JP2014040733A - Building structure - Google Patents

Building structure Download PDF

Info

Publication number
JP2014040733A
JP2014040733A JP2012183397A JP2012183397A JP2014040733A JP 2014040733 A JP2014040733 A JP 2014040733A JP 2012183397 A JP2012183397 A JP 2012183397A JP 2012183397 A JP2012183397 A JP 2012183397A JP 2014040733 A JP2014040733 A JP 2014040733A
Authority
JP
Japan
Prior art keywords
pillar
column
cross
building
rigidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012183397A
Other languages
Japanese (ja)
Other versions
JP5953595B2 (en
Inventor
Tatsuhiko Maeda
達彦 前田
Tamehiro Araki
爲博 荒木
Satoru Kusaka
哲 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2012183397A priority Critical patent/JP5953595B2/en
Publication of JP2014040733A publication Critical patent/JP2014040733A/en
Application granted granted Critical
Publication of JP5953595B2 publication Critical patent/JP5953595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enable relaxation of an increase in cross section of one column section.SOLUTION: A building structure includes a rigid-framed structure section 4 in which a beam 3 is rigidly joined throughout a pair of column sections P. A long-term axial force acting on one P1 of the pair of column sections P is set smaller than a long-term axial force acting on the other column section P2. The beam 3 is configured in such a manner that rigidity of the side of an end joined to the one column section P1 is lower than that of the side of an end joined to the other column section P2.

Description

本発明は、一対の柱部にわたって梁が剛接合してあるラーメン構造部を備えた建物構造に関する。   The present invention relates to a building structure provided with a rigid frame structure in which beams are rigidly joined across a pair of pillars.

従来、この種の建物構造としては、複数のラーメン構造部が連続する状態に構成されたものが一般的で、各柱部には、床の支配面積に応じた荷重が作用するように構成されているものが知られている(例えば、特許文献1参照)。
このような建物構造においては、建物外周部に配置されている柱部は、建物中央側に配置されている柱部に比べて床の支配面積が小さいから、一般的に長期の軸力も小さい設定になっている。
また、各柱部は、剛接合の梁によって繋がっており、特に、柱の最下部どうしは、基礎梁によって剛接合されている。
Conventionally, as this type of building structure, a structure in which a plurality of ramen structure parts are continuous is generally used, and each column part is configured so that a load corresponding to the dominant area of the floor acts. Is known (for example, see Patent Document 1).
In such a building structure, the pillars arranged on the outer periphery of the building have a smaller floor control area compared to the pillars arranged on the center side of the building. It has become.
Further, each column portion is connected by a rigidly connected beam, and in particular, the lowermost portions of the columns are rigidly connected by a foundation beam.

特開2006−161436号公報(図4、図6)JP 2006-161436 A (FIGS. 4 and 6)

ここでは、建物外周部の柱部(便宜上、一方の柱部という)と、それに隣接する建物中央側の柱部(便宜上、他方の柱部という)とを含むラーメン構造部を例に挙げて説明する。
柱間隔が一定であれば、床の支配面積に応じた柱部の長期軸力は、床の支配面積が小さい前記一方の柱部では、床の支配面積が大きい前記他方の柱部より小さくなり、それらの基礎に伝わる荷重に関しても同様の関係となる。
従って、基礎の沈下量も、一方の柱部下方の沈下量より、他方の柱部下方の沈下量の方が大きくなる。
しかしながら、図2(b)に示すように、一方の柱部P1と他方の柱部P2とは、梁3(特に、最下層では基礎梁3A)によって剛接合されているから、沈下量の差は、梁3に対する曲げモーメントとして作用する。特に、基礎梁3Aには、大きな曲げモーメントが作用することになる。
その結果、基礎梁3Aに剛接合されている両柱部P1,P2にもそれらの曲げモーメントが作用することになるから、一方の柱部P1の曲げ耐力の強化を図るために一方の柱部P1を大断面化することが必要となる。特に、長期軸力の設定が小さい前記一方の柱部に関しては、曲げ耐力の強化に伴う断面積増加の度合が高くなる。
即ち、特に前記一方の柱部においては、大断面化によって、スペース上の制約が大きくなり、建築計画上の支障となる虞があると共に、コストアップになる問題点がある。
Here, a ramen structure part including a pillar part (referred to as one pillar part for convenience) and a pillar part adjacent to the center of the building (referred to as the other pillar part for convenience) will be described as an example. To do.
If the column spacing is constant, the long-term axial force of the column corresponding to the floor control area is smaller in the one column with a small floor control area than in the other column with a large floor control area. The same relationship applies to the load transmitted to the foundation.
Therefore, the amount of settlement of the foundation is larger in the amount of settlement below the other column than the amount of settlement below one of the columns.
However, as shown in FIG. 2 (b), one pillar part P1 and the other pillar part P2 are rigidly joined by the beam 3 (in particular, the foundation beam 3A in the lowermost layer). Acts as a bending moment for the beam 3. In particular, a large bending moment acts on the foundation beam 3A.
As a result, since the bending moments act on both column portions P1 and P2 rigidly joined to the foundation beam 3A, one column portion is used to enhance the bending strength of one column portion P1. It is necessary to increase the cross section of P1. In particular, with respect to the one column portion having a small long-term axial force setting, the degree of increase in the cross-sectional area associated with the strengthening of the bending strength increases.
That is, particularly in the one column part, there is a problem that space restriction becomes large due to the large cross section, which may hinder the construction plan and increase the cost.

従って、本発明の目的は、上記問題点を解消し、一方の柱部の大断面化を緩和できる建物構造を提供するところにある。   Accordingly, an object of the present invention is to provide a building structure that can solve the above-described problems and reduce the large cross-section of one pillar.

本発明の第1の特徴構成は、一対の柱部にわたって梁が剛接合してあるラーメン構造部を備えた建物構造であって、前記一対の柱部の内の一方の柱部に作用する長期の軸力は、他方の柱部に作用する長期の軸力より小さく設定してあり、前記梁は、前記一方の柱部との接合端部側を、前記他方の柱部との接合端部側より剛性が低くなるように構成してあるところにある。   A first characteristic configuration of the present invention is a building structure including a ramen structure portion in which beams are rigidly connected over a pair of column portions, and the long-term structure that acts on one column portion of the pair of column portions. The axial force is set to be smaller than the long-term axial force acting on the other column portion, and the beam has a joint end portion side with the one column portion and a joint end portion with the other column portion. It is in the place where the rigidity is lower than the side.

本発明の第1の特徴構成によれば、前記梁は、前記一方の柱部との接合端部側を、前記他方の柱部との接合端部側より剛性が低くなるように構成してあるから、両柱部での沈下量の差によって梁に発生する曲げモーメントが、低剛性部分によって吸収されて一方の柱部に伝わり難くなる。
その結果、一方の柱部の曲げ耐力を低く設定できるようになり、一方の柱部の大断面化を緩和することができる。
従って、一方の柱部の小断面化によってスペース上の制約を少なくでき、自由度の高い建築計画を行うことができ、且つ、コストダウンを図ることが可能となる。
また、一方の柱部の小断面化に伴う他方の柱への負担増加については、例えば、他方の柱の断面増加や、隣接させて耐震壁を形成する等の対応処理を実施することで、容易に対処できる。尚、長期軸力が大きい他方の柱部の周りには、一般的に建物のコアや、壁等が設けられることが多いから、それらコアや壁を利用して、上述のような対応処理を採用しやすい。
また、一対の柱部にわたって剛接合される梁は、基礎梁に限るものではなく、それより上方の階層の梁も対象とすることができる。
According to the first characteristic configuration of the present invention, the beam is configured such that the joint end side with the one column part is lower in rigidity than the joint end side with the other column part. Therefore, the bending moment generated in the beam due to the difference in the amount of settlement between the two column portions is absorbed by the low-rigidity portion and hardly transmitted to one column portion.
As a result, the bending strength of one pillar part can be set low, and the enlargement of one pillar part can be eased.
Therefore, by reducing the cross section of one of the pillars, space constraints can be reduced, a highly flexible building plan can be performed, and costs can be reduced.
In addition, with regard to the increase in the burden on the other column due to the smaller cross-section of one column part, for example, by implementing a corresponding process such as increasing the cross-section of the other column or forming a seismic wall adjacent to it, Easy to deal with. In general, building cores and walls are often provided around the other pillar, which has a large long-term axial force. Easy to adopt.
Moreover, the beam rigidly joined over a pair of pillar parts is not limited to the foundation beam, and a beam in a higher hierarchy can also be a target.

本発明の第2の特徴構成は、前記梁は、前記一方の柱部との接合端部側の断面積を、前記他方の柱部との接合端部側の断面積より小さく形成することで、前記一方の柱との接合端部側の前記剛性が低くなるように構成してあるところにある。   According to a second characteristic configuration of the present invention, the beam is formed such that a cross-sectional area on the joint end side with the one column portion is smaller than a cross-sectional area on the joint end side with the other column portion. The rigidity on the side of the joint end with the one column is low.

本発明の第2の特徴構成によれば、梁の断面積と剛性との間にある相関性を利用することができ、定量的に剛性低下の設計を行えるようになる。
また、特に、梁成を変化させることで断面積を調整すれば、より簡単に、梁の剛性の制御を行うことができる。
According to the second characteristic configuration of the present invention, the correlation between the cross-sectional area of the beam and the rigidity can be used, and the rigidity reduction can be designed quantitatively.
In particular, if the cross-sectional area is adjusted by changing the beam formation, the rigidity of the beam can be controlled more easily.

本発明の第3の特徴構成は、前記ラーメン構造部は、鉄筋コンクリート造であり、前記梁は、前記一方の柱部との接合端部側のコンクリート強度と、前記他方の柱部との接合端部側のコンクリート強度とを異ならせてあるところにある。   According to a third characteristic configuration of the present invention, the ramen structure portion is a reinforced concrete structure, and the beam has a concrete strength on the joint end side with the one column portion and a joint end with the other column portion. It is in a place where the concrete strength on the part side is different.

本発明の第3の特徴構成によれば、断面積の調整による梁剛性の制御に組み合わせて、コンクリート強度を増減することで、より広範囲にわたる梁剛性の制御を行うことができる。
例えば、一端側の梁剛性を目標値まで低くするために求められる梁断面積が、必要鉄筋量を確保できないほど小さな値になってしまうような場合、その梁端部に用いるコンクリート強度を低くすることによる剛性低下作用を組み合わせることで、必要鉄筋量を確保できる程度まで梁断面積の減少量を抑えながらも、一端側でのトータルの梁剛性が目標値となるように制御できる。
また、別の例としては、梁の一端側でのコンクリート強度を、他端側でのコンクリート強度より高く設定すると共に、一端側の梁断面積をより小さく設定して、一端側でのトータルの梁剛性が目標値となるように制御することもできる。
According to the third characteristic configuration of the present invention, it is possible to control the beam stiffness over a wider range by increasing or decreasing the concrete strength in combination with the beam stiffness control by adjusting the cross-sectional area.
For example, if the beam cross-sectional area required to reduce the beam stiffness on one end to the target value is too small to secure the required amount of reinforcing bars, reduce the concrete strength used at the beam end. By combining the effect of lowering the rigidity due to this, it is possible to control the total beam rigidity at one end side to be the target value while suppressing the amount of reduction in the beam cross-sectional area to the extent that the required amount of reinforcing bars can be secured.
As another example, the concrete strength at one end of the beam is set higher than the concrete strength at the other end, and the beam cross-sectional area at one end is set smaller, so that the total strength at one end is reduced. It is also possible to control so that the beam rigidity becomes a target value.

本発明の第4の特徴構成は、前記梁は、基礎梁であるところにある。   According to a fourth characteristic configuration of the present invention, the beam is a foundation beam.

本発明の第4の特徴構成によれば、基礎部の地盤沈下によって生じる梁の曲げモーメントは、基礎梁において(他の階層の梁に比べて)最も顕著に現れるから、上述の各作用効果を最も効率よく発揮することができる。   According to the fourth characteristic configuration of the present invention, the bending moment of the beam caused by the ground subsidence of the foundation appears most prominently in the foundation beam (compared to beams in other layers). It can be demonstrated most efficiently.

ラーメン構造部を示す断面図Sectional view showing the ramen structure ラーメン構造部の曲げモーメント図Bending moment diagram of ramen structure 別実施形態の建物を示す正面図Front view showing a building of another embodiment 別実施形態の建物のラーメン構造部を示す断面図Sectional drawing which shows the ramen structure part of the building of another embodiment

以下に本発明の実施の形態を図面に基づいて説明する。尚、図面において従来例と同一の符号で表示した部分は、同一又は相当の部分を示している。   Embodiments of the present invention will be described below with reference to the drawings. In the drawings, the parts indicated by the same reference numerals as those in the conventional example indicate the same or corresponding parts.

図1は、本発明の建物構造を採用した建物Bの基礎部B0と1階部B1との要部を示す断面図である。尚、2階部以上の階層の表示は、省略している。   FIG. 1 is a cross-sectional view showing the main parts of a base part B0 and a first floor part B1 of a building B adopting the building structure of the present invention. In addition, the display of the hierarchy above the second floor is omitted.

当該実施形態においては、鉄筋コンクリート造の建物Bを例に挙げて説明するものであり、建物Bは、多数のフーチング基礎1が備えられ、それらの上に、柱2がそれぞれ立設されて構成してある。フーチング基礎1には、柱2からの軸力が作用し、これら上下に連設されたフーチング基礎1と柱2とを合わせて柱部Pという。
フーチング基礎1が地盤G上に載置されていることで、柱部Pの荷重が地盤Gによって支持されている。
In this embodiment, a reinforced concrete building B will be described as an example. The building B is provided with a number of footing foundations 1 on which pillars 2 are erected. It is. The axial force from the pillar 2 acts on the footing foundation 1, and the footing foundation 1 and the pillar 2 that are continuously provided above and below are collectively referred to as a pillar portion P.
Since the footing foundation 1 is placed on the ground G, the load of the pillar portion P is supported by the ground G.

図1は、建物の外周部に位置する柱部P1と、建物内側に隣接する柱部P2との設置状況を示している。
便宜上、以後の説明においては、P1の記号を付した「建物の外周部に位置する柱部」を、一方の柱部P1といい、P2の記号を付した「建物内側に隣接する柱部」を、他方の柱部P2という。
柱部Pに作用する長期軸力は、床の支配面積の関係で、一方の柱部P1の方が他方の柱部P2より小さく設定されている。
従って、一方の柱部P1の柱2aは、他方の柱部P2の柱2bより軸耐力が低く設計されている。
FIG. 1 shows an installation situation of a pillar part P1 located on the outer peripheral part of the building and a pillar part P2 adjacent to the inside of the building.
For the sake of convenience, in the following description, the “column part located on the outer periphery of the building” with the symbol P1 is referred to as one column part P1, and the “column part adjacent to the inside of the building” with the symbol P2. Is referred to as the other pillar portion P2.
The long-term axial force acting on the pillar portion P is set so that one pillar portion P1 is smaller than the other pillar portion P2 due to the relationship of the dominant area of the floor.
Therefore, the pillar 2a of one pillar part P1 is designed to have a lower axial strength than the pillar 2b of the other pillar part P2.

隣り合う各柱部Pには、梁3が剛接合してあり、これら柱部Pと梁3とでラーメン構造部4が構成されている。
尚、図1に示す梁3は、基礎梁3Aである。
The beam 3 is rigidly joined to each adjacent column P, and the column structure P and the beam 3 constitute a frame structure portion 4.
The beam 3 shown in FIG. 1 is a foundation beam 3A.

基礎梁3Aは、梁成を、一方の柱部P1との接合端部側を、他方の柱部P2との接合端部側を含む他の部分より小さく形成してある。即ち、基礎梁3Aは、一方の柱部P1との接合端部側の断面積を、他方の柱部P2との接合端部側を含む他の部分の断面積より小さく形成してある。
また、基礎梁3Aを構成するコンクリートは、梁全長にわたって一定の強度のものが使用されている。
従って、一方の柱部P1との接合端部側の「梁成の小さい部分3a」は、他方の柱部P2との接合端部側を含む「他の部分3b」より低い剛性となるように設計されている。
The base beam 3A is formed with a beam smaller than the other part including the joint end part side with the other pillar part P2 on the joint end part side with the other pillar part P1. In other words, the foundation beam 3A is formed such that the cross-sectional area on the side of the joint end with the one pillar part P1 is smaller than the cross-sectional area of the other part including the joint end part side with the other pillar part P2.
Moreover, the concrete which comprises 3 A of foundation beams is used for the fixed intensity over the beam full length.
Therefore, the “part 3a with small beam formation” on the side of the joint end with one pillar P1 has lower rigidity than the “other part 3b” including the side with the joint end with the other pillar P2. Designed.

各柱部P1,P2に長期軸力が作用するに伴って、各フーチング基礎1から地盤に伝わった荷重で地盤沈下が発生する。沈下量は、各柱部P1,P2に作用する長期軸力に応じて推定されるから、一方の柱部P1より他方の柱部P2の方が大きく現れる。
その結果、各柱部P1,P2と剛接合されている基礎梁3Aには、図2に示すように、曲げモーメントが作用する。更には、基礎梁3Aの曲げモーメントは、剛接合された各柱部P1,P2にも伝わることになる。
As long-term axial force acts on each pillar part P1, P2, ground subsidence occurs due to the load transmitted from each footing foundation 1 to the ground. Since the amount of settlement is estimated according to the long-term axial force acting on each column P1, P2, the other column P2 appears larger than the other column P1.
As a result, a bending moment acts on the foundation beam 3A rigidly joined to each of the pillar portions P1 and P2, as shown in FIG. Furthermore, the bending moment of the foundation beam 3A is also transmitted to the rigidly joined column portions P1 and P2.

本実施形態の建物構造を採用してあれば、梁成の小さい部分3aでの剛性が他の部分3bより低いことから、基礎梁3Aの曲げモーメントは、他方の柱部P2に対しては、そのまま伝達される一方、一方の柱部P1に対しては、低減されて伝達される。
この作用は、図2(a)の曲げモーメント図に示すとおりである。因みに、図2(b)の曲げモーメント図は、本実施形態との比較例として、基礎梁3Aの剛性を全長にわたって一定に構成した場合を示している。
このように、一方の柱部P1との接合端部側に梁成の小さい部分3aを設けることで、基礎梁3Aに発生する曲げモーメントが、一方の柱部P1に伝わり難くなり、一方の柱部P1を、必要以上に大断面化する必要が無くなる。
If the building structure of the present embodiment is adopted, the bending moment of the foundation beam 3A is less with respect to the other column part P2 because the rigidity at the small beam portion 3a is lower than the other portion 3b. While being transmitted as it is, it is reduced and transmitted to one of the pillar portions P1.
This effect is as shown in the bending moment diagram of FIG. Incidentally, the bending moment diagram of FIG. 2 (b) shows a case where the rigidity of the foundation beam 3A is made constant over the entire length as a comparative example with the present embodiment.
In this way, by providing the small beam portion 3a on the joint end side with the one pillar portion P1, the bending moment generated in the foundation beam 3A is hardly transmitted to the one pillar portion P1, and the one pillar portion P1 is hardly transmitted. There is no need to make the section P1 larger than necessary.

因みに、梁成の小さい部分3aの水平距離は、梁端部から梁中央部にかけた範囲内で、任意に設定してある。当該実施形態においては、梁端部から梁長さの1/4の長さ範囲を、梁成の小さい部分3aとして設定してある。   Incidentally, the horizontal distance of the small beam portion 3a is arbitrarily set within the range from the beam end to the beam center. In the present embodiment, a length range of ¼ of the beam length from the beam end is set as the small beam portion 3a.

〔別実施形態〕
以下に他の実施の形態を説明する。
[Another embodiment]
Other embodiments will be described below.

〈1〉 建物構造は、先の実施形態で説明した鉄筋コンクリート造に限るものではなく、例えば、鉄骨造や、鉄骨鉄筋コンクリート造等、ラーメン構造を採用できるものであればよい。
〈2〉 梁端部の低剛性化の手法は、先の実施形態で説明した梁成を他の部分よりも減少させる方法に限るものではなく、例えば、梁成に加えて梁幅寸法をも含めて梁断面積を減少させる方法であってもよい。
また、梁端部の部材強度を、他の部分より低下させる方法を採用することも可能である。
また、梁断面積と部材強度とを組み合わせることで、梁端部の低剛性化を図る方法であってもよい。この場合は、梁断面積と部材強度とを共に、他の部分より小さくすることに限るものではなく、何れか一方を他の部分より小さくする一方、他方を他の部分よりも大きくする方法も可能である。
〈3〉 一方の柱部P1、及び、他方の柱部P2は、先の実施形態で説明した「建物の外周部に位置する柱部」と「建物内側に隣接する柱部」とで構成してあることに限るものではなく、例えば、何れの柱部P1,P2も、建物外周部に位置する柱部より内側に配置されたものであってもよい。要するに、一対の柱部Pの内の一方の柱部P1に作用する長期の軸力が、隣接する他方の柱部P2に作用する長期の軸力より小さく設定してある関係があれば該当する。
具体的な一例としては、図3に示すように、低層部Lの一部範囲に高層部Hが立設してある場合に、低層部Lと高層部Hとの境界部分の柱部は、軸力が大きいから「他方の柱部P2」に相当し、それに隣接する低層部Lの柱部は、「一方の柱部P1」に相当する。
〈4〉 一方の端部が低剛性に形成してある梁3は、先の実施形態で説明した基礎梁3Aに限るものではなく、例えば、基礎梁3Aより上方に配置されている梁3であったもよい。
〈5〉 前記梁成の小さい部分3aは、その全長にわたって同一の梁断面形状に構成してあることに限るものではなく、図4に示すように、前記他の部分3bの境界から梁端部にかけて、徐々に梁成が小さくなるように構成してあってもよい。
<1> The building structure is not limited to the reinforced concrete structure described in the previous embodiment, and may be any structure that can adopt a ramen structure such as a steel structure or a steel reinforced concrete structure.
<2> The method of reducing the rigidity of the beam end portion is not limited to the method of reducing the beam formation described in the previous embodiment as compared to other portions. For example, in addition to the beam formation, the beam width dimension can be increased. A method of reducing the cross-sectional area of the beam may be included.
It is also possible to adopt a method of reducing the member strength at the beam end portion from that of the other portions.
Further, a method of reducing the rigidity of the beam end portion by combining the beam cross-sectional area and the member strength may be used. In this case, it is not limited to making both the beam cross-sectional area and the member strength smaller than the other part, and there is also a method of making either one smaller than the other part while making the other larger than the other part. Is possible.
<3> One pillar part P1 and the other pillar part P2 are composed of the "pillar part located on the outer periphery of the building" and the "pillar part adjacent to the inside of the building" described in the previous embodiment. For example, any of the pillars P1 and P2 may be arranged on the inner side of the pillars located on the outer periphery of the building. In short, if there is a relationship in which the long-term axial force acting on one pillar portion P1 of the pair of pillar portions P is set smaller than the long-term axial force acting on the other adjacent pillar portion P2, it is applicable. .
As a specific example, as shown in FIG. 3, when the high layer portion H is erected in a partial range of the low layer portion L, the column portion at the boundary between the low layer portion L and the high layer portion H is Since the axial force is large, it corresponds to “the other column portion P2”, and the column portion of the lower layer portion L adjacent to it corresponds to “one column portion P1”.
<4> The beam 3 having one end formed with low rigidity is not limited to the foundation beam 3A described in the previous embodiment. For example, the beam 3 is arranged above the foundation beam 3A. May be there.
<5> The small beam portion 3a is not limited to the same beam cross-sectional shape over its entire length, and as shown in FIG. 4, the beam end portion extends from the boundary of the other portion 3b. In this case, the beam formation may be gradually reduced.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   In addition, as mentioned above, although the code | symbol was written in order to make contrast with drawing convenient, this invention is not limited to the structure of an accompanying drawing by this entry. In addition, it goes without saying that the present invention can be carried out in various modes without departing from the gist of the present invention.

3 梁
3A 基礎梁
4 ラーメン構造部
P 柱部
P1 一方の柱部
P2 他方の柱部
3 beam 3A foundation beam 4 frame structure part P pillar part P1 one pillar part P2 other pillar part

Claims (4)

一対の柱部にわたって梁が剛接合してあるラーメン構造部を備えた建物構造であって、
前記一対の柱部の内の一方の柱部に作用する長期の軸力は、他方の柱部に作用する長期の軸力より小さく設定してあり、前記梁は、前記一方の柱部との接合端部側を、前記他方の柱部との接合端部側より剛性が低くなるように構成してある建物構造。
A building structure having a ramen structure part in which beams are rigidly connected over a pair of pillar parts,
The long-term axial force acting on one of the pair of pillars is set to be smaller than the long-term axial force acting on the other pillar, and the beam is in contact with the one pillar. The building structure which is comprised so that rigidity may become lower than the joining edge part side with said other pillar part on the joining edge part side.
前記梁は、前記一方の柱部との接合端部側の断面積を、前記他方の柱部との接合端部側の断面積より小さく形成することで、前記一方の柱との接合端部側の前記剛性が低くなるように構成してある請求項1に記載の建物構造。   The beam is formed such that a cross-sectional area on the side of the joining end with the one pillar is smaller than a cross-sectional area on the side of the joining end with the other pillar, thereby joining the end with the one pillar. The building structure according to claim 1, wherein the structure is configured such that the rigidity on the side is low. 前記ラーメン構造部は、鉄筋コンクリート造であり、前記梁は、前記一方の柱部との接合端部側のコンクリート強度と、前記他方の柱部との接合端部側のコンクリート強度とを異ならせてある請求項2に記載の建物構造。   The ramen structure is made of reinforced concrete, and the beam has different concrete strength on the joint end side with the one column portion and concrete strength on the joint end side with the other column portion. The building structure according to claim 2. 前記梁は、基礎梁である請求項1〜3の何れか一項に記載の建物構造。   The building structure according to claim 1, wherein the beam is a foundation beam.
JP2012183397A 2012-08-22 2012-08-22 Building structure Active JP5953595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183397A JP5953595B2 (en) 2012-08-22 2012-08-22 Building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183397A JP5953595B2 (en) 2012-08-22 2012-08-22 Building structure

Publications (2)

Publication Number Publication Date
JP2014040733A true JP2014040733A (en) 2014-03-06
JP5953595B2 JP5953595B2 (en) 2016-07-20

Family

ID=50393178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183397A Active JP5953595B2 (en) 2012-08-22 2012-08-22 Building structure

Country Status (1)

Country Link
JP (1) JP5953595B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201224A (en) * 1987-02-17 1988-08-19 三井建設株式会社 Structure of high building
JP2001329714A (en) * 2000-05-23 2001-11-30 Mitsui Constr Co Ltd Earthquake-resistant framed structure
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201224A (en) * 1987-02-17 1988-08-19 三井建設株式会社 Structure of high building
JP2001329714A (en) * 2000-05-23 2001-11-30 Mitsui Constr Co Ltd Earthquake-resistant framed structure
JP2009052251A (en) * 2007-08-24 2009-03-12 Ohbayashi Corp Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building

Also Published As

Publication number Publication date
JP5953595B2 (en) 2016-07-20

Similar Documents

Publication Publication Date Title
KR101034399B1 (en) Drop Panel Structure Of Lattice-Form And Construction Method Thereof
JP6640459B2 (en) Seismic isolation method for seismic isolation structure, steel frame support structure and existing steel frame support structure
KR101139761B1 (en) Reinforcing wall for construction
JP5953595B2 (en) Building structure
JP2005248438A (en) Building structure
JP2015094076A (en) Vibration control structure
JP2009057736A (en) Method of constructing extension building
JP2008223325A (en) Earthquake-resisting reinforcing structure of viaduct
JP6368551B2 (en) Seismic isolation method for existing buildings
JP6202711B2 (en) Building structure
JP5327992B2 (en) Seismic reinforcement structure for existing buildings
JP5620883B2 (en) Damping structure
JP2016169549A (en) Connection structure for newly-constructed and existing underground structures
JP6738606B2 (en) Structure
JP2013002116A (en) Suspended-structure construction method
JP2013204249A (en) Frame structure
JP6832135B2 (en) Peripheral frame reinforcement structure
JP2006328843A (en) Building member effectively using proof stress of reinforcing steel member product
JP5352195B2 (en) Building unit
JP6219207B2 (en) Construction method of ultra-continuous multi-span rigid frame structure
JP6135112B2 (en) Damping structure
JP6324035B2 (en) Building structure
JP2011094388A (en) Level difference beam frame and building
JP2015045127A (en) Earthquake strengthening structure and method for existing building frame
JP2015132075A (en) Antiseismic reinforcement structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160524

R150 Certificate of patent or registration of utility model

Ref document number: 5953595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150