JP2014037600A - Method for producing clean steel - Google Patents

Method for producing clean steel Download PDF

Info

Publication number
JP2014037600A
JP2014037600A JP2012181627A JP2012181627A JP2014037600A JP 2014037600 A JP2014037600 A JP 2014037600A JP 2012181627 A JP2012181627 A JP 2012181627A JP 2012181627 A JP2012181627 A JP 2012181627A JP 2014037600 A JP2014037600 A JP 2014037600A
Authority
JP
Japan
Prior art keywords
molten steel
sample
concentration
total oxygen
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012181627A
Other languages
Japanese (ja)
Other versions
JP5464242B2 (en
Inventor
Atsushi Matsumoto
篤 松本
Masahiro Arai
正浩 荒井
Hirobumi Yasuda
博文 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012181627A priority Critical patent/JP5464242B2/en
Publication of JP2014037600A publication Critical patent/JP2014037600A/en
Application granted granted Critical
Publication of JP5464242B2 publication Critical patent/JP5464242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a total oxygen concentration after a RH degassing treatment when producing a clean steel.SOLUTION: A clean steel containing 0.03 to 0.30 mass% of C is produced by using molten steel circulation type vacuum degassing equipment in such a way that molten steel circulation time from the time point of collection of a molten steel sample is controlled to satisfy (1) expression:t-0.5≤t≤t+0.5 and (2) expression:t=-(1/k)×In{(T.[O]-10)/(T.[O]-10)} based on an analysis value of a total oxygen concentration included in the molten steel sample T.[O], while circulating the molten steel at a circulation gas flow rate of 1.0 to 3.0 Nm/min., where t: molten steel circulation time from the time point of sample collection (min.), k:deoxidation rate constant:0.15 (1/min.), T.[O]: a targeted total oxygen concentration after a PH treatment (mass ppm), T.[O]:an analysis value of the total oxygen concentration in the sample (mass ppm).

Description

本発明は、溶鋼環流型真空脱ガス設備を用いて、Cを0.03〜0.30質量%含有すると共にAlを含有する清浄鋼を効率的に製造する方法に関する。   The present invention relates to a method for efficiently producing clean steel containing Al and containing 0.03 to 0.30% by mass of C using a molten steel reflux type vacuum degassing facility.

近年、鉄鋼材料の高品質化へのニーズの高まりから、P,Sなどの不純物元素の低減に加えて酸化物系介在物を極力低減することが望まれている。これら酸化物系介在物は、溶鋼環流型真空脱ガス処理(RH脱ガス処理)により低減されるため、溶鋼環流型真空脱ガス設備(RH脱ガス設備)を用いた介在物の低減方法が多数提案されている。   In recent years, it has been desired to reduce oxide inclusions as much as possible in addition to the reduction of impurity elements such as P and S due to increasing needs for high quality steel materials. Since these oxide inclusions are reduced by molten steel reflux type vacuum degassing treatment (RH degassing treatment), there are many methods for reducing inclusions using molten steel reflux type vacuum degassing equipment (RH degassing equipment). Proposed.

特許文献1には、製鋼操業において精錬途中の溶鋼から凝固塊を採取し、高精度で迅速に全酸素(T.[O])濃度を分析する方法が開示されている。   Patent Document 1 discloses a method of collecting a solidified ingot from molten steel that is being refined in steelmaking operations and quickly analyzing the total oxygen (T. [O]) concentration with high accuracy.

特許文献2には、転炉で未脱酸出鋼した溶鋼を、RH脱ガス設備を用いて脱炭した後、Alで脱酸を行い、そのAl脱酸直後の溶鋼サンプルの全酸素濃度を特許文献1により開示された方法により分析し、この全酸素濃度に基づいて溶鋼環流時間を適正化する、C濃度が0.0030質量%以下の極低炭素鋼の製造方法が開示されている。   In Patent Document 2, after decarburizing the molten steel that has not been deoxidized in the converter using RH degassing equipment, deoxidation is performed with Al, and the total oxygen concentration of the molten steel sample immediately after the Al deoxidation is calculated. A method for producing an ultra-low carbon steel having a C concentration of 0.0030% by mass or less, which is analyzed by the method disclosed in Patent Document 1 and optimizes the molten steel reflux time based on the total oxygen concentration, is disclosed.

特許文献3には、環流用Arガスにより未脱酸状態の溶鋼を真空槽内へ環流しつつ、真空槽内でAlを添加して脱酸し、真空槽内への環流を継続した後に処理を終えるRH脱ガス設備での精錬の際に、Al添加直前の溶鋼中溶解酸素量と、上昇側浸漬管に吹き込まれる環流用Arガス量との関係に基づいてAl添加後の処理時間を調整するRH脱ガス設備を用いた清浄鋼の溶製方法が開示されている。   In Patent Document 3, the molten steel in an undeoxidized state is circulated into the vacuum chamber by Ar gas for recirculation, and deoxidation is performed by adding Al in the vacuum chamber, and after the recirculation into the vacuum chamber is continued, the treatment is performed. During refining at the RH degassing facility, the treatment time after Al addition is adjusted based on the relationship between the amount of dissolved oxygen in the molten steel immediately before Al addition and the amount of Ar gas for recirculation blown into the rising side dip pipe A method for melting clean steel using an RH degassing facility is disclosed.

特許文献2により開示された方法は、極低炭素鋼の製造に、特許文献1により開示された分析方法を適用したものであり、RH脱ガス設備を用いて溶鋼中のC濃度を0.0050質量%以下となるまで真空脱炭を行った後にAl脱酸を行う場合の、Al脱酸後のRH最適環流時間の決定方法である。したがって、RHでの脱炭処理を必須とする極低炭素鋼の製造に適するように諸要件が定められており、RHでの脱炭処理を必要とせず鋼中全酸素濃度の管理が重要な、C濃度が0.03〜0.30質量%の一般的な清浄鋼の製造に適用することはできない。   The method disclosed in Patent Document 2 applies the analysis method disclosed in Patent Document 1 to the production of ultra-low carbon steel, and the C concentration in the molten steel is set to 0.0050 using an RH degassing facility. This is a method of determining the RH optimum reflux time after Al deoxidation in the case of performing Al deoxidation after performing vacuum decarburization until the mass% or less. Therefore, various requirements are established so as to be suitable for the production of ultra-low carbon steel that requires decarburization treatment with RH, and management of the total oxygen concentration in the steel is important without requiring decarburization treatment with RH. , And cannot be applied to the production of a general clean steel having a C concentration of 0.03 to 0.30 mass%.

特許文献3により開示された方法は、RHでAl脱酸時に生成される脱酸生成物、すなわちAl系介在物の量を溶解酸素量から推定するものであり、溶鋼中の全酸素量を直接的に分析するものではないため、RH処理後の全酸素濃度のばらつきが大きくなると推測される。また、RHでは昇熱を目的としてAl脱酸後に溶鋼に酸素などの酸化性ガスを吹き付ける方法が多く用いられるが、この方法では昇熱によって生成されるAl量が考慮されないため、RHでAlを添加し送酸を行った後の最適環流時間を決定することができない。 The method disclosed in Patent Document 3 estimates the amount of deoxidation product produced during Al deoxidation with RH, that is, the amount of Al 2 O 3 inclusions from the amount of dissolved oxygen. Since the amount is not directly analyzed, it is estimated that the variation in the total oxygen concentration after the RH treatment increases. In RH, a method of spraying an oxidizing gas such as oxygen to molten steel after Al deoxidation for the purpose of heating is often used. However, in this method, the amount of Al 2 O 3 generated by heating is not taken into account. Thus, it is impossible to determine the optimum reflux time after the addition of Al and the acid transfer.

特開2010−261743号公報JP 2010-261743 A 特開2010―280934号公報JP 2010-280934 A 特開平11−92821号公報Japanese Patent Laid-Open No. 11-92821

介在物の評価方法の一つとして、溶鋼中全酸素(T.[O])濃度が挙げられる。RH処理では、昇熱を目的として溶鋼にAlなどを添加し、酸素などの酸化性ガスを吹き付けることが多い。このようなRH処理において、全酸素(T.[O])濃度は、この酸化性ガスの吹き付け終了直後に最も高い値となり、その後介在物の浮上分離を目的とした溶鋼環流時間の経過により次第に減少する。   One method for evaluating inclusions is the total oxygen (T. [O]) concentration in molten steel. In RH treatment, Al or the like is often added to molten steel for the purpose of increasing heat and an oxidizing gas such as oxygen is sprayed. In such RH treatment, the total oxygen (T. [O]) concentration becomes the highest value immediately after the end of the blowing of the oxidizing gas, and then gradually with the passage of the molten steel reflux time for the purpose of flotation separation of inclusions. Decrease.

図1は、RH処理での送酸量(Nm/t)と、RH処理での送酸後の全酸素(T.[O];ppm)濃度との関係の一例を示すグラフである。 1 is a graph showing an example of the relationship between the amount of acid delivered (Nm 3 / t) in RH treatment and the total oxygen (T. [O]; ppm) concentration after acid delivery in RH treatment.

アルミキルド鋼の製造を目的とするRH処理において送酸終了後の溶鋼のサンプルを採取し、オフラインで溶鋼の全酸素(T.[O])濃度を調査したところ、RHで送酸をしなかった処理ではRH処理開始前の溶鋼中全酸素(T.[O])濃度が25〜30ppm程度であったのに対し、RHで送酸をした処理での送酸完了直後(60秒以内)の溶鋼中全酸素(T.[O])濃度は、図1にグラフで示すように、30〜70ppmとばらつきがあり、しかも、送酸量が多いほど全酸素(T.[O])濃度が高くなるといった単純な関係ではないことが確認された。したがって、送酸完了後の全酸素(T.[O])濃度を把握しないままその溶鋼環流時間を一定とした従来の方法では、過剰な環流による操業ロスを発生させることがあった。   In the RH treatment for the production of aluminum killed steel, a sample of molten steel after completion of acid feeding was collected and the total oxygen (T. [O]) concentration of the molten steel was investigated offline. In the treatment, the total oxygen (T. [O]) concentration in the molten steel before the start of the RH treatment was about 25 to 30 ppm, whereas immediately after the completion of the acid feed in the treatment of feeding with RH (within 60 seconds). As shown in the graph of FIG. 1, the total oxygen (T. [O]) concentration in the molten steel varies from 30 to 70 ppm, and the total oxygen (T. [O]) concentration increases as the amount of acid delivered increases. It was confirmed that it was not a simple relationship such as becoming higher. Therefore, in the conventional method in which the molten steel recirculation time is kept constant without grasping the total oxygen (T. [O]) concentration after the completion of the acid transfer, an operation loss due to excessive recirculation may occur.

本発明の目的は、Cを0.03〜0.30質量%含有すると共にAlを含有する溶鋼のRH処理中に、全酸素(T.[O])濃度が最も高くなると考えられる送酸完了直後の全酸素(T.[O])濃度を迅速に分析し、この分析値に基づいて溶鋼環流時間を最適に調整することができる、効率的な清浄鋼の製造方法を提供することである。   The object of the present invention is to complete the oxygen delivery, which is considered to have the highest total oxygen (T. [O]) concentration during the RH treatment of molten steel containing 0.03 to 0.30% by mass of C and containing Al. To provide an efficient method for producing clean steel, in which the total oxygen (T. [O]) concentration immediately after analysis can be quickly analyzed and the molten steel reflux time can be optimally adjusted based on the analysis value. .

本発明を実施することによって、Cを0.03〜0.30質量%含有すると共にAlを含有する清浄鋼の製造時における溶鋼環流時間の最適化が可能になり、過剰な環流時間を抑制しRH操業の合理化を達成することができる。   By carrying out the present invention, it becomes possible to optimize the molten steel reflux time during the production of clean steel containing 0.03 to 0.30% by mass of C and containing Al, and suppressing excessive reflux time. Rationalization of RH operation can be achieved.

Alを含有する清浄鋼の製造では、RH脱ガス処理においてAl系介在物を減少させる対策が採られており、特に、溶鋼にAlを添加して酸素を吹き付ける昇熱処理を施した場合には、酸素吹き付け完了後のAl系介在物減少対策が極めて重要になる。 In the production of clean steel containing Al, measures are taken to reduce Al 2 O 3 inclusions in the RH degassing treatment, especially when a heat treatment is performed by adding Al to the molten steel and blowing oxygen. For this, measures for reducing Al 2 O 3 inclusions after the completion of the oxygen spraying are extremely important.

そのAl系介在物減少対策としては、一般に酸素吹き付け完了後に溶鋼還流時間を確保し、介在物を浮上分離させる方法が採用されており、Al系介在物の浮上分離効果は溶鋼中のAl系介在物量に依存するため、Al系介在物量が多いほど溶鋼還流時間を長くする必要があるという一般的傾向は知られていた。しかし、その還流時間を最適にするための、RH処理中の溶鋼中全酸素(T.[O])濃度を、溶鋼の還流を終える前に知ろうとしてもその術がなかった。 The Part Al 2 O 3 inclusions decrease countermeasure, generally oxygen blowing to ensure molten steel reflux time after completion, inclusions are adopted a method of flotation and flotation effect of Al 2 O 3 based inclusions since it depends on the Al 2 O 3 based inclusions amount in the molten steel, general trend that it is necessary to increase the Al 2 O 3 based inclusions amount greater the molten steel reflux time was known. However, there was no way to know the total oxygen (T. [O]) concentration in the molten steel during the RH treatment before the reflux of the molten steel was completed in order to optimize the reflux time.

この問題を解決するためには、Alを添加して酸素を吹き付けた後の溶鋼からサンプルを採取し、その全酸素(T.[O])濃度を分析して、溶鋼の還流を終える前に適切な還流時間を決定し、決定した環流時間で環流を行う必要がある。   In order to solve this problem, a sample is taken from the molten steel after Al is added and oxygen is blown, and the total oxygen (T. [O]) concentration is analyzed, and before the reflux of the molten steel is finished. It is necessary to determine an appropriate reflux time and perform the reflux at the determined reflux time.

この必要に対して、溶鋼中全酸素濃度(T.[O])を短時間でかつ精度よく分析する方法として、特許文献1により開示された方法に準じて、以下に示すような分析方法を検討し、確立した。   In response to this need, as a method for analyzing the total oxygen concentration (T. [O]) in molten steel in a short time and with high accuracy, an analysis method as shown below is performed in accordance with the method disclosed in Patent Document 1. Considered and established.

(A)鉄鋼試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法において、機械加工したままの試料に対して、予め真空アークプラズマ処理により試料表面の酸化皮膜を除去、清浄化する前処理を施した後、大気と接触させることなく、直接黒鉛るつぼに投入する。   (A) In a method in which a steel sample is put in a graphite crucible and heated and melted in an inert gas, and the oxygen concentration in the sample is measured from the infrared absorption of one or both of generated carbon monoxide and carbon dioxide. The pre-machined sample is pretreated by removing and cleaning the oxide film on the sample surface by vacuum arc plasma treatment in advance, and then directly put into a graphite crucible without contacting with the atmosphere.

(B)溶鋼から採取した鋼塊を切断して作製したスライス片に対して、プレスにより打ち抜いた小片を試料として用い、予め空焼きして、待機させた黒鉛るつぼに前処理を施した試料を投入する。   (B) For a slice piece produced by cutting a steel ingot taken from molten steel, a small piece punched out by a press was used as a sample, pre-baked and pre-treated on a graphite crucible that had been put on standby. throw into.

(C)真空アークプラズマ処理により試料表面を清浄化する試料前処理装置と、不活性ガス中加熱融解−赤外線吸収法を動作原理とする酸素分析装置とから構成され、それぞれを、鉛直上下に配置するとともに真空または不活性ガスで内部を置換した連結管で連結し、前処理済み試料を試料前処理装置から連結管を介して落下させて酸素分析装置へ供給する。   (C) Consists of a sample pretreatment device that cleans the surface of the sample by vacuum arc plasma treatment, and an oxygen analyzer that operates in an inert gas by heating-melting-infrared absorption method. At the same time, they are connected by a connecting tube whose inside is replaced with vacuum or inert gas, and the pretreated sample is dropped from the sample pretreatment device through the connecting tube and supplied to the oxygen analyzer.

この分析方法をオンラインで適用することにより、送酸完了直後の全酸素(T.[O])濃度を溶鋼還流完了までに把握し、最適な還流時間を決定することが可能になる。   By applying this analysis method online, it is possible to grasp the total oxygen (T. [O]) concentration immediately after the completion of the acid delivery until the molten steel reflux is completed, and to determine the optimum reflux time.

具体的には、次のような分析値の精度および分析に要する時間で全酸素濃度(T.[O]濃度)を分析することが可能となる。   Specifically, it becomes possible to analyze the total oxygen concentration (T. [O] concentration) with the accuracy of the analysis value and the time required for the analysis as follows.

(i)分析値の精度
酸素含有量50ppm以下の鋼に対して、分析値のばらつきは3ppm以内に収まること。ただし、このばらつきの値は標準偏差の3倍で定められているため、標準偏差は±1ppmに収まることと換言できる。
(I) Analytical value accuracy For steel with an oxygen content of 50 ppm or less, the analytical value variation must be within 3 ppm. However, since the value of this variation is determined by three times the standard deviation, it can be said that the standard deviation is within ± 1 ppm.

(ii)分析に要する時間
鋼塊試料を受け取ってから、試料加工および清浄化前処理を経て、分析により酸素濃度が判明するまでの時間(以下、分析所要時間と称する)は4分間以内であること。より望ましくは3分間以内であること。
(Ii) Time required for analysis The time from receipt of a steel ingot sample to sample analysis and pre-cleaning treatment until the oxygen concentration is determined by analysis (hereinafter referred to as analysis required time) is within 4 minutes. about. More preferably within 3 minutes.

以下に、図面を用いて、この分析方法を詳しく説明する。
図2は、本発明により開示された分析方法を実施するための鉄鋼中酸素分析装置を、模式的に示す説明図である。図2における各符号をまとめて示すと、1:前処理装置、
2:酸素分析装置、3:処理前試料投入口、4:隔離バルブ、5:前処理済試料投入口、6:架台、7:リフター、8:連結管、9:前処理済試料途中取出口である。
Below, this analysis method is demonstrated in detail using drawing.
FIG. 2 is an explanatory view schematically showing an oxygen analyzer in steel for carrying out the analysis method disclosed by the present invention. The symbols in FIG. 2 are collectively shown as follows: 1: Pre-processing device,
2: oxygen analyzer, 3: pre-treatment sample inlet, 4: isolation valve, 5: pre-treated sample inlet, 6: mount, 7: lifter, 8: connecting pipe, 9: pre-treatment sample outlet It is.

本発明に求められる短時間かつ高精度の分析を実現するために、組み合わせる要素技術の内、迅速かつ再現性の高い試料前処理方法として、真空アークプラズマ処理を選択する。例えば、特開2002−328125号公報により開示された金属中成分分析用試料の調整方法及び装置を適用すればよい。   In order to realize a short time and high accuracy analysis required for the present invention, vacuum arc plasma processing is selected as a sample pretreatment method that is quick and highly reproducible among the combined elemental technologies. For example, the adjustment method and apparatus for the metal component analysis sample disclosed in Japanese Patent Application Laid-Open No. 2002-328125 may be applied.

図2において、予め真空に保った前処理装置1内に、隔離バルブ4,4を介して、真空度を殆ど変化させることなく、処理前試料投入口3から試料を挿入する。その後、前処理装置1において真空アークプラズマ処理により、試料表面の酸化皮膜を数秒間で除去する。ここで、試料表面の酸化皮膜を確実、正確かつ再現性良く除去し、精錬操業上必要とされる分析精度を確保するため、下記の条件でアークプラズマ処理することが望ましい。   In FIG. 2, a sample is inserted into the pretreatment apparatus 1 previously maintained in a vacuum through the isolation valves 4 and 4 from the pretreatment sample introduction port 3 with almost no change in the degree of vacuum. Thereafter, the oxide film on the sample surface is removed in a few seconds by vacuum arc plasma treatment in the pretreatment apparatus 1. Here, in order to remove the oxide film on the sample surface reliably, accurately and with good reproducibility, and to ensure the analytical accuracy required for the refining operation, it is desirable to perform the arc plasma treatment under the following conditions.

(1)真空度:10Pa以上100Pa以下(酸素分圧2〜20Torr)、より望ましくは、20Pa以上50Pa以下とする。真空アークプラズマ処理による試料表面酸化皮膜除去反応は真空度が高いほど促進されるが、真空度が100Paを超えると、試料温度上昇に伴う再酸化反応が顕著になるため望ましくない。一方、真空度が10Paより低いと、酸化皮膜除去反応自体が進行しなくなるため、望ましくない。したがって、最適な真空度(あるいは酸素分圧)が存在する。なお、処理時に真空度が一定値に保持されるよう、真空排気バルブとガス導入バルブの開閉を制御する圧力制御機構を有することがなお望ましい。   (1) Degree of vacuum: 10 Pa to 100 Pa (oxygen partial pressure 2 to 20 Torr), more preferably 20 Pa to 50 Pa. The sample surface oxide film removal reaction by the vacuum arc plasma treatment is promoted as the degree of vacuum increases. However, when the degree of vacuum exceeds 100 Pa, the re-oxidation reaction accompanying the rise in the sample temperature becomes remarkable, which is not desirable. On the other hand, when the degree of vacuum is lower than 10 Pa, the oxide film removal reaction itself does not proceed, which is not desirable. Therefore, an optimum degree of vacuum (or oxygen partial pressure) exists. It is further desirable to have a pressure control mechanism that controls the opening and closing of the vacuum exhaust valve and the gas introduction valve so that the degree of vacuum is maintained at a constant value during processing.

(2)処理時間:0.2秒間以上0.6秒間以下とする。より望ましくは0.2秒間以上0.5秒間以下とする。   (2) Processing time: 0.2 second or more and 0.6 second or less. More desirably, it is set to 0.2 seconds or more and 0.5 seconds or less.

(3)処理回数:1回とする。
(4)アークプラズマ出力電流:20A以上40A以下、より望ましくは30Aとする。
(3) Number of processing: 1 time.
(4) Arc plasma output current: 20A or more and 40A or less, more preferably 30A.

処理後の試料は、大気と接触させることなく、分析装置に配置した前処理済試料投入口5を通じて、最終的に酸素分析装置2内の黒鉛るつぼに投入される。前処理装置1と酸素分析装置2の前処理済試料投入口5は、真空または不活性ガスで内部を置換された連結管8により連結される。不活性ガス種は、空気との比重差を考慮して、連結管8内を確実にガス置換して、処理後の試料の再酸化を防止する観点、さらには経済的な観点から、Arが望ましい。   The processed sample is finally put into the graphite crucible in the oxygen analyzer 2 through the pretreated sample inlet 5 arranged in the analyzer without being brought into contact with the atmosphere. The pretreated sample inlet 5 of the pretreatment apparatus 1 and the oxygen analyzer 2 is connected by a connecting pipe 8 whose inside is replaced with a vacuum or an inert gas. In view of the difference in specific gravity with air, the inert gas species is gas-replaced reliably in the connecting pipe 8 to prevent reoxidation of the sample after processing, and from an economical viewpoint, Ar is desirable.

特開2002−328125号公報により開示された装置では、前処理済試料は払い出された後、別置きの酸素分析装置に移送される。しかし、本発明では迅速性が要求されることから、図2に例示するように、前処理装置1と酸素分析装置2をそれぞれ鉛直上下に配置し、試料を、連結管8内を自由落下させて移送するように構成される。   In the apparatus disclosed in Japanese Patent Laid-Open No. 2002-328125, the pretreated sample is discharged and then transferred to a separate oxygen analyzer. However, since rapidity is required in the present invention, as shown in FIG. 2, the pretreatment device 1 and the oxygen analyzer 2 are vertically arranged respectively, and the sample is allowed to fall freely in the connecting pipe 8. Configured to be transported.

図2に示される装置では、酸素分析装置2が床面に近い位置に配置され、酸素分析装置2の内部の清掃がガス中の不純物吸着剤の交換等、装置の維持管理作業に支障をきたす。そこで、架台6に組み込まれた装置全体をリフター7に載せて昇降可能とし、この作業の際には装置全体を上げて、作業性を確保することが望ましい。このリフター7の駆動方式は特に問わないが、装置全体では相当な重量であることから、操作性の観点で、自動油圧式が望ましい。また、リフター7の可動部は伸縮可能な材料で覆い、作業者が挟まれることのないように安全性に配慮した構造を有することが望ましい。   In the apparatus shown in FIG. 2, the oxygen analyzer 2 is arranged at a position close to the floor surface, and cleaning inside the oxygen analyzer 2 hinders the maintenance work of the apparatus such as replacement of the impurity adsorbent in the gas. . Therefore, it is desirable that the entire apparatus incorporated in the gantry 6 is placed on the lifter 7 so that it can be raised and lowered, and in this operation, the entire apparatus is raised to ensure workability. The drive system of the lifter 7 is not particularly limited. However, since the weight of the entire apparatus is considerable, an automatic hydraulic system is desirable from the viewpoint of operability. Further, it is desirable that the movable part of the lifter 7 is covered with a stretchable material and has a structure in consideration of safety so that an operator is not caught.

さらに、連結した酸素分析装置2が故障して使えない場合や、分析待ちの前処理済試料を別の酸素分析装置で分析する場合に備えて、前処理装置1と酸素分析装置2の連結管8の途中に前処理済試料の取出口9を設けることが望ましい。   Further, in case the connected oxygen analyzer 2 cannot be used due to a failure or when a preprocessed sample waiting for analysis is analyzed by another oxygen analyzer, the connecting pipe between the pretreatment device 1 and the oxygen analyzer 2 It is desirable to provide a pre-processed sample outlet 9 in the middle of 8.

本発明に係る分析方法を実現するために組み合わせる要素技術の内、溶鋼から採取した鋼塊より簡便かつ迅速に分析試料を得る方法として、溶鋼から採取した鋼塊を切断して作製した高さ(厚さ)が2.5mmより大きく、7mmより小さいスライスに対して、打ち抜いた小片を試料として用いることが望ましい。具体的には、例えば、特開平10−311782号公報に開示された分析試料の調整方法及び装置を適用すればよい。試料表面の酸化皮膜を確実、正確かつ再現性良く除去するためには、試料底面の直径と高さから計算される表面積Sと体積Vの比S/Vが、1.00以上1.45以下となる形状を確保することが望ましい。この理由は現時点で十分解明できていないが、電極形状などアーク処理部の形状に依存して、アークプラズマの空間分布において効率的な処理に好適な位置が限定されることに対応しているものと推察される。   Among the elemental technologies combined to realize the analysis method according to the present invention, as a method for obtaining an analysis sample more easily and quickly than a steel ingot collected from molten steel, the height produced by cutting the steel ingot collected from molten steel ( It is desirable to use a punched piece as a sample for a slice having a thickness (thickness) larger than 2.5 mm and smaller than 7 mm. Specifically, for example, an analysis sample adjustment method and apparatus disclosed in Japanese Patent Laid-Open No. 10-311782 may be applied. In order to remove the oxide film on the sample surface reliably, accurately and with good reproducibility, the ratio S / V of the surface area S to the volume V calculated from the diameter and height of the sample bottom is 1.00 or more and 1.45 or less. It is desirable to secure a shape to become. The reason for this is not fully understood at this time, but it corresponds to the fact that the position suitable for efficient processing is limited in the spatial distribution of the arc plasma depending on the shape of the arc processing part such as the electrode shape. It is guessed.

本発明に係る分析方法を実現するために組み合わせる要素技術の内、高精度な全酸素(T.[O])濃度の分析方法として、不活性ガス中加熱融解−赤外線吸収法を動作原理とする酸素分析装置2を用いることが望ましい。この分析法では、試料ホルダと試料の脱酸反応剤(炭素)供給源を兼ねる黒鉛るつぼを使用する。分析に先立って、るつぼ表面に吸着した酸素や汚染を除去するため、分析時よりもやや高い温度でるつぼだけを予め加熱する、いわゆる「空焼き」処理を実施する。   Among the elemental technologies combined to realize the analysis method according to the present invention, as a highly accurate analysis method of total oxygen (T. [O]) concentration, the heating principle in an inert gas-infrared absorption method is used as an operating principle. It is desirable to use the oxygen analyzer 2. In this analysis method, a graphite crucible serving as a sample holder and a sample deoxidation reagent (carbon) supply source is used. Prior to analysis, in order to remove oxygen and contamination adsorbed on the surface of the crucible, a so-called “empty baking” process is performed in which only the crucible is preheated at a temperature slightly higher than at the time of analysis.

市販の酸素分析装置で鋼中の全酸素(T.[O])濃度を分析する際には、通常、るつぼ、すなわち試料を1800℃〜2200℃程度の温度に加熱する。「空焼き」処理により、黒鉛るつぼから発生する酸素、一酸化炭素あるいは二酸化炭素が分析値を変動させる影響を低減し、本発明で要求される高い分析精度を実現するためには、分析時の温度よりも100℃以上高い温度で15秒間以上加熱すればよい。   When analyzing the total oxygen (T. [O]) concentration in steel with a commercially available oxygen analyzer, the crucible, that is, the sample is usually heated to a temperature of about 1800 ° C. to 2200 ° C. In order to reduce the influence of oxygen, carbon monoxide or carbon dioxide generated from the graphite crucible by fluctuating the analytical value and to achieve the high analytical accuracy required by the present invention, What is necessary is just to heat for 15 second or more at the temperature 100 degreeC or more higher than temperature.

市販の酸素分析装置では、まず、分析装置内に試料を取り込み、試料周辺の雰囲気をキャリアガスであるヘリウムガスで置換する間に、るつぼの交換、電極の清掃および「空焼き」処理を実施する。したがって、試料を投入してから分析値が判明するまで時間が比較的長いという問題があった。そこで、本発明では、るつぼの交換、電極の清掃および「空焼き」処理を先行させ、分析可能な状態にある酸素分析装置に清浄化前処理した試料を投入することにより迅速化を実現することができる。   In a commercially available oxygen analyzer, first, a sample is taken into the analyzer, and while the atmosphere around the sample is replaced with helium gas as a carrier gas, the crucible is exchanged, the electrode is cleaned, and the “blank” process is performed. . Therefore, there is a problem that it takes a relatively long time until the analytical value is determined after the sample is introduced. Therefore, in the present invention, speeding up is realized by putting the sample that has been pre-cleaned into the oxygen analyzer that is ready for analysis, with the replacement of the crucible, the cleaning of the electrodes, and the “blank” process preceded. Can do.

また、通常、全酸素(T.[O])濃度の分析に際して、検出したガス量を試料中の酸素濃度に変換するため、試料重量を精密に秤量する必要がある。真空アークプラズマ処理前後での試料重量変化を評価した結果、試料の形状や表面酸化度合いによって多少ばらつきはあるものの、高々1mg程度の減量であったことから、試料重量0.5〜1.0gに対しては実用上無視できる程度の誤差しか与えないことが判明した。そこで、本発明を実施する際には、機械加工して得た後に予め秤量した分析試料を、真空アークプラズマ処理し、大気と接触させることなく、そのまま酸素分析装置2に挿入することとした。   In addition, when analyzing the total oxygen (T. [O]) concentration, it is necessary to accurately weigh the sample weight in order to convert the detected gas amount into the oxygen concentration in the sample. As a result of evaluating the change in the sample weight before and after the vacuum arc plasma treatment, although there was some variation depending on the shape of the sample and the degree of surface oxidation, the weight loss was about 1 mg at most, so the sample weight was reduced to 0.5 to 1.0 g. On the other hand, it has been found that the error is negligible for practical use. Therefore, when carrying out the present invention, the analytical sample obtained after machining and previously weighed was subjected to vacuum arc plasma treatment and inserted into the oxygen analyzer 2 as it was without contacting with the atmosphere.

この鋼中酸素分析方法を活用して、Cを0.03〜0.30質量%含有すると共にAlを含有する溶鋼250〜300トンを対象として、溶鋼環流型真空脱ガス設備を用いて清浄鋼を製造する際に、酸素供給条件や溶鋼環流条件を変えて、適正な溶鋼環流処理条件を検討した結果、本発明を完成するに至った。   Utilizing this oxygen analysis method in steel, clean steel using 250 to 300 tons of molten steel containing 0.03 to 0.30% by mass of C and Al is used as a target using molten steel reflux type vacuum degassing equipment. As a result of investigating appropriate molten steel reflux treatment conditions by changing the oxygen supply conditions and the molten steel reflux conditions when manufacturing the present invention, the present invention has been completed.

本発明は、以下に列記の通りである。
(1)溶鋼環流型真空脱ガス設備を用いて、Cを0.03〜0.30質量%含有すると共にAlを含有する清浄鋼を製造する方法であって、
Alを含有する溶鋼250〜300トンに酸素を供給して溶鋼温度を上昇させた後、該溶鋼からサンプルを採取し、
前記溶鋼を環流ガス流量1.0〜3.0Nm/分で環流させつつ、
該サンプルの全酸素濃度の分析値(T.[O])に基づいて、該サンプル採取時点からの溶鋼環流時間を(1)式および(2)式を満たすように調整すること
を特徴とする清浄鋼の製造方法。
The present invention is listed below.
(1) A method for producing clean steel containing Al in addition to 0.03 to 0.30% by mass of C using a molten steel reflux type vacuum degassing equipment,
After supplying oxygen to molten steel containing 250 to 300 tons containing Al to raise the molten steel temperature, a sample was taken from the molten steel,
While circulating the molten steel at a reflux gas flow rate of 1.0 to 3.0 Nm 3 / min,
Based on the analytical value (T. [O] 2 ) of the total oxygen concentration of the sample, the molten steel reflux time from the sample collection time is adjusted so as to satisfy the expressions (1) and (2). A method for producing clean steel.

−0.5≦t≦t+0.5 ・・・(1)
=−(1/k)×ln{(T.[O]−10)/(T.[O]−10)}
・・・(2)
t:サンプル採取時点からの溶鋼環流時間(分)
k:脱酸速度定数:0.15(1/分)
T.[O]:RH処理後の全酸素濃度の目標値(質量ppm)
T.[O]:前記サンプルの全酸素濃度の分析値(質量ppm)
t C −0.5 ≦ t ≦ t C +0.5 (1)
t C = − (1 / k) × ln {(T. [O] 1 −10) / (T. [O] 2 −10)}
... (2)
t: Molten steel recirculation time (min) from sample collection
k: Deoxidation rate constant: 0.15 (1 / min)
T. T. et al. [O] 1 : Target value of total oxygen concentration after RH treatment (mass ppm)
T. T. et al. [O] 2 : Analytical value of total oxygen concentration of the sample (mass ppm)

(2)前記サンプルの全酸素濃度の分析値(T.[O])は、
前記溶鋼から採取したサンプルの凝固後に機械加工して分析用試料を作成し、該分析用試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、前記機械加工したままの試料に対して、真空度を10Pa以上100Pa以下とし、かつ、アークプラズマ出力電流を20A以上40A以下とする条件下で、0.6秒間以下の真空アークプラズマ処理を1回のみ行って前記試料表面の酸化皮膜を除去、清浄化する前処理を施した後、大気と接触させることなく、直接、黒鉛るつぼに投入する鉄鋼中酸素分析方法
により求められること
を特徴とする、(1)項に記載された清浄鋼の製造方法。
(2) The analytical value (T. [O] 2 ) of the total oxygen concentration of the sample is
A sample collected from the molten steel is machined after solidification to prepare an analytical sample, and the analytical sample is placed in a graphite crucible, heated and melted in an inert gas, and generated either carbon monoxide or carbon dioxide. A method for measuring the oxygen concentration in the sample from one or both infrared absorptions, wherein the vacuum level is set to 10 Pa or more and 100 Pa or less and the arc plasma output current is set to 20 A with respect to the machined sample. Under the condition of 40A or less, the vacuum arc plasma treatment for 0.6 seconds or less is performed only once to perform the pretreatment for removing and cleaning the oxide film on the surface of the sample without contacting with the atmosphere. The method for producing clean steel according to item (1), characterized in that it is obtained by an oxygen analysis method in steel directly put into a graphite crucible.

本発明によれば、溶鋼環流型真空脱ガス設備を用いてCを0.03〜0.30質量%含有すると共にAlを含有する清浄鋼を製造する際に、酸素供給条件やその間の溶鋼環流条件に関係なく、RH脱ガス処理後の全酸素(T.[O])濃度を目標値に制御することができ、要求される全酸素(T.[O])濃度に応じた効率的なRH脱ガス処理を行うことが可能となる。   According to the present invention, when producing a clean steel containing 0.03 to 0.30% by mass of C and Al using a molten steel recirculation type vacuum degassing facility, oxygen supply conditions and molten steel recirculation between them are produced. Regardless of the conditions, the total oxygen (T. [O]) concentration after the RH degassing process can be controlled to a target value, and efficient according to the required total oxygen (T. [O]) concentration. RH degassing can be performed.

図1は、RH処理での送酸量(Nm/t)と、RH処理での送酸後の全酸素濃度(T.[O];ppm)との関係の一例を示すグラフである。1 is a graph showing an example of the relationship between the amount of acid sent in RH treatment (Nm 3 / t) and the total oxygen concentration (T. [O]; ppm) after acid feed in RH treatment. 図2は、本発明により開示された分析方法を実施するための鉄鋼中酸素分析装置を、模式的に示す説明図である。FIG. 2 is an explanatory view schematically showing an oxygen analyzer in steel for carrying out the analysis method disclosed by the present invention. 図3は、サンプル採取後の溶鋼環流時間(分)と、溶鋼環流中全酸素(T.[O])濃度との関係の一例を示すグラフである。3 is a graph showing an example of the relationship between the molten steel reflux time (minutes) after sample collection and the total oxygen (T. [O]) concentration in the molten steel reflux.

転炉などで溶製したC濃度が0.03〜0.30質量%、P濃度0.050質量%以下、S濃度0.010質量%以下の溶鋼を、取鍋へ出鋼する。この際、溶鋼は脱酸しても未脱酸としてもよく、脱酸する場合はSi濃度0.02〜1.0質量%、Mn濃度0.10〜2.50質量%に調整する。   A molten steel having a C concentration of 0.03 to 0.30 mass%, a P concentration of 0.050 mass% or less, and an S concentration of 0.010 mass% or less, which is melted in a converter or the like, is discharged into a ladle. At this time, the molten steel may be deoxidized or non-deoxidized. In the case of deoxidation, the Si concentration is adjusted to 0.02 to 1.0 mass% and the Mn concentration is adjusted to 0.10 to 2.50 mass%.

本発明に係る清浄鋼の製造方法は、取鍋内溶鋼に2本足浸漬管を設置して真空槽内を真空排気し、片方の浸漬管から環流用不活性ガスを吹き込むRH脱ガス設備を用いて、Cを0.03〜0.30質量%含有すると共にAlを含有する溶鋼に酸素を供給して溶鋼温度を上昇させ、その後溶鋼を還流させてAlを含有する清浄鋼を製造する方法である。   The method for producing clean steel according to the present invention includes an RH degassing facility in which a two-leg dip tube is installed in molten steel in a ladle, the inside of the vacuum chamber is evacuated, and an inert gas for reflux is blown from one dip tube. A method for producing clean steel containing Al by supplying oxygen to molten steel containing 0.03 to 0.30% by mass of C and increasing the molten steel temperature and then refluxing the molten steel It is.

Cを0.03質量%以上含有する溶鋼を対象とする理由は、Cを0.03質量%未満にするためにはRHでの真空脱炭処理を通常必要とするため、そのような類の真空脱炭処理を施された溶鋼を対象としないことを明確にするためである。   The reason for targeting molten steel containing 0.03% by mass or more of C is that vacuum decarburization treatment with RH is usually required to make C less than 0.03% by mass. This is to clarify that the molten steel that has been subjected to vacuum decarburization treatment is not targeted.

一方、Cを0.30質量%以下含有する溶鋼に制限する理由は、全酸素濃度の管理を重視する鋼種がこの程度のC濃度以下に多いためである。   On the other hand, the reason for restricting the molten steel to contain 0.30% by mass or less of C is that there are many steel types that place importance on management of the total oxygen concentration below this level of C concentration.

RH脱ガス設備において、溶鋼に酸素を供給する前に、Cを0.03〜0.30質量%のほか、当該溶鋼を用いて製造する製品の規格濃度に近い濃度まで溶鋼成分を調整し、さらに供給酸素量が反応してAlを生成するのに見合うsol.Al濃度が含有されるよう、溶鋼中にAlを添加する。 In the RH degassing facility, before supplying oxygen to the molten steel, in addition to 0.03 to 0.30% by mass of C, the molten steel components are adjusted to a concentration close to the standard concentration of the product manufactured using the molten steel, Further, the sol. Commensurate with the amount of oxygen supplied reacts to produce Al 2 O 3 . Al is added to the molten steel so that the Al concentration is contained.

酸素供給を開始する前の溶鋼中sol.Al濃度は特に規定する必要はないが、酸素供給終了後のsol.Al濃度は、当該処理中の溶鋼により製造する製品のAl規格濃度に近い濃度である必要がある。   In the molten steel before starting the oxygen supply, sol. The Al concentration does not need to be specified, but the sol. The Al concentration needs to be close to the Al standard concentration of a product manufactured by the molten steel being processed.

酸素供給を完了した直後(60秒間以内)に溶鋼からサンプルを採取し、直ちにその全酸素(T.[O])濃度を分析するほか、同じタイミングで他の成分も分析することは可能であるので、製品の規格濃度に合うようにCやAlのほか、各合金成分の濃度を微調整することは可能である。但し、そのような微調整を行わなくて済むほうが望ましいことは当然である。   Immediately after completing the oxygen supply (within 60 seconds), it is possible to take a sample from molten steel and immediately analyze its total oxygen (T. [O]) concentration, as well as other components at the same time. Therefore, it is possible to finely adjust the concentration of each alloy component in addition to C and Al so as to meet the standard concentration of the product. However, it is natural that it is preferable not to perform such fine adjustment.

溶鋼の全酸素(T.[O])濃度が判明したら、前記した(2)式に当てはめてサンプル採取時以降の必要溶鋼環流時間を計算し、その計算値±0.5分間の溶鋼環流時間を経過させた後に溶鋼環流を停止してRH処理を終える。   When the total oxygen (T. [O]) concentration of the molten steel is found, the required molten steel reflux time after sampling is calculated by applying the above equation (2), and the calculated value is ± 0.5 minutes. After the lapse of time, the molten steel reflux is stopped to finish the RH treatment.

目標とする全酸素(T.[O])濃度以下にするためには、基本的にはサンプル採取時以降の溶鋼環流時間を(2)式の計算値とすればよいのであるが、処理条件の多少のバラツキや溶鋼環流操作停止タイミングに絡む操業上の都合などを配慮して、実際上は(2)式の計算値±0.5分間の溶鋼環流時間になるよう調整すれば、所望するレベルの清浄鋼を製造するためのRH処理時間を最適化することができる。   In order to make the total oxygen (T. [O]) concentration below the target concentration, the molten steel reflux time after sampling is basically set to the calculated value of equation (2). In consideration of the operational fluctuations related to the slight fluctuation of the molten steel and the operation timing of the molten steel recirculation operation, it is desired to adjust the molten steel recirculation time of the formula (2) ± 0.5 minutes in practice. The RH treatment time for producing a level of clean steel can be optimized.

従来から、Alを含有する溶鋼のRH処理においては、送酸完了後の溶鋼還流時間に応じて全酸素濃度(T.[O])が減少することが分っていた。しかし、従来はRH送酸完了後の全酸素濃度(T.[O])の値を、溶鋼環流完了前に正確に知る具体的な方法が知られていなかった。そのため、RH送酸完了後の全酸素(T.[O])濃度の値を製品に応じて必要なレベルに制御しようとする試みは難しく、必要な全酸素(T.[O])濃度以下が着実に達成されるように、送酸完了後の環流時間を経験的に長めに決定していた。したがって、溶鋼環流時間が過剰になる場合が多かった。   Conventionally, in the RH treatment of molten steel containing Al, it has been found that the total oxygen concentration (T. [O]) decreases according to the molten steel reflux time after completion of acid feeding. However, a specific method for accurately knowing the value of the total oxygen concentration (T. [O]) after completion of RH acid feeding before completion of the molten steel reflux has not been known. Therefore, it is difficult to attempt to control the total oxygen (T. [O]) concentration value after completion of RH acid delivery to a required level according to the product, which is less than the required total oxygen (T. [O]) concentration. Has been determined empirically to ensure that the reflux time after completion of the acid delivery is long. Therefore, the molten steel reflux time is often excessive.

しかし、RH送酸完了後の全酸素(T.[O])濃度の値を、図2に示す装置を用いて溶鋼環流中に正確かつ迅速に知ることが出来るので、目標となる全酸素(T.[O])濃度に必要な環流時間を決定することができ、過剰なRH処理時間を削減することが可能となる。   However, since the value of the total oxygen (T. [O]) concentration after completion of RH acid feeding can be accurately and quickly known during the molten steel reflux using the apparatus shown in FIG. 2, the target total oxygen ( The reflux time required for the T. [O]) concentration can be determined, and the excess RH treatment time can be reduced.

そこでまず、本発明者らは、前記した溶鋼中全酸素(T.[O])濃度の迅速分析方法の確立に注力した。そして、その分析方法を、Alを含有する溶鋼の清浄化処理時に溶鋼環流時間の適正化に利用することができるように開発を進めた。   Therefore, first, the inventors focused on establishing a rapid analysis method for the total oxygen (T. [O]) concentration in the molten steel. Then, the analysis method was developed so that it can be used for optimizing the molten steel reflux time during the cleaning treatment of the molten steel containing Al.

従来は、RH処理後の全酸素(T.[O])濃度の目標は要求される品質レベルによって決定すればよかったが、そのRH処理後の全酸素(T.[O])濃度の目標値に到達するのに必要な溶鋼環流時間が、具体的には不明であった。そこでRH送酸完了後から溶鋼環流中にサンプリングを実施し、溶鋼環流時間と全酸素(T.[O])濃度の関係を調査した。   Conventionally, the target of the total oxygen (T. [O]) concentration after the RH treatment may be determined according to the required quality level, but the target value of the total oxygen (T. [O]) concentration after the RH treatment. Specifically, the molten steel reflux time required to reach the temperature was unknown. Therefore, sampling was performed during the molten steel reflux after completion of RH acid feeding, and the relationship between the molten steel reflux time and the total oxygen (T. [O]) concentration was investigated.

その結果を図3にグラフで示す。図3は、サンプル採取後の溶鋼環流時間(分)と、溶鋼環流中全酸素(T.[O])濃度との関係の一例を示すグラフである。   The results are shown graphically in FIG. 3 is a graph showing an example of the relationship between the molten steel reflux time (minutes) after sample collection and the total oxygen (T. [O]) concentration in the molten steel reflux.

図3のグラフ中の実線は、送酸完了直後にサンプルを分析して得た全酸素(T.[O])濃度に対して、(2)式によりサンプル採取時以降の環流時間に対応するT.[O]濃度(T.[O])を算出して図示したものであり、プロットはその時点で採取したサンプルのT.[O]濃度分析値である。 The solid line in the graph of FIG. 3 corresponds to the total reflux (T. [O] 2 ) concentration obtained by analyzing the sample immediately after the completion of acid transfer, and the reflux time after the sample is collected according to equation (2). T. The [O] concentration (T. [O] 1 ) is calculated and illustrated, and the plot shows the T.O. of the sample collected at that time. [O] Concentration analysis value.

なお、送酸を実施しなかった場合についても、RHでの環流開始前に採取したサンプルを用いてT.[O]濃度分析を行い、環流開始以降の計算値を点線で示すと共に、そのサンプルの分析値をプロットして示した。   Even in the case where the acid feeding was not carried out, the sample collected before starting the reflux in RH was used. [O] Concentration analysis was performed, and the calculated values after the start of reflux were indicated by dotted lines, and the analytical values of the samples were plotted.

図3のグラフより(2)式を用いてRHの溶鋼還流時間に対応する全酸素(T.[O])濃度の推移を推定することが可能であり、逆に、全酸素(T.[O])濃度の目標値によって最適な溶鋼環流時間を予測することが可能であることも分かった。   From the graph of FIG. 3, it is possible to estimate the transition of the total oxygen (T. [O]) concentration corresponding to the molten steel reflux time of RH using the equation (2). It has also been found that the optimum molten steel reflux time can be predicted by the target value of O]) concentration.

本発明者らは、上述した知見をオンライン操業に反映させるために、全酸素(T.[O])濃度を短時間でかつ精度よく分析する方法として、前記した鉄鋼中酸素の迅速分析方法を確立して使用したのである。   In order to reflect the above-described knowledge in online operation, the present inventors have used the above-described rapid analysis method for oxygen in steel as a method for analyzing the total oxygen (T. [O]) concentration in a short time and with high accuracy. It was established and used.

転炉から出鋼した後、CやMn等の各成分を調整し、さらにRHにて酸素を供給して溶鋼温度を上昇させた後、酸素供給停止から約30秒間が経過した時点で溶鋼のサンプリングを実施した。そのサンプルを用いて前記した分析方法により4分間以内でT.[O]濃度を分析し、(2)式を用いて目標の全酸素(T.[O])濃度とするのに必要な溶鋼環流時間を計算し、その計算値に対して±0.5分間以内に溶鋼環流を停止して、RH脱ガス処理を終了した。   After the steel is removed from the converter, each component such as C and Mn is adjusted, oxygen is further supplied by RH to raise the molten steel temperature, and after about 30 seconds have passed since the oxygen supply was stopped. Sampling was performed. Using the sample, the T.I. Analyzing the [O] concentration, using the equation (2), calculate the molten steel reflux time required to reach the target total oxygen (T. [O]) concentration, and ± 0.5 with respect to the calculated value The molten steel reflux was stopped within a minute to complete the RH degassing process.

比較例として、酸素供給停止から約30秒間が経過した時点で溶鋼のサンプリングを実施したものの、その分析値を参考にしなかった例と、送酸を実施する必要が無いと予め分かっていたが、RH処理開始前に採取した溶鋼サンプルを用いて、本発明例と同様に全酸素(T.[O])濃度を分析した例とについても調査したので、それらの比較例と対比しつつ、本発明例について説明する。   As a comparative example, although sampling of molten steel was performed at the time when about 30 seconds passed from the stop of oxygen supply, it was known in advance that the analysis value was not referred to, and it was not necessary to carry out acid feeding. Since the molten steel sample collected before the start of the RH treatment was used to investigate the example of analyzing the total oxygen (T. [O]) concentration in the same manner as the example of the present invention, the present example was compared with those of the comparative examples. Examples of the invention will be described.

先ず、本発明例,比較例ともに、それらの全酸素(T.[O])濃度分析用サンプルを用いて、溶鋼中の各種成分の濃度を別途分析して得た値を、表1に纏めて示す。   First, Table 1 summarizes the values obtained by separately analyzing the concentrations of various components in molten steel using the samples for analyzing the total oxygen (T. [O]) concentration in both the inventive examples and the comparative examples. Show.

さらに、本発明例,比較例におけるRH処理後の目標全酸素(T.[O])濃度とそれらのサンプルの全酸素(T.[O])濃度、および(2)式にこれらの濃度を代入して得た必要環流時間(t)と、サンプル採取後の実績環流時間、ならびにRH処理後の実績全酸素(T.[O])濃度も、表1に併せて示す。このサンプル採取後の溶鋼環流時間中には、環流ガスとしてArを1.5〜2.5Nm/分の流量で供給し続け、溶鋼環流停止後に再度溶鋼からサンプルを採取して、RH処理後の溶鋼中T.[O]濃度を確認した。 Furthermore, the target total oxygen (T. [O] 1 ) concentration and the total oxygen (T. [O] 2 ) concentration of those samples after the RH treatment in the present invention example and the comparative example, and the equation (2) Table 1 also shows the required reflux time (t C ) obtained by substituting the concentration, the actual reflux time after sampling, and the actual total oxygen (T. [O]) concentration after RH treatment. During the molten steel recirculation time after sampling, Ar was continuously supplied as a recirculation gas at a flow rate of 1.5 to 2.5 Nm 3 / min. T. in molten steel The [O] concentration was confirmed.

Figure 2014037600
Figure 2014037600

RH処理後の目標全酸素(T.[O])濃度が20ppm以下で同一の比較例1,2と本発明例1,2とを対比するとともに、RH処理後の目標全酸素(T.[O])濃度が25ppm以下で同一の比較例3,4と本発明例3とを対比すると、本発明例のほうが実績溶鋼環流時間が4〜5分間程度短くすることができ、しかも、目標としたRH処理後の全酸素(T.[O])濃度を達成できていることが確認できた。 Comparative Examples 1 and 2 and Inventive Examples 1 and 2 having the same target total oxygen (T. [O] 1 ) concentration after RH treatment of 20 ppm or less are compared, and target total oxygen (T. [O] 1 ) after RH treatment is compared. [O] 1 ) When comparing the same Comparative Examples 3 and 4 with Example 3 with a concentration of 25 ppm or less, the Example of the invention can shorten the actual molten steel reflux time by about 4 to 5 minutes, It was confirmed that the target total oxygen (T. [O]) concentration after RH treatment was achieved.

比較例1〜4では、溶鋼環流時間とRH処理後全酸素(T.[O])濃度との関係を十分に把握できていないために、全酸素(T.[O])濃度の管理目標からの外れを防止する必要から、必要以上の溶鋼環流時間をとっていて、その分だけRH処理能率の低下と清浄鋼製造コストの上昇を招いていたことが分かった。   In Comparative Examples 1 to 4, since the relationship between the molten steel reflux time and the total oxygen (T. [O]) concentration after RH treatment cannot be sufficiently grasped, the management target of the total oxygen (T. [O]) concentration From the need to prevent detachment from the steel, it was found that the molten steel reflux time was longer than necessary, and the RH treatment efficiency and the production cost of clean steel were increased accordingly.

1 前処理装置
2 酸素分析装置
3 処理前試料投入口
4 隔離バルブ
5 前処理済試料投入口
6 架台
7 リフター
8 連結管
9 前処理済試料途中取出口
DESCRIPTION OF SYMBOLS 1 Pretreatment apparatus 2 Oxygen analyzer 3 Pretreatment sample inlet 4 Isolation valve 5 Pretreatment specimen inlet 6 Base 7 Lifter 8 Connection pipe 9 Pretreatment specimen intermediate outlet

Claims (2)

溶鋼環流型真空脱ガス設備を用いて、Cを0.03〜0.30質量%含有すると共にAlを含有する清浄鋼を製造する方法であって、
Alを含有する溶鋼250〜300トンに酸素を供給して溶鋼温度を上昇させた後、該溶鋼からサンプルを採取し、
前記溶鋼を環流ガス流量1.0〜3.0Nm/分で環流させつつ、
該サンプルの全酸素濃度の分析値(T.[O])に基づいて、該サンプル採取時点からの溶鋼環流時間を(1)式および(2)式を満たすように調整すること
を特徴とする清浄鋼の製造方法。
−0.5≦t≦t+0.5 ・・・(1)
=−(1/k)×ln{(T.[O]−10)/(T.[O]−10)}
・・・(2)
t:サンプル採取時点からの溶鋼環流時間(分)
k:脱酸速度定数:0.15(1/分)
T.[O]:RH処理後の全酸素濃度の目標値(質量ppm)
T.[O]:前記サンプルの全酸素濃度の分析値(質量ppm)
A method for producing a clean steel containing Al and containing 0.03 to 0.30% by mass of C using a molten steel reflux type vacuum degassing equipment,
After supplying oxygen to molten steel containing 250 to 300 tons containing Al to raise the molten steel temperature, a sample was taken from the molten steel,
While circulating the molten steel at a reflux gas flow rate of 1.0 to 3.0 Nm 3 / min,
Based on the analytical value (T. [O] 2 ) of the total oxygen concentration of the sample, the molten steel reflux time from the sample collection time is adjusted so as to satisfy the expressions (1) and (2). A method for producing clean steel.
t C −0.5 ≦ t ≦ t C +0.5 (1)
t C = − (1 / k) × ln {(T. [O] 1 −10) / (T. [O] 2 −10)}
... (2)
t: Molten steel recirculation time (min) from sample collection
k: Deoxidation rate constant: 0.15 (1 / min)
T. T. et al. [O] 1 : Target value of total oxygen concentration after RH treatment (mass ppm)
T. T. et al. [O] 2 : Analytical value of total oxygen concentration of the sample (mass ppm)
前記サンプルの全酸素濃度の分析値(T.[O])は、
前記溶鋼から採取したサンプルの凝固後に機械加工して分析用試料を作成し、該分析用試料を黒鉛るつぼに入れて不活性ガス中で加熱融解し、発生した一酸化炭素または二酸化炭素のいずれかひとつあるいは両方の赤外線吸収度から該試料中の酸素濃度を測定する方法であって、前記機械加工したままの試料に対して、真空度を10Pa以上100Pa以下とし、かつ、アークプラズマ出力電流を20A以上40A以下とする条件下で、0.6秒間以下の真空アークプラズマ処理を1回のみ行って前記試料表面の酸化皮膜を除去、清浄化する前処理を施した後、大気と接触させることなく、直接、黒鉛るつぼに投入する鉄鋼中酸素分析方法
により求められること
を特徴とする請求項1に記載された清浄鋼の製造方法。
The analytical value (T. [O] 2 ) of the total oxygen concentration of the sample is
A sample collected from the molten steel is machined after solidification to prepare an analytical sample, and the analytical sample is placed in a graphite crucible, heated and melted in an inert gas, and generated either carbon monoxide or carbon dioxide. A method for measuring the oxygen concentration in the sample from one or both infrared absorptions, wherein the vacuum level is set to 10 Pa or more and 100 Pa or less and the arc plasma output current is set to 20 A with respect to the machined sample. Under the condition of 40A or less, the vacuum arc plasma treatment for 0.6 seconds or less is performed only once to perform the pretreatment for removing and cleaning the oxide film on the surface of the sample without contacting with the atmosphere. The method for producing clean steel according to claim 1, wherein the method is obtained by an oxygen analysis method in steel directly put into a graphite crucible.
JP2012181627A 2012-08-20 2012-08-20 Manufacturing method of clean steel Active JP5464242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012181627A JP5464242B2 (en) 2012-08-20 2012-08-20 Manufacturing method of clean steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012181627A JP5464242B2 (en) 2012-08-20 2012-08-20 Manufacturing method of clean steel

Publications (2)

Publication Number Publication Date
JP2014037600A true JP2014037600A (en) 2014-02-27
JP5464242B2 JP5464242B2 (en) 2014-04-09

Family

ID=50285958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012181627A Active JP5464242B2 (en) 2012-08-20 2012-08-20 Manufacturing method of clean steel

Country Status (1)

Country Link
JP (1) JP5464242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060289A (en) * 2017-12-12 2018-05-22 马鞍山钢铁股份有限公司 A kind of temperature-compensating refinery practice of RH refining furnaces production IF steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108060289A (en) * 2017-12-12 2018-05-22 马鞍山钢铁股份有限公司 A kind of temperature-compensating refinery practice of RH refining furnaces production IF steel

Also Published As

Publication number Publication date
JP5464242B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5397154B2 (en) Melting method of steel material for oil pipes with high strength and high corrosion resistance
US11035014B2 (en) Molten steel desulfurization method, molten steel secondary refining method, and molten steel manufacturing method
JP2008240126A (en) Method for refining molten stainless steel
JP4888516B2 (en) Method for analyzing oxygen in steel
JP5464242B2 (en) Manufacturing method of clean steel
JP5087840B2 (en) Decarburization end point judgment method in vacuum degassing equipment
JP6828248B2 (en) Oxygen analysis method in steel and oxygen analyzer in steel
JP5402342B2 (en) How to prevent clogging of ladle nozzle
JP5375419B2 (en) Method of melting clean steel
JP5733377B2 (en) Continuous casting method for molten steel
JP5402259B2 (en) Method for producing ultra-low carbon steel
JP5347729B2 (en) Method for producing Ca-treated steel
JP2011056578A (en) Method for continuously casting molten steel
US9068237B2 (en) Method for desulfurizing hot metal
JP5704019B2 (en) Secondary refining method and manufacturing method of molten steel
JP5369909B2 (en) Method for suppressing nozzle clogging of Zr-added steel and method for producing fine oxide-dispersed steel
JP2008266751A (en) Molten steel refining method
JP5239147B2 (en) Method of melting high cleanliness steel
CN117512270A (en) External refining purity of molten steel evaluation of Process method
JP5884187B2 (en) Carbon steel refining method
JP2002363635A (en) Method for determining decarburization terminating point in vacuum degassing apparatus
JP2000234117A (en) Method for refining molten metal

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140106

R151 Written notification of patent or utility model registration

Ref document number: 5464242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350