JP2014039420A - Motor, method for manufacturing motor, and air conditioner - Google Patents

Motor, method for manufacturing motor, and air conditioner Download PDF

Info

Publication number
JP2014039420A
JP2014039420A JP2012181291A JP2012181291A JP2014039420A JP 2014039420 A JP2014039420 A JP 2014039420A JP 2012181291 A JP2012181291 A JP 2012181291A JP 2012181291 A JP2012181291 A JP 2012181291A JP 2014039420 A JP2014039420 A JP 2014039420A
Authority
JP
Japan
Prior art keywords
press
bearing support
electric motor
bracket
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012181291A
Other languages
Japanese (ja)
Other versions
JP5677382B2 (en
Inventor
Hiroyuki Ishii
博幸 石井
Kazunori Sakanobe
和憲 坂廼邊
Mineo Yamamoto
峰雄 山本
Hiroki Aso
洋樹 麻生
Junichiro Oya
隼一郎 尾屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012181291A priority Critical patent/JP5677382B2/en
Publication of JP2014039420A publication Critical patent/JP2014039420A/en
Application granted granted Critical
Publication of JP5677382B2 publication Critical patent/JP5677382B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a motor in which electrolytic corrosion of a bearing is suppressed by an inexpensive method.SOLUTION: A motor includes: a stator forming a coil by being wound around an iron core constructed of a plurality of teeth; a rotor in which magnets arranged in an outer periphery of a shaft are integrated by resin parts and a rolling bearing are provided at both ends in an axial direction of the shaft, respectively; and a bracket which supports one rolling bearing of the rotor. The bracket comprises: a metallic press-in component which is pressed-in the stator; a metallic bearing support component which supports the rolling bearing; and a coupling part having insulation properties which couples the bearing support component and the press-in component.

Description

この発明は、転がり軸受を用い、インバータにて駆動する電動機に関する。また、その電動機の製造方法及びその電動機を搭載した空気調和機に関する。   The present invention relates to an electric motor that uses a rolling bearing and is driven by an inverter. Moreover, it is related with the manufacturing method of the electric motor, and the air conditioner carrying the electric motor.

従来、電動機をインバータ駆動する場合、パワー回路内のトランジスタのスイッチングに伴って発生する電動機の騒音の低減を図る目的から、インバータのキャリア周波数を高く設定するようにしている。キャリア周波数を高く設定するに伴って、電動機のシャフトに高周波誘導に基づいて発生する軸電圧が増大し、シャフトを支持している転がり軸受の内輪と外輪との間に存在する電位差が大きくなるので、転がり軸受に電流が流れ易くなる。この転がり軸受に流れる電流は、内輪、外輪両軌道並びに転動体(内外輪の間を転がる玉やころ)の転動面に電食と呼ばれる腐食を発生させて、転がり軸受の耐久性を悪化させるという課題があった。   Conventionally, when an electric motor is driven by an inverter, the carrier frequency of the inverter is set to be high for the purpose of reducing the noise of the electric motor generated due to switching of the transistors in the power circuit. As the carrier frequency is set higher, the shaft voltage generated on the motor shaft based on the high frequency induction increases, and the potential difference existing between the inner ring and the outer ring of the rolling bearing supporting the shaft increases. The current easily flows through the rolling bearing. The current flowing through the rolling bearings causes corrosion called electrolytic corrosion on the rolling surfaces of the inner and outer ring raceways and the rolling elements (balls and rollers that roll between the inner and outer rings), thereby deteriorating the durability of the rolling bearings. There was a problem.

そこで、シャフトとモータケースとの間に設けた転がり軸受に電流が流れることを防止し、転がり軸受に電食が発生することを防止できる、簡便な構成で組み立ての容易な電動機を得るために、コイルが巻回されてなる固定子と、この固定子を固定するフレームと、固定子とわずかな空隙を介して対向する回転子と、この回転子が固着され、転がり軸受を介して回転自在に支承されるシャフトと、絶縁材を介して転がり軸受を支持する軸受ブラケットとを有する電動機において、軸受ブラケットの絶縁材と接触する側に凹部を設け、軸受ブラケットの凹部に対応する凸部を設けた絶縁材の凸部を、軸受ブラケットの凹部に嵌合し固定するようにした電動機が提案されている(例えば、特許文献1参照)。   Therefore, in order to obtain an electric motor that is easy to assemble with a simple configuration that prevents current from flowing through the rolling bearing provided between the shaft and the motor case and prevents electric corrosion from occurring in the rolling bearing. A stator around which a coil is wound, a frame for fixing the stator, a rotor facing the stator with a slight gap, and the rotor are fixed, and can be freely rotated via a rolling bearing. In an electric motor having a shaft to be supported and a bearing bracket that supports a rolling bearing via an insulating material, a concave portion is provided on the side of the bearing bracket that contacts the insulating material, and a convex portion corresponding to the concave portion of the bearing bracket is provided. There has been proposed an electric motor in which a convex portion of an insulating material is fitted and fixed to a concave portion of a bearing bracket (for example, see Patent Document 1).

また、転がり軸受の内輪はめあい面または外輪はめあい面、あるいは内輪はめあい面と外輪はめあい面の両はめあい面に絶縁被膜が形成された電食防止形転がり軸受において、内輪はめあい面の周面または外輪はめあい面の周面と面取り部との境界面はゆるいテーパ面あるいは曲率半径の大きい円弧面を呈し、少なくとも一方のはめあい面に溶射による無機化合物の絶縁被膜を有する電食防止形転がり軸受が提案されている(例えば、特許文献2参照)。   In addition, in an electrolytic corrosion prevention type rolling bearing in which an insulating coating is formed on the inner ring fitting surface or the outer ring fitting surface of the rolling bearing, or both the inner ring fitting surface and the outer ring fitting surface, the peripheral surface of the inner ring fitting surface or the outer ring fitting surface. An electro-corrosion-preventing type rolling bearing has been proposed in which the boundary surface between the peripheral surface and the chamfered portion exhibits a loosely tapered surface or an arc surface having a large curvature radius, and at least one fitting surface has an insulating coating of an inorganic compound by thermal spraying. (For example, refer to Patent Document 2).

特開2000−156952号公報JP 2000-156952 A 特開昭59−103023号公報JP 59-103023 A

しかしながら、上記特許文献1の電動機は、軸受ブラケットの絶縁材と接触する側に凹部を設け、軸受ブラケットの凹部に対応する凸部を設けた絶縁材の凸部を、軸受ブラケットの凹部に嵌合し固定するようにした構成であるので、簡便な構成で組み立てが容易ではあるが、その反面軸受ブラケットから絶縁材から外れやすいという課題があった。   However, the electric motor disclosed in Patent Document 1 has a concave portion provided on the side of the bearing bracket that contacts the insulating material, and the convex portion of the insulating material provided with a convex portion corresponding to the concave portion of the bearing bracket is fitted into the concave portion of the bearing bracket. However, since it is configured to be fixed, it is easy to assemble with a simple configuration, but on the other hand, there is a problem that it is easily detached from the insulating material from the bearing bracket.

また、上記特許文献2の電食防止形転がり軸受は、内輪はめあい面の周面または外輪はめあい面の周面と面取り部との境界面はゆるいテーパ面あるいは曲率半径の大きい円弧面を呈し、少なくとも一方のはめあい面に溶射による無機化合物の絶縁被膜を形成しているので、コストが高くなるという課題があった。   Further, the electric corrosion prevention type rolling bearing of Patent Document 2 has a loose tapered surface or an arc surface having a large curvature radius at the peripheral surface of the inner ring fitting surface or the boundary surface between the peripheral surface of the outer ring fitting surface and the chamfered portion, at least. On the other hand, since an insulating coating of an inorganic compound is formed by thermal spraying on the fitting surface, there is a problem that the cost increases.

この発明は、上記のような課題を解決するためになされたもので、組立てが容易で、軸受の電食を抑制する安価な電動機及び電動機の製造方法及び空気調和機を提供することを目的とする。   The present invention has been made to solve the above-described problems, and has an object to provide an inexpensive motor that is easy to assemble and that suppresses electrolytic corrosion of a bearing, a method for manufacturing the motor, and an air conditioner. To do.

この発明に係る電動機は、複数のティースから構成される鉄心に巻線してコイルを形成した固定子と、シャフトの外周に配置したマグネットとの間を樹脂部により一体化し、前記シャフトの軸方向両端に夫々転がり軸受が設けられた回転子と、前記回転子の一方の転がり軸受を支持するブラケットとを備え、前記ブラケットは、前記固定子に圧入される金属製の圧入部品と、前記転がり軸受を支持する金属製の軸受支持部品と、前記軸受支持部品と前記圧入部品とを連結する絶縁性を有する連結部とからなることを特徴とする。   In the electric motor according to the present invention, a resin portion is used to integrate a stator wound around an iron core composed of a plurality of teeth to form a coil and a magnet disposed on the outer periphery of the shaft. A rotor provided with rolling bearings at both ends, and a bracket that supports one of the rolling bearings of the rotor, wherein the bracket is a metal press-fitting component that is press-fitted into the stator; and the rolling bearing. It comprises a metal bearing support part that supports the bearing, and an insulative connecting part that connects the bearing support part and the press-fitting part.

この発明に係る電動機は、ブラケットが、前記固定子に圧入される金属製の圧入部品と、前記軸受を支持する金属製の軸受支持部品と、前記軸受支持部品と前記圧入部品とを連結する絶縁性を有する連結部とからなることで、電食の発生が抑制され、品質を向上することができる。   In the electric motor according to the present invention, the bracket is a metal press-fitting part that is press-fitted into the stator, a metal bearing support part that supports the bearing, and an insulation that connects the bearing support part and the press-fitting part. By forming the connecting portion having the property, the occurrence of electrolytic corrosion is suppressed and the quality can be improved.

実施の形態1を示す図で、電動機100の断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the electric motor 100. 実施の形態1を示す図で、モールド固定子10の断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the mold stator 10. 実施の形態1を示す図で、固定子40の斜視図。FIG. 5 shows the first embodiment, and is a perspective view of a stator 40. 実施の形態1を示す図で、回転子20の断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of a rotor 20. 実施の形態1を示す図で、負荷側転がり軸受け21a及び反負荷側転がり軸受け21bを取り外した回転子20−1の断面図。FIG. 5 shows the first embodiment, and is a cross-sectional view of the rotor 20-1 from which a load-side rolling bearing 21a and an anti-load-side rolling bearing 21b are removed. 実施の形態1を示す図で、負荷側から見た回転子20−1の側面図。Fig. 5 shows the first embodiment, and is a side view of the rotor 20-1 viewed from the load side. 実施の形態1を示す図で、転がり軸受けを外した回転子20の反負荷側端部の拡大断面図。FIG. 4 is a diagram showing the first embodiment, and is an enlarged cross-sectional view of the end portion on the counterload side of the rotor 20 with the rolling bearing removed. 実施の形態1を示す図で、回転子20の反負荷側端部の拡大断面図。FIG. 5 shows the first embodiment, and is an enlarged cross-sectional view of an end portion on the counterload side of the rotor 20. 実施の形態1を示す図で、回転子の樹脂マグネット22を示す図((a)は左側面図、(b)は(a)のC−C断面図、(c)は右側面図)。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating a resin magnet 22 of a rotor ((a) is a left side view, (b) is a CC cross-sectional view of (a), and (c) is a right side view). 実施の形態1を示す図で、位置検出用マグネット25を示す図((a)は左側面図、(b)は正面図、(c)は(b)のD部拡大図)。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating a position detection magnet 25 ((a) is a left side view, (b) is a front view, and (c) is an enlarged view of a D part in (b)). 実施の形態1を示す図で、ブラケット30を示す図((a)は断面図、(b)は側面図)。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating a bracket 30 ((a) is a cross-sectional view, and (b) is a side view). 実施の形態1を示す図で、圧入部品31を示す図((a)は側面図、(b)は断面図)。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating a press-fitting component 31 ((a) is a side view, (b) is a cross-sectional view). 実施の形態1を示す図で、軸受支持部品32を示す図((a)は断面図、(b)は側面図)。FIG. 3 is a diagram illustrating the first embodiment and is a diagram illustrating a bearing support component 32 ((a) is a cross-sectional view, and (b) is a side view). 実施の形態1を示す図で、連結部品33を示す図((a)は左側面図、(b)は断面図、(c)は右側面図)FIG. 5 is a diagram illustrating the first embodiment and is a diagram illustrating the connecting component 33 ((a) is a left side view, (b) is a cross-sectional view, and (c) is a right side view). 実施の形態1を示す図で、ブラケット30の組立を示す斜視図。FIG. 5 shows the first embodiment, and is a perspective view showing assembly of the bracket 30. FIG. 実施の形態1を示す図で、ブラケット30の部分拡大図断面図。FIG. 5 shows the first embodiment, and is a partially enlarged sectional view of the bracket 30. FIG. 実施の形態1を示す図で、電動機100を駆動する駆動回路1の回路図。FIG. 3 shows the first embodiment, and is a circuit diagram of a drive circuit 1 that drives an electric motor 100. 実施の形態1を示す図で、ブラケット30の製造工程を示す図。FIG. 5 shows the first embodiment, and shows a manufacturing process of the bracket 30. 実施の形態2を示す図で、ブラケット300を示す図((a)は断面図、(b)は側面図)。FIG. 5 shows the second embodiment, and shows a bracket 300 ((a) is a cross-sectional view, (b) is a side view). 実施の形態2を示す図で、圧入部品301を示す図((a)は側面図、(b)は断面図)。FIG. 5 is a diagram illustrating the second embodiment and is a diagram illustrating a press-fitting component 301 ((a) is a side view, (b) is a cross-sectional view). 実施の形態2を示す図で、軸受支持部品302を示す図((a)は断面図、(b)は側面図)。FIG. 6 is a diagram illustrating the second embodiment and is a diagram illustrating a bearing support component 302 ((a) is a cross-sectional view, and (b) is a side view). 実施の形態2を示す図で、ブラケット300の部分拡大図断面図。FIG. 10 is a partial enlarged view cross-sectional view of the bracket 300, showing Embodiment 2. 実施の形態2を示す図で、実施の形態2のブラケットを使用した電動機100の断面図。FIG. 5 shows the second embodiment, and is a cross-sectional view of an electric motor 100 using the bracket of the second embodiment. 実施の形態2を示す図で、ブラケット300の製造工程を示す図。FIG. 5 shows the second embodiment, and shows a manufacturing process of the bracket 300. 実施の形態3を示す図で、空気調和機200の構成図。FIG. 5 shows the third embodiment and is a configuration diagram of an air conditioner 200. FIG.

実施の形態1.
以下、この発明の実施の形態1について、図面を参照しながら説明する。まず、電動機全体の説明をし、次に固定子、回転子について説明し、次に本発明の特徴であるブラケットについて説明する。
図1は実施の形態1を示す図で、電動機100の断面図である。図1に示す電動機100は、モールド固定子10と、回転子20(電動機の回転子と定義する)と、モールド固定子10の軸方向一端部に取り付けられる後述するブラケット30とを備える。電動機100は、例えば、回転子20に永久磁石を有し、インバータで駆動されるブラシレスDCモータである。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to the drawings. First, the entire electric motor will be described, then the stator and rotor will be described, and then the bracket which is a feature of the present invention will be described.
FIG. 1 shows the first embodiment and is a cross-sectional view of an electric motor 100. An electric motor 100 shown in FIG. 1 includes a mold stator 10, a rotor 20 (defined as a rotor of the electric motor), and a bracket 30 to be described later attached to one end of the mold stator 10 in the axial direction. The electric motor 100 is, for example, a brushless DC motor having a permanent magnet in the rotor 20 and driven by an inverter.

図2は実施の形態1を示す図で、モールド固定子10の断面図である。モールド固定子10は、軸方向一端部(図2の右側)が開口しており、ここに開口部10bが形成されている。回転子20がこの開口部10bから挿入される。モールド固定子10の軸方向他端部(図2の左側)には、回転子20のシャフト23の径より若干大きい孔11aが開けられている。   FIG. 2 is a diagram showing the first embodiment, and is a cross-sectional view of the mold stator 10. The mold stator 10 is open at one end in the axial direction (the right side in FIG. 2), and an opening 10b is formed here. The rotor 20 is inserted from this opening 10b. A hole 11a that is slightly larger than the diameter of the shaft 23 of the rotor 20 is formed in the other axial end portion of the mold stator 10 (left side in FIG. 2).

次に、図1に示すように、モールド固定子10の開口部10bを閉塞するとともに、反負荷側転がり軸受21bを支持するブラケット30をモールド固定子10に圧入する。ブラケット30は、後述する軸受支持部32a(図13に示す)で反負荷側転がり軸受21bを支持する。ブラケット30のモールド固定子10への圧入は、ブラケット30の略リング状で、断面がコの字状の圧入部31b(図12に示す)を、モールド固定子10の内周部10a(モールド樹脂部)の開口部10b側に圧入することでなされる。   Next, as shown in FIG. 1, the opening 10 b of the mold stator 10 is closed, and a bracket 30 that supports the anti-load side rolling bearing 21 b is press-fitted into the mold stator 10. The bracket 30 supports the anti-load-side rolling bearing 21b with a bearing support portion 32a (shown in FIG. 13) described later. The bracket 30 is press-fitted into the mold stator 10 with the press-fit portion 31b (shown in FIG. 12) having a substantially U-shaped cross section of the bracket 30 and the inner peripheral portion 10a (mold resin) of the mold stator 10. Part) is pressed into the opening 10b side.

図2に示すように、モールド固定子10は、固定子40と、モールド成形用のモールド樹脂50とからなる。モールド樹脂50には、例えば、不飽和ポリエステル樹脂等の熱硬化性樹脂を使用する。固定子40は、後述する基板等が取り付けられ、強度的に弱い構造であるため低圧成形が望ましい。そのため、不飽和ポリエステル樹脂等の熱硬化性樹脂が用いられる。   As shown in FIG. 2, the mold stator 10 includes a stator 40 and a mold resin 50 for molding. For the mold resin 50, for example, a thermosetting resin such as an unsaturated polyester resin is used. Since the stator 40 is attached with a substrate and the like which will be described later and has a weak structure, low pressure molding is desirable. Therefore, thermosetting resins such as unsaturated polyester resins are used.

図3は実施の形態1を示す図で、固定子40の斜視図である。図3に示す固定子40は、以下に示す構成である。
(1)厚さが0.1〜0.7mm程度の電磁鋼板が帯状に打ち抜かれ、かしめ、溶接、接着等で積層された帯状の固定子鉄心41を製作する。帯状の固定子鉄心41は、複数個のティース(図示せず)を備える。後述する集中巻のコイル42が施されている内側がティースである。
(2)ティースには、絶縁部43が施される。絶縁部43は、例えば、PBT(ポリブチレンテレフタレート)等の熱可塑性樹脂を用いて、固定子鉄心41と一体に又は別体で成形される。
(3)絶縁部43が施されたティースに集中巻のコイル42が巻回される。複数個の集中巻のコイル42を接続して、例えば、三相のシングルY結線の巻線を形成する。但し、分布巻でもよい。
(4)三相のシングルY結線であるので、絶縁部43の結線側には、各相(U相、V相、W相)のコイル42が接続される端子44(電源が供給される電源端子44a及び中性点端子44b)が組付けられる。電源端子44aは3個、中性点端子44bは3個である。
(5)基板45が結線側の絶縁部43(端子44を組付けられる側)に取り付けられる。リード線47を口出しするリード線口出し部品46が組付けられた基板45を絶縁部43に組付け、固定子40となる。固定子鉄心41に形成された絶縁部43の面取りされた角柱48が、基板45が備える角柱挿入穴(図示せず)に挿入されることにより、回転方向の位置決めがなされ、かつ、絶縁部43の基板設置面(図示せず)に基板45が設置されることにより軸方向の位置が決められる。また、基板45より突出する角柱48を熱溶着することで基板45と絶縁部43が固定され、かつ、固定子40が備える端子44の基板45より突出した部分を半田付けすることにより電気的にも接合される。基板45には、電動機100(例えば、ブラシレスDCモータ)を駆動するIC49a(駆動素子)、回転子20の位置を検出するホールIC49b(位置検出素子)等が実装されている。IC49aやホールIC49b等を電子部品と定義する。
FIG. 3 is a perspective view of the stator 40 showing the first embodiment. The stator 40 shown in FIG. 3 has the following configuration.
(1) An electromagnetic steel sheet having a thickness of about 0.1 to 0.7 mm is punched into a strip shape, and a strip-shaped stator core 41 is manufactured by laminating by caulking, welding, bonding, or the like. The strip-shaped stator core 41 includes a plurality of teeth (not shown). The inside of which concentrated coil 42 described later is applied is a tooth.
(2) The insulating portion 43 is applied to the teeth. The insulating portion 43 is formed integrally with or separately from the stator core 41 using, for example, a thermoplastic resin such as PBT (polybutylene terephthalate).
(3) Concentrated winding coil 42 is wound around the teeth provided with insulating portion 43. A plurality of concentrated winding coils 42 are connected to form, for example, a three-phase single Y-connection winding. However, distributed winding may be used.
(4) Since it is a three-phase single Y connection, a terminal 44 (power supply to which power is supplied) is connected to the connection side of the insulating portion 43 to the coil 42 of each phase (U phase, V phase, W phase). Terminal 44a and neutral point terminal 44b) are assembled. There are three power terminals 44a and three neutral point terminals 44b.
(5) The board | substrate 45 is attached to the insulation part 43 (side in which the terminal 44 is assembled | attached) on the connection side. A substrate 45 on which a lead wire lead-out component 46 that leads out the lead wire 47 is assembled is assembled to the insulating portion 43 to form the stator 40. The chamfered rectangular column 48 of the insulating part 43 formed in the stator core 41 is inserted into a rectangular column insertion hole (not shown) provided in the substrate 45, thereby positioning in the rotational direction and the insulating unit 43. The position in the axial direction is determined by installing the substrate 45 on the substrate installation surface (not shown). Further, by thermally welding the prisms 48 protruding from the substrate 45, the substrate 45 and the insulating portion 43 are fixed, and the portion protruding from the substrate 45 of the terminal 44 provided in the stator 40 is electrically soldered. Are also joined. On the substrate 45, an IC 49a (drive element) for driving the electric motor 100 (for example, a brushless DC motor), a Hall IC 49b (position detection element) for detecting the position of the rotor 20, and the like are mounted. IC 49a, Hall IC 49b, etc. are defined as electronic components.

次に、回転子20の構成を説明する。図4乃至図6は回転子20を示す図で、図4は回転子20の断面図、図5は負荷側転がり軸受21a及び反負荷側転がり軸受21bを取り外した回転子20−1の断面図、図6は負荷側から見た回転子20−1の側面図である。   Next, the configuration of the rotor 20 will be described. 4 to 6 are views showing the rotor 20, FIG. 4 is a sectional view of the rotor 20, and FIG. 5 is a sectional view of the rotor 20-1 with the load side rolling bearing 21a and the anti-load side rolling bearing 21b removed. FIG. 6 is a side view of the rotor 20-1 viewed from the load side.

図4、図5に示すように、回転子20(もしくは回転子20−1)は、ローレット23aが施されたシャフト23、リング状の回転子の樹脂マグネット22(回転子のマグネットの一例)、リング状の位置検出用樹脂マグネット25(位置検出用マグネットの一例)、そしてこれらを一体成形する樹脂部24で構成される。   As shown in FIGS. 4 and 5, the rotor 20 (or the rotor 20-1) includes a shaft 23 provided with a knurling 23a, a ring-shaped rotor resin magnet 22 (an example of a rotor magnet), A ring-shaped position detecting resin magnet 25 (an example of a position detecting magnet) and a resin portion 24 for integrally molding them.

リング状の回転子の樹脂マグネット22と、シャフト23と、位置検出用樹脂マグネット25とを、縦型成形機により射出された樹脂部24で一体化する。このとき、樹脂部24は、シャフト23の外周に形成される、後述する中央筒部24g(回転子の樹脂マグネット22の内側に形成される)と、回転子の樹脂マグネット22を中央筒部24gに連結する、シャフト23を中心として半径方向に放射状に形成された軸方向の複数のリブ24j(図6参照)を有する。リブ24j間には、軸方向に貫通した空洞24k(図6参照)が形成される。   A resin magnet 22 of a ring-shaped rotor, a shaft 23, and a position detection resin magnet 25 are integrated by a resin portion 24 injected by a vertical molding machine. At this time, the resin part 24 is formed on the outer periphery of the shaft 23, and a central cylinder part 24g (formed inside the rotor resin magnet 22), which will be described later, and the rotor resin magnet 22 are arranged in the central cylinder part 24g. And a plurality of axial ribs 24j (see FIG. 6) formed radially in the radial direction around the shaft 23. A cavity 24k (see FIG. 6) penetrating in the axial direction is formed between the ribs 24j.

樹脂部24に使用される樹脂には、PBT (ポリブチレンテレフタレート)、PPS(ポリフェニレンサルファイド)等の熱可塑性樹脂が用いられる。これらの樹脂に、ガラス充填剤を配合したものも好適である。   As the resin used for the resin portion 24, a thermoplastic resin such as PBT (polybutylene terephthalate) or PPS (polyphenylene sulfide) is used. Those in which a glass filler is blended with these resins are also suitable.

シャフト23の反負荷側(図4で右側)には、反負荷側転がり軸受21bが取り付けられる(一般的には、圧入による)。また、ファン等が取り付けられるシャフト23の負荷側(図4で左側)には、負荷側転がり軸受21aが取り付けられる。   The anti-load side rolling bearing 21b is attached to the anti-load side (right side in FIG. 4) of the shaft 23 (generally by press fitting). A load-side rolling bearing 21a is attached to the load side (left side in FIG. 4) of the shaft 23 to which a fan or the like is attached.

次に、回転子20のシャフトの端部の構造について説明する。図7は転がり軸受を外した回転子20の反負荷側端部の拡大断面図、図8回転子20の反負荷側端部の拡大断面図である。   Next, the structure of the end portion of the shaft of the rotor 20 will be described. 7 is an enlarged cross-sectional view of the end portion on the non-load side of the rotor 20 with the rolling bearing removed, and FIG. 8 is an enlarged cross-sectional view of the end portion on the anti-load side of the rotor 20.

図7、図8において、樹脂部24には、反負荷側転がり軸受21bのシャフト23の反負荷側端部23dへの挿入時の軸方向の位置決めとなる軸受当接面24dが、シャフト23のローレット部を中心とした外周に形成される樹脂部24の中央筒部24g(樹脂部)の反負荷側端部に形成されている。   7 and 8, the resin portion 24 has a bearing contact surface 24 d that serves as an axial positioning when the shaft 23 of the anti-load side rolling bearing 21 b is inserted into the anti-load side end portion 23 d of the shaft 23. It is formed at the opposite end portion of the central cylindrical portion 24g (resin portion) of the resin portion 24 formed on the outer periphery centering on the knurled portion.

そして、シャフト23のローレット部を軸方向の中心とした外周に形成される樹脂部24の中央筒部24gには、中央筒部24gの外周部と軸受当接面24dとの間に段差部24eが設けられる。   The central cylindrical portion 24g of the resin portion 24 formed on the outer periphery with the knurled portion of the shaft 23 as the center in the axial direction has a stepped portion 24e between the outer peripheral portion of the central cylindrical portion 24g and the bearing contact surface 24d. Is provided.

段差部24eの直径は、反負荷側転がり軸受21bの外輪21b−2の内径よりも小さいことが必須である。図4に示す回転子20では、図8に示す段差部24eの直径(d3)は、反負荷側転がり軸受21bの内輪21b−1の外径と略同じか、若干小さくしている。   It is essential that the diameter of the stepped portion 24e is smaller than the inner diameter of the outer ring 21b-2 of the anti-load side rolling bearing 21b. In the rotor 20 shown in FIG. 4, the diameter (d3) of the stepped portion 24e shown in FIG. 8 is substantially the same as or slightly smaller than the outer diameter of the inner ring 21b-1 of the anti-load side rolling bearing 21b.

一般的に、転がり軸受は、転がり軸受の内部からグリースが外に漏れないように、もしくは外部からごみ等が浸入しないように外輪と内輪との間にカバーを設けている。このカバーは、転がり軸受の両端面より内側に位置する。   Generally, a rolling bearing is provided with a cover between an outer ring and an inner ring so that grease does not leak out from the inside of the rolling bearing or dust does not enter from the outside. This cover is located inside the both end surfaces of the rolling bearing.

従って、段差部24e(d3)の直径を、反負荷側転がり軸受21bの内輪21b−1の外径よりも大きくしても、内輪21b−1の外径よりも大きい部分は、反負荷側転がり軸受21bに接触しない。従って、段差部24eの直径(d3)は、反負荷側転がり軸受21bの内輪21b−1の外径と略同じか、若干小さくする程度が実用的である。   Therefore, even if the diameter of the stepped portion 24e (d3) is larger than the outer diameter of the inner ring 21b-1 of the anti-load side rolling bearing 21b, the portion larger than the outer diameter of the inner ring 21b-1 is not anti-load side rolling. It does not contact the bearing 21b. Therefore, the diameter (d3) of the stepped portion 24e is practically the same as or slightly smaller than the outer diameter of the inner ring 21b-1 of the anti-load side rolling bearing 21b.

段差部24eを設けることにより、シャフト23、回転子の樹脂マグネット22及び位置検出用樹脂マグネット25を樹脂で一体成形する際に、樹脂部24の中央筒部24gの軸受当接面24dをイレコで形成する場合、段差部24eまで前記イレコで形成する。そのため、金型の合わせ面は中央筒部24gの反負荷側端面24hになるので、金型の合わせ面にバリが発生しても反負荷側転がり軸受21bは金型の合わせ面となる反負荷側端面24hに対して段差部24eの分だけ離れているので、バリは反負荷側転がり軸受21bに当接しない。そのため、反負荷側転がり軸受21bに悪影響を及ぼす恐れが少ない。   By providing the stepped portion 24e, when the shaft 23, the resin magnet 22 of the rotor and the resin magnet 25 for position detection are integrally formed of resin, the bearing contact surface 24d of the central cylindrical portion 24g of the resin portion 24 can be In the case of forming, the step portion 24e is formed by the above-mentioned eroko. For this reason, the mating surface of the mold becomes the anti-load side end surface 24h of the central cylindrical portion 24g, so that even if burrs occur on the mating surface of the mold, the anti-load side rolling bearing 21b is the anti-load that becomes the mating surface of the mold. Since it is separated from the side end face 24h by the stepped portion 24e, the burr does not contact the anti-load side rolling bearing 21b. Therefore, there is little possibility of adversely affecting the anti-load side rolling bearing 21b.

また、回転子20が、熱衝撃を受けると樹脂部24の中央筒部24gが割れる場合もある。そのような場合でも、中央筒部24gに段差部24eを設け、段差部24eの径方向の寸法は一定とし、両端の段差部24e(負荷側と反負荷側)間の中央筒部24gの径方向の厚さを大きくして対処することができる。   Further, when the rotor 20 receives a thermal shock, the central cylindrical portion 24g of the resin portion 24 may break. Even in such a case, the step portion 24e is provided in the central cylindrical portion 24g, the radial dimension of the step portion 24e is constant, and the diameter of the central cylindrical portion 24g between the step portions 24e (the load side and the anti-load side) at both ends. The thickness of the direction can be increased to cope with it.

段差部24eの直径(d3)を、負荷側転がり軸受21a及び反負荷側転がり軸受21bの外輪21a−2,21b−2の内径よりも小さくしているので、段差部24e間の中央筒部24gの径方向の厚さは、外輪21a−2,21b−2の内径よりも大きくすることも可能である。   Since the diameter (d3) of the stepped portion 24e is smaller than the inner diameters of the outer rings 21a-2 and 21b-2 of the load side rolling bearing 21a and the anti-load side rolling bearing 21b, the central cylindrical portion 24g between the stepped portions 24e. The thickness in the radial direction can be larger than the inner diameters of the outer rings 21a-2 and 21b-2.

図9は回転子の樹脂マグネット22を示す図で、図9(a)は左側面図、図9(b)は(a)のC−C断面図、図9(c)は右側面図である。図9を参照しながら、リング状の回転子の樹脂マグネット22の構成を説明する。回転子の樹脂マグネット22には、その内径の軸方向一端部(図9(b)では右側)に、樹脂成形時の型締め時にシャフト23と回転子の樹脂マグネット22との同軸を確保するための切欠き22aが形成されている。図9の例では、切欠き22aは周方向に略等間隔で8箇所に形成されている(図(c))。   9A and 9B are views showing the resin magnet 22 of the rotor. FIG. 9A is a left side view, FIG. 9B is a cross-sectional view taken along the line CC of FIG. 9A, and FIG. is there. The configuration of the resin magnet 22 of the ring-shaped rotor will be described with reference to FIG. In the rotor resin magnet 22, an axial end of the inner diameter (on the right side in FIG. 9B) is secured to ensure the coaxiality of the shaft 23 and the rotor resin magnet 22 during mold clamping during resin molding. The notch 22a is formed. In the example of FIG. 9, the notches 22a are formed at eight locations at substantially equal intervals in the circumferential direction (FIG. (C)).

また、回転子の樹脂マグネット22には、軸方向他端部(図9(b)では左側)の端面に、位置検出用樹脂マグネット25を据える台座22bが、周方向に略等間隔で形成されている。   In addition, on the resin magnet 22 of the rotor, pedestals 22b for mounting the position detection resin magnet 25 are formed at substantially equal intervals in the circumferential direction on the end surface of the other axial end portion (left side in FIG. 9B). ing.

台座22bは、回転子の樹脂マグネット22の内径付近から外径に向かって形成され、台座22bの先端から位置決め用突起22cが径方向に回転子の樹脂マグネット22の外周部に向かって、その近くまで延びている。位置決め用突起22cは、樹脂部24による回転子のマグネット、位置検出用マグネット及びシャフトの一体成形時に、回転子の樹脂マグネット22の周方向(回転方向)の位置決めに利用される。   The pedestal 22b is formed from the vicinity of the inner diameter of the resin magnet 22 of the rotor toward the outer diameter, and the positioning projection 22c is radially directed from the tip of the pedestal 22b toward the outer periphery of the resin magnet 22 of the rotor. It extends to. The positioning protrusions 22c are used for positioning the rotor resin magnet 22 in the circumferential direction (rotation direction) when the rotor magnet, the position detection magnet, and the shaft are integrally formed by the resin portion 24.

次に、図10を参照しながら、リング状の位置検出用樹脂マグネット25の構成を説明する。図10(a)は位置検出用樹脂マグネット25の左側面図、図10(b)は位置検出用樹脂マグネット25の正面図、図10(c)は(b)のD部拡大図である。   Next, the configuration of the ring-shaped position detecting resin magnet 25 will be described with reference to FIG. FIG. 10A is a left side view of the position detecting resin magnet 25, FIG. 10B is a front view of the position detecting resin magnet 25, and FIG. 10C is an enlarged view of a portion D of FIG.

位置検出用樹脂マグネット25は、内径側の軸方向両端部に段差25bを備える。この段差25bは、回転子20の軸方向端部側となる段差25bに樹脂部24の一部が充填されて、位置検出用樹脂マグネット25の軸方向の抜け止めとなるために必要である。   The position detecting resin magnet 25 includes steps 25b at both axial end portions on the inner diameter side. The step 25b is necessary to prevent the position detecting resin magnet 25 from coming off in the axial direction by filling the step 25b on the axial end portion side of the rotor 20 with a part of the resin portion 24.

図10では、両端部に段差25bを備えるものを示したが、いずれか一方の端部に段差25bがあり、それが回転子20の軸方向端部側に位置すればよい。但し、両端部に段差25bを備えるものは、回転子20の樹脂部24による一体成形時に、金型(下型)に位置検出用樹脂マグネット25をセットする際に、裏表を気にせずにセットできるので作業性に優れる。   In FIG. 10, the step provided with the step 25 b at both ends is shown, but the step 25 b may be provided at either one of the end portions, and it may be positioned on the axial end portion side of the rotor 20. However, when both ends are provided with a step 25b, the position detection resin magnet 25 is set without worrying about the front and back when the resin magnet 24 for position detection is set on the mold (lower mold) when the resin portion 24 of the rotor 20 is integrally formed. Excellent workability because it can.

また、位置検出用樹脂マグネット25は、段差25bに樹脂部24に埋設されると周方向の回り止めとなるリブ25a(断面が略三角)を周方向に略等間隔に8個備える。但し、リブ25aの数、形状、配置間隔は任意でよい。   Further, the position detecting resin magnet 25 includes eight ribs 25a (substantially triangular in cross section) that are circumferentially detented when embedded in the resin portion 24 in the step 25b at substantially equal intervals in the circumferential direction. However, the number, shape, and arrangement interval of the ribs 25a may be arbitrary.

尚、図10に示すように、樹脂部24には、位置検出用樹脂マグネット25の内径を保持する金型の内径押さえ部24a、位置検出用樹脂マグネット25を金型(下型)にセットしやすくするためのテーパ部24b、樹脂成形時の樹脂注入部24cが樹脂成形後に形成される。   As shown in FIG. 10, in the resin portion 24, a mold inner diameter pressing portion 24a for holding the inner diameter of the position detection resin magnet 25 and the position detection resin magnet 25 are set in a mold (lower mold). A taper part 24b for facilitating and a resin injection part 24c at the time of resin molding are formed after resin molding.

回転子の樹脂マグネット22は熱可塑性樹脂に磁性材が混合され成形されたもので、図9に示す通り、内径に軸方向一端面からテーパ状に切欠き22aを設け、また、切欠き22aのある軸方向一端面の反対側の軸方向他端面に、位置検出用樹脂マグネット25を据える台座22bを備えている。   The rotor resin magnet 22 is formed by mixing a thermoplastic material with a magnetic material. As shown in FIG. 9, the inner diameter is provided with a notch 22a tapered from one end surface in the axial direction. A pedestal 22b on which the position detecting resin magnet 25 is placed is provided on the other axial end surface opposite to one axial end surface.

シャフト23と一体に成形される回転子の樹脂マグネット22の台座22bにより、位置検出用樹脂マグネット25を回転子の樹脂マグネット22の端面から離すことが可能となり、位置検出用樹脂マグネット25の肉厚を最小、かつ、任意の位置に配置することが可能となり、回転子の樹脂マグネット22より安価な熱可塑性樹脂を充填することで、コストの低減が可能となる。   The pedestal 22b of the rotor resin magnet 22 formed integrally with the shaft 23 enables the position detection resin magnet 25 to be separated from the end surface of the rotor resin magnet 22, and the thickness of the position detection resin magnet 25 is increased. Can be disposed at an arbitrary position, and the cost can be reduced by filling a thermoplastic resin cheaper than the resin magnet 22 of the rotor.

位置検出用樹脂マグネット25は、図10に示す通り、厚み方向の両側に段差25bを持ち、かつ、樹脂で埋設されると回り止めとなるリブ25aを両側の段差25bに備えている。また、位置検出用樹脂マグネット25の内径と位置検出用樹脂マグネット25の外径との同軸度は精度良く作られている。   As shown in FIG. 10, the position detecting resin magnet 25 has steps 25b on both sides in the thickness direction, and ribs 25a that prevent rotation when embedded in the resin, on both steps 25b. Further, the coaxiality between the inner diameter of the position detecting resin magnet 25 and the outer diameter of the position detecting resin magnet 25 is made with high accuracy.

尚、シャフト23と一体に成形される際には、位置検出用樹脂マグネット25の外周にはテーパ状に樹脂(樹脂部24)が充填され、位置検出用樹脂マグネット25の外径のばらつきにも対応し、充填される樹脂は位置検出用樹脂マグネット25の片側の軸方向端面(外側)と回転子の樹脂マグネット22の軸方向両端面でせき止めるため、回転子の樹脂マグネット22の外径にバリが発生するのを抑えることが可能となり、品質の向上が図られている。   When molded integrally with the shaft 23, the outer periphery of the position detection resin magnet 25 is filled with a taper-shaped resin (resin portion 24). Correspondingly, the resin to be filled is blocked by the axial end face (outer side) on one side of the position detection resin magnet 25 and the axial end faces of the rotor resin magnet 22, so that the outer diameter of the rotor resin magnet 22 is variable. It is possible to suppress the occurrence of the problem, and the quality is improved.

また、シャフト23との一体成形時のゲート口を回転子の樹脂マグネット22の内径よりもさらに内側に配置し、樹脂注入部24cを凸形状で配置することで、圧力の集中を緩和し、樹脂の充填が容易に、また、樹脂注入部24cの凸部を位置決めに利用することも可能となっている。   Further, by arranging the gate port at the time of integral molding with the shaft 23 further inside than the inner diameter of the resin magnet 22 of the rotor and arranging the resin injection portion 24c in a convex shape, the concentration of pressure is alleviated, and the resin Can be easily filled, and the convex portion of the resin injection portion 24c can be used for positioning.

次に、本発明の実施の形態1のブラケットについて詳細に説明する。
図11乃至図16は実施の形態1を示す図で、図11はブラケット30について示す図であり、(a)は断面図、(b)は側面図である。図12は圧入部品31について示す図であり、(a)は側面図、(b)は断面図である。図13は軸受支持部品32について示す図であり、(a)は断面図、(b)は側面図である。図14は連結部33について示す図であり、(a)は左側面図、(b)は断面図、(c)は右側面図である。図15はブラケット30の組立を示す斜視図、図16は外径側、内径側にフランジを設けた連結部33で一体に組み付けられたブラケット30の拡大断面図である。
図11に示すように、ブラケット30は、圧入部品31、軸受支持部品32、連結部33で構成される。圧入部品31、軸受支持部品32の材質は金属製で、例えば、亜鉛メッキ鋼板である。但し、亜鉛メッキ鋼板には限定されない。連結部33の材質は絶縁性を有し、例えば樹脂製である。
Next, the bracket according to Embodiment 1 of the present invention will be described in detail.
11 to 16 are views showing the first embodiment, FIG. 11 is a view showing the bracket 30, (a) is a cross-sectional view, and (b) is a side view. 12A and 12B are diagrams showing the press-fitting component 31, wherein FIG. 12A is a side view and FIG. 12B is a cross-sectional view. 13A and 13B are views showing the bearing support component 32, where FIG. 13A is a cross-sectional view and FIG. 13B is a side view. 14A and 14B are diagrams showing the connecting portion 33, where FIG. 14A is a left side view, FIG. 14B is a cross-sectional view, and FIG. 14C is a right side view. FIG. 15 is a perspective view showing the assembly of the bracket 30, and FIG. 16 is an enlarged cross-sectional view of the bracket 30 assembled integrally by a connecting portion 33 provided with a flange on the outer diameter side and the inner diameter side.
As shown in FIG. 11, the bracket 30 includes a press-fit component 31, a bearing support component 32, and a connecting portion 33. The press-fit component 31 and the bearing support component 32 are made of metal, for example, a galvanized steel plate. However, it is not limited to galvanized steel sheet. The material of the connection part 33 has insulation, for example, is resin.

圧入部品31は図12に示す通り略リング状で、モールド固定子10の端面に当接するフランジ31a、モールド固定子10と連結部33に圧入されるコの字形状の圧入部31b、連結部33に当接するフランジ31c、連結部33の突起33bに勘合する切欠き31dで構成される。圧入部31bの外径はモールド固定子10の内周部10aの内径よりも圧入代の分だけ大きく、圧入部31bの内径は連結部33の外径よりも圧入代の分だけ小さくなっている。モールド固定子10に当接するフランジ31a、連結部33に当接するフランジ31cは圧入部31bの端部に略直角に設けられる。当接面が同一方向側に、例えば実施の形態ではモールド固定子10の内径側になる面が当接面になっている。すなわち、モールド固定子10、連結部33への圧入方向が同じになり、モールド固定子10にブラケット30を圧入する時、連結部33にも圧入方向に荷重が掛かり、連結部33と圧入部品31の組み付けが外れず、信頼性が確保される。 As shown in FIG. 12, the press-fitting component 31 has a substantially ring shape, and includes a flange 31 a that contacts the end face of the mold stator 10, a U-shaped press-fit portion 31 b that is press-fitted into the mold stator 10 and the connection portion 33, and a connection portion 33. And a notch 31d fitted into the protrusion 33b of the connecting portion 33. The outer diameter of the press-fit portion 31b is larger than the inner diameter of the inner peripheral portion 10a of the mold stator 10 by the press-fit allowance, and the inner diameter of the press-fit portion 31b is smaller than the outer diameter of the connecting portion 33 by the press-fit allowance. . The flange 31a that abuts on the mold stator 10 and the flange 31c that abuts on the connecting portion 33 are provided at substantially right angles at the end of the press-fit portion 31b. The contact surface is in the same direction side, for example, the surface that becomes the inner diameter side of the mold stator 10 in the embodiment is the contact surface. That is, the press-fitting directions into the mold stator 10 and the connecting portion 33 are the same, and when the bracket 30 is press-fitted into the mold stator 10, a load is also applied to the connecting portion 33 in the press-fitting direction. Assemble is not removed and reliability is ensured.

軸受支持部品32は図13に示す通り略リング状で、内径側は軸受を支持、外径側は連結部に圧入される軸受支持部32aと、連結部33に当接するフランジ32b、連結部33の突起33cに勘合する切欠き32cで構成される。軸受支持部32aの外径は連結部33の内径よりも圧入代の分だけ大きくなっている。なお、軸受支持部32aの外径を連結部33と圧入するとしたが、軸受支持部32aとは別に連結部との圧入部を設けてもよい。連結部33への圧入で軸受支持部32aの変形による軸受支持部内径寸法への影響を防止することができる。連結部33に当接するフランジ32bは軸受支持部32aの端部に略直角に設けられる。当接面は、例えば実施の形態では軸受支持部32a側になっている。 As shown in FIG. 13, the bearing support component 32 has a substantially ring shape, the bearing on the inner diameter side supports the bearing, and the outer diameter side is press-fitted into the coupling portion, the flange 32 b that contacts the coupling portion 33, and the coupling portion 33. It is comprised by the notch 32c fitted to the protrusion 33c. The outer diameter of the bearing support portion 32 a is larger than the inner diameter of the connecting portion 33 by the press-fitting allowance. In addition, although the outer diameter of the bearing support part 32a was press-fit with the connection part 33, you may provide a press-fit part with a connection part separately from the bearing support part 32a. The press-fitting into the connecting portion 33 can prevent the bearing support portion 32a from being affected by the deformation of the bearing support portion 32a. The flange 32b that contacts the connecting portion 33 is provided at a substantially right angle at the end of the bearing support portion 32a. For example, the contact surface is on the bearing support portion 32a side in the embodiment.

連結部33は図14に示す通り略リング状で、外径側が圧入部品31と、内径側が軸受支持部品32との圧入面に、端面はフランジの当接面になる。一方の端面は軸受支持部品32のフランジ32bの当接面で、軸受支持部品32の切欠き32cと勘合する突起33cが設けられている。また、他方の端面には圧入部品のフランジ31cが当接する段差面33a、圧入部品の切欠き31dと嵌合する突起33bが設けられている。連結部33は絶縁性を有する樹脂製としたが、圧入されるので寸法精度、低線膨張、強度も要求されるため、モールド固定子でも使われる熱硬化性樹脂が望ましい。 As shown in FIG. 14, the connecting portion 33 has a substantially ring shape, and the outer diameter side is a press-fit surface of the press-fitting part 31 and the inner diameter side is a press-fit surface of the bearing support part 32, and the end surface is a contact surface of the flange. One end surface is a contact surface of the flange 32b of the bearing support component 32, and is provided with a protrusion 33c that engages with the notch 32c of the bearing support component 32. The other end face is provided with a step surface 33a with which the flange 31c of the press-fitting part abuts and a projection 33b to be fitted with the notch 31d of the press-fitting part. The connecting portion 33 is made of an insulating resin. However, since it is press-fitted, dimensional accuracy, low linear expansion, and strength are required, and therefore a thermosetting resin that is also used in a mold stator is desirable.

次に、ブラケット30の組立について、図11、及び15で説明する。軸受支持部品32と連結部33は、軸受支持部品32の切欠き32cと連結部33の一方の端面の突起33cを勘合するよう位置決めされ、軸受支持部品32の外径と連結部33の内径を嵌合し、軸受支持部品のフランジ32bが連結部33の一方の端面に当接するまで圧入される。軸受支持部の切欠き32cと連結部の突起33cを勘合することで、回り止めとなる。なお、軸受支持部品に突起、連結部に切欠きとしても同様である。 Next, assembly of the bracket 30 will be described with reference to FIGS. The bearing support component 32 and the connecting portion 33 are positioned so as to engage the notch 32c of the bearing support component 32 and the protrusion 33c on one end surface of the connecting portion 33, and the outer diameter of the bearing support component 32 and the inner diameter of the connecting portion 33 are set. The flange 32b of the bearing support component is press-fitted until it abuts against one end surface of the connecting portion 33. By engaging the notch 32c of the bearing support portion and the protrusion 33c of the connecting portion, rotation is prevented. The same applies to the protrusions on the bearing support component and the notches in the connecting portion.

圧入部品31と連結部33は、圧入部品の切欠き31dと連結部33の他方の端面の突起33bを勘合するよう位置決めされ、圧入部31bの内径側と連結部33の外径を嵌合し、圧入部品31のフランジ31cが連結部33の他方の端面の段差面33aに当接するまで圧入され、ブラケット30となる。圧入部の切欠き31dと連結部の突起33bを勘合することで、回り止めとなる。なお、軸受支持部品に突起、連結部に切欠きとしても同様である。 The press-fitting part 31 and the connecting part 33 are positioned so as to engage the notch 31d of the press-fitting part and the protrusion 33b on the other end surface of the connecting part 33, and the inner diameter side of the press-fitting part 31b and the outer diameter of the connecting part 33 are fitted. The flange 31 c of the press-fitting part 31 is press-fitted until it comes into contact with the stepped surface 33 a of the other end face of the connecting portion 33, thereby forming the bracket 30. By engaging the notch 31d of the press-fitting portion with the protrusion 33b of the connecting portion, rotation is prevented. The same applies to the protrusions on the bearing support component and the notches in the connecting portion.

連結部33は、圧入部品31のフランジ31cと軸受支持部品32のフランジ32bに挟み込まれた状態である。ブラケット30をモールド固定子10に圧入する時は、圧入部のフランジ31cが連結部33を軸受支持部32に圧入するよう作用し、ブラケット30の組み付けは保たれる。ブラケット30をモールド固定子10に圧入後、軸受支持部品32が軸に押されるような荷重を受けた時は、圧入部品31のフランジ31cが連結部33を押さえるよう作用し、ブラケット30の組み付けは保たれる。軸受支持部品32が外部から押された時は、軸受支持部品32と連結部33の圧入及び軸で支えられ、ブラケット30の組み付けは保たれる。 The connecting portion 33 is sandwiched between the flange 31 c of the press-fit component 31 and the flange 32 b of the bearing support component 32. When the bracket 30 is press-fitted into the mold stator 10, the flange 31 c of the press-fitting part acts to press-fit the connecting part 33 into the bearing support part 32, and the assembly of the bracket 30 is maintained. After the bracket 30 is press-fitted into the mold stator 10, when a load is applied that the bearing support component 32 is pushed by the shaft, the flange 31 c of the press-fit component 31 acts to press the connecting portion 33, and the bracket 30 is assembled. Kept. When the bearing support component 32 is pushed from the outside, the bearing support component 32 and the connecting portion 33 are supported by press-fitting and the shaft, and the assembly of the bracket 30 is maintained.

本実施の形態のように、図11に示すように、圧入部品31、軸受支持部品32、連結部33を圧入で組み付けたブラケット30としても、従来のブラケットと同様に一体に保つことができ、信頼性を損なうことはない。連結部33は絶縁性を有する樹脂製であり、圧入部品31と軸受支持部品32は、圧入部品31のフランジ31c端部と近接する軸受支持部品32の部位間、又は、連結部32のフランジ32b端部と近接する圧入部品31の部位間の距離の近い方を絶縁距離Lとし、絶縁される。 As shown in FIG. 11, as shown in FIG. 11, the bracket 30 in which the press-fit component 31, the bearing support component 32, and the connecting portion 33 are assembled by press-fitting can be kept integral like the conventional bracket, There is no loss of reliability. The connecting portion 33 is made of an insulating resin, and the press-fit component 31 and the bearing support component 32 are located between the portions of the bearing support component 32 adjacent to the end of the flange 31 c of the press-fit component 31 or the flange 32 b of the connection portion 32. The insulation distance L is the shorter distance between the parts of the press-fitting component 31 that is close to the end portion, and is insulated.

なお、図16のように、外径側、内径側にフランジ33d、33eを設けた連結部33としてもよい。連結部の外径側、内径側にフランジ33d、33eを設けることで圧入部品31と軸受支持部品32を軸方向にずらすよう配置でき、圧入部品31と軸受支持部品32の最短距離が圧入部品のフランジ31c端部と軸受支持部品32のフランジ32b端部間が最短距離になる。図11の実施例では、連結部の厚み(軸方向長)が小さいと絶縁距離Lは圧入部品31と軸受支持部品32のフランジ端部間で、連結部の厚みを大きくするに従い絶縁距離Lは大きくなるが、一定以上になると、圧入部品31のフランジ31c端部と軸受支持部品32の外径間、又は、軸受支持部品32のフランジ32b端部と圧入部品31の内径間が最短距離になり、絶縁距離Lは一定以上大きくできない。圧入部品31と軸受支持部品32を軸方向にずらすよう配置する、すなわち、圧入部品と軸受支持部品が同一平面内に配置されないことで、連結部を長さに応じて距離Lを離すことができ、絶縁性をより向上し、信頼性を向上することができる。 In addition, it is good also as the connection part 33 which provided the flanges 33d and 33e in the outer diameter side and the inner diameter side like FIG. By providing flanges 33d and 33e on the outer diameter side and inner diameter side of the connecting portion, the press-fitting part 31 and the bearing support part 32 can be arranged so as to be shifted in the axial direction, and the shortest distance between the press-fitting part 31 and the bearing support part 32 is the press-fitting part. The distance between the end of the flange 31c and the end of the flange 32b of the bearing support component 32 is the shortest distance. In the embodiment of FIG. 11, when the thickness of the connecting portion (length in the axial direction) is small, the insulating distance L is between the flange end portions of the press-fit component 31 and the bearing support component 32, and the insulating distance L is increased as the thickness of the connecting portion is increased. However, if it exceeds a certain value, the distance between the end of the flange 31c of the press-fit part 31 and the outer diameter of the bearing support part 32 or the end of the flange 32b of the bearing support part 32 and the inner diameter of the press-fit part 31 becomes the shortest distance. The insulation distance L cannot be increased beyond a certain level. The press-fitting component 31 and the bearing support component 32 are arranged so as to be shifted in the axial direction, that is, the press-fitting component and the bearing support component are not arranged in the same plane, so that the connecting portion can be separated by a distance L according to the length. Insulation can be further improved and reliability can be improved.

本実施の形態は、リング状の回転子のマグネット及びシャフトを樹脂部により一体化しマグネットとシャフトの間が絶縁されること、及び、金属製(導電性を有する)の圧入部品31と軸受支持部品32との間を、樹脂製(絶縁性を有する)の連結部33で一体にしたブラケット30と、モールド固定子の軸受支持部で軸受を支持し軸受と固定子の間が絶縁されることで軸電流を抑制することにより、負荷側21a及び反負荷側転がり軸受21bの電食の発生を抑制するという効果を奏する。   In the present embodiment, the magnet and shaft of the ring-shaped rotor are integrated by the resin portion to insulate between the magnet and the shaft, and the press-fitting part 31 made of metal (having conductivity) and the bearing support part The bearing 30 is supported by the bracket 30 integrated with the connecting portion 33 made of resin (having insulating properties) and the bearing support portion of the molded stator, and the bearing and the stator are insulated. By suppressing the shaft current, there is an effect of suppressing the occurrence of electrolytic corrosion of the load side 21a and the anti-load side rolling bearing 21b.

尚、本実施の形態は、リング状の位置検出用樹脂マグネット25を持たない回転子20も含む。   The present embodiment also includes a rotor 20 that does not have the ring-shaped position detecting resin magnet 25.

尚、図1に示す電動機100は、モールド固定子10側が負荷側で、ブラケット30側が反負荷側になるものを示したが、その逆でもよい。さらに、圧入部品、軸受支持部品、連結部の組み付けを圧入としたが接着してもよく、圧入部品、軸受支持部品を絶縁性の有する連結部によって組み付けることで圧入部品と軸受支持部品が絶縁され、同様の効果を得ることができる。   In addition, although the electric motor 100 shown in FIG. 1 showed what the mold stator 10 side becomes a load side and the bracket 30 side becomes an anti-load side, the reverse may be sufficient. In addition, the press-fit parts, bearing support parts, and connecting parts are press-fit, but they may be bonded together. The press-fit parts and bearing support parts are insulated by assembling the press-fit parts and bearing support parts with insulating connecting parts. The same effect can be obtained.

また、図4に示す回転子20は、永久磁石に熱可塑性樹脂に磁性材を混合して成形された回転子の樹脂マグネット22、を使用したが、その他の永久磁石(希土類磁石(ネオジム、サマリウム鉄)、フェライト焼結等)を用いてもよい。   Further, the rotor 20 shown in FIG. 4 uses a rotor resin magnet 22 formed by mixing a magnetic material with a thermoplastic resin in a permanent magnet, but other permanent magnets (rare earth magnets (neodymium, samarium) are used. Iron), sintered ferrite, etc.) may be used.

また、位置検出用樹脂マグネット25も同様に、その他の永久磁石(希土類磁石(ネオジム、サマリウム鉄)、フェライト焼結等)を用いてもよい。   Similarly, other permanent magnets (rare earth magnets (neodymium, samarium iron), sintered ferrite, etc.) may be used for the position detecting resin magnet 25.

既に述べたように、電動機をインバータを用いて運転を行なう場合、パワー回路内のトランジスタのスイッチングに伴って発生する電動機の騒音の低減を図る目的から、インバータのキャリア周波数を高く設定するようにしている。キャリア周波数を高く設定するに伴って、電動機のシャフトに高周波誘導に基づいて発生する軸電圧が増大し、シャフトを支持している転がり軸受の内輪と外輪との間に存在する電位差が大きくなるので、転がり軸受に電流が流れ易くなる。この転がり軸受に流れる電流は、内輪、外輪両軌道並びに転動体(内外輪の間を転がる玉やころ)の転動面に電食と呼ばれる腐食を発生させて、転がり軸受の耐久性を悪化させる。   As described above, when an electric motor is operated using an inverter, the carrier frequency of the inverter is set high for the purpose of reducing the noise of the electric motor generated due to the switching of the transistor in the power circuit. Yes. As the carrier frequency is set higher, the shaft voltage generated on the motor shaft based on the high frequency induction increases, and the potential difference existing between the inner ring and the outer ring of the rolling bearing supporting the shaft increases. The current easily flows through the rolling bearing. The current flowing through the rolling bearings causes corrosion called electrolytic corrosion on the rolling surfaces of the inner and outer ring raceways and the rolling elements (balls and rollers that roll between the inner and outer rings), thereby deteriorating the durability of the rolling bearings. .

従って、本実施の形態のブラケット30は、電動機100をインバータを用いて運転を行う場合の軸電流の低減に特に有効である。   Therefore, the bracket 30 of the present embodiment is particularly effective for reducing the shaft current when the electric motor 100 is operated using an inverter.

次に、実施の形態1の電動機を用いた電動機内蔵駆動回路について説明する。図17は実施の形態1を示す図で、電動機100の電動機内蔵駆動回路1の回路図である。図17に示すように、電動機100の外部に設けられた商用交流電源2から交流の電力が電動機内蔵駆動回路1に供給される。商用交流電源2から供給される交流電圧は整流回路3で直流電圧に変換される。整流回路3で変換された直流電圧は、インバータ主回路4で可変周波数の交流電圧に変換されて電動機100に印加される。電動機100はインバータ主回路4から供給される可変周波数の交流電力により駆動される。尚、整流回路3には商用交流電源2から印加される電圧を昇圧するチョッパー回路や整流した直流電圧を平滑にする平滑コンデンサなどを有する。   Next, a motor built-in drive circuit using the motor of the first embodiment will be described. FIG. 17 is a diagram showing the first embodiment, and is a circuit diagram of the motor built-in drive circuit 1 of the motor 100. As shown in FIG. 17, AC power is supplied to a drive circuit 1 with a built-in motor from a commercial AC power supply 2 provided outside the motor 100. The AC voltage supplied from the commercial AC power supply 2 is converted into a DC voltage by the rectifier circuit 3. The DC voltage converted by the rectifier circuit 3 is converted to an AC voltage having a variable frequency by the inverter main circuit 4 and applied to the electric motor 100. The electric motor 100 is driven by variable frequency AC power supplied from the inverter main circuit 4. The rectifier circuit 3 includes a chopper circuit that boosts the voltage applied from the commercial AC power supply 2 and a smoothing capacitor that smoothes the rectified DC voltage.

インバータ主回路4は3相ブリッジのインバータ回路であり、インバータ主回路4のスイッチング部はインバータ主素子となる6つのIGBT6a〜6f(絶縁ゲートバイポーラトランジスタ、単にトランジスタと定義する)と6つのフライホイルダイオード(FRD)としてシリコンカーバイド(SiC)を用いたSiC−SBD7a〜7f(ショットキーバリアダイオード、単にダイオードと定義する)を備えている。FRDであるSiC−SBD7a〜7fはIGBT6a〜6fが電流をONからOFFする時に生じる逆起電力を抑制する逆電流防止手段である。   The inverter main circuit 4 is a three-phase bridge inverter circuit, and the switching section of the inverter main circuit 4 has six IGBTs 6a to 6f (insulated gate bipolar transistors, simply defined as transistors) and six flywheel diodes serving as inverter main elements. SiC-SBDs 7a-7f (Schottky barrier diodes, simply defined as diodes) using silicon carbide (SiC) as (FRD) are provided. The SiC-SBDs 7a to 7f, which are FRDs, are reverse current prevention means for suppressing the counter electromotive force generated when the IGBTs 6a to 6f turn the current from ON to OFF.

尚、本実施の形態1ではIGBT6a〜6fとSiC−SBD7a〜7fは同一リードフレーム上に各チップが実装されエポキシ樹脂でモールドされてパッケージされたICモジュールとする。IGBT6a〜6fはシリコンを用いたIGBT(Si−IGBT)に代えてSiC、GaNを用いたIGBTとしてもよく、またIGBTに代えてSiもしくはSiC、GaNを用いたMOSFET(Metal−Oxide−Semiconductor Field−Effect Transistor)などの他のスイッチング素子を使用してもよい。   In the first embodiment, the IGBTs 6a to 6f and the SiC-SBDs 7a to 7f are IC modules in which each chip is mounted on the same lead frame and molded with epoxy resin and packaged. The IGBTs 6a to 6f may be IGBTs using SiC or GaN instead of IGBTs using silicon (Si-IGBT), and MOSFETs (Metal-Oxide-Semiconductor Field-) using Si, SiC, or GaN instead of IGBTs. Other switching elements such as Effect Transistor may be used.

整流回路3とインバータ主回路4の間には直列に接続された2つの分圧抵抗8a,8bが設けられており、この分圧抵抗8a,8bによる分圧回路にて高圧直流電圧を低圧化した電気信号をサンプリングし保持する直流電圧検出部8が設けられている。   Two voltage-dividing resistors 8a and 8b connected in series are provided between the rectifier circuit 3 and the inverter main circuit 4, and the high-voltage DC voltage is reduced by the voltage-dividing circuit using the voltage-dividing resistors 8a and 8b. A DC voltage detector 8 is provided for sampling and holding the electrical signal.

また、電動機100は、前述したように、回転子20(図10)とモールド固定子10(図2)とを備えており、インバータ主回路4から供給される交流電力により回転子20が回転する。モールド固定子10の回転子20に近傍には、位置検出用樹脂マグネット25を検出するホールIC49bが設けられており、そのホールIC49bからの電気信号を処理して回転子20の位置情報に変換する回転子位置検出部110が設けられている。   In addition, as described above, the electric motor 100 includes the rotor 20 (FIG. 10) and the mold stator 10 (FIG. 2), and the rotor 20 is rotated by the AC power supplied from the inverter main circuit 4. . A Hall IC 49b for detecting the position detecting resin magnet 25 is provided in the vicinity of the rotor 20 of the mold stator 10, and an electric signal from the Hall IC 49b is processed and converted into position information of the rotor 20. A rotor position detection unit 110 is provided.

回転子位置検出部110が検出する回転子20の位置情報は出力電圧演算部120に出力される。この出力電圧演算部120は電動機内蔵駆動回路1の外部から与えられる目標回転数Nの指令若しくは装置の運転条件の情報と回転子20の位置情報に基づいて電動機100に加えられるべき最適なインバータ主回路4の出力電圧を演算する。出力電圧演算部120はその演算した出力電圧をPWM信号生成部130に出力する。PWMは、Pulse Width Modulationの略語である。   The position information of the rotor 20 detected by the rotor position detection unit 110 is output to the output voltage calculation unit 120. The output voltage calculation unit 120 is an optimum inverter main unit to be applied to the electric motor 100 based on the command of the target rotational speed N given from the outside of the electric motor built-in drive circuit 1 or information on the operating condition of the apparatus and the positional information of the rotor 20. The output voltage of the circuit 4 is calculated. The output voltage calculation unit 120 outputs the calculated output voltage to the PWM signal generation unit 130. PWM is an abbreviation for Pulse Width Modulation.

PWM信号生成部130は出力電圧演算部120から与えられた出力電圧となるようなPWM信号をインバータ主回路4のそれぞれのIGBT6a〜6fを駆動する主素子駆動回路4aに出力し、インバータ主回路4のIGBT6a〜6fはそれぞれ主素子駆動回路4aによってスイッチングされる。   The PWM signal generation unit 130 outputs a PWM signal that becomes the output voltage given from the output voltage calculation unit 120 to the main element drive circuit 4a that drives each of the IGBTs 6a to 6f of the inverter main circuit 4, and the inverter main circuit 4 Each of the IGBTs 6a to 6f is switched by the main element drive circuit 4a.

尚、本実施の形態1ではインバータ主回路4を3相ブリッジとしているが単相など他のインバータ回路でもよい。   In the first embodiment, the inverter main circuit 4 is a three-phase bridge, but another inverter circuit such as a single phase may be used.

ここでワイドバンドギャップ半導体について説明する。ワイドバンドギャップ半導体はSiよりもバンドギャップが大きい半導体の総称であって、SiC−SBD7a〜7fに使用しているSiCはワイドバンドギャップ半導体の一つであり、その他には窒化ガリウム(GaN)、ダイヤモンドなどがある。さらにワイドバンドギャップ半導体、特にSiCはSiに比べて耐熱温度や絶縁破壊強度や熱伝導率が大きい。尚、本実施の形態1ではSiCをインバータ回路のFRDに用いる構成としているが、SiCに代えてその他のワイドバンドギャップ半導体を用いてもよい。   Here, the wide band gap semiconductor will be described. A wide band gap semiconductor is a generic term for semiconductors having a larger band gap than Si, and SiC used in the SiC-SBDs 7a to 7f is one of the wide band gap semiconductors, in addition to gallium nitride (GaN), There are diamonds. Furthermore, wide band gap semiconductors, particularly SiC, have higher heat resistance temperature, dielectric breakdown strength, and thermal conductivity than Si. In the first embodiment, SiC is used for the FRD of the inverter circuit, but other wide band gap semiconductors may be used instead of SiC.

次に、ブラケット30の製造工程について説明する。図18は実施の形態1を示す図で、ブラケット30の製造工程を示す図である。図18に示すように、
(1)圧入部品31及び軸受支持部品32のプレス加工、連結部33の成形を行う(ステップ1)。
(2)軸受支持部32aを上向きにして軸受支持部品32を治具にセットし、連結部33の内径を軸受指示部32aの外径に勘合するよう、連結部33を軸受指示部品32挿入する(ステップ2)。
(3)連結部33の一方の端面を治具で押して、連結部33の他方の端面が軸受支持部品32のフランジ32bに当接するまで圧入する(ステップ3)。
(4)圧入部品31のフランジ31cを上にし、圧入部品31の内径を連結部33の外径に勘合するよう、圧入部品31を連結部33にセットする(ステップ4)。
(5)圧入部品31のフランジ31cを治具で押して、連結部の端面にフランジ31cが当接するまで圧入する(ステップ5)。
Next, the manufacturing process of the bracket 30 will be described. FIG. 18 is a diagram illustrating the first embodiment, and is a diagram illustrating a manufacturing process of the bracket 30. As shown in FIG.
(1) The press-fitting of the press-fit component 31 and the bearing support component 32 and the forming of the connecting portion 33 are performed (step 1).
(2) Set the bearing support part 32 on the jig with the bearing support part 32a facing upward, and insert the connection part 33 into the bearing instruction part 32 so that the inner diameter of the connection part 33 is fitted to the outer diameter of the bearing instruction part 32a. (Step 2).
(3) One end face of the connecting portion 33 is pushed with a jig and press-fitted until the other end face of the connecting portion 33 comes into contact with the flange 32b of the bearing support component 32 (step 3).
(4) With the flange 31c of the press-fitting part 31 facing upward, the press-fitting part 31 is set in the connecting part 33 so that the inner diameter of the press-fitting part 31 is fitted to the outer diameter of the connecting part 33 (step 4).
(5) The flange 31c of the press-fitting part 31 is pushed with a jig and press-fitted until the flange 31c comes into contact with the end face of the connecting portion (step 5).

前記の製造工程によれば、圧入部品31と軸受支持部品32を同金型でプレス加工することで、圧入部品31と軸受支持部品32の同軸度を向上することができる。連結部は略リング状で寸法精度がよい成形金型を製造できるため、連結部の内径、外径も同軸度を向上し成形できる。また、内径、外径の同軸度を向上した連結部に、同軸度を向上した圧入部品31と軸受支持部品32を圧入により組み付けるので、軸受支持部と圧入部の同軸度を向上したブラケット30を得ることができる。さらに、このブラケット30を電動機に用いることで、固定子と回転子の同軸度を向上することで性能向上、騒音低減が可能となる。   According to the above manufacturing process, the press-fit part 31 and the bearing support part 32 are pressed with the same mold, so that the coaxiality of the press-fit part 31 and the bearing support part 32 can be improved. Since the connecting portion can be manufactured in a substantially ring shape and can be molded with good dimensional accuracy, the inner diameter and outer diameter of the connecting portion can be molded with improved coaxiality. Further, since the press-fit component 31 and the bearing support component 32 with improved coaxiality are assembled by press-fitting into the connecting portion with improved coaxiality of the inner and outer diameters, the bracket 30 with improved coaxiality between the bearing support portion and the press-fit portion is provided. Can be obtained. Further, by using this bracket 30 for an electric motor, it is possible to improve performance and reduce noise by improving the coaxiality of the stator and the rotor.

また、本実施の形態は、リング状の回転子のマグネット及びシャフトを樹脂部により一体化しマグネットとシャフトの間が絶縁されること、及び、金属製(導電性を有する)の圧入部と軸受支持部を樹脂製(絶縁性を有する)の連結部で一体にしたブラケット30と、モールド固定子の軸受支持部で軸受を支持し軸受と固定子の間が絶縁されることで軸電流を抑制することにより、負荷側21a及び反負荷側転がり軸受21bの電食の発生を抑制することができる。但し、リング状の位置検出用樹脂マグネット25を、シャフト23、リング状の回転子の樹脂マグネット22とともに樹脂部24で一体化するものでも、同様の効果が得られる。   Also, in this embodiment, the magnet and shaft of the ring-shaped rotor are integrated by the resin part to insulate between the magnet and the shaft, and the press-fit part made of metal (having conductivity) and the bearing support The bearing 30 is supported by the bracket 30 in which the portion is integrated with a resin-made (insulating) connecting portion and the bearing support portion of the mold stator, and the shaft current is suppressed by insulating between the bearing and the stator. Thereby, generation | occurrence | production of the electric corrosion of the load side 21a and the anti-load side rolling bearing 21b can be suppressed. However, the same effect can be obtained by integrating the ring-shaped position detecting resin magnet 25 with the resin portion 24 together with the shaft 23 and the resin magnet 22 of the ring-shaped rotor.

なお、電動機をインバータ駆動する場合、電動機の騒音の低減を図る目的から、インバータのキャリア周波数を高く設定するようにしているが、キャリア周波数を高く設定するに伴って、電動機のシャフトに高周波誘導に基づいて発生する軸電圧が増大し、シャフトを支持している転がり軸受の内輪と外輪との間に存在する電位差が大きくなるので、転がり軸受に流れる電流も増加する。従って、本実施の形態のブラケット30は、電動機100をインバータを用いて運転を行う場合の軸電流の低減に特に有効である。ここでは回転子20の位置検出用樹脂マグネット25の磁極を検出するためのセンサであるホールIC49bを用いて検出する方法を述べたが、位置検出用樹脂マグネット25、ホールIC49bを用いず、コイルを流れる電流を電流検出器(図示せず)にて検出し、波形生成回路120にマイコンなどを用いて電動機を運転するセンサレス駆動方式においても同様の効果があることは言うまでもない。   When the motor is driven by an inverter, the carrier frequency of the inverter is set higher for the purpose of reducing the noise of the motor. However, as the carrier frequency is set higher, high frequency induction is applied to the shaft of the motor. The shaft voltage generated based on this increases, and the potential difference existing between the inner ring and the outer ring of the rolling bearing supporting the shaft increases, so that the current flowing through the rolling bearing also increases. Therefore, the bracket 30 of the present embodiment is particularly effective for reducing the shaft current when the electric motor 100 is operated using an inverter. Here, the detection method is described using the Hall IC 49b which is a sensor for detecting the magnetic pole of the position detection resin magnet 25 of the rotor 20. However, the coil is not used without using the position detection resin magnet 25 and the Hall IC 49b. Needless to say, the sensorless driving method in which the flowing current is detected by a current detector (not shown) and the electric motor is driven by using a microcomputer or the like in the waveform generation circuit 120 has the same effect.

実施の形態2.
実施の形態1では、圧入部品と軸受支持部品とを連結する連結部を、1つの部品として組立てる例について説明した。実施の形態2では、前記ブラケットは、前記金属製の圧入部品と前記金属製の軸受支持部品との間に樹脂を注入して形成された連結部を介して一体に成形される例について説明する。
Embodiment 2. FIG.
In Embodiment 1, the example which assembled the connection part which connects a press-fit component and a bearing support component as one component was demonstrated. In the second embodiment, an example will be described in which the bracket is integrally formed through a connecting portion formed by injecting resin between the metal press-fitting component and the metal bearing support component. .

図19乃至図22は実施の形態2のブラケットを示す図である。図19はブラケット300の(a)は断面図、(b)は側面図を示す図である。図20は圧入部品301の(a)は側面図、(b)は断面図を示す図である。図21は軸受支持部品302の(a)は断面図、(b)は側面図、図22は圧入部品と軸受支持部品が同一平面内に配置しないで連結部303で一体に成形されたブラケット300の拡大断面図である。
図19に示すように、ブラケット300は、圧入部品301、軸受支持部品302、連結部303で構成される。圧入部品301、軸受支持部品302の材質は金属製で、例えば、亜鉛メッキ鋼板である。但し、亜鉛メッキ鋼板には限定されない。連結部303の材質は絶縁性を有し、例えば樹脂製である。
19 to 22 are views showing the bracket of the second embodiment. 19A is a cross-sectional view of the bracket 300, and FIG. 19B is a side view thereof. 20A is a side view of the press-fitting component 301, and FIG. 20B is a cross-sectional view thereof. 21A is a cross-sectional view of the bearing support component 302, FIG. 21B is a side view, and FIG. 22 is a bracket 300 in which the press-fitting component and the bearing support component are not arranged in the same plane and are integrally formed by the connecting portion 303. FIG.
As shown in FIG. 19, the bracket 300 includes a press-fit component 301, a bearing support component 302, and a connecting portion 303. The material of the press-fit component 301 and the bearing support component 302 is made of metal, for example, a galvanized steel plate. However, it is not limited to galvanized steel sheet. The material of the connection part 303 has insulation, for example, is resin.

圧入部品301は図20に示す通り略リング状で、モールド固定子10の端面に当接するフランジ301a、モールド固定子10に圧入されるコの字形状の圧入部301b、連結部303に一体成形されるフランジ301c、フランジ301cに設けられた切欠き301dで構成される。圧入部301bの外径はモールド固定子10の内周部10aの内径よりも圧入代の分だけ大きくなっている。モールド固定子10に当接するフランジ301a、連結部303に成形されるフランジ301cは圧入部301bの端部に略直角に設けられる。 As shown in FIG. 20, the press-fitting component 301 has a substantially ring shape, and is integrally formed with a flange 301 a that abuts on the end surface of the mold stator 10, a U-shaped press-fit portion 301 b that is press-fitted into the mold stator 10, and a connecting portion 303. Flange 301c and a notch 301d provided in the flange 301c. The outer diameter of the press-fitting portion 301b is larger than the inner diameter of the inner peripheral portion 10a of the mold stator 10 by the press-fitting allowance. A flange 301a that abuts on the mold stator 10 and a flange 301c that is formed on the connecting portion 303 are provided at substantially right angles to the end of the press-fit portion 301b.

軸受支持部品302は図21に示す通り略リング状で、内径側は軸受を支持する軸受支持部302aと、連結部303に一体成形されるフランジ302b、フランジ302bに設けられた切欠き302cで構成される。連結部303に成形されるフランジ302bは軸受支持部302aの端部に略直角に設けられる。 As shown in FIG. 21, the bearing support component 302 has a substantially ring shape, and the inner diameter side includes a bearing support portion 302a that supports the bearing, a flange 302b that is integrally formed with the coupling portion 303, and a notch 302c that is provided in the flange 302b. Is done. The flange 302b formed in the connecting portion 303 is provided at a substantially right angle to the end portion of the bearing support portion 302a.

次に、ブラケット300の形成方法について説明する。まず、圧入部品301と軸受支持部品302が連結部303を成形する金型にセットし、絶縁性を有する樹脂で一体に成形され、ブラケット300を形成する。連結部303は、低線膨張、強度も要求されるため、モールド固定子でも使われる熱硬化性樹脂が望ましい。 Next, a method for forming the bracket 300 will be described. First, the press-fitting component 301 and the bearing support component 302 are set in a mold for molding the connecting portion 303 and are integrally molded with an insulating resin to form the bracket 300. Since the connecting portion 303 is also required to have low linear expansion and strength, a thermosetting resin that is also used in a mold stator is desirable.

圧入部品301は、圧入部301bを下向きにして圧入部301bの外径を連結部成形金型の下型外径に勘合するよう位置決めされ、フランジ301a、圧入部301b、フランジ301c内径が連結部成形金型の下型端面に当接するようセットされる。圧入部301b外径はモールド固定子10に圧入するため寸法精度がよく、連結部成形金型の下型に精度よく保持される。   The press-fitting part 301 is positioned so that the press-fitting part 301b faces downward and the outer diameter of the press-fitting part 301b is fitted to the lower outer diameter of the connecting part molding die, and the inner diameters of the flange 301a, press-fitting part 301b, and flange 301c are formed by the connecting part. It is set to contact the lower mold end surface of the mold. Since the outer diameter of the press-fitting portion 301b is press-fitted into the mold stator 10, the dimensional accuracy is good, and the press-fit portion 301b is held in the lower die of the connecting portion molding die with high accuracy.

軸受支持部品302は、フランジ302cを下向きにして軸受支持部302a内径を連結部成形金型(図示せず)の下型に配置される芯金に勘合するよう位置決めされ、フランジ302b内径側が連結部成形金型の芯金端面に当接するようセットされる。圧入部品301のフランジ301cと軸受支持部品302のフランジ302bは軸方向位置が略同一、すなわち、圧入部品301と軸受支持部品302が略同一平面に配置されている。軸受支持部302a内径は軸受を支持するため寸法精度がよく、連結部成形金型の芯金に精度よく保持される。 The bearing support part 302 is positioned so that the flange 302c faces downward and the inner diameter of the bearing support 302a is fitted into a cored bar disposed on the lower mold of a connecting part molding die (not shown), and the inner diameter side of the flange 302b is connected to the connecting part. It is set so as to contact the end face of the core of the molding die. The flange 301c of the press-fitting part 301 and the flange 302b of the bearing support part 302 have substantially the same axial position, that is, the press-fitting part 301 and the bearing support part 302 are arranged in substantially the same plane. The inner diameter of the bearing support portion 302a supports the bearing, so that the dimensional accuracy is good, and the bearing support portion 302a is accurately held by the core metal of the connecting portion molding die.

圧入部品301と軸受支持部品302を連結部成形金型に位置決めしてセットすることで、圧入部品301と軸受支持部品302の同軸を確保できる。なお、圧入部品301を連結部成形金型の下型外径に勘合するとしたが、連結部成形金型の芯金に圧入部301b内径を勘合するようにしてもよく、圧入部品301、軸受支持部品302が芯金に嵌合され、圧入部品301と軸受支持部品302の同軸をより向上することができる。 By positioning and setting the press-fitting part 301 and the bearing support part 302 in the connecting portion molding die, it is possible to ensure the coaxiality of the press-fitting part 301 and the bearing support part 302. Although the press-fitting part 301 is fitted to the lower mold outer diameter of the connecting part molding die, the inner diameter of the press-fitting part 301b may be fitted to the core metal of the connecting part molding die. The component 302 is fitted to the metal core, and the coaxiality of the press-fitting component 301 and the bearing support component 302 can be further improved.

圧入部品301、軸受支持部品302を連結部成形金型の下型にセットした後、連結部成形金型の上型を下型に当接し型締め、連結部303を成形する。圧入部品301はフランジ301a、圧入部301b、フランジ301c内径が、軸受支持部品302はフランジ302c内径が連結部成形金型の上型に当接し、上型、下型で挟持され、連結部成形金型の空洞部に熱硬化性樹脂を注入、成形し連結部303を形成、圧入部品301と軸受支持部品302が連結部303で一体成形にされたブラケット300となる。熱硬化性樹脂は成形機から射出され、連結部成形金型のランナ、圧入部品上部に形成されるランナ部303bを流動し、連結部303aに充填される。 After the press-fitting part 301 and the bearing support part 302 are set on the lower mold of the connecting part molding die, the upper part of the connecting part molding die is brought into contact with the lower mold and clamped to mold the connecting part 303. The press fitting part 301 has a flange 301a, a press fit part 301b, and an inner diameter of the flange 301c, and the bearing support part 302 has an inner diameter of the flange 302c that is in contact with the upper mold of the connecting part molding die, and is sandwiched between the upper mold and the lower mold. A thermosetting resin is injected into the cavity of the mold and molded to form the connecting portion 303, and the press-fitting component 301 and the bearing support component 302 are integrally molded at the connecting portion 303. The thermosetting resin is injected from the molding machine, and flows through the runner 303b formed on the runner of the connecting part molding die and the press-fitting part, and is filled in the connecting part 303a.

ランナ部bは圧入部品301のフランジ301a、圧入部301bを、また、連結部303aは圧入部品301のフランジ301c、軸受支持部品302のフランジ302bを連結部成形金型で挟持することでバリの発生を抑制することができる。ランナ部303bは、成形後に連結部303から切り離してもよく、圧入部品301のフランジ301aのランナ部303b形成部位に穴を開け、フランジ301aの裏側にも樹脂が流しランナ部を形成、フランジ301aを表裏からランナ部303bで挟むようにしてもよい。ランナ部の外れ防止となる。 The runner portion b has a flange 301a and a press-fit portion 301b of the press-fit component 301, and the connection portion 303a has a burr generated by clamping the flange 301c of the press-fit component 301 and the flange 302b of the bearing support component 302 with a connection mold. Can be suppressed. The runner portion 303b may be separated from the connecting portion 303 after molding. A hole is formed in the runner portion 303b forming portion of the flange 301a of the press-fitting part 301, and the resin is poured on the back side of the flange 301a to form the runner portion. You may make it pinch | interpose with the runner part 303b from the front and back. This prevents the runner from coming off.

また、圧入部品301のフランジ301cの切欠き301d、軸受支持部品302のフランジ302bの切欠き302cが連結部で成形され、圧入部品301、軸受支持部品302が回り止めされる。このように連結部で一体に成形されたブラケット300は連結部303が脱落することなく、従来のブラケットと同様に一体に保つことができ、信頼性を損なうことはない。 Further, the notch 301d of the flange 301c of the press-fitting part 301 and the notch 302c of the flange 302b of the bearing support part 302 are formed at the connecting portion, and the press-fitting part 301 and the bearing support part 302 are prevented from rotating. Thus, the bracket 300 integrally formed by the connecting portion can be kept integrated like the conventional bracket without the connecting portion 303 falling off, and the reliability is not impaired.

連結部303は絶縁性を有する樹脂製であり、圧入部品301と軸受支持部品302は、圧入部品301のフランジ301c端部と近接する軸受支持部品302の部位間、又は、連結部302のフランジ302b端部と近接する圧入部品301の部位間の距離の近い方を絶縁距離L(図19では圧入部品301のフランジ301端部と軸受支持部品302のフランジ302b端部間)とし、絶縁される。 The connecting part 303 is made of an insulating resin, and the press-fitting part 301 and the bearing support part 302 are located between the parts of the bearing support part 302 adjacent to the end of the flange 301c of the press-fitting part 301 or the flange 302b of the connecting part 302. An insulation distance L (between the end of the flange 301 of the press-fit component 301 and the end of the flange 302b of the bearing support component 302 in FIG. 19) is insulated, which is closer to the distance between the parts of the press-fit component 301 adjacent to the end.

なお、図22のように、圧入部品301のフランジ301c、軸受支持部品302のフランジ302bを軸方向にずらして配置してもよい。すなわち、圧入部品301と軸受支持部品302が同一平面内に配置されないことで絶縁距離Lを離すことができ、絶縁性をより向上し、信頼性を向上することができる。 As shown in FIG. 22, the flange 301 c of the press-fitting part 301 and the flange 302 b of the bearing support part 302 may be shifted in the axial direction. That is, since the press-fitting component 301 and the bearing support component 302 are not arranged in the same plane, the insulation distance L can be separated, and the insulation can be further improved and the reliability can be improved.

本実施の形態は、リング状の回転子のマグネット及びシャフトを樹脂部により一体化しマグネットとシャフトの間が絶縁されること、及び、金属製(導電性を有する)の圧入部品301と軸受支持部品302を樹脂製(絶縁性を有する)の連結部303で一体にしたブラケット300と、モールド固定子の軸受支持部で軸受を支持し軸受と固定子の間が絶縁されることで軸電流を抑制することにより、負荷側21a及び反負荷側転がり軸受21bの電食の発生を抑制するという効果を奏する。
尚、本実施の形態2のブラケット300を電動機に用いた場合は、図23に示すように構成される。
In this embodiment, a magnet and a shaft of a ring-shaped rotor are integrated by a resin portion so that the magnet and the shaft are insulated from each other, and a metal (conductive) press-fitting component 301 and a bearing support component Bracket 300 in which 302 is integrally formed with a resin-made (insulating) connecting portion 303, and the bearing is supported by the bearing support portion of the molded stator, and the shaft current is suppressed by insulating between the bearing and the stator. By doing this, there is an effect of suppressing the occurrence of electrolytic corrosion of the load side 21a and the anti-load side rolling bearing 21b.
In addition, when the bracket 300 of this Embodiment 2 is used for an electric motor, it is comprised as shown in FIG.

次に、本実施の形態2のブラケットの製造方法について説明する。
図24は実施の形態2を示す図で、ブラケット300の製造工程を示す図である。図24に示すように、
(1)圧入部品301及び軸受支持部品302のプレス加工を行う(ステップ1)。
(2)圧入部品301と軸受支持部品302を連結部成形金型(図示せず)の下型端面に当接するようセットする(ステップ2)。
(3)連結部成形金型を型締めし、連結部を成形する(ステップ3)。
Next, a method for manufacturing the bracket according to the second embodiment will be described.
FIG. 24 is a diagram illustrating the second embodiment, and is a diagram illustrating a manufacturing process of the bracket 300. As shown in FIG.
(1) The press-fitting part 301 and the bearing support part 302 are pressed (step 1).
(2) The press-fitting part 301 and the bearing support part 302 are set so as to come into contact with the lower mold end surface of the connecting portion molding die (not shown) (step 2).
(3) The connecting part molding die is clamped to form the connecting part (step 3).

上述の製造工程によれば、圧入部品301と軸受支持部品302を同金型でプレス加工することで、圧入部品301と軸受支持部品302の同軸度を向上することができる。圧入部品301と軸受支持部品302は連結部成形金型により同軸精度よく位置決めされるので、圧入部301bと軸受支持部302aの同軸度を向上したブラケット300を得ることができる。さらに、このブラケット300を電動機に用いることで、固定子と回転子の同軸度を向上することで性能向上、騒音低減が可能となる。また、圧入部品301と軸受支持部302を連結部成形金型にセットし一体に成形しブラケット300とすることで工程を簡略化され、低コスト化が可能となる。   According to the manufacturing process described above, the press-fit part 301 and the bearing support part 302 are pressed with the same mold, so that the coaxiality of the press-fit part 301 and the bearing support part 302 can be improved. Since the press-fit component 301 and the bearing support component 302 are positioned with high coaxial accuracy by the connecting portion molding die, the bracket 300 with improved coaxiality between the press-fit portion 301b and the bearing support portion 302a can be obtained. Further, by using the bracket 300 for an electric motor, it is possible to improve performance and reduce noise by improving the coaxiality of the stator and the rotor. Further, the press-fitting component 301 and the bearing support portion 302 are set in a connecting portion molding die and integrally molded to form the bracket 300, whereby the process is simplified and the cost can be reduced.

また、本実施の形態は、リング状の回転子のマグネット及びシャフトを樹脂部により一体化しマグネットとシャフトの間が絶縁されること、及び、金属製(導電性を有する)の圧入部と軸受支持部を樹脂製(絶縁性を有する)の連結部で一体にしたブラケット300と、モールド固定子の軸受支持部で軸受を支持し軸受と固定子の間が絶縁されることで軸電流を抑制することにより、負荷側21a及び反負荷側転がり軸受21bの電食の発生を抑制することができる。但し、リング状の位置検出用樹脂マグネット25を、シャフト23、リング状の回転子の樹脂マグネット22とともに樹脂部24で一体化するものでも、同様の効果が得られる。   Also, in this embodiment, the magnet and shaft of the ring-shaped rotor are integrated by the resin part to insulate between the magnet and the shaft, and the press-fit part made of metal (having conductivity) and the bearing support The bearing is supported by the bracket 300 in which the parts are integrated with a resin-made (insulating) connecting part, and the bearing support part of the molded stator, and the shaft current is suppressed by insulating the bearing and the stator. Thereby, generation | occurrence | production of the electric corrosion of the load side 21a and the anti-load side rolling bearing 21b can be suppressed. However, the same effect can be obtained by integrating the ring-shaped position detecting resin magnet 25 with the resin portion 24 together with the shaft 23 and the resin magnet 22 of the ring-shaped rotor.

実施の形態3.
図25は実施の形態3を示す図で、空気調和機200の構成図である。
Embodiment 3 FIG.
FIG. 25 is a diagram showing the third embodiment, and is a configuration diagram of the air conditioner 200.

空気調和機200は、室内機210と、室内機210との間を冷媒配管で接続される室外機220とを備える。室内機210には室内機用送風機(図示せず)、室外機220には室外機用送風機230を搭載している。   The air conditioner 200 includes an indoor unit 210 and an outdoor unit 220 that is connected to the indoor unit 210 with a refrigerant pipe. The indoor unit 210 is equipped with an indoor unit blower (not shown), and the outdoor unit 220 is equipped with an outdoor unit blower 230.

そして、室外機用送風機230及び室内機用送風機は、駆動源として前記実施例の電動機100を備える。   The outdoor unit blower 230 and the indoor unit blower include the electric motor 100 according to the embodiment as a drive source.

前記実施例の電動機100を、空気調和機200の主用部品である室外機用送風機230及び室内機用送風機に搭載することにより、空気調和機200の耐久性が向上する。   By mounting the electric motor 100 of the embodiment on the outdoor unit blower 230 and the indoor unit blower that are main components of the air conditioner 200, the durability of the air conditioner 200 is improved.

1 電動機内蔵駆動回路、2 商用交流電源、3 整流回路、4 インバータ主回路、4a 主素子駆動回路、6a〜6f IGBT、7a〜7f SiC−SBD、8 直流電圧検出部、8a 分圧抵抗、8b 分圧抵抗、10 モールド固定子、10a 内周部、11 軸受支持部、20 回転子、21a 負荷側転がり軸受、21a−1 内輪、21a−2 外輪、21a−3 転動体、21b 反負荷側転がり軸受、21b−1 内輪、21b−2 外輪、21b−3 転動体、22 回転子の樹脂マグネット、22a 切欠き、22b 台座、22c 位置決め用突起、23 シャフト、23a ローレット、24 樹脂部、24a 内径押さえ部、24b テーパ部、24c 樹脂注入部、24d 当接面、24e 段差部、24f 嵌合部、24g 中央筒部、24h 反負荷側端面、25 位置検出用樹脂マグネット、25a リブ、25b 段差、30 ブラケット、31 圧入部品、31a フランジ、31b 圧入部、31c フランジ、31d 切欠き、32 軸受支持部品、32a 軸受支持部、32b フランジ、32c 切欠き、33 連結部、33a 段差面、33b 突起、33c 突起、40 固定子、41 固定子鉄心、42 コイル、43 絶縁部、44 端子、44a 電源端子、44b 中性点端子、45 基板、46 リード線口出し部品、47 リード線、48 角柱、49a IC、49b ホールIC、50 モールド樹脂、100 電動機、110 回転子位置検出部、120 出力電圧演算部、130 PWM信号生成部、200 空気調和機、210 室内機、220 室外機、230 室外機用送風機、
300 ブラケット、301 圧入部品、301a フランジ、301b 圧入部、301c フランジ、301d 切欠き、302 軸受支持部品、302a 軸受支持部、302b フランジ、302c 切欠き、303 連結部、303a 連結部、303b ランナ部。
DESCRIPTION OF SYMBOLS 1 Motor built-in drive circuit, 2 Commercial AC power supply, 3 Rectifier circuit, 4 Inverter main circuit, 4a Main element drive circuit, 6a-6f IGBT, 7a-7f SiC-SBD, 8 DC voltage detection part, 8a Voltage dividing resistor, 8b Voltage dividing resistor, 10 Mold stator, 10a Inner circumference, 11 Bearing support, 20 Rotor, 21a Load side rolling bearing, 21a-1 Inner ring, 21a-2 Outer ring, 21a-3 Rolling element, 21b Anti-load side rolling Bearing, 21b-1 Inner ring, 21b-2 Outer ring, 21b-3 Rolling element, 22 Rotor resin magnet, 22a Notch, 22b Pedestal, 22c Positioning protrusion, 23 Shaft, 23a Knurl, 24 Resin part, 24a Inner diameter retainer Part, 24b taper part, 24c resin injection part, 24d contact surface, 24e step part, 24f fitting part, 24g center tube part, 24h anti-load side end Surface, 25 Position detection resin magnet, 25a Rib, 25b Step, 30 Bracket, 31 Press-fit part, 31a Flange, 31b Press-fit part, 31c Flange, 31d Notch, 32 Bearing support part, 32a Bearing support part, 32b Flange, 32c Notch, 33 connecting part, 33a step surface, 33b protrusion, 33c protrusion, 40 stator, 41 stator core, 42 coil, 43 insulation part, 44 terminal, 44a power supply terminal, 44b neutral point terminal, 45 substrate, 46 Lead wire lead part, 47 lead wire, 48 prism, 49a IC, 49b Hall IC, 50 mold resin, 100 electric motor, 110 rotor position detector, 120 output voltage calculator, 130 PWM signal generator, 200 air conditioner, 210 indoor unit, 220 outdoor unit, 230 blower for outdoor unit,
300 Bracket, 301 Press-in part, 301a Flange, 301b Press-in part, 301c Flange, 301d Notch, 302 Bearing support part, 302a Bearing support part, 302b Flange, 302c Notch, 303 Connecting part, 303a Connecting part, 303b Runner part

Claims (10)

複数のティースから構成される鉄心に巻線してコイルを形成した固定子と、
シャフトの外周に配置したマグネットとの間を樹脂部により一体化し、前記シャフトの軸方向両端に夫々転がり軸受が設けられた回転子と、
前記回転子の一方の転がり軸受を支持するブラケットとを備え、
前記ブラケットは、前記固定子に圧入される金属製の圧入部品と、前記転がり軸受を支持する金属製の軸受支持部品と、前記軸受支持部品と前記圧入部品とを連結する絶縁性を有する連結部とからなることを特徴とする電動機。
A stator that is wound around an iron core composed of a plurality of teeth to form a coil;
A rotor that is integrated with a resin portion between the magnets arranged on the outer periphery of the shaft and provided with rolling bearings at both axial ends of the shaft;
A bracket for supporting one rolling bearing of the rotor,
The bracket includes a metal press-fitting part that is press-fitted into the stator, a metal bearing support part that supports the rolling bearing, and an insulative connecting part that connects the bearing support part and the press-fitting part. An electric motor characterized by comprising
前記連結部は樹脂からなることを特徴とする電動機。   The electric motor characterized in that the connecting portion is made of resin. 前記ブラケットは、前記金属製の圧入部品と前記金属製の軸受支持部品とが、リング状の部品として構成された前記連結部に圧入されて一体になることを特徴とする請求項1または2記載の電動機。   3. The bracket according to claim 1, wherein the metal press-fitting part and the metal bearing support part are press-fitted into the connecting portion configured as a ring-shaped part. Electric motor. 前記ブラケットは、前記金属製の圧入部品と前記金属製の軸受支持部品との間に樹脂を注入して形成された連結部を介して一体に成形されたことを特徴とする請求項1または2記載の電動機。   3. The bracket according to claim 1, wherein the bracket is integrally formed through a connecting portion formed by injecting a resin between the metal press-fitting component and the metal bearing support component. The electric motor described. 前記軸受支持部品と前記圧入部とを略同一平面に配置したことを特徴とする請求項1乃至4記載の電動機。 5. The electric motor according to claim 1, wherein the bearing support component and the press-fitting portion are arranged on substantially the same plane. 前記軸受支持部品と前記圧入部品とを段違いに配置したことを特徴とする請求項1乃至4記載の電動機。 5. The electric motor according to claim 1, wherein the bearing support component and the press-fitting component are arranged in steps. 前記回転子の磁極を位置検出素子により検出する位置検出回路と、
前記回転子の回転速度を指令する速度指令信号、前記位置検出回路からの位置検出信号に基づいて、インバータ駆動するためのPWM(Pulse Width Modulation)信号を生成する波形生成回路と、
前記波形生成回路の出力により駆動信号を生成するプリドライバ回路と、
トランジスタとダイオードとを並列接続し、これらを直列接続したアームを有するパワー回路とから構成されるインバータ方式の駆動回路を備えることを特徴とする請求項1乃至6記載の電動機。
A position detection circuit for detecting a magnetic pole of the rotor by a position detection element;
A waveform generation circuit for generating a PWM (Pulse Width Modulation) signal for driving the inverter based on a speed command signal for instructing the rotation speed of the rotor and a position detection signal from the position detection circuit;
A pre-driver circuit that generates a drive signal from the output of the waveform generation circuit;
7. The electric motor according to claim 1, further comprising an inverter type drive circuit comprising a power circuit having an arm in which a transistor and a diode are connected in parallel and these are connected in series.
請求項5乃至7記載の電動機を、送風機用電動機に用いることを特徴とする空気調和機。   8. An air conditioner using the electric motor according to claim 5 as an electric motor for a blower. 請求項3に記載の電動機の製造方法であって、
前記ブラケットは、前記金属製の圧入部と、前記金属製の軸受支持部を、前記絶縁性を有する連結部を圧入して一体としたことを特徴とする電動機の製造方法。
It is a manufacturing method of the electric motor according to claim 3,
The method of manufacturing an electric motor according to claim 1, wherein the bracket is formed by integrally pressing the metal press-fitting portion and the metal bearing support portion with the connecting portion having the insulating property.
請求項4に記載の電動機の製造方法であって、
前記ブラケットは、前記金属製の圧入部と、前記金属製の軸受支持部を、前記絶縁性を有する樹脂を注入して連結部として一体に成型したことを特徴とする電動機の製造方法。
It is a manufacturing method of the electric motor according to claim 4,
The method of manufacturing an electric motor according to claim 1, wherein the bracket is formed by integrally molding the metal press-fit portion and the metal bearing support portion as a connecting portion by injecting the resin having the insulating property.
JP2012181291A 2012-08-20 2012-08-20 Electric motor, electric motor manufacturing method, and air conditioner Expired - Fee Related JP5677382B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181291A JP5677382B2 (en) 2012-08-20 2012-08-20 Electric motor, electric motor manufacturing method, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181291A JP5677382B2 (en) 2012-08-20 2012-08-20 Electric motor, electric motor manufacturing method, and air conditioner

Publications (2)

Publication Number Publication Date
JP2014039420A true JP2014039420A (en) 2014-02-27
JP5677382B2 JP5677382B2 (en) 2015-02-25

Family

ID=50287120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181291A Expired - Fee Related JP5677382B2 (en) 2012-08-20 2012-08-20 Electric motor, electric motor manufacturing method, and air conditioner

Country Status (1)

Country Link
JP (1) JP5677382B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189301A1 (en) * 2018-03-29 2019-10-03 日本電産株式会社 Motor
CN112366880A (en) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 Motor and electrical equipment with same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139049A (en) * 1979-04-18 1980-10-30 Hitachi Ltd Device for preventing shaft current of rotary machine
JPH04156246A (en) * 1990-10-18 1992-05-28 Toshiba Corp Rotary electric machine having shaft current stopping insulation
JP2000245100A (en) * 1999-02-24 2000-09-08 Denyo Co Ltd Bearing device for electric rotating machine
JP2005027383A (en) * 2003-06-30 2005-01-27 Mitsuba Corp Bracket in rotary electric machine
JP2012151981A (en) * 2011-01-18 2012-08-09 Mitsubishi Electric Corp Mold motor and air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55139049A (en) * 1979-04-18 1980-10-30 Hitachi Ltd Device for preventing shaft current of rotary machine
JPH04156246A (en) * 1990-10-18 1992-05-28 Toshiba Corp Rotary electric machine having shaft current stopping insulation
JP2000245100A (en) * 1999-02-24 2000-09-08 Denyo Co Ltd Bearing device for electric rotating machine
JP2005027383A (en) * 2003-06-30 2005-01-27 Mitsuba Corp Bracket in rotary electric machine
JP2012151981A (en) * 2011-01-18 2012-08-09 Mitsubishi Electric Corp Mold motor and air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189301A1 (en) * 2018-03-29 2019-10-03 日本電産株式会社 Motor
JPWO2019189301A1 (en) * 2018-03-29 2021-03-18 日本電産株式会社 motor
JP7275437B2 (en) 2018-03-29 2023-05-18 ニデック株式会社 motor
CN112366880A (en) * 2019-07-26 2021-02-12 广东威灵电机制造有限公司 Motor and electrical equipment with same
EP3961873A4 (en) * 2019-07-26 2022-06-15 Guangdong Welling Motor Manufacturing Co., Ltd. Motor and electrical equipment having same
CN112366880B (en) * 2019-07-26 2023-11-21 广东威灵电机制造有限公司 Motor and electrical equipment with same

Also Published As

Publication number Publication date
JP5677382B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
US9929614B2 (en) Motor with integrated slot liner and bobbin with guides for conductor coils
JP5600610B2 (en) Motor rotor, mold motor, air conditioner, and mold motor manufacturing method
EP2667491B1 (en) Molded motor and air conditioner using it
JP4879249B2 (en) Electric motor and air conditioner
JP5274539B2 (en) Electric motor and blower
CN117526607A (en) Rotor, motor, blower, and air conditioner
WO2011111187A1 (en) Electric motor rotor, electric motor, air conditioner, and production method for electric motor rotor
JP5230694B2 (en) Motor rotor, motor and air conditioner
JP5225329B2 (en) Motor rotor, motor and air conditioner
JP2015177649A (en) Rotor of electromotor, electromotor, air conditioner, and manufacturing method of rotor of electromotor
JP5634438B2 (en) Electric motor rotor, electric motor, air conditioner, and method of manufacturing electric motor rotor
JP5005063B2 (en) Electric motor rotor, electric motor, method of manufacturing electric motor rotor, and air conditioner
JP5677382B2 (en) Electric motor, electric motor manufacturing method, and air conditioner
JP5005064B2 (en) Electric motor rotor, electric motor, method of manufacturing electric motor rotor, and air conditioner
JP2012060772A (en) Rotor of motor, motor, air handling unit, and manufacturing method of rotor of motor
JP5042246B2 (en) Electric motor rotor, electric motor, method of manufacturing electric motor rotor, and air conditioner
JP5042299B2 (en) Electric motor, electric motor manufacturing method, and electric device
JP2013233035A (en) Motor rotator, motor, air conditioner, and manufacturing method for motor rotator
WO2011111188A1 (en) Electric motor rotor, electric motor, air conditioner, and production method for electric motor rotor
JP2014187754A (en) Rotor of motor, motor, air conditioner, and method of manufacturing rotor of motor
JP2014230361A (en) Rotor for motor, motor, air conditioner, and manufacturing method of rotor for motor
JP5121948B2 (en) Molded motor and air conditioner
JP2013141405A (en) Electric motor and air conditioner
JP6087315B2 (en) Electric motor rotor, electric motor, air conditioner, and method of manufacturing electric motor rotor
JP5121949B2 (en) Molded motor and air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141226

R150 Certificate of patent or registration of utility model

Ref document number: 5677382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees