部10とX線受光部20とを連結しており、本実施形態では円弧状に形成されている。
The connecting
次に、上記のように構成されたX線応力測定装置1を用いて、測定対象の測定点Aにおける残留応力を測定する手順について説明する。
Next, a procedure for measuring the residual stress at the measurement point A to be measured using the X-ray
まず、第一レーザ照射部30及び第二レーザ照射部40が、それぞれ第一レーザR1、第二レーザR2を照射する。
First, the first
ここで、図2(a)に示すように、測定対象Zの表面における第一レーザR1の円形状の照射点である第一照射点S1と、第二レーザR2の照射点である円形状の第二照射点S2とが表れる。第一照射点S1と第二照射点S2とが離れている場合には、第一移動部50を測定対象Zから離間させる方向に移動させる。
Here, as shown in FIG. 2 (a), the first irradiation point S1 that is the circular irradiation point of the first laser R1 and the circular irradiation point that is the irradiation point of the second laser R2 on the surface of the measuring object Z. A second irradiation point S2 appears. When the first irradiation point S1 and the second irradiation point S2 are separated from each other, the first moving
そして、図2(b)に示すように、第一照射点S1と第二照射点S2とが、一部重なった状態となる。第一移動部50を測定対象Zからさらに離間させると、図2(c)に示すように、第一照射点S1と第二照射点S2とが完全に一致し、当該一致した点が測定点Aとなる。この状態で、第一移動部50を固定する。
Then, as shown in FIG. 2B, the first irradiation point S1 and the second irradiation point S2 are partially overlapped. When the first moving
そして、X線照射部10からX線X1を測定点Aに向かって照射し、該測定点Aにおいて回折した回折X線X2をX線受光部20にて検出する。なお、回折X線X2に基づいて、周知のsin2ψ−2θ法と呼ばれる方法により残留応力を算出することができる。
Then, X-ray X1 is irradiated from the
このように構成されたX線応力測定装置1では、第一レーザR1及び第二レーザR2は交点Bにおいて交差し、第一移動部50により該交点Bを測定対象Zから近接離間させることができる。よって、測定対象Zの表面に凹凸がある場合でも、交点Bを測定対象上に設けることが可能となる。したがって、測定対象Zの表面上にX線X1を照射して、回折X線X2を得ることができるため、この回折X線X2に基づいて残留応力を該表面を傷つけることなく、正確に測定することができる。
In the X-ray
(第二実施形態)
以下、図面を参照し、本発明の第二実施形態に係るX線応力測定装置201について、図3を用いて説明する。
この実施形態において、前述した実施形態で用いた部材と同一の部材には同一の符号を付して、その説明を省略する。
(Second embodiment)
Hereinafter, with reference to the drawings, an X-ray
In this embodiment, the same members as those used in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.
第一実施形態に係るX線応力測定装置1は、X方向に移動可能とされていたのに対して、本実施形態に係るX線応力測定装置201は、円弧上に移動可能とされている。
The X-ray
図3に示すように、X線応力測定装置201は、法線Q、第一レーザ照射部30及び第二レーザ照射部40を含む第一仮想平面(本実施形態ではXY平面)上において、測定点Aを中心とする同心円状に、X線照射部10及びX線受光部20を移動させる第二移動部70を備えている。
As shown in FIG. 3, the X-ray
第二移動部70は、例えば、測定点Aを中心にもうけられた円弧状のレールであって、第二移動部70はその延在方向に向かって連結部60を移動可能に支持している。
The second moving
このように構成されたX線応力測定装置201では、第二移動部70によりX線照射部及10及びX線受光部20を測定点Aを中心とする同心円状に移動させることにより、測定点Aにおいて所望の入射角でX線を入射させることができる。これにより得られた回折X線に基づいて残留応力を正確に測定することができる。
In the X-ray
例えば、X線応力測定装置201の上方の空間スペースが小さい場合でも、図3において二点鎖線で示すように測定対象Zの斜め上方からX線を照射することができ、残留応力を測定することができる。
For example, even when the space space above the X-ray
(第三実施形態)
以下、図面を参照し、本発明の第三実施形態に係るX線応力測定装置301について、図4を用いて説明する。
この実施形態において、前述した実施形態で用いた部材と同一の部材には同一の符号を付して、その説明を省略する。
(Third embodiment)
Hereinafter, with reference to the drawings, an X-ray stress measurement apparatus 301 according to a third embodiment of the present invention will be described with reference to FIG.
In this embodiment, the same members as those used in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.
本実施形態に係るX線応力測定装置301は、法線Qを含む第二仮想平面(本実施形態ではPX平面)から第一レーザ照射部30までの距離L2及び第二仮想平面(PX平面)から第二レーザ照射部40までの距離L3をそれぞれ維持して、X線照射部10及びX線受光部20が移動可能とされている。
The X-ray stress measurement apparatus 301 according to the present embodiment includes a distance L2 from the second virtual plane (PX plane in the present embodiment) including the normal line Q to the first
第二仮想平面(PX平面)は、X線照射部10とX線受光部20との離間方向(Y方向)と直交するとともに、法線Qを含む平面とされている。
図4に示すように、X線応力測定装置301は、第二仮想平面(PX平面)から第一レーザ照射部30までの距離L2(図1参照)及び第二仮想平面(PX平面)から第二レーザ照射部40までの距離L3(図1参照)をそれぞれ維持して、X線照射部10及びX線受光部20を移動させる第三移動部80を備えている。
The second virtual plane (PX plane) is a plane that is perpendicular to the separation direction (Y direction) between the
As shown in FIG. 4, the X-ray stress measurement apparatus 301 is configured to measure the distance L2 (see FIG. 1) from the second virtual plane (PX plane) to the first
第三移動部80は、図示しないアクチュエータ等により、第一移動部50は、X線照射部10、X線受光部20、第一レーザ照射部30、第二レーザ照射部40及び連結部60を一体として移動可能としている。
The third moving
このように構成されたX線応力測定装置301では、第三移動部80によりX線照射部10及びX線受光部20を移動させることにより、測定点Aにおいて所望の入射角でX線を入射させることができる。これにより得られた回折X線に基づいて残留応力を正確に測定することができる。
In the X-ray stress measurement apparatus 301 configured as described above, the
なお、上述した実施の形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The various shapes and combinations of the constituent members shown in the above-described embodiments are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
例えば、上記の実施形態においては、第一移動部50、第二移動部70、第三移動部80がそれぞれ別個に設けられているが、これらを全て備えたX線応力測定装置であってもよい。
For example, in the above-described embodiment, the first moving
10…X線照射部
20…X線受光部
30…第一レーザ照射部
40…第二レーザ照射部
50…第一移動部
70…第二移動部
80…第三移動部
PX平面…第二仮想平面
Q…法線
XY平面…第一仮想平面
Z…測定対象
DESCRIPTION OF
Claims (3)
前記X線が前記測定点で回折した回折X線を検出可能とされ、前記X線照射部との相対位置が固定されたX線受光部と、
前記X線照射部と一体に設けられ、前記X線と前記法線との交点を通る第一レーザを照射する第一レーザ照射部と、
前記X線受光部と一体に設けられ、前記交点を通る第二レーザを照射する第二レーザ照射部と、
前記X線照射部及び前記X線受光部を前記測定点に近接離間させる第一移動部とを備えることを特徴とするX線応力測定装置。 An X-ray irradiation unit that irradiates X-rays so as to intersect the normal line of the surface passing through the measurement point on the surface of the measurement target;
A diffracted X-ray diffracted by the X-ray at the measurement point can be detected, and an X-ray light receiving unit having a fixed relative position to the X-ray irradiation unit;
A first laser irradiation unit that is provided integrally with the X-ray irradiation unit and irradiates a first laser that passes through an intersection of the X-ray and the normal;
A second laser irradiation unit which is provided integrally with the X-ray light receiving unit and irradiates a second laser passing through the intersection;
An X-ray stress measurement apparatus comprising: a first moving unit that moves the X-ray irradiation unit and the X-ray light receiving unit close to and away from the measurement point.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012182288A JP2014041017A (en) | 2012-08-21 | 2012-08-21 | X-ray stress measurement instrument |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012182288A JP2014041017A (en) | 2012-08-21 | 2012-08-21 | X-ray stress measurement instrument |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014041017A true JP2014041017A (en) | 2014-03-06 |
Family
ID=50393393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012182288A Pending JP2014041017A (en) | 2012-08-21 | 2012-08-21 | X-ray stress measurement instrument |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014041017A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015222236A (en) * | 2014-05-23 | 2015-12-10 | パルステック工業株式会社 | X-ray diffraction measurement method and incident angle adjustment jig |
CN110542507A (en) * | 2019-10-16 | 2019-12-06 | 丹东浩元仪器有限公司 | detection method of detection device of X-ray stress determinator |
-
2012
- 2012-08-21 JP JP2012182288A patent/JP2014041017A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015222236A (en) * | 2014-05-23 | 2015-12-10 | パルステック工業株式会社 | X-ray diffraction measurement method and incident angle adjustment jig |
CN110542507A (en) * | 2019-10-16 | 2019-12-06 | 丹东浩元仪器有限公司 | detection method of detection device of X-ray stress determinator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140027421A1 (en) | Method of Determining a Focal Point or Beam Profile of a Laser Beam in a Working Field | |
TWI661192B (en) | Using multiple sources/detectors for high-throughput x-ray topography measurement | |
KR100865056B1 (en) | Measurement device | |
JP2014133248A5 (en) | ||
BR112015024725B1 (en) | Apparatus for inspection of welded portion and inspection method thereof | |
TW200739110A (en) | Hole inspection apparatus and hole inspection method using the same | |
WO2016021030A1 (en) | X-ray apparatus and structure production method | |
JPWO2015052941A1 (en) | Coating thickness inspection method and coating thickness inspection device | |
KR20160006054A (en) | Method for Inspecting Compact Parts Formed on Substrate in Defect Inspection | |
CN102908162A (en) | DR (digital radiography) equipment, light field and radiation field detector and light field and radiation field debugging method | |
JP2014041017A (en) | X-ray stress measurement instrument | |
CN104254756A (en) | Target holding jig and measurement device | |
US20140175298A1 (en) | 3d mapping with two orthogonal imaging views | |
TW201731061A (en) | Apparatus and method for calibrating a marking position | |
JP6203502B2 (en) | Structure and method for positioning a machining tool relative to a workpiece | |
JP6418132B2 (en) | Noise measuring method and noise measuring device for electrical equipment | |
KR101480663B1 (en) | measuring method of underwater hydrophone array location using linear stage | |
KR101164523B1 (en) | Laser processing apparatus having laser beam profiler | |
JP6462389B2 (en) | Measuring method of measurement object using X-ray fluorescence | |
KR101389428B1 (en) | Vibration measuring system of nuclear fusion device using laser doppler vibrometry system | |
KR101636272B1 (en) | Section marking apparatus for inspecting defect of nozzle for reactor vessel | |
JP2009271021A (en) | Accuracy measurement method and accuracy measurement device of vehicle body component | |
JP2019132704A (en) | Target holding jig, measurement device and measurement method | |
KR101790140B1 (en) | Control Method of Laser Peening Apparatus | |
JP2013200181A (en) | Beam condition monitoring device, beam condition monitoring method and pattern measuring method |