JP2014040627A - Refining method - Google Patents

Refining method Download PDF

Info

Publication number
JP2014040627A
JP2014040627A JP2012182674A JP2012182674A JP2014040627A JP 2014040627 A JP2014040627 A JP 2014040627A JP 2012182674 A JP2012182674 A JP 2012182674A JP 2012182674 A JP2012182674 A JP 2012182674A JP 2014040627 A JP2014040627 A JP 2014040627A
Authority
JP
Japan
Prior art keywords
dust
building
refining
feed rate
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012182674A
Other languages
Japanese (ja)
Other versions
JP5897426B2 (en
Inventor
Shuya Nakamura
修也 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2012182674A priority Critical patent/JP5897426B2/en
Publication of JP2014040627A publication Critical patent/JP2014040627A/en
Application granted granted Critical
Publication of JP5897426B2 publication Critical patent/JP5897426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To be able to satisfactorily perform dust collection while efficiently performing refining treatment.SOLUTION: At first, a relation between an oxygen supplying rate at a refining treatment time and a dust amount inflowing to a building 2 is obtained; at second, an oxygen supplying rate X1 in which dust generating in refining treatment does not inflow to the building 2 is obtained; at third, when refining treatment is performed by an oxygen supplying rate X2 larger than the oxygen supplying rate X1, a relation of a refining processing time of the refining treatment and a dust concentration in the building 2 is obtained; at fourth, a decreasing time in which a dust concentration decreases to a dust concentration corresponding to a first management division defined by operation environmental control is obtained based on relation between a refining processing time when refining treatment is performed by the oxygen supplying rate X2, then refining treatment is performed by an oxygen supplying rate of at most the oxygen supplying rate X1, and a dust concentration in the building 2. In addition, at fifth, when refining treatment is performed, refining treatment is performed by the oxygen supplying rate X2 larger than the oxygen supplying rate X1, and an oxygen supplying rate is lowered to the maximum of the oxygen supplying rate X1 before at least the decreasing time from a refining finishing time.

Description

本発明は、精錬処理で発生した粉塵を、精錬処理を行う設備の直上で局所集塵を用いて集塵すると共に、局所集塵とは異なる建屋集塵を行いながら精錬処理を行う精錬方法に関する。   The present invention relates to a refining method for collecting dust generated in a refining process using local dust collection just above a facility for performing the refining process and performing a refining process while collecting a building dust different from the local dust collection. .

従来より、精錬処理を行った際に、粉塵が発生することが知られている。粉塵が多量に発生すると、作業環境が悪化することから、粉塵を集塵する集塵装置で精錬処理時等に発生した粉塵を回収している。集塵装置で粉塵を集塵する技術として特許文献1〜3に示すものがある。
特許文献1では、副原料ホッパーから転炉に投入する副原料の秤量値を導入し、この該当副原料の投入によって発生する排ガス流量に相当する酸素吹き込み流量値を算出する演算装置を設けると共に、排ガス集塵装置出側の圧力測定値又は排ガス流量測定値を導入し、これと設定値と比較し、その偏差値に相当する酸素吹き込み流量値を算出し、演算装置と含塵量調節装置からの各酸素吹き込み流量値と、所定ベースの酸素吹き込み流量設定値を導入し、酸素流量調節計用の設定値を出力する酸素吹き込み流量設定装置を設けている。
Conventionally, it is known that dust is generated when refining treatment is performed. When a large amount of dust is generated, the working environment is deteriorated. Therefore, dust generated during the refining process is collected by a dust collector that collects dust. There exist some which are shown to patent documents 1-3 as a technique which collects dust with a dust collector.
In Patent Document 1, a weighing value of an auxiliary material to be introduced into the converter from the auxiliary material hopper is introduced, and an arithmetic unit for calculating an oxygen blowing flow value corresponding to an exhaust gas flow rate generated by the introduction of the relevant auxiliary material is provided, Introduce pressure measurement value or exhaust gas flow rate measurement value on the exhaust gas dust collector outlet side, compare this with the set value, calculate the oxygen blowing flow value corresponding to the deviation value, and calculate from the arithmetic unit and dust content adjustment device Each oxygen blowing flow rate value and a predetermined base oxygen blowing flow rate setting value are introduced, and an oxygen blowing flow rate setting device for outputting a setting value for an oxygen flow rate controller is provided.

特許文献2では、転炉から発生する排ガス中のダスト量を測定し、測定したダスト量に基づきダスト発生量のヒート間の推移を求め、当該ヒート直前のヒート、又は、当該ヒート直前の2以上のヒートにおけるダスト発生量が設定した閾値を逸脱したときには、ダスト発生量が閾値内となるように当該ヒートの操業条件を変更している。
特許文献3では、誘引送風機の回転数における誘引送風機の発生圧力から排ガス中の含塵量を求め、含塵量と予め設定された環境基準値とを比較して、含塵量が環境基準値より小さい場合には定めた回転数を誘引送風機の回転数とし、含塵量が環境基準値より大きい場合には環境基準値を満足する回転数に計算し直している。
In Patent Document 2, the amount of dust in the exhaust gas generated from the converter is measured, the transition of the amount of dust generation between the heats is obtained based on the measured amount of dust, and the heat immediately before the heat, or two or more immediately before the heat When the amount of dust generation in the heat of the vehicle deviates from the set threshold value, the operating condition of the heat is changed so that the amount of dust generation falls within the threshold value.
In Patent Document 3, the dust content in the exhaust gas is obtained from the pressure generated by the induced blower at the rotational speed of the induced blower, and the dust content is compared with a preset environmental reference value. When it is smaller, the determined rotational speed is set as the rotational speed of the induction fan, and when the dust content is larger than the environmental reference value, the rotational speed is recalculated to satisfy the environmental reference value.

特公昭54−022169号公報Japanese Examined Patent Publication No. 54-022169 特開2002−060824号公報Japanese Patent Laid-Open No. 2002-060824 特許第30804526号公報Japanese Patent No. 30804526

特許文献1は、転炉等で精錬したときに発生した粉塵量を考慮して酸素吹き込みを行っているものの、この技術では、粉塵量によって精錬処理時における送酸速度が制限されてしまい、精錬処理の時間を短くしながら十分に精錬処理を行うことは非常に難しいのが現状であった。
また、特許文献2や3も、粉塵量に関するものであるが、特許文献1と同様に、精錬処理の時間を短くしながら十分に精錬処理を行うことは非常に難しいのが現状であった。
In Patent Document 1, although oxygen blowing is performed in consideration of the amount of dust generated when refining in a converter or the like, in this technique, the acid feed rate during the refining process is limited by the amount of dust, and the refining is performed. At present, it is very difficult to perform a sufficient refining process while shortening the processing time.
Patent Documents 2 and 3 also relate to the amount of dust. However, as in Patent Document 1, it is very difficult to sufficiently perform the refining process while shortening the refining process time.

そこで、本発明は、上記問題点に鑑み、精錬処理を効率良く行いながら十分に集塵も行うことができる精錬方法を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a refining method capable of sufficiently collecting dust while performing a refining process efficiently.

前記目的を達成するために、本発明は、次の手段を講じた。
即ち、本発明における課題解決のための技術的手段は、精錬処理で発生した粉塵を、精錬処理を行う設備の直上で局所集塵を用いて集塵すると共に、前記局所集塵とは異なる建屋集塵を行いながら精錬処理を行う方法であって、精錬処理前に下記(1)〜(4)に示す事前準備を行った後、精錬処理時には下記(5)の工程を行うことを特徴とする。
(1)精錬処理時の送酸速度と建屋に流入する粉塵量との関係を求める。
(2)精錬処理で発生する粉塵が建屋に流入しない最大の送酸速度X1を求める。
(3)最大の送酸速度X1よりも大きい送酸速度X2で精錬処理を行った場合において当
該精錬処理の精錬処理時間と建屋内の粉塵濃度との関係を、工程(1)で求めた送酸速度及び粉塵量を用いて求める。
(4)送酸速度X2で精錬処理を行った後、最大の送酸速度X1以下の送酸速度にて精錬処理を行った場合における精錬処理時間と建屋内の粉塵濃度との関係に基づき、粉塵濃度が作業環境管理で定める第1管理区分に相当する粉塵濃度まで低下する低下時間を求める。
(5)最大の送酸速度X1よりも大きい送酸速度X2で精錬処理を行うこととし、精錬を終了時から工程(4)で求めた低下時間以上前に、送酸速度を最大の送酸速度X1に低下させる。
In order to achieve the above object, the present invention has taken the following measures.
That is, the technical means for solving the problem in the present invention is to collect dust generated by the refining process using local dust collection just above the facility for performing the refining process, and a building different from the local dust collection. A method of performing a refining process while collecting dust, characterized by performing the following step (5) during a refining process after performing the preliminary preparation shown in the following (1) to (4) before the refining process. To do.
(1) The relationship between the acid feed rate during the refining process and the amount of dust flowing into the building is obtained.
(2) The maximum acid feed rate X1 at which dust generated in the refining process does not flow into the building is obtained.
(3) When the refining treatment is performed at a larger acid sending rate X2 than the maximum acid sending rate X1, the relationship between the refining time of the refining treatment and the dust concentration in the building is determined in the step (1). Determined using acid velocity and dust.
(4) Based on the relationship between the refining treatment time and the dust concentration in the building when the refining treatment is performed at the acid sending rate below the maximum acid sending rate X1 after refining treatment at the acid sending rate X2. A reduction time during which the dust concentration decreases to the dust concentration corresponding to the first management category determined by the work environment management is obtained.
(5) The refining process is performed at an acid sending rate X2 larger than the maximum acid sending rate X1, and the acid sending rate is set to the maximum acid sending rate from the end of the refining before the decrease time obtained in step (4). Reduce to speed X1.

本発明によれば、精錬処理を効率良く行いながら十分に集塵も行うことができる。   According to the present invention, it is possible to sufficiently collect dust while performing the refining process efficiently.

本発明の精錬方法の各工程を示した図である。It is the figure which showed each process of the refining method of this invention. 溶銑予備処理、建屋、局所集塵を行う設備、建屋集塵を行う設備を示した図である。It is the figure which showed the hot metal pretreatment, the building, the equipment which performs local dust collection, and the equipment which performs building dust collection. 浸漬ランス等を通す開口孔を示した図である。It is the figure which showed the opening hole which lets an immersion lance etc. pass. 送酸速度と建屋に流入する粉塵量との関係を示す図である。It is a figure which shows the relationship between an acid delivery speed | rate and the dust amount which flows in into a building. 建屋の内部を模式的に示した斜視図である。It is the perspective view which showed the inside of the building typically. 送酸速度が94.0Nm/min且つ建屋集塵が3000m/minであるときの精錬処理時間と粉塵濃度との関係図である。Oxygen-flow-rate is the 94.0Nm 3 / min and building precipitator is a graph showing the relationship between refining processing time and dust concentration when a 3000 m 3 / min. 送酸速度が94.0Nm/min且つ建屋集塵が2000m/minであるときの精錬処理時間と粉塵濃度との関係図である。Oxygen-flow-rate is the 94.0Nm 3 / min and building precipitator is a graph showing the relationship between refining processing time and dust concentration when a 2000 m 3 / min. 送酸速度が94.0Nm/min且つ建屋集塵が6000m/minであるときの精錬処理時間と粉塵濃度との関係図である。Oxygen-flow-rate is the 94.0Nm 3 / min and building precipitator is a graph showing the relationship between refining processing time and dust concentration when a 6000 m 3 / min. 建屋集塵が3000m/minであるときの精錬処理時間と粉塵濃度との関係図である。It is a relationship figure of the refining processing time and dust concentration when building dust collection is 3000 m < 3 > / min. 建屋集塵が2000m/minであるときの精錬処理時間と粉塵濃度との関係図である。It is a related figure of refining processing time and dust concentration when building dust collection is 2000m < 3 > / min. 建屋集塵が6000m/minであるときの精錬処理時間と粉塵濃度との関係図である。It is a related figure of the refining process time and dust concentration when building dust collection is 6000 m < 3 > / min. 溶銑のSi濃度と、精錬剤1の原単位との関係図である。FIG. 2 is a relationship diagram between the Si concentration of hot metal and the basic unit of the refining agent 1. 建屋内における粉塵濃度の測定位置を示す図である。It is a figure which shows the measurement position of the dust density | concentration in a building.

以下、本発明の実施の形態を、図面に基づき説明する。
製鋼工場では、高炉から出銑した溶銑に対して、脱珪処理、脱りん処理及び脱炭処理などの精錬処理が行われるのが一般的である。精錬処理では、精錬剤や酸素等を溶銑に供給して溶銑の精錬を行うが、精錬処理時には、排ガス等の粉塵が発生する。発生した粉塵は、精錬処理を行う精錬設備の直上に設けた集塵機で局所集塵(局所的に集塵を行うこと)を行っている。この局所集塵によって精錬処理時に発生した粉塵を集塵することが理想的であるが、例えば、集塵機やバグフィルター等の集塵能力によって全ての粉塵を集塵できない場合がある。局所集塵によって集塵しきれない粉塵は、建屋内に広がり、作業員が作業する作業空間(作業場所)に至る場合がある。建屋内の粉塵が多い場合には、作業員は状況に応じて、粉塵マスク、防塵メガネ(ゴーグル)をすることがある。加えて、作業空間を良好にするためには、局所集塵とは別に建屋に集塵機を設け、建屋内の粉塵を建屋の集塵機で集塵する建屋集塵を行う。このように、建屋集塵を実施することによって、建屋内の粉塵を減少させることができ、作業員の作業場所の環境を良くすることができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In a steelmaking factory, refining treatment such as desiliconization treatment, dephosphorization treatment, and decarburization treatment is generally performed on hot metal discharged from a blast furnace. In the refining process, a refining agent, oxygen, or the like is supplied to the hot metal to refine the hot metal. During the refining process, dust such as exhaust gas is generated. The generated dust is subjected to local dust collection (to perform local dust collection) with a dust collector provided immediately above a refining facility that performs refining treatment. Although it is ideal to collect dust generated during the refining process by this local dust collection, for example, there is a case where not all dust can be collected due to the dust collection capability of a dust collector, a bag filter or the like. Dust that cannot be collected by local dust collection spreads in the building and may reach a work space (work place) where workers work. When there is a lot of dust in the building, workers may wear dust masks and dust glasses (goggles) depending on the situation. In addition, in order to improve the work space, a dust collector is provided in the building separately from the local dust collection, and building dust collection is performed in which dust in the building is collected by the dust collector in the building. Thus, by implementing the building dust collection, the dust in the building can be reduced, and the environment of the worker's work place can be improved.

本発明は、局所集塵と建屋集塵との両方を実施しながら精錬処理を行うに際し、作業員の作業場所の環境を良くするために、精錬処理の条件を適宜変更するようにしたものである。なお、精錬処理は、酸素を供給するものであればどのような処理であってもよく、精錬処理を行う容器も、混銑車、溶銑鍋、転炉などどのようなものであってもよい。
さて、精錬処理では、気体酸素や固体酸素を溶銑に供給して精錬を行う。気体酸素や固体酸素を溶銑に供給したときの酸素の送酸速度の大きさにより精錬反応が変わり、この精錬反応の度合いが、粉塵を発生させる度合いに影響を与える。つまり、精錬処理時における送酸速度と粉塵の発生量とは関係性があり、建屋内の作業環境を良くするためには、精錬処理時における送酸速度を適切にしなければならない。
In the present invention, when performing the refining process while carrying out both the local dust collection and the building dust collection, the conditions of the refining process are appropriately changed in order to improve the working environment of the worker. is there. The refining process may be any process as long as oxygen is supplied, and the container for performing the refining process may be any one such as a kneading car, a hot metal ladle, and a converter.
In the refining process, gaseous oxygen or solid oxygen is supplied to the molten iron for refining. The refining reaction varies depending on the oxygen delivery rate when gaseous oxygen or solid oxygen is supplied to the hot metal, and the degree of this refining reaction affects the degree of dust generation. In other words, there is a relationship between the acid feed rate during the refining process and the amount of dust generated, and in order to improve the working environment in the building, the acid feed rate during the refining process must be appropriate.

以下、送酸速度と、精錬処理時に発生する粉塵との関係について説明する。
精錬処理において送酸速度(酸素の供給量)が大きい場合、精錬反応が速くなり、粉塵の発生量が増加すると共に排ガス温度も高くなる。このような場合、精錬処理時に発生した粉塵を局所集塵では集塵できなくなり、粉塵が建屋内に広がることになる。ここで、建屋内に広がる粉塵量が少ない状況下では、建屋集塵も行っているため、建屋内の粉塵は増加することがない。一方、建屋内に広がる粉塵が多い場合(局所集塵で集塵しきれなかった粉塵が多い場合)は、建屋内の粉塵は増加することになる。
Hereinafter, the relationship between the acid delivery rate and the dust generated during the refining process will be described.
In the refining process, when the acid feed rate (the supply amount of oxygen) is large, the refining reaction becomes faster, the amount of dust generated increases, and the exhaust gas temperature also increases. In such a case, the dust generated during the refining process cannot be collected by local dust collection, and the dust spreads in the building. Here, in a situation where the amount of dust spread in the building is small, the building dust collection is also performed, so the dust in the building does not increase. On the other hand, when there is a lot of dust spreading in the building (when there is a lot of dust that could not be collected by local dust collection), the dust in the building will increase.

このように、精錬処理において送酸速度は、粉塵の発生量に影響を及ぼし、当該送酸速度が大きいと、建屋に広がる粉塵量も増加する可能性がある。そのため、本発明では、図1に示すように、精錬処理を行う前に、まず、精錬処理時の送酸速度と建屋に流入する粉塵量(建屋内に広がる粉塵量)との関係を求めることとしている(処理(1))。
精錬処理時の送酸速度と、建屋内に流入する流入粉塵量は、精錬処理における精錬条件(設備条件)や操業方法によっても異なる可能性がある。そのため、処理(1)では、実操業において計測された送酸速度と、そのときの送酸速度において建屋に流入する流入粉塵量とを実操業の結果から求めることとしている。
Thus, in the refining process, the acid delivery rate affects the amount of dust generated. If the acid delivery rate is large, the amount of dust spreading in the building may also increase. Therefore, in the present invention, as shown in FIG. 1, before performing the refining process, first, the relationship between the acid feed rate during the refining process and the amount of dust flowing into the building (the amount of dust spreading in the building) is obtained. (Processing (1)).
The acid sending speed during the refining process and the amount of inflow dust flowing into the building may vary depending on the refining conditions (equipment conditions) and the operation method in the refining process. Therefore, in the process (1), the acid feed rate measured in the actual operation and the amount of dust flowing into the building at the acid feed rate at that time are obtained from the result of the actual operation.

なお、上述したように精錬処理では、酸素源として、固体酸素と気体酸素との両方を使用する場合がある。ここで、固体酸素及び気体酸素から求めた送酸速度の値が同じであっても、固体酸素に対する気体酸素の比率(気酸比率)が異なる場合、建屋に流入する粉塵量が増減することがある。例えば、脱りん処理において、気酸比率が大きい場合、2次燃焼量が増加し、排ガスの温度が上昇することがある。排ガス温度が上昇した場合は、排ガス温度の上昇を抑えるために冷却空気を局所集塵を行う集塵機付近で供給する場合がある。この影響によって局所集塵で集塵する集塵量が少なくなり、建屋に流入する粉塵量が多くなる。即ち、同じ送酸速度でも気酸比率が大きくなることがあることから、同じ送酸速度であっても、建屋に流入する最も多い粉塵量を処理(1)における粉塵量として採用することが好ましい。   As described above, in the refining process, both solid oxygen and gaseous oxygen may be used as the oxygen source. Here, even if the value of the acid delivery rate obtained from solid oxygen and gaseous oxygen is the same, if the ratio of gaseous oxygen to solid oxygen (gasic acid ratio) is different, the amount of dust flowing into the building may increase or decrease. is there. For example, in the dephosphorization process, when the gas-acid ratio is large, the secondary combustion amount may increase and the temperature of the exhaust gas may rise. When the exhaust gas temperature rises, cooling air may be supplied in the vicinity of a dust collector that performs local dust collection in order to suppress an increase in the exhaust gas temperature. Due to this influence, the amount of dust collected by local dust collection decreases, and the amount of dust flowing into the building increases. That is, since the gas-acid ratio may increase even at the same acid feed rate, it is preferable to adopt the most dust amount flowing into the building as the dust amount in the process (1) even at the same acid feed rate. .

さて、精錬処理における送酸速度と粉塵量との傾向をより詳しく見てみると、粉塵の発生量は、送酸速度が増加するにしたがって次第に大きくなる。送酸速度が大きい場合は、局所集塵で集塵できずに粉塵が建屋に流入してしまうが送酸速度が小さい場合は、粉塵は建屋に流入しなくなる。つまり、粉塵が建屋内に流入しない状況を実現する送酸速度と、粉塵が建屋内に流入する状況を発現する送酸速度との境界があり、両者には境界がある。ここで、建屋内に粉塵を流入しないことのみに着目すれば、精錬処理での送酸速度を非常に小さくして常に処理を行えばよいが、精錬処理が非常に長くなり、生産性等が低下して実施することができない。このようなことから、精錬処理を行うにあたって、粉塵が建屋に流入する送酸速度と粉塵が建屋に流入しなくなる送酸速度との境界値、即ち、粉塵が建屋に流入しなくなる最大の送酸速度(未流入送酸速度)X1を把握することが必要である。   Now, looking at the tendency between the acid feed rate and the amount of dust in the refining process in more detail, the amount of dust generated gradually increases as the acid feed rate increases. When the acid delivery rate is high, dust cannot be collected by local dust collection and the dust flows into the building. However, when the acid delivery rate is low, the dust does not flow into the building. That is, there is a boundary between an acid delivery rate that realizes a situation in which dust does not flow into the building and an acid delivery rate that produces a situation in which dust flows into the building, and there is a boundary between them. Here, if we focus only on the fact that dust does not flow into the building, it is sufficient to always perform the treatment with a very low acid feed rate in the refining process, but the refining process becomes very long and productivity etc. It cannot be implemented with a decline. For this reason, when performing the refining treatment, the boundary value between the acid feed rate at which dust flows into the building and the acid feed rate at which dust does not flow into the building, that is, the maximum acid feed rate at which dust does not flow into the building. It is necessary to grasp the speed (non-inflow acid sending speed) X1.

未流入送酸速度X1が分かれば、例えば、精錬処理の前半では、未流入送酸速度X1よりも大きな送酸速度X2で精錬処理を進めつつ、精錬処理の後半では、未流入送酸速度X1よりも小さな送酸速度で処理を進めて処理を行い、最終的に、精錬処理が終了した時点では、建屋内の粉塵量を少なくすることが可能となる。つまり、粉塵が建屋に流入する送酸速度と粉塵が建屋に流入しなくなる送酸速度との境界値である未流入送酸速度X1を算出しておき、未流入送酸速度X1を用いて送酸速度を制御することによって、精錬処理の効率性と建内の環境性とに優れた処理を行うことが可能となる。   If the uninflowed acid feed rate X1 is known, for example, in the first half of the refining process, the refining process is advanced at an acid feed rate X2 larger than the non-inflow acid feed rate X1, while in the second half of the refining process, the uninflow acid feed rate X1 It is possible to reduce the amount of dust in the building at the point of time when the treatment is carried out at a lower acid feed rate and finally the refining treatment is completed. In other words, a non-inflow acid feed rate X1 that is a boundary value between an acid feed rate at which dust flows into the building and an acid feed rate at which dust does not flow into the building is calculated, By controlling the acid speed, it is possible to perform a process excellent in the efficiency of the refining process and the environmental performance in the building.

そこで、本発明では、処理(2)にて、精錬処理で発生する粉塵が建屋に流入しない送酸速度(未流入送酸速度)X1を求めることとしている。この処理でも、同じ送酸速度で
も気酸比率によって粉塵が建屋に流入しない未流入送酸速度X1が複数存在する場合、その中で最も小さな送酸速度を、未流入送酸速度X1とすることが好ましい。なお、局所集塵のみで集塵が可能な送酸速度(未流入送酸速度)X1は、設備条件や操業方法等によって異なるため、実操業における送酸速度を用いて設定することが好ましい。また、精錬処理で発生する排ガス(粉塵)は、茶褐色等の有視煙であるため、建屋内に粉塵が流入する有無を確認することは目視で容易に判断できることから、目視にて未流入送酸速度X1を求めてもよい。送酸速度の実測にあたっては、データロガー等を用いて気酸流量(送酸速度)を記録し求めるようにするすることが好ましい。
Therefore, in the present invention, in the process (2), an acid feed rate (non-inflow acid feed rate) X1 at which dust generated in the refining process does not flow into the building is obtained. Even in this process, when there are a plurality of non-inflowing acid feed rates X1 at which the dust does not flow into the building due to the gas-acid ratio even at the same acid feed rate, the smallest acid feed rate among them is set as the non-inflow acid feed rate X1. Is preferred. In addition, since the acid feed rate (non-inflow acid feed rate) X1 which can collect dust only by local dust collection changes with installation conditions, an operation method, etc., it is preferable to set using the acid feed rate in an actual operation. In addition, since the exhaust gas (dust) generated in the refining process is observable smoke such as brownish brown, it can be easily determined by visual inspection whether dust is flowing into the building. The acid rate X1 may be obtained. In actually measuring the acid delivery rate, it is preferable to record and obtain the gas-acid flow rate (acid delivery rate) using a data logger or the like.

次に、工程(3)では、未流入送酸速度X1よりも大きい送酸速度X2で精錬処理を行った場合において、送酸速度X2で精錬処理を行ったときの精錬処理時間と建屋内の粉塵濃度との関係を求める。上述したように、工程(1)にて送酸速度と粉塵量との関係が予め分かっているため、送酸速度及び粉塵量の関係からシミュレーションを用いて求める。建屋内の粉塵濃度は、建屋の大きさ、即ち、建屋の内容積(体積)と、建屋内の粉塵量とを用いて算出することができる。   Next, in the step (3), when the refining treatment is performed at the acid sending rate X2 larger than the non-inflow acid sending rate X1, the refining treatment time when the refining treatment is performed at the acid sending rate X2 and the inside of the building Find the relationship with dust concentration. As described above, since the relationship between the acid delivery rate and the amount of dust is known in advance in step (1), the relationship is determined using a simulation from the relationship between the acid delivery rate and the amount of dust. The dust concentration in the building can be calculated using the size of the building, that is, the internal volume (volume) of the building and the amount of dust in the building.

このように、工程(3)によって、送酸速度X2で精錬処理を行ったときの精錬処理時間と建屋内の粉塵濃度との関係を求めることにより、送酸速度X2で精錬処理を行った場合、どの程度、建屋内の粉塵濃度が増加したかを精錬時間毎に把握することができる。
さて、未流入送酸速度X1よりも大きい送酸速度X2で精錬処理を行うと建屋内の粉塵量、即ち、粉塵濃度は大きくなるが、工程(3)では、送酸速度X2で精錬を行った精錬時間と、建屋内の粉塵濃度との関係が分かっているため、送酸速度X2での精錬を終了した時点での建屋内の粉塵濃度を把握することができる。ここで、送酸速度X2での精錬を終了した時点から未流入送酸速度X1以下の送酸速度で精錬処理を行った場合を考える。送酸速度は、未流入送酸速度X1であるため、この精錬処理で発生した粉塵は局所集塵のみで集塵される、一方で、既に精錬処理によって建屋に入っていた粉塵は建屋集塵のみで集塵することとなり、建屋内の粉塵は、精錬時間に応じて徐々に低下させることができる。工程(3)で送酸速度を低下させる前の粉塵濃度は把握できているため、未流入送酸速度X1で精錬処理を続けることにより、低下する粉塵濃度が分かれば、最終的に精錬終了したときの粉塵濃度を制御することが可能となる。
As described above, when the refining process is performed at the acid feed rate X2 by obtaining the relationship between the refining process time and the dust concentration in the building when the refining process is performed at the acid feed rate X2 by the step (3). It is possible to grasp how much the dust concentration in the building has increased for each refining time.
Now, when refining treatment is performed at an acid feed rate X2 larger than the uninflowed acid feed rate X1, the amount of dust in the building, that is, the dust concentration increases, but in step (3), refining is performed at the acid feed rate X2. Since the relationship between the refining time and the dust concentration in the building is known, the dust concentration in the building at the time when the refining at the acid feed rate X2 is completed can be grasped. Here, a case is considered in which refining treatment is performed at an acid feed rate equal to or lower than the non-inflow acid feed rate X1 from the time when refining at the acid feed rate X2 is completed. Since the acid feed rate is the non-inflow acid feed rate X1, the dust generated by this refining process is collected only by local dust collection, while the dust that has already entered the building by the refining process is collected in the building. The dust in the building can be gradually lowered according to the refining time. Since the dust concentration before reducing the acid feed rate in step (3) is known, the refining process is finally completed if the decreasing dust concentration is known by continuing the refining treatment at the non-inflow acid sending rate X1. It becomes possible to control the dust concentration at the time.

このようなことから、本発明の工程(4)では、送酸速度X2で精錬処理を行った後、未流入送酸速度X1以下の送酸速度にて精錬処理を行った場合での建屋内の粉塵濃度と、その精錬時間との関係に基づき、粉塵濃度が作業環境管理で定める第1管理区分(詳細は後述)に相当する粉塵濃度まで低下する低下時間を求める。この工程(4)では、送酸速度X2の精錬処理によって既に建屋内の粉塵濃度は増加している状態から、送酸速度を未流入送酸速度X1に切り換えた場合での、建屋内の粉塵濃度の低下度合いをシミュレーションを用いて求める。即ち、建屋内の粉塵濃度が、未流入送酸速度X1に切り換え後の精錬処理開始後から作業環境管理で定める第1管理区分に相当する粉塵濃度にまで下がる低下時間を求める。   For this reason, in the step (4) of the present invention, after performing the refining treatment at the acid feed rate X2, the building in the case of performing the refining treatment at the acid feed rate not higher than the non-inflow acid feed rate X1. Based on the relationship between the dust concentration and the refining time, a reduction time during which the dust concentration falls to the dust concentration corresponding to the first management category (details will be described later) determined by the work environment management is obtained. In this step (4), the dust in the building when the acid feeding rate is switched to the non-inflowing acid feeding rate X1 from the state where the dust concentration in the building has already increased by the refining treatment of the acid feeding rate X2 The degree of decrease in density is obtained using simulation. That is, the reduction time for the dust concentration in the building to fall to the dust concentration corresponding to the first management category determined in the work environment management after the refining process after switching to the non-inflow acid transmission rate X1 is obtained.

作業環境管理で定める第1管理区分に相当する粉塵濃度とは、労働安全衛生法第65条に基づく気中有害物質の測定結果から作業環境管理の状態を評価するときの基準となる管理濃度の事である。粉塵濃度の第一管理は作業環境測定基準より、E=3.0÷(1.19Q+1)という式で求められる。Eは、労働安全衛生法第65条に基づく気中有害物質の測定結果から作業環境管理の状態を評価するときの基準となる濃度(単位:mg/mであり、Qは、粉じんの遊離けい酸含有率(単位:%)である。建屋内の粉塵を採取し、当該粉塵の遊離けい酸含有率を測定することで、第1管理区分を求めることができる。また、遊離けい酸とは、けい酸塩化合物を構成する結合珪酸と区別した名称でケイ素が酸素と3次元的に結合していて、他の元素とは結合していない状態の鉱物(SiO)のことである。 The dust concentration corresponding to the first management category defined in work environment management refers to the control concentration used as a reference when evaluating the state of work environment management from the measurement results of airborne hazardous substances based on Article 65 of the Industrial Safety and Health Act. It is a thing. The first management of the dust concentration is obtained from the work environment measurement standard by the equation E = 3.0 ÷ (1.19Q + 1). E is the concentration (unit: mg / m 3) that is used as a standard for evaluating the state of work environment management from the measurement results of hazardous substances in the air based on Article 65 of the Industrial Safety and Health Law. Q is the release of dust The silicic acid content (unit:%) The first control category can be obtained by collecting the dust in the building and measuring the free silicic acid content of the dust. Is a mineral (SiO 2 ) in a state in which silicon is three-dimensionally bonded to oxygen and not bonded to other elements with a name distinguished from bonded silicic acid constituting a silicate compound.

シミュレーションの方法はどのような方法で実施しても良いが、例えば、脱りん処理が終了した時の建屋の粉塵濃度の計算値と実績値がほぼ等しい値になっていることが重要である。建屋の体積が小さい場合は、建屋集塵の風量により、建屋内の粉塵の換気の効率が
異なってくる。よって、建屋集塵の風量が実操業で何種類か使用する場合は、建屋集塵の風量毎に精錬処理時間と建屋の粉塵濃度Zの関係を求めておけばよい。
The simulation method may be implemented by any method. For example, it is important that the calculated value of the dust concentration of the building when the dephosphorization process is finished and the actual value are substantially equal. When the volume of the building is small, the efficiency of dust ventilation in the building varies depending on the air volume of the building dust collection. Therefore, when several types of building dust collection airflows are used in actual operation, the relationship between the refining treatment time and the building dust concentration Z may be obtained for each building dust collection airflow.

以上のように、本発明では、工程(1)〜工程(4)に示すように、精錬処理を行う前に事前準備をしておき、精錬処理時の送酸速度、建屋に流入する粉塵量、建屋内の粉塵濃度、低下時間などの関係を求めておく。
実際に精錬処理を行う際は、工程(5)に示すように、まず、初めに未流入送酸速度X1よりも大きい送酸速度X2で精錬処理を行うこととし、精錬処理を終了する時点から工程(4)で求めた低下時間以上前に、送酸速度を未流入送酸速度X1以下に低下させ、精錬終了時点での建屋内の粉塵濃度を第1管理区分に相当する粉塵濃度未満にする。
As described above, in the present invention, as shown in the steps (1) to (4), preparations are made in advance before performing the refining treatment, the acid feed rate during the refining treatment, and the amount of dust flowing into the building. Find the relationship between the dust concentration in the building and the drop time.
When actually performing the refining process, as shown in the step (5), first, the refining process is first performed at the acid feeding rate X2 larger than the non-inflowing acid feeding rate X1, and from the time when the refining process is finished. Before the decrease time obtained in step (4), the acid feed rate is reduced to the non-inflow acid feed rate X1 or less, and the dust concentration in the building at the end of refining is less than the dust concentration corresponding to the first management category To do.

具体的には、精錬処理において、溶銑の目標成分値、精錬処理時に設定した目標温度(溶銑の目標温度)になるために必要な精錬剤の量や気体酸素の量を予め求める。なお、精錬剤の量、気体酸素の量は、目標成分値、目標温度になるような決め方であれば、どのような決め方をしてもよい。精錬剤の使用予定量、気体酸素の使用予定量を予め求めることで、精錬剤の吹込み速度、気体酸素の吹き込み速度(送酸速度)及び全体の精錬時間を決めることができる。加えて、精錬処理での溶銑の目標成分、目標温度に制御するためにも、精錬処理に必要な精錬剤の量や気体酸素の量を前もって決めることは重要である。   Specifically, in the refining process, the target component value of the hot metal, the amount of refining agent and the amount of gaseous oxygen required to reach the target temperature set during the refining process (target temperature of the hot metal) are obtained in advance. The amount of the refining agent and the amount of gaseous oxygen may be determined in any way as long as the target component value and the target temperature are determined. By determining the scheduled use amount of the refining agent and the expected use amount of gaseous oxygen in advance, the blowing rate of the refining agent, the blowing rate of gaseous oxygen (acid feed rate), and the total refining time can be determined. In addition, it is important to determine in advance the amount of the refining agent and the amount of gaseous oxygen necessary for the refining treatment in order to control the target component and the target temperature of the hot metal in the refining treatment.

実際の操業における送酸速度X2を決定すると、工程(3)や工程(4)により、操業したときの建屋の粉塵濃度が決まる。また、精錬処理時の建屋内の粉塵濃度を第1管理区分に相当する粉塵濃度未満にするまでの精錬時間(低下時間)、即ち、精錬処理中に送酸速度を未流入送酸速度X1以下に低下して精錬処理を実施する時間が分かる。そのため、精錬処理を終了する時点から見て、低下時間以上前に、送酸速度を必ず未流入送酸速度X1にする。   When the acid feed rate X2 in the actual operation is determined, the dust concentration of the building when the operation is performed is determined by the step (3) and the step (4). Also, the refining time (decrease time) until the dust concentration in the building during the refining process is less than the dust concentration corresponding to the first management category, that is, the acid supply rate during the refining process is less than the non-inflow acid supply rate X1 The time to perform the refining process is reduced. For this reason, the acid feed rate is always set to the non-inflow acid feed rate X1 before the decrease time as seen from the time when the refining process is finished.

以上、本発明をまとめると、精錬処理前に(1)〜(4)に示す事前準備を行った後、精錬処理時には(5)を行うこととしている。
(1)精錬処理時の送酸速度と建屋に流入する粉塵量との関係を求める。
(2)精錬処理で発生する粉塵が建屋に流入しない送酸速度X1を求める。
(3)送酸速度X1よりも大きい送酸速度X2で精錬処理を行った場合において当該精錬処理の精錬処理時間と建屋内の粉塵濃度との関係を用いて求める。
(4)送酸速度X2で精錬処理を行った後、送酸速度X1以下の送酸速度にて精錬処理を行った場合における精錬処理時間と建屋内の粉塵濃度との関係に基づき、粉塵濃度が作業環境管理で定める第1管理区分に相当する粉塵濃度まで低下する低下時間を求める。
(5)送酸速度X1よりも大きい送酸速度X2で精錬処理を行うこととし、精錬を終了時から工程(4)で求めた低下時間以上前に、送酸速度を最大の送酸速度X1に低下させる。
As described above, the present invention can be summarized as follows: (5) is performed during the refining process after the preliminary preparations shown in (1) to (4) are performed before the refining process.
(1) The relationship between the acid feed rate during the refining process and the amount of dust flowing into the building is obtained.
(2) The acid feed rate X1 at which the dust generated in the refining process does not flow into the building is obtained.
(3) When the refining process is performed at an acid supply rate X2 larger than the acid supply rate X1, the refining process is performed using the relationship between the refining process time of the refining process and the dust concentration in the building.
(4) Dust concentration based on the relationship between the refining time and the dust concentration in the building when refining treatment is performed at an acid feed rate of 1 or less after refining treatment at acid feed rate X2. Finds the decrease time to decrease to the dust concentration corresponding to the first management category defined in the work environment management.
(5) The refining treatment is performed at an acid feed rate X2 larger than the acid feed rate X1, and the acid feed rate is set to the maximum acid feed rate X1 before the decrease time obtained in step (4) from the end of refining. To lower.

上述した本発明について詳しく説明する。図2は、精錬処理を行う溶銑予備処理、建屋、局所集塵を行う設備、建屋集塵を行う設備を示したものである。
図2に示すように、溶銑予備処理設備1は、建屋2の下方側に設けられ、混銑車3内の溶銑4に精錬剤を吹き込む浸漬ランス5と、酸素を吹き付ける酸素ランス6とを備えている。混銑車3の炉口7の上部には、精錬処理時に発生した粉塵(排ガス)の局所集塵を行う集塵フード8が設けられている。集塵フード8の集塵口9の付近であって集塵口9と混銑車3の炉口7との間にはスプラッシュカバー10が取り付けられている。スプラッシュカバー10を設けることによって効率よく排ガスを局所集塵を行うことができる。
The above-described present invention will be described in detail. FIG. 2 shows a hot metal pretreatment for performing a refining process, a building, a facility for performing local dust collection, and a facility for performing building dust collection.
As shown in FIG. 2, the hot metal pretreatment facility 1 is provided on the lower side of the building 2 and includes an immersion lance 5 for blowing a refining agent into the hot metal 4 in the kneading vehicle 3 and an oxygen lance 6 for blowing oxygen. Yes. A dust collection hood 8 that performs local collection of dust (exhaust gas) generated during the refining process is provided on the top of the furnace port 7 of the kneading vehicle 3. A splash cover 10 is attached in the vicinity of the dust collection port 9 of the dust collection hood 8 and between the dust collection port 9 and the furnace port 7 of the kneading vehicle 3. By providing the splash cover 10, the exhaust gas can be efficiently collected locally.

集塵フード8には粉塵(排ガス)を通す排出路11が設けられており、この排出路11に、粉塵(排ガス)の冷却を行うガス冷却設備12が設けられると共に、集塵した粉塵等を補角するバグフィルター13が設けられている。バグフィルター13は、ガラス繊維のバグフィルター13で構成されており、耐熱温度は最高で260℃とされている。集塵された排ガスの温度が240℃以上になったときは、ガス冷却設備12とバグフィルター13との間の排出路11に設けられた冷却空気導入ダンパーを開にすることによって、冷却空気を排出路11内に導入し、集塵口9の排ガス温度が260℃未満になるようにしてい
る。
The dust collection hood 8 is provided with a discharge passage 11 through which dust (exhaust gas) passes. A gas cooling facility 12 for cooling the dust (exhaust gas) is provided in the discharge passage 11 and dust collected is collected. A bag filter 13 for complementing is provided. The bag filter 13 is composed of a glass fiber bag filter 13 and has a maximum heat-resistant temperature of 260 ° C. When the temperature of the collected exhaust gas reaches 240 ° C. or higher, the cooling air introduction damper provided in the discharge path 11 between the gas cooling facility 12 and the bag filter 13 is opened, thereby cooling air. The exhaust gas is introduced into the discharge path 11 so that the exhaust gas temperature at the dust collection port 9 is less than 260 ° C.

また、浸漬ランス5及び酸素ランス6は集塵フード8及び排出路11を上下に貫通して溶銑予備処理設備1の上部に位置する建屋2内に延設されている。建屋2の天井(上部)には、建屋2内の建屋2を行う建屋集塵機15が設けられている。この建屋集塵機15は、例えば、3つの集塵機を組み合わせて構成されたもので、3つの集塵機を組み合わせることにより、2000、3000、6000m/minの能力で建屋集塵を実施することができる。 Further, the immersion lance 5 and the oxygen lance 6 extend through the dust collection hood 8 and the discharge path 11 in the vertical direction in the building 2 positioned at the upper part of the hot metal pretreatment facility 1. On the ceiling (upper part) of the building 2, a building dust collector 15 that performs the building 2 in the building 2 is provided. The building dust collector 15 is configured by combining, for example, three dust collectors. By combining the three dust collectors, building dust collection can be performed with a capacity of 2000, 3000, and 6000 m 3 / min.

図2に示す溶銑予備処理設備1にて、精錬処理として脱りん処理を行いつつ局所集塵及び建屋集塵を行った。精錬処理の実施条件は、次の通りである。
混銑車3に装入した溶銑量は、260〜310tonとした。処理前の溶銑成分は、[Si]=0.05〜0.35質量%、[P]=0.103〜0.133質量%、[Mn]=0.15〜0.45質量%とした。脱りん処理後の[P]は、0.015〜0.036質量%とした。脱りん処理において3つの精錬剤を用いた。精錬剤の成分は、表1の通りである。
In the hot metal pretreatment facility 1 shown in FIG. 2, local dust collection and building dust collection were performed while performing dephosphorization as refining treatment. The implementation conditions of the refining process are as follows.
The amount of hot metal charged into the kneading vehicle 3 was 260 to 310 tons. The hot metal components before treatment were [Si] = 0.05 to 0.35 mass%, [P] = 0.103 to 0.133 mass%, and [Mn] = 0.15 to 0.45 mass%. . [P] after the dephosphorization treatment was set to 0.015 to 0.036% by mass. Three refining agents were used in the dephosphorization process. The components of the refining agent are as shown in Table 1.

なお、精錬剤は3種類を使用したがCaO又は、CaO及びOを含有しているものであれば何種類使用してもよい。
気体酸素は、Oが100%のものを使用し、精錬剤の供給速度は、精錬剤1〜精錬剤3はそれぞれ100〜600kg/分とし、気体酸素は、10〜80Nmとした。浸漬ランス5及び酸素ランス6を通すための開口孔(建屋2の床孔の大きさ)16は、図3に示すように、横幅0.96m、縦幅0.79mにした。
Although three types of refining agents are used, any number of types may be used as long as they contain CaO or CaO and O.
As the gaseous oxygen, one having 100% O 2 was used, and the supply rate of the refining agent was 100 to 600 kg / min for the refining agent 1 to the refining agent 3 respectively, and the gaseous oxygen was 10 to 80 Nm 3 . As shown in FIG. 3, the opening hole (the size of the floor hole of the building 2) 16 through which the immersion lance 5 and the oxygen lance 6 are passed has a horizontal width of 0.96 m and a vertical width of 0.79 m.

まず、工程(1)にて、脱りん処理時の送酸速度と建屋2に流入する粉塵量との関係を求めるにあたっては実操業を用いた。まず、表2に示すように3回脱りん処理を行った(テスト1〜3)。   First, in the step (1), an actual operation was used to determine the relationship between the acid feed rate during the dephosphorization treatment and the amount of dust flowing into the building 2. First, as shown in Table 2, the dephosphorization process was performed 3 times (tests 1 to 3).

テスト1〜3では、脱りん処理を開始してから10分経過した途中で、精錬剤1の吹込み速度を150kg/min、精錬剤2の吹込み速度を100kg/min、気体酸素の流量を65Nm/minに切り換えたることとした。これらの脱りん処理では、固体酸素の吹き込み速度を21、7kg/min、気体酸素の流量を65Nm/minとしたため、送酸速度を求めると、送酸速度は86.7Nm/minとなる。 In tests 1 to 3, 10 minutes after the start of the dephosphorization process, the blowing speed of the refining agent 1 was 150 kg / min, the blowing speed of the refining agent 2 was 100 kg / min, and the flow rate of gaseous oxygen was It was decided to switch to 65 Nm 3 / min. These in dephosphorization process, the blowing rate of the solid oxygen 21,7kg / min, since the flow rate of gaseous oxygen was 65 nm 3 / min, when obtaining the oxygen-flow-rate, oxygen-flow-rate becomes 86.7Nm 3 / min .

ここで、開口孔16を介して建屋2に流入する粉塵量を求めるため、3回の脱りん処理を行っているときに、開口孔16を通過する(開口孔16から建屋2内に抜ける)排ガスの粉塵濃度を測定する。詳しくは、図3に示すように、開口孔16を平面視したとき、地点A、地点B、地点Cの3カ所で排ガス中の粉塵濃度、排ガスの風速、排ガスの温度を測定した。各地点での排ガス中の粉塵濃度、排ガスの風速、排ガスは表3のようになった。   Here, in order to obtain the amount of dust flowing into the building 2 through the opening hole 16, it passes through the opening hole 16 when it is dephosphorized three times (from the opening hole 16 into the building 2). Measure the exhaust gas dust concentration. Specifically, as shown in FIG. 3, when the opening hole 16 was viewed in plan, the dust concentration in the exhaust gas, the wind speed of the exhaust gas, and the temperature of the exhaust gas were measured at three locations, point A, point B, and point C. Table 3 shows the dust concentration in the exhaust gas at each point, the wind speed of the exhaust gas, and the exhaust gas.

表3に示した測定値は脱りん処理を上記の条件で行っている間の10分間の平均値である。また、開口孔16を側面視したときの各地点の位置は、図3に示す通りである。
テスト1では、排ガス中の粉塵濃度が16069mg/Nm、排ガスの風速は3.33m/sec、排ガスの温度は、348℃になった。開口孔16の面積は、横0.96m、縦0.79mのため、0.758mとなる。浸漬ランス5の直径が370mm、酸素ランス6の直径が200mmのため、浸漬ランス5の面積は0.107m、酸素ランス6の面積は0.031mとなる。従って、実質的な開口孔16の面積(排ガスが通る部分の面積)は、0.62mとなる。説明の便宜上、実質的な開口孔16の面積のことを単に開口孔16の面積という。開口孔16から流入する排ガスの流速は、開口孔16の面積0.62m×排ガスの風速3.33m/sec=2.06m/secとなる。排ガスの温度が348℃であるため、排ガスの体積をNmに換算すると、2.06m/sec×273÷(273+348)=0.91Nm/secとなる。排ガス中の粉塵濃度は、16069mg/Nmであるため、開口孔16から建屋2内(作業床)に流入する粉塵の速度は、16069mg/Nm×0.91Nm/sec=14566mg/secとなる。
The measured values shown in Table 3 are average values for 10 minutes during the dephosphorization treatment under the above conditions. Moreover, the position of each point when the opening hole 16 is viewed from the side is as shown in FIG.
In Test 1, the dust concentration in the exhaust gas was 16069 mg / Nm 3 , the wind speed of the exhaust gas was 3.33 m / sec, and the temperature of the exhaust gas was 348 ° C. The area of the opening hole 16 is 0.758 m 2 because it is 0.96 m wide and 0.79 m long. Since the diameter of the immersion lance 5 is 370 mm, the diameter of the oxygen lance 6 is 200 mm, the area of the immersion lance 5 is 0.107m 2, the area of the oxygen lance 6 becomes 0.031 2. Therefore, the substantial area of the opening hole 16 (area of the portion through which the exhaust gas passes) is 0.62 m 2 . For convenience of explanation, the substantial area of the opening hole 16 is simply referred to as the area of the opening hole 16. The flow rate of the exhaust gas flowing in from the opening hole 16 is an area of the opening hole 16 of 0.62 m 2 × wind speed of the exhaust gas 3.33 m / sec = 2.06 m 3 / sec. Since the temperature of the exhaust gas is 348 ° C., when the volume of the exhaust gas is converted to Nm 3 , 2.06 m 3 /sec×273÷(273+348)=0.91 Nm 3 / sec. Since the dust concentration in the exhaust gas is 16069 mg / Nm 3 , the speed of the dust flowing into the building 2 (work floor) from the opening 16 is 16069 mg / Nm 3 × 0.91 Nm 3 / sec = 145666 mg / sec. Become.

上述したテスト1と同様に、テスト2及びテスト3での粉塵の速度(粉塵量)は、テスト2では13835mg/sec、テスト3では13677mg/secとなった。
以上のことより、テスト1〜3の結果を平均すると、送酸速度86.7Nm/minで脱りん処理を実施した場合の建屋2に流入する粉塵量は14026mg/secとなる。
Similar to Test 1 described above, the dust speed (dust amount) in Test 2 and Test 3 was 13835 mg / sec in Test 2 and 13677 mg / sec in Test 3.
From the above, when the results of tests 1 to 3 are averaged, the amount of dust flowing into the building 2 when the dephosphorization process is performed at an acid feed rate of 86.7 Nm 3 / min is 14026 mg / sec.

なお、排ガス中の粉塵濃度(mg/Nm)は、ろ過補修による重量濃度測定方法(JIS Z8808)で測定し、排ガスの風速は、ピトー管を用いてデジタルマノメータによる連続測定方法(JIS Z8808)で行った。排ガス温度は、熱伝対により連続測定した。
さらに、別の送酸速度であるときの建屋2に流入する粉塵量を求めるため、表4に示すように、テスト4〜6に示す条件で脱りん処理を行った。
The dust concentration (mg / Nm 3 ) in the exhaust gas is measured by a weight concentration measurement method (JIS Z 8808) by filtration repair, and the wind speed of the exhaust gas is measured continuously by a digital manometer using a Pitot tube (JIS Z 8808). I went there. The exhaust gas temperature was continuously measured by a thermocouple.
Furthermore, in order to determine the amount of dust flowing into the building 2 at another acid delivery rate, as shown in Table 4, dephosphorization treatment was performed under the conditions shown in Tests 4-6.

テスト4〜6では、脱りん処理を開始してから10分経過した途中で、精錬剤1の吹込み速度を150kg/min、精錬剤2の吹込み速度を120kg/min、気体酸素の流量を70Nm/minに切り換えたることとした。これらの脱りん処理では、固体酸素の吹き込み速度を23.8kg/min、気体酸素の流量を70Nm/minとしたため、送酸速度を求めると、送酸速度は93.8Nm/minとなる。テスト4〜6では、表5に示すように、建屋2に流入する粉塵量は、テスト4では20254mg/se
cとなり、テスト5では19898mg/sec、テスト6では19447mg/secとなった。したがって、送酸速度が93.8Nm/minであるときの建屋2に流入する粉塵量は、19866mg/secとなった。
In tests 4 to 6, 10 minutes after the start of the dephosphorization process, the blowing speed of the refining agent 1 was 150 kg / min, the blowing speed of the refining agent 2 was 120 kg / min, and the flow rate of gaseous oxygen was It was decided to switch to 70 Nm 3 / min. In these dephosphorization treatments, the solid oxygen blowing rate was 23.8 kg / min and the flow rate of gaseous oxygen was 70 Nm 3 / min. Therefore, when the acid feeding rate was determined, the acid feeding rate was 93.8 Nm 3 / min. . In tests 4-6, as shown in Table 5, the amount of dust flowing into building 2 is 20254 mg / se in test 4.
c, and it was 19898 mg / sec in Test 5 and 19447 mg / sec in Test 6. Therefore, the amount of dust flowing into the building 2 when the acid feed rate was 93.8 Nm 3 / min was 19866 mg / sec.

なお、上述したテスト1〜6では、気体酸素比率が75%と通常の脱りん処理で考えられる最大規模の気体酸素比率でテストを行った。即ち、建屋2に流入する粉塵量(発生する粉塵量)が最も多い気体酸素比率を選択して操業実績を、工程(1)における精錬処理時の送酸速度と建屋2に流入する粉塵量との関係を求めるものに用いた。
次に、(2)精錬処理で発生する粉塵が建屋2に流入しない未流入送酸速度X1を求めるために、表6に示すように、テスト7〜12の操業を行った。
In tests 1 to 6 described above, the test was performed at a gas oxygen ratio of 75%, which is the maximum gas oxygen ratio conceivable in normal dephosphorization treatment. That is, the gas oxygen ratio with the largest amount of dust flowing into the building 2 (the amount of dust generated) is selected, and the operation results are calculated. The acid feed rate during the refining process in the step (1) and the amount of dust flowing into the building 2 Used to find the relationship.
Next, as shown in Table 6, the operations of Tests 7 to 12 were performed in order to obtain the non-inflow acid transmission rate X1 at which the dust generated in the refining process does not flow into the building 2.

テスト7〜10では、脱りん処理が10分経過した移行の途中で、精錬剤1の吹込み速度を210kg/min、気体酸素の流量を50Nm/minにして10分間、脱りん処理を行った。
テスト7では、10分間の脱りん処理中での送酸速度の実績値が204〜213Nm/minとなり、固体酸素の供給速度は14.9〜15.5Nm/minとなり、送酸速度は64.9〜65.5Nm/minとなった。送酸速度を64.9〜65.5Nm/minで脱りん処理を行ったとき、開口孔16から建屋2内への粉塵の流入は確認されなかった。
In tests 7 to 10, the dephosphorization process was performed for 10 minutes while the dephosphorization process was performed for 10 minutes while the flow rate of the refining agent 1 was 210 kg / min and the flow rate of gaseous oxygen was 50 Nm 3 / min. It was.
In Test 7, the actual value of the acid delivery rate during the dephosphorization treatment for 10 minutes is 204 to 213 Nm 3 / min, the supply rate of solid oxygen is 14.9 to 15.5 Nm 3 / min, and the acid delivery rate is It became 64.9-65.5Nm < 3 > / min. When dephosphorization treatment was performed at an acid feed rate of 64.9 to 65.5 Nm 3 / min, no inflow of dust from the opening 16 into the building 2 was confirmed.

テスト8では、10分間の脱りん処理中での送酸速度の実績値が206〜213Nm/minとなり、固体酸素の供給速度は14.9〜15.5Nm/minとなり、送酸速度は64.9〜65.5Nm/minとなった。また、テスト9では、10分間の脱りん処理中での送酸速度の実績値が205〜214Nm/minとなり、固体酸素の供給速度は15.0〜15.6Nm/minとなり、送酸速度は65.0〜65.6Nm/minとなった。テスト8及びテスト9でも建屋2への粉塵の流入は見られなかった。 In Test 8, the actual value of the acid feed rate during the 10-minute dephosphorization process was 206 to 213 Nm 3 / min, the solid oxygen supply rate was 14.9 to 15.5 Nm 3 / min, and the acid feed rate was It became 64.9-65.5Nm < 3 > / min. In Test 9, the actual value of the acid feed rate during the dephosphorization treatment for 10 minutes was 205 to 214 Nm 3 / min, the solid oxygen supply rate was 15.0 to 15.6 Nm 3 / min, The speed was 65.0-65.6 Nm 3 / min. In Test 8 and Test 9, no inflow of dust into the building 2 was observed.

なお、建屋2への粉塵の流入の判断は、脱りん処理時において5秒間以上連続して、開口孔16から建屋2内に粉塵が入った場合を粉塵の流入有りとし、5秒間以上連続して、開口孔16から建屋2内に粉塵が入らなかった場合を粉塵の流入無しとすることが好ましい。全く建屋2に粉塵が流入しない場合を、建屋2への粉塵が無しとすることが理想的であるが、実操業において、脱りん処理を行った場合、混銑車3内で発生したCOガスがス
ラグから瞬間的に抜けたときに一時的に粉塵が建内に流入してしまうときがある。例えば、脱りん初期等において、スラグの塩基度が低く、脱りんスラグの粘性が低いと、COガスのガス抜けが悪く、一気にCOガスが排出する。このとき、大凡2秒程度の瞬間的な粉塵の流入が確認されるが、瞬間的な粉塵の流入は建屋2内の粉塵濃度を急激に上昇させるものではなく建屋2内の環境への影響は少ないため、建屋2への瞬間的な粉塵の流入は除外することが好ましい。上述したテスト7〜9では、脱りんスラグからCOガスを抜けやすくするために、脱りん処理開始時の脱りんスラグの塩基度を2.0程度まで上昇させ、突発的なガス抜けが無い条件で精錬処理を行ったため、上述したような建屋2への瞬間的な粉塵の流入は全くなかった。
The determination of the inflow of dust into the building 2 is continued for 5 seconds or more during the dephosphorization process, and when dust enters the building 2 from the opening hole 16, the inflow of dust is continued for 5 seconds or more. Thus, it is preferable that the dust does not flow when the dust does not enter the building 2 from the opening hole 16. Ideally, there should be no dust in the building 2 when no dust flows into the building 2. However, in the actual operation, when dephosphorization is performed, the CO gas generated in the kneading vehicle 3 is reduced. There are times when dust temporarily flows into the building when it comes out of the slag momentarily. For example, if the basicity of the slag is low and the viscosity of the dephosphorization slag is low at the initial stage of dephosphorization, the degassing of the CO gas is bad and the CO gas is discharged at once. At this time, an instantaneous dust inflow of about 2 seconds is confirmed, but the instantaneous dust inflow does not increase the dust concentration in the building 2 abruptly, and the impact on the environment in the building 2 is Since there are few, it is preferable to exclude the instantaneous inflow of dust to the building 2. In Tests 7 to 9 described above, in order to facilitate the removal of CO gas from the dephosphorization slag, the basicity of the dephosphorization slag at the start of the dephosphorization process is increased to about 2.0, and there is no sudden outgassing. As a result of the refining process, there was no instantaneous inflow of dust into the building 2 as described above.

テスト10は、10分間の脱りん処理中での送酸速度の実績値が213〜224Nm/minとなり、固体酸素の供給速度は15.5〜16.4Nm/minとなり、送酸速度は66.5〜67.4Nm/minとなった。また、テスト11では、10分間の脱りん処理中での送酸速度の実績値が216〜225Nm/minとなり、固体酸素の供給速度は15.8〜16.4Nm/minとなり、送酸速度は66.8〜67.4Nm/minとなった。テスト12では、10分間の脱りん処理中での送酸速度の実績値が214〜223Nm/minとなり、固体酸素の供給速度は15.6〜16.3Nm/minとなり、送酸速度は66.6〜67.3Nm/minとなった。テスト10〜12では、5秒間以上連続して、開口孔16から建屋2内への粉塵の流入が確認された。 In test 10, the actual value of the acid feed rate during the dephosphorization treatment for 10 minutes was 213 to 224 Nm 3 / min, the supply rate of solid oxygen was 15.5 to 16.4 Nm 3 / min, and the acid feed rate was It became 66.5-67.4 Nm < 3 > / min. In Test 11, the actual value of the acid feed rate during the 10-minute dephosphorization process was 216 to 225 Nm 3 / min, the solid oxygen supply rate was 15.8 to 16.4 Nm 3 / min, The speed was 66.8-67.4 Nm 3 / min. In Test 12, the actual value of the acid delivery rate during the dephosphorization treatment for 10 minutes is 214 to 223 Nm 3 / min, the supply rate of solid oxygen is 15.6 to 16.3 Nm 3 / min, and the acid delivery rate is It became 66.6-67.3Nm < 3 > / min. In tests 10 to 12, the inflow of dust from the opening 16 into the building 2 was confirmed continuously for 5 seconds or more.

以上、テスト7〜12の操業結果によれば、送酸速度が65.5Nm/min以下の場合では、建屋2内への粉塵の流入は無く、65.5Nm/minを超えると、建屋2内への粉塵の流入がある結果となった。
送酸速度と粉塵流入速度との関係を整理すると、送酸速度が65.0Nm/minの場合は、建屋2に流入する粉塵流入速度(粉塵量)は0mg/secとなり、送酸速度が86.7Nm/minの場合は、粉塵流入速度(粉塵量)は14026mg/secとなり、送酸速度が86.7Nm/minの場合は、粉塵流入速度(粉塵量)は19866mg/secとなる。さらに整理すると、工程(1)における送酸速度と建屋2に流入する粉塵量との関係は図4に示す曲線A(二次曲線)となり、工程(2)における未流入送酸速度X1は、図4で示す65.0Nm/minとなる。なお、テスト7〜12の操業結果では、建屋2内への粉塵の流入が無い送酸速度は、65.5Nm/minであるが、この実施例では、送酸速度のバラツキを考慮し、未流入送酸速度X1を65.0Nm/minとしている。
As described above, according to the operation results of Tests 7 to 12, when the acid feed rate is 65.5 Nm 3 / min or less, there is no inflow of dust into the building 2, and the building speed exceeds 65.5 Nm 3 / min. As a result, there was inflow of dust into 2.
When the relationship between the acid delivery rate and the dust inflow rate is organized, when the acid delivery rate is 65.0 Nm 3 / min, the dust inflow rate (dust amount) flowing into the building 2 is 0 mg / sec, and the acid delivery rate is In the case of 86.7 Nm 3 / min, the dust inflow rate (dust amount) is 14026 mg / sec, and in the case of the acid feed rate of 86.7 Nm 3 / min, the dust inflow rate (dust amount) is 19866 mg / sec. . Further organizing, the relationship between the acid delivery rate in the step (1) and the amount of dust flowing into the building 2 becomes the curve A (secondary curve) shown in FIG. 4, and the non-inflow acid delivery rate X1 in the step (2) is It is 65.0 Nm 3 / min shown in FIG. In addition, in the operation results of Tests 7 to 12, the acid feed rate without inflow of dust into the building 2 is 65.5 Nm 3 / min, but in this example, considering the variation in the acid feed rate, The non-inflow acid feeding rate X1 is set to 65.0 Nm 3 / min.

工程(3)にて、未流入送酸速度X1よりも大きい送酸速度X2で精錬処理を行ったとし、このときの精錬処理の精錬処理時間と建屋2内の粉塵濃度との関係を用いて求めるにあたっては、シミュレーションを用いた。シミュレーションでは、1秒毎に流入する建屋2の粉塵流入量と建屋2から流出する流出量とを用いて、建屋2内の粉塵濃度を求めた。建屋2から流出する流出量は、建屋集塵の能力及び建屋集塵したときの気体(排出ガス)の粉塵濃度によって決まるが、建屋集塵したときの排ガスの粉塵濃度は、下記に示すように、建屋2内の粉塵濃度と同程度としたうえで、流出量を求めることとした。   In the step (3), it is assumed that the refining treatment is performed at an acid feed rate X2 larger than the non-inflow acid feed rate X1, and the relationship between the refining treatment time at this time and the dust concentration in the building 2 is used. The simulation was used for obtaining. In the simulation, the dust concentration in the building 2 was determined using the dust inflow amount of the building 2 flowing in every second and the outflow amount flowing out of the building 2. The amount of outflow flowing out of the building 2 is determined by the dust collection capacity of the building and the dust concentration of the gas (exhaust gas) when the building collects dust. The dust concentration of the exhaust gas when collecting the building dust is as shown below. The amount of spillage was determined after the same concentration as the dust concentration in Building 2.

未流入送酸速度X1よりも大きい送酸速度X2は94.0Nm/minとした。送酸速度X2を94.0Nm/minをしたときの粉塵流入速度(粉塵量)は、図4の曲線の式から求め、20044mg/secとした。建屋2の体積を求めるにあたっては、実際の建屋2の大きさを使用した。図5に示すように、建屋2内の作業床の横幅は15.25m、縦幅は13.70m、高さが20.0mであるため、建屋2の体積は4179mとなる。図5に示すように、建屋2内には、浸漬ランス5、酸素ランス6、ランスキャリッジのほか、ランス交換デッキ、ランス点検デッキなど様々な設備が設けられているが、これらの体積は建屋2の他の空間体積と比較すると、小さいため、様々な設備を除かずに、建屋2の周囲の大きさをそのまま建屋2の体積とした。 The acid feed rate X2 larger than the non-inflow acid feed rate X1 was 94.0 Nm 3 / min. The dust inflow rate (dust amount) when the acid feed rate X2 was 94.0 Nm 3 / min was obtained from the curve equation of FIG. 4 and was 20044 mg / sec. In determining the volume of the building 2, the actual size of the building 2 was used. As shown in FIG. 5, the width of the work floor in the building 2 is 15.25 m, the vertical width is 13.70 m, and the height is 20.0 m. Therefore, the volume of the building 2 is 4179 m 3 . As shown in FIG. 5, in the building 2, in addition to the immersion lance 5, the oxygen lance 6, and the lance carriage, various facilities such as a lance replacement deck and a lance inspection deck are provided. Since it is small compared with other space volumes, the size of the periphery of the building 2 was directly used as the volume of the building 2 without removing various facilities.

開口孔16から建屋2内へ流入してきた粉塵は、障害物が無ければ、建屋集塵機15へと進んでいき当該建屋集塵機15によって捕獲されるが、実際は、建屋2内に設置した様
々な設備に当たりながら拡散するため、開口孔16から建屋2内に流入した粉塵は、瞬時に建屋2内に均一に拡散するとし、建屋2内の粉塵濃度を計算することとした。また、開口孔16から建屋2に流入した粉塵の平均粒度は4〜8μmと非常に細かいことから、重力による沈降等を考慮せずに計算した。
If there is no obstacle, the dust flowing into the building 2 from the opening hole 16 proceeds to the building dust collector 15 and is captured by the building dust collector 15, but in actuality, it hits various facilities installed in the building 2. Therefore, the dust flowing into the building 2 from the opening hole 16 is assumed to diffuse uniformly into the building 2 instantaneously, and the dust concentration in the building 2 is calculated. Moreover, since the average particle size of the dust which flowed into the building 2 from the opening hole 16 was as very fine as 4 to 8 μm, the calculation was performed without considering sedimentation due to gravity.

さて、送酸速度X2を94.0Nm/minとして、建屋2内に20044mg/secの粉塵が流入した場合、建屋2内の粉塵濃度は、20044mg÷4179m=4.8mg/mになる。一方で、建屋集塵により建屋2内の粉塵は集塵されることから、建屋集塵機15の風量が3000m/minの場合、1秒間当たりの排出能力は、3000/60で50m/secとなり、50m/sec×4.8mg=240mgの集塵が建屋集塵で除去されることになる。これにより、1秒後の建屋2内の粉塵量は、20044mg−240mg=19804mgとなる。そして、建屋2内の粉塵濃度は、19804mg/4179m=4.74mg/mとなる。
上述したような考え方で、送酸速度を94.0Nm/minとした場合、建屋2内の粉塵濃度は、図6に示すように、精錬処理時間に応じて次第に増加していき、精錬時間が571秒となった時点で、396mg/mの一定となる。これは、開口孔16から建屋2に流入する粉塵量と、建屋集塵で排出する粉塵量(流出量)とが釣り合うからである。
Now, the oxygen-flow-rate X2 as 94.0Nm 3 / min, if the dust 20044mg / sec flows into building 2, dust concentration of the building in 2 will 20044mg ÷ 4179m 3 = 4.8mg / m 3 . On the other hand, since dust in the building 2 is collected by the building dust collection, when the air volume of the building dust collector 15 is 3000 m 3 / min, the discharge capacity per second is 3000 m / 60 and 50 m 3 / sec. , 50 m 3 /sec×4.8 mg = 240 mg of dust is removed by building dust collection. Thereby, the amount of dust in the building 2 after 1 second becomes 20044 mg−240 mg = 19844 mg. The dust concentration in the building within 2 becomes 19804mg / 4179m 3 = 4.74mg / m 3.
When the acid feed rate is 94.0 Nm 3 / min based on the above-described concept, the dust concentration in the building 2 gradually increases according to the refining treatment time as shown in FIG. Becomes 396 mg / m 3 at the time when becomes 571 seconds. This is because the amount of dust flowing into the building 2 from the opening 16 is balanced with the amount of dust discharged by the building dust collection (outflow amount).

同様に、送酸速度を94Nm/minとした場合で、建屋集塵の能力が2000m/minの場合は、1秒間当たりの排出能力は、2000/60で33m/secとなり、33m/sec×4.8mg=160mgの集塵が建屋集塵で除去されることになる。これにより、建屋2内の粉塵濃度は、(20044/160)/=4.76mg/mとなる。送酸速度が94Nm/minであり、建屋集塵の能力が2000m/minの場合は、図7に示すように、精錬時間が858秒となった時点で、597mg/mの一定となる。 Similarly, when the acid feed rate is 94 Nm 3 / min and the building dust collection capacity is 2000 m 3 / min, the discharge capacity per second is 33 m 3 / sec at 2000/60, which is 33 m 3. /Sec×4.8 mg = 160 mg of dust is removed by building dust collection. Thereby, the dust concentration in the building 2 becomes (20044/160) / = 4.76 mg / m 3 . When the acid feed rate is 94 Nm 3 / min and the building dust collection capacity is 2000 m 3 / min, as shown in FIG. 7, when the refining time becomes 858 seconds, the constant is 597 mg / m 3 . Become.

同様に、送酸速度が94Nm/minであり、建屋集塵の能力が6000m/minの場合は、図8に示すように、精錬時間が284秒となった時点で、196mg/mの一定となる。
以上、工程(3)によって、送酸速度X1よりも大きい送酸速度X2で精錬処理を行った場合において、精錬処理の精錬処理時間と建屋2内の粉塵濃度との関係について求めると、脱りん処理時に一定時間経過すると、建屋2内の粉塵濃度は一定値となる。つまり、最も建屋集塵の能力(風量)が小さい2000m/minの場合でも、858秒でで建屋2内の粉塵濃度は一定になる。
Similarly, when the acid feed rate is 94 Nm 3 / min and the building dust collection capacity is 6000 m 3 / min, as shown in FIG. 8, when the refining time is 284 seconds, 196 mg / m 3 It becomes constant.
As described above, when the refining process is performed by the step (3) at the acid sending speed X2 larger than the acid sending speed X1, the relationship between the refining time of the refining process and the dust concentration in the building 2 is determined. When a certain time elapses during processing, the dust concentration in the building 2 becomes a certain value. That is, the dust concentration in the building 2 becomes constant in 858 seconds even when the building dust collection capacity (air volume) is 2000 m 3 / min, which is the smallest.

さて、工程(4)では、送酸速度X2で脱りん処理を行った後、送酸速度X1以下の送酸速度にて脱りん処理を行った場合での精錬処理時間(脱りん処理時間)と建屋2内の粉塵濃度との関係を求める。次に、粉塵濃度が作業環境管理で定める第1管理区分に相当する粉塵濃度まで低下する低下時間を求める。
送酸速度を未流入送酸速度X1以下にした場合、工程(3)で示したように、建屋2内の粉塵濃度が上昇していたとしても、建屋2内には新たに粉塵は流入しないため、未流入送酸速度を未流入送酸速度X1以下にした精錬時間が進むにつれて次第に建屋2内の粉塵濃度は低下する。
Now, in the step (4), after dephosphorization treatment at an acid feed rate X2, refining treatment time (dephosphorization treatment time) when dephosphorization treatment is carried out at an acid feed rate lower than the acid feed rate X1. And the relationship between the dust concentration in the building 2 is obtained. Next, a reduction time during which the dust concentration is reduced to the dust concentration corresponding to the first management category determined by the work environment management is obtained.
When the acid delivery rate is set to the non-inflow acid delivery rate X1 or less, as shown in the step (3), no new dust flows into the building 2 even if the dust concentration in the building 2 is increased. Therefore, the dust concentration in the building 2 gradually decreases as the refining time in which the non-inflow acid transmission rate is set to the non-inflow acid transmission rate X1 or less proceeds.

送酸速度を94Nm/minとし且つ建屋集塵の能力を3000m/minにして精錬処理を行った段階では、建屋2内の総粉塵量は、396mg/m×4179m=1654884mgである。この状態から、送酸速度を未流入送酸速度X1以下(例えば、65Nm/min以下)にした場合、建屋集塵の能力が3000m/minであるため、1秒間当たりの粉塵の排出量は、19800mgとなる[(3000m÷60)×396]。1秒後の建屋2内の粉塵量は1654884mg−19800mg=1635084mgとなり、建屋2内の粉塵濃度は1635084mg÷4179m=391.3mg/mとなる。同様に繰り返し計算を行うと、図9に示すように、建屋2の粉塵濃度は低下していく。図9に示すように、送酸速度X2で精錬処理を行った後、送酸速度X1以下の送酸速度にて精錬処理を行った場合、送酸速度をX1以下にして時点から、463秒経過すれば、建屋2内の粉塵濃度が、作業環境管理で定める第1管理区分に相当する
粉塵濃度である1.51mg/m未満にすることができる。この463秒が工程(4)で示した低下時間となる。
At the stage where refining treatment was performed with an acid feed rate of 94 Nm 3 / min and a building dust collection capacity of 3000 m 3 / min, the total amount of dust in the building 2 was 396 mg / m 3 × 4179 m 3 = 1654884 mg. . From this state, if the acid feed rate is set to the non-inflow acid feed rate X1 or less (for example, 65 Nm 3 / min or less), the dust collection capacity is 3000 m 3 / min, so the amount of dust discharged per second Is 19800 mg [(3000 m ÷ 60) × 396]. Amount of dust building in 2 one second after the 1654884mg-19800mg = 1635084mg next, dust concentration of the building in 2 becomes 1635084mg ÷ 4179m 3 = 391.3mg / m 3. Similarly, when the calculation is repeated, the dust concentration in the building 2 decreases as shown in FIG. As shown in FIG. 9, when refining treatment is performed at an acid feed rate of X1 or less after refining treatment at an acid feed rate of X2, the acid feed rate is set to X1 or less and 463 seconds from the time point. If it passes, the dust concentration in the building 2 can be made less than 1.51 mg / m 3, which is the dust concentration corresponding to the first management category defined in the work environment management. This 463 seconds is the decrease time shown in step (4).

なお、建屋集塵を実施したとき建屋集塵で排出した同等の量の大気等が必要となるが、工程(4)では、粉塵濃度が0/mである大気が開口孔16を介して建屋2内に流入するすることとして計算を行っている。
図10に示すように、同様に、建屋集塵の能力をが2000m/minで且つ、送酸速度の低下前の送酸速度が94Nm/minで脱りん処理を行った場合は、送酸速度をX1以下にして時点から748秒経過すれば、建屋2内の粉塵濃度を第1管理区分に相当する粉塵濃度未満にすることができる。
It should be noted that when building dust collection is performed, an equivalent amount of air discharged by building dust collection is required, but in step (4), air with a dust concentration of 0 / m 3 is passed through the opening 16. Calculation is performed as flowing into the building 2.
As shown in FIG. 10, similarly, when the dephosphorization process is performed at a building dust collection capacity of 2000 m 3 / min and an acid feed rate before the decrease of the acid feed rate is 94 Nm 3 / min, If the acid velocity is set to X1 or less and 748 seconds have elapsed from the time point, the dust concentration in the building 2 can be made less than the dust concentration corresponding to the first management category.

また、図11に示すように、建屋集塵の能力をが6000m/minで且つ、送酸速度の低下前の送酸速度が94Nm/minで脱りん処理を行った場合は、送酸速度をX1以下にして時点から200秒経過すれば、建屋2内の粉塵濃度を第1管理区分に相当する粉塵濃度未満にすることができる。
以上のように、図4に示すように、工程(1)では脱りん処理における送酸速度と建屋2に流入する粉塵量との関係を求め、工程(2)では、脱りん処理で発生する粉塵が建屋2に流入しない未流入送酸速度X1を求める。そして、図6〜8に示すように、工程(3)では、未流入送酸速度X1よりも大きい送酸速度X2で脱りん処理を行った場合での脱りん処理と建屋2内の粉塵濃度との関係を求める。図9〜11に示すように、工程(4)では、送酸速度X2で精錬処理を行った後、送酸速度X1以下の送酸速度にて脱りん処理を行った場合における精錬処理時間と建屋2内の粉塵濃度との関係に基づき、粉塵濃度が作業環境管理で定める第1管理区分に相当する粉塵濃度まで低下する低下時間を求める。
In addition, as shown in FIG. 11, when dephosphorization treatment was performed at a building dust collection capacity of 6000 m 3 / min and an acid feed rate before the reduction of the acid feed rate was 94 Nm 3 / min, If the speed is set to X1 or less and 200 seconds have elapsed from the time point, the dust concentration in the building 2 can be made less than the dust concentration corresponding to the first management category.
As described above, as shown in FIG. 4, in step (1), the relationship between the acid feed rate in the dephosphorization process and the amount of dust flowing into the building 2 is obtained, and in step (2), the dephosphorization process occurs. A non-inflow acid sending speed X1 at which dust does not flow into the building 2 is determined. And as shown in FIGS. 6-8, in a process (3), the dephosphorization process in the case of performing a dephosphorization process with the acid sending speed | rate X2 larger than the non-inflow acid sending speed | rate X1, and the dust concentration in the building 2 Seeking relationship with. As shown in FIGS. 9 to 11, in the step (4), after performing the refining treatment at the acid feed rate X2, the refining treatment time in the case of performing the dephosphorization treatment at the acid feed rate equal to or lower than the acid feed rate X1 Based on the relationship with the dust concentration in the building 2, the reduction time during which the dust concentration decreases to the dust concentration corresponding to the first management category determined by the work environment management is obtained.

実操業では次のような処理を行う。
精錬剤の投入量、気体酸素の投入量を、実績の操業データを基に脱りん処理後[P]濃度、脱りん処理後温度、脱りんスラグ塩基度が目標値になるように設定する。詳しくは、 脱りん率と、気体酸素の原単位、固体酸素の原単位、処理前のSi濃度及び脱りん処理後の溶銑温度の関係は、式(1)となるため、この式(1)を用いて、気体酸素の原単位等を求める。
In actual operation, the following processing is performed.
The amount of refining agent and the amount of gaseous oxygen are set so that the [P] concentration after dephosphorization treatment, the temperature after dephosphorization treatment, and the dephosphorization slag basicity become target values based on actual operation data. Specifically, the relationship between the dephosphorization rate, the basic unit of gaseous oxygen, the basic unit of solid oxygen, the Si concentration before the treatment, and the hot metal temperature after the dephosphorization treatment is expressed by Equation (1). Is used to determine the basic unit of gaseous oxygen.

例えば、Pi=0.117質量%、Paim=0.020質量%である場合、式(1)は式(2)のようになる。   For example, when Pi = 0.117 mass% and Paim = 0.020 mass%, equation (1) becomes equation (2).

固体酸素の原単位は、式(3)となる。   The basic unit of solid oxygen is represented by formula (3).

また、この実施形態では、精錬剤(脱りん処理での精錬剤)を、精錬剤1、精錬剤2、精錬剤3の3種類する。精錬剤を3種類とした場合、脱りん処理後の溶銑目標温度、脱りん処理前の溶銑温度、精錬剤1の原単位、精錬剤2の原単位、精錬剤3の原単位、気体酸素の原単位、処理前のSi濃度、処理前のMn濃度との関係は、式(4)となる。   In this embodiment, the refining agent (the refining agent in the dephosphorization process) includes three types of refining agent 1, refining agent 2, and refining agent 3. When three types of refining agents are used, the target temperature of hot metal after dephosphorization, the temperature of hot metal before dephosphorization, the basic unit of refining agent 1, the basic unit of refining agent 2, the basic unit of refining agent 3, The relationship between the basic unit, the Si concentration before the treatment, and the Mn concentration before the treatment is expressed by Equation (4).

まず、脱りん処理で使用する精錬剤1の原単位を式(5)により求める。精錬剤1の原単位を求めるには、図12に示すように処理前のSi濃度を用いる。ここで、脱りん処理時の塩基度は、1.8とした。   First, the basic unit of the refining agent 1 used in the dephosphorization process is obtained by the formula (5). In order to obtain the basic unit of the refining agent 1, the Si concentration before processing is used as shown in FIG. Here, the basicity during the dephosphorization treatment was 1.8.

脱りん処理時において、特開2012−122134号公報に示すように、スラグの塩基度がスラグの塩基度は2.5以上になると、脱りんスラグの融点が上昇し、混銑車3へのスラグ付着が大きくなる。そのため、まず、精錬剤1の原単位を求めるにあたっては、後で設定する精錬剤2や精錬剤3によりスラグの塩基度が上昇することも考慮し、精錬剤1の原単位の設定時におけるスラグの塩基度を1.8としている。例えば、処理前のSi濃度を0.21質量%である場合は、式(5)により、88.95×0.21+0.15=18.8kg/tとなる。   At the time of dephosphorization, as shown in Japanese Patent Application Laid-Open No. 2012-122134, when the basicity of slag becomes 2.5 or more, the melting point of dephosphorization slag rises, and the slag to the chaotic vehicle 3 is increased. Adhesion increases. Therefore, when determining the basic unit of the refining agent 1, the slag at the time of setting the basic unit of the refining agent 1 is taken into consideration that the basicity of the slag is increased by the refining agent 2 or the refining agent 3 to be set later. The basicity is 1.8. For example, when the Si concentration before treatment is 0.21% by mass, it is 88.95 × 0.21 + 0.15 = 18.8 kg / t according to the equation (5).

精錬剤2における固体酸素は、集塵したダスト等を用いている。精錬剤2に使用するダストと他の材料とのバランスを考え、精錬剤2の原単位は、25kg/tとした。
上述したように、精錬剤1と精錬剤2とを求めると、最後に精錬剤3の原単位を求める。ここで、精錬剤1と、精錬剤2の使用する原単位が決まっているため、精錬剤3の原単位(使用する原単位)及び気体酸素の原単位は、上述した式(1)及び式(4)を満たすように、連立方程式を解くことによって、求めることができる。上述した実施例では、精錬剤3の原単位は15.1kg/tとなり、気体酸素の原単位は5.34Nm/tとなる。ここで、脱りん処理時における溶銑量を291tonとすると、各精錬剤の供給量(投入量)は次のようになる。精錬剤1は、18.8kg/t×291ton=5479kg、精錬剤2は、25kg/t×291ton=7275kg、精錬剤3は、15.1kg/ton×291ton=7275tonとなる。ここで、各精錬剤の供給量を10の位で切り上げすると、精錬剤1は5500kg、精錬剤2は7300kg、精錬剤3は4400kgとなる。また、気体酸素量は、5.34Nm/t×291ton=1553Nmとなり、1の位で切り上げすると、1560Nmとなる。
The solid oxygen in the refining agent 2 uses collected dust or the like. Considering the balance between the dust used for the refining agent 2 and other materials, the basic unit of the refining agent 2 was 25 kg / t.
As described above, when the refining agent 1 and the refining agent 2 are obtained, the basic unit of the refining agent 3 is finally obtained. Here, since the basic unit to be used by the refining agent 1 and the refining agent 2 is determined, the basic unit of the refining agent 3 (the basic unit to be used) and the basic unit of gaseous oxygen are the above-described formulas (1) and (1). It can be obtained by solving simultaneous equations so as to satisfy (4). In the embodiment described above, the basic unit of the refining agent 3 is 15.1 kg / t, and the basic unit of gaseous oxygen is 5.34 Nm 3 / t. Here, assuming that the amount of hot metal at the time of dephosphorization is 291 tonnes, the supply amount (input amount) of each refining agent is as follows. The refining agent 1 is 18.8 kg / t × 291 ton = 5479 kg, the refining agent 2 is 25 kg / t × 291 ton = 7275 kg, and the refining agent 3 is 15.1 kg / ton × 291 ton = 7275 ton. Here, when the supply amount of each refining agent is rounded up to the nearest ten, refining agent 1 is 5500 kg, refining agent 2 is 7300 kg, and refining agent 3 is 4400 kg. Further, the amount of gaseous oxygen is 5.34 Nm 3 / t × 291 ton = 1553 Nm 3 , and is rounded up to the first place to 1560 Nm 3 .

ここで、建屋集塵の能力を3000m/minとし、送酸速度を大凡94Nm/minで脱りん処理を実施する。上述した処理(1)〜(4)の結果により、408秒以上前に、精錬処理の送酸速度を65Nm/min以下にする。
詳しくは、脱りん処理において4段階に分けて送酸速度を決定した。まず、最初の1段階から3段階までは、送酸速度を94Nm/minに固定して脱りん処理を行い、最後の第4段階で送酸速度を65Nm/minにした。
Here, dephosphorization is performed at a building dust collection capacity of 3000 m 3 / min and an acid feed rate of approximately 94 Nm 3 / min. According to the results of the above-described processes (1) to (4), the acid feed rate of the refining process is set to 65 Nm 3 / min or less before 408 seconds or more.
Specifically, the acid delivery rate was determined in four stages in the dephosphorization process. First, from the first stage to the third stage, the acid feed rate was fixed at 94 Nm 3 / min for dephosphorization treatment, and in the final fourth stage, the acid feed rate was set to 65 Nm 3 / min.

上述したように、精錬剤1〜3の供給量、気体酸素の原単位は求めているが、各段階でも精錬剤の供給量及び気体酸素の原単位は次のようになる。
第1段階では、精錬剤1の吹込み速度を300kg/min、精錬剤2の吹き込み速度を250kg/min、気体酸素の流量を45Nm/minとした。
送酸速度は、300kg/min×0.073Nm/kg+250kg/min×0.107Nm/kg+45Nm/min=97.3Nm/minとなる。ただし、気体酸素は処理開始から5分後に吹き付けを開始し、第1段階では、特開2012−122134号公報に示すように、溶銑4のSi濃度が0.10%になるまで吹き込んだ。
As described above, the supply amount of the refining agents 1 to 3 and the basic unit of gaseous oxygen are obtained, but the supply amount of the refining agent and the basic unit of gaseous oxygen are as follows at each stage.
In the first stage, the blowing speed of the refining agent 1 was 300 kg / min, the blowing speed of the refining agent 2 was 250 kg / min, and the flow rate of gaseous oxygen was 45 Nm 3 / min.
Oxygen-flow-rate is a 300kg / min × 0.073Nm 3 /kg+250kg/min×0.107Nm 3 / kg + 45Nm 3 /min=97.3Nm 3 / min. However, the gaseous oxygen started to be sprayed after 5 minutes from the start of the treatment, and was blown in the first stage until the Si concentration of the hot metal 4 became 0.10%, as shown in JP 2012-122134 A.

第1段階において、気体酸酸素を吹き付けていない時間が4分、吹込みの下限時間をa
分とすると、吹き込みの下限時間は式(6)により求めることができる。
In the first stage, the time when the gaseous acid oxygen is not blown is 4 minutes, and the lower limit time of blowing is a
Assuming minutes, the lower limit time of blowing can be obtained by equation (6).

式(6)により、吹き込み時間aは2.1分となる。この実施例では、6.1分間、上記の送酸速度で吹き込みを行った。第1段階における脱珪素酸素効率は、式(7)になる。脱珪素酸素効率は、 野見山寛、市川浩、丸川雄浄、姉崎正治、植木弘三満、鉄と鋼、vol.15(1983),1738-1445.Fig6の混銑車3脱珪の処理前Si濃度と脱珪酸素効率の関係」に示すように求めることができる。   From the equation (6), the blowing time a is 2.1 minutes. In this example, blowing was performed at the above-mentioned acid feed rate for 6.1 minutes. The silicon removal oxygen efficiency in the first stage is expressed by equation (7). The silicon removal oxygen efficiency was determined by the process of Si Nojima removal, Hiroshi Ichikawa, Yuji Marukawa, Masaharu Anesaki, Hiromitsu Ueki, iron and steel, vol.15 (1983), 1738-1445. It can be obtained as shown in “Relationship between concentration and desiliconization oxygen efficiency”.

第1段階では、精錬剤1を1830kg(300kg/min×6.1min)吹き込んだことになる。精錬剤1の総供給量は上述したように、5500kgであるため、残りの3670kgを第2段階以降で吹き込む。
第2段階では、精錬剤1の吹込み速度を200kg/min、精錬剤2の吹き込み速度を130kg/min、気体酸素の流量を65Nm/minとした。
In the first stage, 1830 kg (300 kg / min × 6.1 min) of refining agent 1 was blown. Since the total supply amount of the refining agent 1 is 5500 kg as described above, the remaining 3670 kg is blown in after the second stage.
In the second stage, the blowing speed of the refining agent 1 was 200 kg / min, the blowing speed of the refining agent 2 was 130 kg / min, and the flow rate of gaseous oxygen was 65 Nm 3 / min.

送酸速度は、200kg/min×0.073Nm/kg+130kg/min×0.107Nm/kg+45Nm/min=93.5Nm/minとした。第2段階の吹き込み時間は、精錬剤1の残りの供給量を利用して、3670kg/200kg/min=18.4(min)とした。
さて、上述したように第1段階と第2段階によって、3種類の精錬剤のうち、精錬剤1の吹き込みが終了する。第3段階及び第4段階では、精錬剤2と精錬剤3とを吹き込むことになるが、第4段階では、未流入送酸速度X1以下で吹き込みを行うため、精錬剤2の供給量と、精錬剤3の供給量と、送酸速度とのバランスを考慮する必要がある。第3段階及び第4段階は、次のように、各精錬剤の供給量、送酸速度等を設定する。
Oxygen-flow rate was 200kg / min × 0.073Nm 3 /kg+130kg/min×0.107Nm 3 / kg + 45Nm 3 /min=93.5Nm 3 / min. The second stage blowing time was set to 3670 kg / 200 kg / min = 18.4 (min) using the remaining supply amount of the refining agent 1.
Now, as described above, the blowing of the refining agent 1 among the three types of refining agents is completed by the first stage and the second stage. In the third stage and the fourth stage, the refining agent 2 and the refining agent 3 are blown, but in the fourth stage, since the blowing is performed at a non-inflow acid feed rate X1 or less, the supply amount of the refining agent 2 and It is necessary to consider the balance between the supply amount of the refining agent 3 and the acid feed rate. In the third stage and the fourth stage, the supply amount of each refining agent, the acid feed rate, etc. are set as follows.

まず、第4段階では、送酸速度を低くしなければならないため、第4段階での精錬剤の供給量を先に設定する。第4段階では、送酸速度を未流入送酸速度X1以下、即ち、65kg/min以下にしなければならないため、精錬剤3の吹込み速度を500kg/minとする(送酸速度=500kg/min(精錬剤3の吹き込み速度)×0.130kg/Nm=65kg/min)。ここで、上述したように、送酸速度を65kg/minにした状態で粉塵濃度を第1管理区分に相当する粉塵濃度以下にするためには、第4段階において、低下時間である463秒以上早く、送酸速度を65kg/minにする必要がある。この実施例では、送酸速度を65kg/minにする時間を、463秒よりも長い480秒とした。 First, in the fourth stage, since the acid feed rate must be lowered, the supply amount of the refining agent in the fourth stage is set first. In the fourth stage, since the acid feed rate must be not more than the inflow acid feed rate X1, that is, 65 kg / min or less, the blowing rate of the refining agent 3 is set to 500 kg / min (acid feed rate = 500 kg / min). (Blowing speed of refining agent 3) × 0.130 kg / Nm 3 = 65 kg / min). Here, as described above, in order to set the dust concentration to be equal to or lower than the dust concentration corresponding to the first management category in a state where the acid feed rate is 65 kg / min, in the fourth stage, the decrease time is 463 seconds or more. It is necessary to make the acid feed rate 65 kg / min quickly. In this example, the time for the acid delivery rate to be 65 kg / min was set to 480 seconds, which was longer than 463 seconds.

第4段階では、精錬剤3の吹込み速度を500kg/minとしたうえで、480秒間(8分)吹き込むことから、第3段階で吹き込まなければならない残り量は、4400kg−500kg/min×8min=400kgとなる。また、精錬剤2の残り量は、7300kg−250kg/min×(4+2.1)min−130kg/min×18.4=3390kgとなる。   In the fourth stage, the blowing speed of the refining agent 3 is set to 500 kg / min and then blown for 480 seconds (8 minutes). Therefore, the remaining amount to be blown in the third stage is 4400 kg−500 kg / min × 8 min. = 400kg. The remaining amount of the refining agent 2 is 7300 kg−250 kg / min × (4 + 2.1) min−130 kg / min × 18.4 = 3390 kg.

気体酸素の残り量は、1560Nm−2.1min×45Nm/min−18.4min×65Nm/min=270Nmとなる。残りの総酸素量は、3390kg×0.107Nm/kg+400×0.130Nm/kg+270Nm=687Nmとなる。この気体酸素の残り量である687Nmを第3段階の送酸速度である94Nm/minで割ると、7.31minとなり、この時間が第3段階の時間となる。最終的に、精錬剤2の吹き込み速度は、3390kg÷7.31min=463.7kg/minとなり、精錬剤3の吹き込み速度は、400kg÷7.31min=54.7kg/
min、気体酸素の吹き込み速度は、270Nm÷7.31min=37.1Nm/minとなる。精錬剤2,3の吹き込み速度は、1の位で切り下げ、気体酸素は0.1の位で切り下げすると、精錬剤2の吹込み速度は460kg/min、精錬剤3の吹き込み速度は50kg/min、気体酸素の流量は37Nm/minとなる。第3段階における実際の送酸速度は460kg/min×0.107Nm/kg+50kg/min×0.130Nm/min+37Nm/min=92.7Nm/minとなる。ここで、第3段階における実際の送酸速度が92.7Nm/minであるため、第3段階における総酸素量687Nmを満たすようにするために、687Nm÷92.7Nm/min=7.41minが、実際の第3段階における脱りん処理時間となる。
The remaining amount of gaseous oxygen, a 1560Nm 3 -2.1min × 45Nm 3 /min-18.4min×65Nm 3 / min = 270Nm 3. The remaining total oxygen amount becomes 3390kg × 0.107Nm 3 /kg+400×0.130Nm 3 / kg + 270Nm 3 = 687Nm 3. Dividing 687Nm 3 , which is the remaining amount of gaseous oxygen, by 94Nm 3 / min, which is the third stage acid feed rate, is 7.31 min, and this time is the third stage time. Finally, the blowing speed of the refining agent 2 is 3390 kg ÷ 7.31 min = 463.7 kg / min, and the blowing speed of the refining agent 3 is 400 kg ÷ 7.31 min = 54.7 kg / min.
The blowing speed of min and gaseous oxygen is 270 Nm 3 ÷ 7.31 min = 37.1 Nm 3 / min. When the refining agents 2 and 3 are blown down at the position of 1 and the gaseous oxygen is cut down at the position of 0.1, the blowing speed of the refining agent 2 is 460 kg / min, and the blowing speed of the refining agent 3 is 50 kg / min. The flow rate of gaseous oxygen is 37 Nm 3 / min. Actual oxygen-flow-rate in the third stage becomes 460kg / min × 0.107Nm 3 /kg+50kg/min×0.130Nm 3 / min + 37Nm 3 /min=92.7Nm 3 / min. Here, since the actual acid delivery rate in the third stage is 92.7 Nm 3 / min, in order to satisfy the total oxygen amount 687 Nm 3 in the third stage, 687 Nm 3 ÷ 92.7 Nm 3 / min = 7.41 min is the actual dephosphorization processing time in the third stage.

このように、脱りん処理を実施した結果、脱りん処理後の建屋2内の粉塵濃度は1.0mg/mにすることができた。
シミュレーションでは、粉塵濃度は1.2mg/mになる見込みであったため、ほぼシミュレーションと実績値が等しくなっている。なお、脱りん処理終了の建屋2内の粉塵濃度は、上述したようにろ過補集による重量濃度測定法で測定した。粉塵濃度は、脱りん処理終了から、1分間の粉塵濃度を測定し、平均値を使用した。なお、建屋集塵を継続した場合、建屋2内が換気されていくため、脱りん処理終了と同時に建屋集塵の集塵の風量を0m/minとして粉塵濃度測定を行った。図13に示すように、建屋内における粉塵濃度の測定は、作業者の顔の位置を考慮し、建屋2の作業床の高さ1.5mの位置で3カ所で行った。また、図13に示すように、粉塵濃度の測定は、作業者が主に作業する範囲の中で、ランス孔から近い順に3箇所で行った。
Thus, as a result of carrying out the dephosphorization process, the dust concentration in the building 2 after the dephosphorization process was able to be 1.0 mg / m 3 .
In the simulation, since the dust concentration was expected to be 1.2 mg / m 3 , the actual value is almost equal to the simulation. In addition, the dust density | concentration in the building 2 after completion | finish of a dephosphorization process was measured with the weight concentration measuring method by filtration collection as mentioned above. For the dust concentration, the dust concentration for 1 minute was measured from the end of the dephosphorization treatment, and the average value was used. In addition, when building dust collection was continued, since the inside of the building 2 was ventilated, the dust concentration was measured with the dust collection air volume of the building dust collection set to 0 m 3 / min simultaneously with the completion of the dephosphorization process. As shown in FIG. 13, the measurement of the dust concentration in the building was performed at three locations at a height of 1.5 m on the work floor of the building 2 in consideration of the position of the operator's face. Moreover, as shown in FIG. 13, the measurement of the dust concentration was performed at three locations in the order closer to the lance hole within the range in which the worker mainly works.

表7,8は、上述した実施例の他に実施した形態をまとめたものである。   Tables 7 and 8 summarize forms implemented in addition to the examples described above.

表7は、実験No1〜7における溶銑量、溶銑の成分、処理前の溶銑温度、処理後の目標[P]、処理後の目標温度、各精錬剤の使用予定の原単位、使用予定量、未流入送酸速度X1、建屋集塵の集塵風量、下限時間等をまとめたものである。各精錬剤の使用量、未流入送酸速度、下限時間は上述した実施例と同様の方法で求めた。なお、特開2012−122134号公報に示されているように、脱りん処理時間の上限値は、50分以内とし
た。
Table 7 shows the amount of hot metal in Experiment Nos. 1 to 7, the hot metal component, the hot metal temperature before treatment, the target after treatment [P], the target temperature after treatment, the basic unit of each refining agent to be used, the expected amount of use, This is a summary of non-inflow acid feeding speed X1, dust collection air volume of building dust collection, lower limit time, and the like. The amount of each refining agent used, the uninflowed acid feed rate, and the lower limit time were determined in the same manner as in the above-described Examples. As disclosed in Japanese Patent Application Laid-Open No. 2012-122134, the upper limit of the dephosphorization processing time was set to 50 minutes or less.

表8に示すように、実験No1〜4では、脱りん処理時間を規定である50分以内にしつつ、建屋内の粉塵濃度を作業環境管理で定める第1管理区分の粉塵濃度以下にすることができた。
一方、実験No5では、建屋内の粉塵濃度を作業環境管理で定める第1管理区分の粉塵濃度以下にすることができたものの、脱りん処理時間が規定された50分よりもかかってしまった。実験No6及び7では、脱りん処理時間を、規定された50分以内にすることができたものの、建屋内の粉塵濃度が、作業環境管理で定める第1管理区分の粉塵濃度よりも大きくなった。
As shown in Table 8, in Experiments Nos. 1 to 4, the dephosphorization processing time is set to 50 minutes or less, and the dust concentration in the building is set to be equal to or lower than the dust concentration of the first management category determined by work environment management. did it.
On the other hand, in Experiment No5, although the dust concentration in the building could be made lower than or equal to the dust concentration of the first management category determined by the work environment management, the dephosphorization processing time took more than 50 minutes specified. In Experiment No. 6 and 7, although the dephosphorization time could be within the prescribed 50 minutes, the dust concentration in the building became larger than the dust concentration in the first management category determined by the work environment management. .

なお、今回開示された実施形態において、明示的に開示されていない事項、例えば、操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な事項を採用している。   In the embodiment disclosed herein, matters not explicitly disclosed, for example, operating conditions, various parameters, dimensions, weights, volumes, etc. of the components do not deviate from the range normally practiced by those skilled in the art. However, matters that can be easily assumed by those skilled in the art are employed.

1 溶銑予備処理設備
2 建屋
3 混銑車
4 溶銑
5 浸漬ランス
6 酸素ランス
7 炉口
8 集塵フード
9 集塵口
10 スプラッシュカバー
11 排出路
12 ガス冷却設備
13 バグフィルター
15 建屋集塵機
16 開口孔
DESCRIPTION OF SYMBOLS 1 Hot metal pretreatment equipment 2 Building 3 Chaos 4 Hot metal 5 Immersion lance 6 Oxygen lance 7 Furnace port 8 Dust collection hood 9 Dust collection port 10 Splash cover 11 Discharge path 12 Gas cooling facility 13 Bag filter 15 Building dust collector 16 Opening hole

Claims (1)

精錬処理で発生した粉塵を、精錬処理を行う設備の直上で局所集塵を用いて集塵すると共に、前記局所集塵とは異なる建屋集塵を行いながら精錬処理を行う方法であって、
精錬処理前に下記(1)〜(4)に示す事前準備を行った後、精錬処理時には下記(5)の工程を行うことを特徴とする精錬方法。
(1)精錬処理時の送酸速度と建屋に流入する粉塵量との関係を求める。
(2)精錬処理で発生する粉塵が建屋に流入しない送酸速度X1を求める。
(3)送酸速度X1よりも大きい送酸速度X2で精錬処理を行った場合において当該精錬処理の精錬処理時間と建屋内の粉塵濃度との関係を用いて求める。
(4)送酸速度X2で精錬処理を行った後、送酸速度X1以下の送酸速度にて精錬処理を行った場合における精錬処理時間と建屋内の粉塵濃度との関係に基づき、粉塵濃度が作業環境管理で定める第1管理区分に相当する粉塵濃度まで低下する低下時間を求める。
(5)送酸速度X1よりも大きい送酸速度X2で精錬処理を行うこととし、精錬を終了時から工程(4)で求めた低下時間以上前に、送酸速度を最大の送酸速度X1に低下させる。
Dust generated by the refining process is a method of collecting the dust using a local dust collection just above the facility for performing the refining process, and performing the refining process while collecting the building dust different from the local dust collection,
A refining method characterized by performing the following step (5) at the time of refining treatment after the preliminary preparation shown in the following (1) to (4) before refining treatment.
(1) The relationship between the acid feed rate during the refining process and the amount of dust flowing into the building is obtained.
(2) The acid feed rate X1 at which the dust generated in the refining process does not flow into the building is obtained.
(3) When the refining process is performed at an acid supply rate X2 larger than the acid supply rate X1, the refining process is performed using the relationship between the refining process time of the refining process and the dust concentration in the building.
(4) Dust concentration based on the relationship between the refining time and the dust concentration in the building when refining treatment is performed at an acid feed rate of 1 or less after refining treatment at acid feed rate X2. Finds the decrease time to decrease to the dust concentration corresponding to the first management category defined in the work environment management.
(5) The refining treatment is performed at an acid feed rate X2 larger than the acid feed rate X1, and the acid feed rate is set to the maximum acid feed rate X1 before the decrease time obtained in step (4) from the end of refining. To lower.
JP2012182674A 2012-08-21 2012-08-21 Refining method Expired - Fee Related JP5897426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182674A JP5897426B2 (en) 2012-08-21 2012-08-21 Refining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182674A JP5897426B2 (en) 2012-08-21 2012-08-21 Refining method

Publications (2)

Publication Number Publication Date
JP2014040627A true JP2014040627A (en) 2014-03-06
JP5897426B2 JP5897426B2 (en) 2016-03-30

Family

ID=50393108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182674A Expired - Fee Related JP5897426B2 (en) 2012-08-21 2012-08-21 Refining method

Country Status (1)

Country Link
JP (1) JP5897426B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167208A (en) * 1974-12-09 1976-06-10 Nippon Steel Corp Tenro niokeru sansofukikomiseigyosochi
JPH02156012A (en) * 1988-12-09 1990-06-15 Kawasaki Steel Corp Method for reducing dust in exhaust gas in converter blowing
JP2002060824A (en) * 2000-08-22 2002-02-28 Nkk Corp Blowing method into converter
JP2003183719A (en) * 2001-12-13 2003-07-03 Jfe Engineering Kk Apparatus and method for recovering converter waste gas
JP2010248598A (en) * 2009-04-20 2010-11-04 Kobe Steel Ltd Method for dephosphorizing molten iron with little dusting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5167208A (en) * 1974-12-09 1976-06-10 Nippon Steel Corp Tenro niokeru sansofukikomiseigyosochi
JPH02156012A (en) * 1988-12-09 1990-06-15 Kawasaki Steel Corp Method for reducing dust in exhaust gas in converter blowing
JP2002060824A (en) * 2000-08-22 2002-02-28 Nkk Corp Blowing method into converter
JP2003183719A (en) * 2001-12-13 2003-07-03 Jfe Engineering Kk Apparatus and method for recovering converter waste gas
JP2010248598A (en) * 2009-04-20 2010-11-04 Kobe Steel Ltd Method for dephosphorizing molten iron with little dusting

Also Published As

Publication number Publication date
JP5897426B2 (en) 2016-03-30

Similar Documents

Publication Publication Date Title
JP6503055B2 (en) Method of detecting distribution of blast furnace gas flow
TW202225418A (en) Converter operation method and converter blowing control system
JPWO2018020929A1 (en) Waste weight estimation method and waste weight estimation device
JP5790964B2 (en) Hot metal pretreatment method
JP5897426B2 (en) Refining method
JP5359012B2 (en) Sintering machine and operation method thereof
JP2018184645A (en) Slag outflow prevention apparatus
JP6264943B2 (en) Converter decarburization processing method
JP5428192B2 (en) Method for producing sintered ore and sintering machine
JP5678718B2 (en) Method of decarburizing and refining hot metal in converter
CN109750133A (en) A kind of devaporizer amount of water sprayed control method and device based on modeling
JP7243520B2 (en) Slag Discharge Method in Converter Type Hot Metal Pretreatment
JP2010116610A (en) Method for manufacturing low-sulfur thick steel plate excellent in haz toughness at the time of inputting large amount of heat
JPS60255911A (en) Method for controlling supply of refining agent in continuous refining
JP2002256315A (en) Method for controlling operation of dust collector on casting bed of blast furnace
WO2022195951A1 (en) Method for operating converter furnace, and method for producing molten steel
JPH01142015A (en) Method for controlling inert gas generation in converter exhaust gas treatment
CN111742066B (en) Converter blowing method
JP2017102040A (en) Operation method for steelmaking furnace
JP2019218580A (en) Dephosphorization process for molten steel
Trentini et al. Technology and Metallurgy of the OLP Process
CN103842526B (en) For affecting the method and apparatus of generation in the container of metallurgy, reactant gases
JPS5924162B2 (en) Method for collecting unburned waste gas
CN117625877A (en) Method for improving gas recovery rate of steelmaking converter
JPS61157606A (en) Silicification or desilicification controlling method of molten iron of blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160302

R150 Certificate of patent or registration of utility model

Ref document number: 5897426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees