JP2014034687A - Magnesium alloy member - Google Patents

Magnesium alloy member Download PDF

Info

Publication number
JP2014034687A
JP2014034687A JP2012175071A JP2012175071A JP2014034687A JP 2014034687 A JP2014034687 A JP 2014034687A JP 2012175071 A JP2012175071 A JP 2012175071A JP 2012175071 A JP2012175071 A JP 2012175071A JP 2014034687 A JP2014034687 A JP 2014034687A
Authority
JP
Japan
Prior art keywords
magnesium alloy
chemical film
resin molded
molded body
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012175071A
Other languages
Japanese (ja)
Other versions
JP5725424B2 (en
Inventor
Osamu Mizuno
修 水野
Koji Iguchi
光治 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012175071A priority Critical patent/JP5725424B2/en
Publication of JP2014034687A publication Critical patent/JP2014034687A/en
Application granted granted Critical
Publication of JP5725424B2 publication Critical patent/JP5725424B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnesium alloy member to which a resin molding is firmly connected.SOLUTION: The provided member comprises: a base consisting of a magnesium alloy including more than 7.5 mass% of Al; a chemical conversion film formed on the base surface; and a resin molding bonded directly with the chemical conversion film. The surface roughness Rz and surface area ratio of this chemical conversion film are respectively 10 μm or above and 2 or above. This magnesium alloy member abides in a state where deposits existing within the base are partially bared from the surface of the chemical conversion film, and it becomes possible to secure a sufficient bonding area of the chemical conversion film and resin molding and to firmly bond both based on peaks and valleys created by the deposits thus bared.

Description

本発明は、携帯用電気機器の筐体などに好適に利用できるマグネシウム合金部材に関する。   The present invention relates to a magnesium alloy member that can be suitably used for a casing of a portable electric device.

マグネシウムに種々の添加元素を含有したマグネシウム合金が、携帯電話やノートパソコン等の携帯用電気・電子機器類の筐体や自動車部品等の各種の部材の構成材料に利用されてきている。   Magnesium alloys containing various additive elements in magnesium have been used as constituent materials for various members such as casings of portable electric and electronic devices such as mobile phones and notebook personal computers, and automobile parts.

特許文献1には、ASTM規格のAZ91合金相当の合金からなり、耐衝撃性に優れるマグネシウム合金材が開示されている。このマグネシウム合金材は、連続鋳造法で製造した鋳造材に溶体化処理、圧延加工、研磨加工等を順に施して製造される。マグネシウムは活性な金属であるため、マグネシウム合金材の表面に、化成処理といった防食処理が施される。   Patent Document 1 discloses a magnesium alloy material made of an alloy equivalent to ASTM standard AZ91 alloy and excellent in impact resistance. This magnesium alloy material is manufactured by subjecting a cast material manufactured by a continuous casting method to solution treatment, rolling, polishing, and the like in order. Since magnesium is an active metal, the surface of the magnesium alloy material is subjected to anticorrosion treatment such as chemical conversion treatment.

特開2011‐140712号公報JP 2011-140712 A

マグネシウム合金材に、樹脂成形体で形成した補強用のボスやリブを接合することがある。例えば、ボスは、その内周面に雌ねじを形成して、その雌ねじに雄ねじを螺合することができる。引用文献1に記載のマグネシウム合金材に樹脂成形体を接合することが検討されており、両者を強固に接合することが望まれる。   In some cases, reinforcing bosses or ribs formed of a resin molded body are joined to the magnesium alloy material. For example, the boss can form a female screw on its inner peripheral surface and can be screwed into the male screw. Joining a resin molded body to the magnesium alloy material described in the cited document 1 has been studied, and it is desired to join both firmly.

本発明は、上記事情に鑑みてなされたもので、その目的の一つは、樹脂成形体が強固に接合されたマグネシウム合金部材を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide a magnesium alloy member in which a resin molded body is firmly joined.

本発明者らは、マグネシウム合金材の表面に化成膜を形成し、この化成膜に射出成形により樹脂成形体を接合することを考えた。そこで、化成膜側に凹凸状の表面加工を施し、その凹凸部分に樹脂を絡ませることで、化成膜と樹脂成形体とを接合したマグネシウム合金部材を作製した。この表面加工の凹凸(表面粗さ)を規定することで、化成膜と樹脂成形体との接合面積を確保し、両者を強固に接合できると考えたが、それだけでは接合状態を保持することは困難であった。そこで、化成膜と樹脂成形体とを強固に接合することを検討した結果、表面粗さの規定に加え、表面積比の規定も重要である、との知見を得た。本発明は、上記知見に基づくものである。   The present inventors considered that a chemical film was formed on the surface of the magnesium alloy material, and a resin molded body was joined to the chemical film by injection molding. Thus, a magnesium alloy member in which the chemical film formation and the resin molded body were joined was produced by performing uneven surface processing on the chemical film forming side and entangling the resin with the uneven part. It was thought that by defining the irregularities (surface roughness) of this surface processing, it was possible to secure a bonding area between the chemical film formation and the resin molded body, and to firmly bond both, but that alone would maintain the bonding state Was difficult. Therefore, as a result of investigating the firm bonding between the chemical film formation and the resin molded body, the inventors have found that it is important to define the surface area ratio in addition to the surface roughness. The present invention is based on the above findings.

本発明は、Alを7.5質量%超含有するマグネシウム合金からなる基材と、上記基材表面に形成された化成膜と、上記化成膜に直接接合された樹脂成形体とを備える。上記化成膜の表面粗さがRzで10μm以上、かつ表面積比が2以上である。   The present invention includes a base material made of a magnesium alloy containing Al in excess of 7.5% by mass, a chemical film formed on the surface of the base material, and a resin molding directly joined to the chemical film. The surface roughness of the chemical film formation is 10 μm or more in Rz and the surface area ratio is 2 or more.

この構成によれば、化成膜と樹脂成形体との接合面積を十分に確保し、両者を強固に接合することができる。   According to this configuration, it is possible to secure a sufficient bonding area between the chemical film formation and the resin molded body and firmly bond both.

本発明の一形態として、上記化成膜は、リン酸化合物から構成されている形態が挙げられる。   As one form of this invention, the said chemical film formation has the form comprised from the phosphoric acid compound.

リン酸化合物は、基材の酸化を抑制でき、耐食性に優れる。   The phosphoric acid compound can suppress oxidation of the substrate and is excellent in corrosion resistance.

本発明の一形態として、上記化成膜は、膜厚が1μm以下である形態が挙げられる。   As one embodiment of the present invention, the chemical film formation may include a film thickness of 1 μm or less.

この構成によれば、化成膜の表面形状を、基材の表面形状が正確に反映された表面状態とすることができる。   According to this configuration, the surface shape of the chemical film formation can be a surface state in which the surface shape of the base material is accurately reflected.

本発明の一形態として、上記マグネシウム合金は、Alを8.3質量%以上9.5質量%以下、Znを0.5質量%以上1.5質量%以下含有する形態が挙げられる。   As an embodiment of the present invention, the magnesium alloy includes an embodiment in which Al is contained in an amount of 8.3 to 9.5 mass% and Zn is contained in an amount of 0.5 to 1.5 mass%.

いわゆるAZ系のマグネシウム合金は、Al量が多いほど、耐食性、強度などの機械的特性に優れる傾向にある。従って、この構成によれば、耐食性に非常に優れる上に機械的特性にも優れる。   So-called AZ-based magnesium alloys tend to have better mechanical properties such as corrosion resistance and strength as the amount of Al increases. Therefore, according to this configuration, the corrosion resistance is very excellent and the mechanical characteristics are also excellent.

本発明の一形態として、上記基材の少なくとも一部にプレス加工が施されたプレス加工部を有する形態が挙げられる。   As one form of this invention, the form which has a press work part by which the press work was given to at least one part of the said base material is mentioned.

この構成によれば、所望の形状のマグネシウム合金部材に成形でき、同部材の意匠性を高めることができる。   According to this structure, it can shape | mold to the magnesium alloy member of a desired shape, and can improve the designability of the member.

本発明のマグネシウム合金部材は、化成膜と樹脂成形体との接合面積を十分に確保し、両者を強固に接合することができる。   The magnesium alloy member of the present invention can sufficiently secure a bonding area between the chemical film formation and the resin molded body, and can firmly bond both.

図1は、マグネシウム合金部材の表面のSEM写真であり、図1(A)は、実施例1(200,000倍)、図1(B)は、比較例1(200,000倍)、図1(C)は、比較例2(200,000倍)、図1(D)は、比較例3(300,000倍)を示す。FIG. 1 is a SEM photograph of the surface of a magnesium alloy member, FIG. 1 (A) is Example 1 (200,000 times), FIG. 1 (B) is Comparative Example 1 (200,000 times), FIG. 1 (C). FIG. 1 shows Comparative Example 2 (200,000 times), and FIG. 1D shows Comparative Example 3 (300,000 times). 図2は、測定方法を説明する模式図であり、図2(A)は、引張接合強度測定、図2(B)は、横倒し最大荷重測定を示す。FIG. 2 is a schematic diagram for explaining the measurement method. FIG. 2 (A) shows tensile bond strength measurement, and FIG. 2 (B) shows sideways maximum load measurement. 図3は、実施形態3に係るマグネシウム合金部材を示す。FIG. 3 shows a magnesium alloy member according to the third embodiment.

以下、本発明をより詳細に説明する。
<実施形態1>
[マグネシウム合金部材]
本発明のマグネシウム合金部材は、Alを7.5質量%以上含有するマグネシウム合金からなる基材と、この基材表面に形成された化成膜と、この化成膜に直接接合された樹脂成形体とを備える。このマグネシウム合金部材の特徴とするところは、化成膜の表面粗さがRzで10μm以上、かつ表面積比が2以上である点にある。以下、各構成を詳細に説明する。
Hereinafter, the present invention will be described in more detail.
<Embodiment 1>
[Magnesium alloy members]
The magnesium alloy member of the present invention includes a base material made of a magnesium alloy containing 7.5% by mass or more of Al, a chemical film formed on the surface of the base material, and a resin molded body directly joined to the chemical film. Is provided. The feature of this magnesium alloy member is that the surface roughness of chemical film formation is 10 μm or more in Rz and the surface area ratio is 2 or more. Hereinafter, each configuration will be described in detail.

(基材)
基材は、マグネシウム(Mg)に添加元素を含有した種々の組成のもの(残部:Mg及び不純物、Mg:50質量%以上)が挙げられる。特に、本発明では、添加元素に少なくともAlを7.5質量%超含有するMg-Al系合金とすることが好ましい。Alを7.5質量%超含有することで、マグネシウム合金自体の強度、耐塑性変形性といった機械的特性を高められる上に、耐食性にも優れる。Mg-Al系合金は、Al量が多いほど、強度などの機械的特性や耐食性に優れる傾向にあるが、12質量%を超えると塑性加工性の低下を招き、圧延時などに素材を高温に加熱する必要があるため、Alの含有量は、12質量%以下が好ましい。
(Base material)
Examples of the base material include those having various compositions containing additive elements in magnesium (Mg) (remainder: Mg and impurities, Mg: 50% by mass or more). In particular, in the present invention, it is preferable to use an Mg—Al alloy containing at least 7.5% by mass of Al as an additive element. By containing more than 7.5% by mass of Al, the mechanical properties such as strength and plastic deformation resistance of the magnesium alloy itself can be improved, and the corrosion resistance is also excellent. Mg-Al alloys tend to have better mechanical properties such as strength and corrosion resistance as the amount of Al increases. However, exceeding 12 mass% causes a decrease in plastic workability, and the temperature of the material increases during rolling. Since it is necessary to heat, the content of Al is preferably 12% by mass or less.

Al以外の添加元素は、Zn,Mn,Si,Ca,Sr,Y,Cu,Ag,Be,Sn,Li,Zr,Ce,Ni,Au及び希土類元素(Y,Ceを除く)から選択された1種以上の元素が挙げられる。これらの元素を含む場合、各元素の含有量は、0.01質量%以上10質量%以下、好ましくは0.1質量%以上5質量%以下が挙げられる。より具体的なMg-Al系合金は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2質量%〜1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15質量%〜0.5質量%)、Mg-Al-RE(希土類元素)系合金、AX系合金(Mg-Al-Ca系合金、Ca:0.2質量%〜6.0質量%)、AJ系合金(Mg-Al-Sr系合金、Sr:0.2質量%〜7.0質量%)などが挙げられる。特に、Alを8.3質量%〜9.5質量%含有する形態は、強度に優れる上に耐食性にも優れる。より具体的には、Alを8.3質量%〜9.5質量%、Znを0.5質量%〜1.5質量%含有するMg-Al系合金、代表的にはAZ91合金が挙げられる。Y,Ce,Ca,及び希土類元素(Y,Ceを除く)から選択される少なくとも1種の元素を合計0.001質量%以上、好ましくは合計0.1質量%以上5質量%以下含有すると、耐熱性、難燃性に優れる。   Additive elements other than Al were selected from Zn, Mn, Si, Ca, Sr, Y, Cu, Ag, Be, Sn, Li, Zr, Ce, Ni, Au, and rare earth elements (excluding Y and Ce) One or more elements are listed. When these elements are contained, the content of each element is 0.01 mass% or more and 10 mass% or less, preferably 0.1 mass% or more and 5 mass% or less. More specific Mg-Al alloys include, for example, AZ alloys (Mg-Al-Zn alloys, Zn: 0.2 mass% to 1.5 mass%) and AM alloys (Mg-Al-Mn alloys) according to ASTM standards. , Mn: 0.15 mass% to 0.5 mass%), Mg-Al-RE (rare earth element) alloy, AX alloy (Mg-Al-Ca alloy, Ca: 0.2 mass% to 6.0 mass%), AJ alloy (Mg—Al—Sr alloy, Sr: 0.2 mass% to 7.0 mass%) and the like. In particular, the form containing 8.3 mass% to 9.5 mass% of Al is excellent in strength and corrosion resistance. More specifically, an Mg—Al alloy containing 8.3 mass% to 9.5 mass% Al and 0.5 mass% to 1.5 mass% Zn, typically AZ91 alloy. When at least one element selected from Y, Ce, Ca and rare earth elements (excluding Y and Ce) is contained in a total amount of 0.001% by mass or more, preferably 0.1% by mass or more and 5% by mass or less, heat resistance is difficult. Excellent flammability.

上記基材は、後述する化成膜の表面に凹凸を形成するように、析出物が母相に分散し、析出物の一部が母相から露出した組織を有することが好ましい。上記析出物は、平均粒径が0.02μm以上5μm以下であり、基材の断面を100面積%とするとき、2面積%以上15面積%以下存在する。上記析出物は、代表的にはMgやAlを含む金属間化合物、より具体的にはMg17Al12からなるもの(Mg17Al12に限定されない)が挙げられる。この析出物は、平均粒径が0.2μm以上、かつ含有量が5面積%以上であることで、基材中に析出物が十分に存在して、化成膜の表面に十分な凹凸を形成することができる。また析出物は、平均粒径が5μm以下、かつ含有量が15面積%以下であることで、基材中に析出物が過剰に存在したり、粗大な析出物が存在せず、化成膜の表面に適度な凹凸を形成することができる。 It is preferable that the base material has a structure in which precipitates are dispersed in the mother phase and part of the precipitates are exposed from the mother phase so that irregularities are formed on the surface of the chemical film to be described later. The precipitate has an average particle size of 0.02 μm or more and 5 μm or less, and is present in an area of 2 area% or more and 15 area% or less when the cross section of the substrate is 100 area%. The precipitate is typically an intermetallic compound containing Mg or Al, and more specifically, a precipitate composed of Mg 17 Al 12 (not limited to Mg 17 Al 12 ). This precipitate has an average particle size of 0.2 μm or more and a content of 5 area% or more, so that the precipitate is sufficiently present in the base material to form sufficient irregularities on the surface of the chemical film. can do. In addition, the precipitate has an average particle size of 5 μm or less and a content of 15 area% or less, so that there is no excess precipitate in the base material or no coarse precipitate is present, and the film is formed. Appropriate irregularities can be formed on the surface.

基材の形状は、マグネシウム合金部材の用途に応じて適宜選択すればよく、特に限定されない。また、基材の厚さも特に限定されない。   The shape of the substrate is not particularly limited as long as it is appropriately selected according to the use of the magnesium alloy member. Further, the thickness of the substrate is not particularly limited.

(化成膜)
化成膜は、上記基材の析出物の一部が膜表面から露出した状態であり、その表面に凹凸が形成されている。この凹凸によって、化成膜の表面粗さがRz(最大高さ:最低位置から最高位置までの距離)で10μm以上である。表面粗さRzは、形状測定レーザマイクロスコープ(KEYENCE社製)を用いて測定することができる。表面粗さの測定領域は、化成膜と樹脂成形体との接合領域や、その近傍、例えば接合領域の縁部から2mmの範囲内の領域であっても構わない。表面粗さRzが10μm以上であれば、比較的大きな凹凸部分に後述する樹脂成形体の樹脂を絡ませることができ、両者を強固に接合することができる。より好ましい表面粗さRzは、11μm以上である。
(Chemical film formation)
Chemical film formation is a state in which a part of the deposit of the base material is exposed from the film surface, and irregularities are formed on the surface. Due to this unevenness, the surface roughness of chemical conversion film is 10 μm or more in Rz (maximum height: distance from the lowest position to the highest position). The surface roughness Rz can be measured using a shape measuring laser microscope (manufactured by KEYENCE). The surface roughness measurement region may be a bonding region between the chemical film formation and the resin molded body or the vicinity thereof, for example, a region within a range of 2 mm from the edge of the bonding region. If the surface roughness Rz is 10 μm or more, the resin of the resin molded body, which will be described later, can be entangled with relatively large uneven portions, and both can be firmly bonded. A more preferable surface roughness Rz is 11 μm or more.

化成膜の表面積比は、2以上である。この表面積比は、化成膜の凹凸による三次元形状の表面積を二次元形状の面積で除した値である。三次元形状の表面積は、形状測定レーザマイクロスコープ(KEYENCE社製)を用いて測定することができる。表面積比の測定領域は、化成膜と樹脂成形体との接合領域や、その近傍、例えば接合領域の縁部から2mmの範囲内の領域であっても構わない。表面積比が2以上であれば、化成膜と樹脂成形体との接合面積を十分に確保して、両者を強固に接合することができる。より好ましい表面積比は、2.1以上である。   The surface area ratio of chemical film formation is 2 or more. This surface area ratio is a value obtained by dividing the surface area of the three-dimensional shape due to the unevenness of the chemical film formation by the area of the two-dimensional shape. The surface area of the three-dimensional shape can be measured using a shape measuring laser microscope (manufactured by KEYENCE). The measurement area of the surface area ratio may be a bonding area between the chemical film formation and the resin molded body or the vicinity thereof, for example, an area within a range of 2 mm from the edge of the bonding area. If the surface area ratio is 2 or more, it is possible to secure a sufficient bonding area between the chemical film formation and the resin molded body and firmly bond both. A more preferable surface area ratio is 2.1 or more.

化成膜は、化成処理により形成される。化成処理の処理液には、JIS H 8651(2011年)に規定されるもの、その他、市販のものを利用することができる。化成処理液には、ノンクロム処理液であるリン酸マンガン・カルシウム系溶液、リン酸カルシウム系溶液などを利用すると、環境保全の観点から好ましい。   Chemical film formation is formed by chemical conversion treatment. As the treatment liquid for chemical conversion treatment, those specified in JIS H 8651 (2011) and other commercially available ones can be used. For the chemical conversion treatment solution, it is preferable from the viewpoint of environmental conservation to use a non-chromium treatment solution such as manganese phosphate / calcium solution or calcium phosphate solution.

基材表面に化成膜を形成するにあたり、前処理としてエッチングなどを行うことが好ましい。前処理を施した後、化成処理を施すと、エッチングの条件によって、化成膜中に複数の析出物が介在した状態になる。化成膜中の析出物の介在形態は、化成膜中に埋設したもの、一部が化成膜に埋設し他部が外部に露出したもの、一部が化成膜に埋設し他部が基材に埋設したものが挙げられる。このうち、析出物の一部が化成膜から露出したものが、化成膜の表面の凹凸に寄与する。   In forming a chemical film on the substrate surface, it is preferable to perform etching or the like as a pretreatment. When the chemical conversion treatment is performed after the pretreatment, a plurality of precipitates are interposed during the chemical film formation depending on the etching conditions. The interposition of precipitates during chemical film formation is the one embedded during chemical film formation, the part embedded in chemical film formation and the other part exposed to the outside, the part embedded in chemical film formation and the other part Embedded in the base material. Among these, a part of the precipitate exposed from the chemical film contributes to the unevenness of the chemical film surface.

化成膜の膜厚は、1μm以下であることが好ましい。この膜厚は、化成膜の膜厚方向に切断して断面をとり、SEMによる断面観察で測定することができる。このとき、析出物が介在していない箇所を数点選択して厚さを測定し、その平均値を膜厚とする。測定点数は、例えば3点とすることが挙げられる。膜厚が1μm以下であれば、化成膜の表面形状を、基材の表面形状が正確に反映された表面状態とすることができる。より好ましい膜厚は、0.2μm以上0.8μm以下である。   The thickness of the chemical conversion film is preferably 1 μm or less. This film thickness can be measured by taking a cross section by cutting in the film thickness direction of the chemical film formation and observing the cross section by SEM. At this time, several points where no precipitate is present are selected and the thickness is measured, and the average value is taken as the film thickness. The number of measurement points is, for example, 3 points. When the film thickness is 1 μm or less, the surface shape of the chemical film formation can be a surface state that accurately reflects the surface shape of the substrate. A more preferable film thickness is 0.2 μm or more and 0.8 μm or less.

(樹脂成形体)
樹脂成形体の形状は、マグネシウム合金部材の用途に応じて適宜選択すればよく、特に限定されない。樹脂成形体は、例えば、補強用のボスやリブとして利用される。ボスとして利用する場合、例えば、化成膜上に筒状の樹脂成形体を立設する。このボスは、その内周面に雌ねじを形成して、その雌ねじに雄ねじが螺合される。リブとして利用する場合、例えば、基材と直交する板材を化成膜に立設する。
(Resin molding)
The shape of the resin molded body may be appropriately selected according to the use of the magnesium alloy member, and is not particularly limited. The resin molded body is used, for example, as a reinforcing boss or rib. When used as a boss, for example, a cylindrical resin molded body is erected on the chemical film. This boss forms a female screw on its inner peripheral surface, and the male screw is screwed onto the female screw. When used as a rib, for example, a plate material orthogonal to the base material is erected in the chemical film formation.

樹脂成形体の材質は、材質の硬度や耐食性、耐久性、耐熱性を考慮して、マグネシウム合金部材の用途に応じて適宜選択すればよく、特に限定されない。例えば、熱可塑性樹脂や熱硬化性樹脂、具体例としては、ポリフェニレンサルファイド樹脂、ポリブチレンテレフタレート樹脂、エポキシ樹脂などを挙げることができる。   The material of the resin molded body may be appropriately selected according to the use of the magnesium alloy member in consideration of the hardness, corrosion resistance, durability, and heat resistance of the material, and is not particularly limited. For example, a thermoplastic resin or a thermosetting resin, and specific examples include polyphenylene sulfide resin, polybutylene terephthalate resin, and epoxy resin.

樹脂成形体は、化成膜表面の少なくとも一部に接合されており、通常は化成膜表面の一部に接合されているが、全面に接合されていてもよい。   The resin molded body is bonded to at least a part of the chemical film formation surface, and is usually bonded to a part of the chemical film formation surface, but may be bonded to the entire surface.

[マグネシウム合金部材の製造方法]
本発明マグネシウム合金部材は、基材が板状材である場合、以下の各工程を備えるマグネシウム合金部材の製造方法により製造することができる。
準備工程:Alを7.5質量%超含有するマグネシウム合金からなり、連続鋳造法で製造した鋳造板を準備する工程。
溶体化工程:上記鋳造板に350℃以上の温度で溶体化処理を施して、固溶板を製造する工程。
圧延工程:上記固溶板に温間圧延を施し、圧延板を製造する工程。
研磨工程:上記圧延板に研磨を施し、研磨板(基材)を製造する工程。
前処理工程:上記基材にエッチング処理を施し、基材中に存在する析出物の少なくとも一部を当該研磨板の表面に露出させる工程。
化成処理工程:上記前処理が施された処理板に化成処理を施し、表面に化成膜を形成する工程。
樹脂成形体接合工程:上記化成膜に樹脂成形体を直接接合する工程。
[Manufacturing method of magnesium alloy member]
This invention magnesium alloy member can be manufactured with the manufacturing method of a magnesium alloy member provided with each following processes, when a base material is a plate-shaped material.
Preparation step: A step of preparing a cast plate made of a magnesium alloy containing more than 7.5% by mass of Al and manufactured by a continuous casting method.
Solution treatment step: A step of producing a solid solution plate by subjecting the cast plate to a solution treatment at a temperature of 350 ° C. or higher.
Rolling step: A step of producing a rolled plate by subjecting the solid solution plate to warm rolling.
Polishing step: A step of polishing the rolled plate to produce a polished plate (base material).
Pretreatment step: a step of subjecting the substrate to an etching treatment to expose at least a part of precipitates present in the substrate on the surface of the polishing plate.
Chemical conversion treatment step: a step of subjecting the pretreated plate to chemical conversion treatment to form a chemical film on the surface.
Resin molded body joining step: A step of directly joining the resin molded body to the chemical film.

更に、上記製造方法は、上記圧延板に矯正を施す矯正工程を備えることができる。また、上記製造方法は、上記圧延板や、上記矯正工程により得られた矯正板、研磨板(基材)、化成膜が形成された基材にプレス加工といった塑性加工を施す塑性加工工程を備えることができる。   Furthermore, the said manufacturing method can be equipped with the correction process which corrects the said rolled sheet. Further, the manufacturing method includes a plastic working step of performing plastic working such as press working on the rolled plate, the straightened plate obtained by the straightening step, the polishing plate (base material), and the base material on which the chemical film is formed. Can be provided.

本発明マグネシウム合金部材の製造にあたり、上述のように、溶体化処理を行うことでマグネシウム合金中にAlを十分に固溶させられる。そして、溶体化処理以降の製造工程において、マグネシウム合金からなる素材を、析出物が析出され易い温度域(150℃〜300℃)に保持する時間を特定の範囲内とすることで、析出物を析出させつつ、その量を特定の範囲内とすることができる。また、上記特定の温度域に保持する時間を制御することで、上記析出物の過度な成長を抑制して、微細な析出物が分散した組織とすることができる。   In manufacturing the magnesium alloy member of the present invention, as described above, Al is sufficiently dissolved in the magnesium alloy by performing the solution treatment. And in the manufacturing process after the solution treatment, by setting the time for holding the material composed of the magnesium alloy in a temperature range (150 ° C. to 300 ° C.) where the precipitate is likely to be precipitated within a specific range, While precipitating, the amount can be within a specific range. In addition, by controlling the time for holding in the specific temperature range, excessive growth of the precipitate can be suppressed, and a structure in which fine precipitates are dispersed can be obtained.

以下、各工程をより詳細に説明する。
(準備工程)
鋳造板は、双ロール法といった連続鋳造法、特に、WO/2006/003899に記載の鋳造方法で製造した鋳造板を利用することが好ましい。連続鋳造法は、急冷凝固が可能であるため、酸化物や偏析などを低減でき、割れの起点になり得る10μm超といった粗大な晶析出物の生成を抑制できる。従って、圧延性に優れる鋳造板が得られる。鋳造板の大きさは特に問わないが、厚過ぎると偏析が生じ易いため、10mm以下、特に5mm以下が好ましい。特に、長尺な鋳造板を巻き取った鋳造コイル材を作製する場合、素材における巻き取り直前の箇所を150℃以上に加熱した状態で巻き取ると、巻き取り径が小さい場合でも、割れなどが生じることなく巻き取ることができる。巻き取り径が大きい場合は、冷間で巻き取ってもよい。
Hereinafter, each process is demonstrated in detail.
(Preparation process)
As the cast plate, it is preferable to use a cast plate produced by a continuous casting method such as a twin-roll method, in particular, a casting method described in WO / 2006/003899. Since the continuous casting method can be rapidly solidified, it can reduce oxides, segregation, and the like, and can suppress the formation of coarse crystal precipitates exceeding 10 μm that can be the starting point of cracking. Therefore, a cast plate having excellent rolling properties can be obtained. The size of the cast plate is not particularly limited, but segregation is likely to occur if it is too thick, and therefore it is preferably 10 mm or less, particularly 5 mm or less. In particular, when producing a cast coil material obtained by winding a long cast plate, if the portion immediately before winding in the material is wound in a state heated to 150 ° C. or more, cracks and the like may occur even when the winding diameter is small. It can be wound up without occurring. When the winding diameter is large, the winding may be performed cold.

(溶体化工程)
上記鋳造板に溶体化処理を施して、組成を均質化すると共に、Alといった元素を固溶させた固溶板を製造する。溶体化処理は、保持温度を350℃以上、特に、保持温度:380℃〜420℃、保持時間:60分〜2400分(1時間〜40時間)とすることが好ましい。また、保持時間は、Alの含有量が高いほど長くすることが好ましい。更に、上記保持時間からの冷却工程において、水冷や衝風といった強制冷却などを利用して、冷却速度を速めると(例えば、50℃/min以上)、粗大な析出物の析出を抑制することができて好ましい。
(Solution process)
The cast plate is subjected to a solution treatment so that the composition is homogenized and a solid solution plate in which an element such as Al is dissolved is manufactured. The solution treatment is preferably performed at a holding temperature of 350 ° C. or higher, particularly a holding temperature: 380 ° C. to 420 ° C., a holding time: 60 minutes to 2400 minutes (1 hour to 40 hours). Further, it is preferable that the holding time is longer as the Al content is higher. Furthermore, in the cooling process from the above holding time, if forced cooling such as water cooling or blast is used to increase the cooling rate (for example, 50 ° C./min or more), it is possible to suppress the precipitation of coarse precipitates. This is preferable.

(圧延工程)
上記固溶板に圧延を施すにあたり、素材(固溶板や圧延途中の板)を加熱することで塑性加工性を高められる。従って、少なくとも1パスは温間圧延を施す。複数回(多パス)の圧延を施すことで、所望の板厚にできると共に、素材の平均結晶粒径を小さくしたり(例えば、10μm以下)、圧延やプレス加工といった塑性加工性を高められる。圧延は、公知の条件、例えば、素材だけでなく圧延ロールも加熱してもよい。また、仕上げ圧延などで加工度(圧下率)が小さい圧延では、冷間で圧延を施してもよい。更に、上記圧延は、潤滑剤を適宜利用すると、圧延時の摩擦抵抗を低減でき、素材の焼き付きなどを防止して、圧延を施し易い。
(Rolling process)
In rolling the solid solution plate, plastic workability can be improved by heating the material (solid solution plate or plate in the middle of rolling). Therefore, warm rolling is performed for at least one pass. By rolling a plurality of times (multi-pass), a desired plate thickness can be obtained, and the average crystal grain size of the material can be reduced (for example, 10 μm or less), and plastic workability such as rolling and pressing can be improved. The rolling may be performed by heating a known condition, for example, not only the material but also the rolling roll. Further, in rolling with a small degree of work (rolling ratio) such as finish rolling, the rolling may be performed cold. Furthermore, when the above-described rolling is appropriately used with a lubricant, the frictional resistance during rolling can be reduced, and the material can be prevented from being seized and rolled.

多パスの圧延を行う場合、パス間に中間熱処理を行ってもよい。中間熱処理までの塑性加工(主として圧延)により加工対象である素材に導入された歪みや残留応力、集合組織などを除去、軽減すると、その後の圧延で不用意な割れや歪み、変形を防止して、より円滑に圧延を行える。   When performing multi-pass rolling, intermediate heat treatment may be performed between passes. By removing and reducing strain, residual stress, texture, etc. introduced into the material to be processed by plastic working (mainly rolling) up to intermediate heat treatment, preventing subsequent cracks, strains, and deformation in subsequent rolling Rolling can be performed more smoothly.

(矯正工程)
上記圧延板に温間矯正を施すと、プレス加工といった塑性加工性に優れて好ましい。矯正は、複数のロールが千鳥状に配置されたロールレベラなどを用い、圧延板を100℃〜300℃、好ましくは150℃以上280℃以下に加熱して行うことが挙げられる。このような温間矯正を行った矯正板にプレス加工といった塑性加工を施すと、塑性加工時に動的再結晶化が生じることで、塑性加工性に優れる。なお、圧延により比較的薄くなった素材に対して矯正加工を施すことで、矯正工程における上記保持時間を非常に短くすることができる。例えば、素材の厚さによっては上記保持時間を数分程度、更に1分以内とすることができる。
(Correction process)
It is preferable to perform warm correction on the rolled plate because of excellent plastic workability such as press working. The correction may be performed by using a roll leveler or the like in which a plurality of rolls are arranged in a staggered manner, and heating the rolled plate to 100 to 300 ° C., preferably 150 to 280 ° C. When plastic processing such as press processing is performed on the straightened plate that has been subjected to such warm correction, dynamic recrystallization occurs during the plastic processing, and the plastic workability is excellent. In addition, the said holding time in a correction process can be made very short by performing correction processing with respect to the raw material which became comparatively thin by rolling. For example, depending on the thickness of the material, the holding time can be set to several minutes, and further within one minute.

(塑性加工工程)
上記圧延板や、上記矯正工程により得られた矯正板、研磨板(基材)、化成膜が形成された基材にプレス加工といった塑性加工を施す場合、200℃〜300℃の温度域で行うと、塑性加工性を高められて好ましい。塑性加工時において板材を上記200℃〜300℃に保持する時間は、非常に短く、例えば、プレス加工によっては60秒以内の場合があり、上述したような析出物の粗大化などの不具合は実質的に生じないと考えられる。
(Plastic processing process)
When plastic processing such as pressing is performed on the rolled plate, the correction plate obtained by the correction process, the polishing plate (base material), or the base material on which the chemical film is formed, in a temperature range of 200 ° C to 300 ° C. This is preferable because the plastic workability can be improved. The time for holding the plate material at 200 to 300 ° C. during the plastic working is very short, for example, it may be within 60 seconds depending on the press working, and defects such as the coarsening of the precipitates as described above are substantial. It is thought that it does not occur.

上記塑性加工は、樹脂成形体接合工程より先に行う場合、樹脂成形体を塑性加工中に損傷することを防止することができて好ましいが、樹脂成形体接合工程の後に行ってもよい。この塑性加工によって形成された塑性加工品は、例えば、天板部(底面部)と、天板部の周縁から立設される側壁部とを有する断面]状の箱体や]状の屈曲体等が挙げられる。   When the plastic working is performed prior to the resin molded body joining step, it is preferable to prevent the resin molded body from being damaged during the plastic working, but it may be performed after the resin molded body joining step. The plastic processed product formed by this plastic working is, for example, a cross-sectional box-shaped box or a] -shaped bent body having a top plate portion (bottom surface portion) and a side wall portion standing from the periphery of the top plate portion. Etc.

(研磨工程)
上記圧延板もしくは、上記矯正を施した矯正板に研磨処理を施して、圧延板の表面を平滑化させた研磨板を製造する。研磨処理は、湿式ベルト式研磨が代表的である。研磨材(砥粒)の砥粒番手は、小さいほど基材表面を粗い状態とできる。
(Polishing process)
A polishing plate is produced by subjecting the rolled plate or the straightened plate subjected to the correction to a polishing treatment to smooth the surface of the rolled plate. The polishing process is typically wet belt type polishing. The smaller the abrasive count of the abrasive (abrasive grains), the rougher the surface of the substrate.

(前処理工程)
上記研磨板(基材)に化成処理を施すにあたり、基材中の金属間化合物などの析出物を露出させるために、基材に少なくともエッチング処理を前処理として施す。エッチング処理の処理液には、公知の処理液を利用することができる。エッチングの処理時間は、30s以上更に60s以上とすることが好ましい。処理時間を60s以上とすることで、基材中の析出物の露出量を多くすることができる。よって、基材表面の表面積を大きくすることができ、表面粗さの増大に寄与する。
(Pretreatment process)
In performing chemical conversion treatment on the polishing plate (base material), at least etching treatment is applied as a pretreatment to the base material in order to expose precipitates such as intermetallic compounds in the base material. A known processing liquid can be used as the processing liquid for the etching process. The etching processing time is preferably set to 30 seconds or longer, more preferably 60 seconds or longer. By setting the treatment time to 60 s or longer, the amount of deposits exposed in the substrate can be increased. Therefore, the surface area of the substrate surface can be increased, contributing to an increase in surface roughness.

なお、前処理工程では、エッチング処理だけでなく、脱脂、エッチング、脱スマットや表面調整を行うことがより好ましい。このような前処理を行うことで、圧延時や塑性加工時などに使用した潤滑剤などを除去することができ、化成膜を精度良く形成できる上に、基材と化成膜とを密着させることができる。   In the pretreatment step, it is more preferable to perform not only the etching process but also degreasing, etching, desmutting and surface adjustment. By performing such pretreatment, it is possible to remove the lubricant used at the time of rolling or plastic working, etc., and the chemical film can be formed with high accuracy, and the base material and chemical film are closely adhered. Can be made.

(化成処理工程)
上記前処理が施された処理板に化成処理を施し、表面に化成膜を形成する。化成処理の好ましい温度と時間は、33℃〜37℃、40s〜90sである。
(Chemical conversion treatment process)
A chemical conversion treatment is performed on the pretreated plate to form a chemical film on the surface. The preferable temperature and time of the chemical conversion treatment are 33 ° C. to 37 ° C. and 40 s to 90 s.

(樹脂成形体接合工程)
上記化成処理が施された化成膜上に、直接樹脂成形体を接合する。樹脂成形体を化成膜上に接合する方法として、例えば、化成膜が形成された基材を金型に配置して、その金型内に未硬化の樹脂を注入し、樹脂を固化させることで化成膜と樹脂成形体とを接合して一体化する射出成形が挙げられる。射出成形は、樹脂成形体の形状に自由度を持たせることが容易であり、量産性の面からも好ましい。
(Resin molded body joining process)
The resin molded body is directly bonded onto the chemical film that has been subjected to the chemical conversion treatment. As a method of joining the resin molded body onto the chemical film, for example, the base material on which the chemical film is formed is placed in a mold, an uncured resin is injected into the mold, and the resin is solidified. This includes injection molding in which the chemical film and the resin molded body are joined and integrated. Injection molding makes it easy to give flexibility to the shape of the resin molded body, and is preferable from the viewpoint of mass productivity.

<試験例>
上述した実施形態の製造方法により、基材の表面に形成された化成膜上に、直接接合された樹脂成形体を備えるマグネシウム合金部材を製造し、化成膜と樹脂成形体との接合強度及び接合度合を調べた。具体的試験条件を以下に示す。
<Test example>
According to the manufacturing method of the above-described embodiment, a magnesium alloy member including a resin molded body directly bonded onto the chemical film formed on the surface of the substrate is manufactured, and the bonding strength between the chemical film and the resin molded body is manufactured. And the joining degree was investigated. Specific test conditions are shown below.

[実施例1]
実施例1のマグネシウム合金部材は、鋳造→溶体化処理→圧延(温間)→研磨→化成処理→樹脂成形体接合、という工程により作製する。
[Example 1]
The magnesium alloy member of Example 1 is manufactured by a process of casting → solution treatment → rolling (warm) → polishing → chemical conversion treatment → resin molding joining.

まず、AZ91合金相当の組成(Mg-9.0%Al-1.0%Zn(全て質量%))を有するマグネシウム合金からなり、双ロール連続鋳造法により得られた鋳造板(厚さ4mm)を準備する。得られた鋳造板に、400℃×8時間の溶体化処理を施した。溶体化処理を施した固溶板に以下の圧延条件で、厚さが0.6mmになるまで複数回圧延を施した。
(圧延条件)
加工度(圧下率):5%/パス〜40%/パス
板の加熱温度:250℃〜280℃
ロール温度:100℃〜250℃
First, a cast plate (thickness 4 mm) made of a magnesium alloy having a composition equivalent to AZ91 alloy (Mg-9.0% Al-1.0% Zn (all mass%)) and obtained by a twin roll continuous casting method is prepared. The obtained cast plate was subjected to a solution treatment at 400 ° C. for 8 hours. The solid solution plate subjected to solution treatment was rolled a plurality of times under the following rolling conditions until the thickness became 0.6 mm.
(Rolling conditions)
Degree of processing (rolling rate): 5% / pass to 40% / pass Heating temperature of plate: 250 ° C to 280 ° C
Roll temperature: 100 ℃ ~ 250 ℃

ここで、圧延工程の各パスにおいて、圧延対象となる素材の加熱時間及び圧延速度(ロール周速)を調整することで、素材が270℃〜300℃の温度域に保持される総合計時間を4時間となるようにした。   Here, in each pass of the rolling process, by adjusting the heating time and rolling speed (roll peripheral speed) of the material to be rolled, the total time for which the material is maintained in the temperature range of 270 ° C. to 300 ° C. 4 hours.

得られた圧延板に、#400の研磨ベルトを用いて湿式ベルト式研磨を施して、圧延板の表面を研磨により平滑化して、研磨板(基材)を作製した。この基材を板厚方向に任意に切断して断面をとり、その断面を走査型電子顕微鏡:SEMで観察すると、平均粒径が0.02μm以上5μm以下であり、基材の断面を100面積%とするとき、2面積%以上15面積%以下の範囲で析出物が存在していた。   The obtained rolled plate was subjected to wet belt type polishing using a # 400 polishing belt, and the surface of the rolled plate was smoothed by polishing to prepare a polished plate (base material). This substrate is arbitrarily cut in the plate thickness direction to obtain a cross section. When the cross section is observed with a scanning electron microscope (SEM), the average particle size is 0.02 μm or more and 5 μm or less, and the cross section of the substrate is 100% by area. In this case, precipitates existed in the range of 2 area% or more and 15 area% or less.

得られた研磨板に、エッチング→脱スマットという手順で前処理を施し、その処理板に化成処理を施して化成膜を形成した。
エッチング:2.8%リン酸溶液の攪拌下、60℃、60秒
脱スマット:45%水酸化ナトリウム溶液攪拌下、60℃、600秒
化成処理:リン酸カルシウム系化成処理液中、処理温度35℃、浸漬時間60秒
The obtained polishing plate was pretreated by the procedure of etching → desmutting, and the treated plate was subjected to chemical conversion to form a chemical film.
Etching: 2.8% phosphoric acid solution under stirring, 60 ° C, 60 seconds Desmutting: 45% sodium hydroxide solution under stirring, 60 ° C, 600 seconds Chemical conversion treatment: Calcium phosphate-based chemical treatment solution, treatment temperature 35 ° C, immersion time 60 seconds

得られた基材表面上の化成膜の表面状態を図1(A)に示す。図1(A)は、化成膜の表面を走査型電子顕微鏡:SEM(200,000倍)で観察しており、薄い灰色(白色)の小さい粒状体が析出物であり、析出物が均一に分散されていることがわかる。   FIG. 1 (A) shows the surface state of the chemical film formation on the obtained substrate surface. Fig. 1 (A) shows the surface of the chemical film formed with a scanning electron microscope: SEM (200,000 times), and light gray (white) small particles are precipitates, and the precipitates are uniformly dispersed. You can see that

化成膜の膜厚は、0.2μmであった。この膜厚は、化成膜の膜厚方向に切断して断面をとり、SEMによる断面観察で測定した。このとき、析出物が介在していない箇所を3点選択して厚さを測定し、その平均値とした。   The film thickness of the chemical film formation was 0.2 μm. The film thickness was measured by observing a cross section with an SEM by cutting the cross section in the film thickness direction of the chemical film formation. At this time, three points where no precipitate was present were selected, the thickness was measured, and the average value was obtained.

得られた基材表面上の化成膜の表面粗さ及び表面積比を以下のように測定した。その結果を表1に示す。   The surface roughness and surface area ratio of the chemical film formation on the obtained substrate surface were measured as follows. The results are shown in Table 1.

〔表面粗さRz〕
表面粗さRzは、化成膜表面において、後述する樹脂成形体との接合予定箇所で、形状測定レーザマイクロスコープ(KEYENCE社製)を用いて測定した。その結果、表面粗さRzは、11.6μmであった。
[Surface roughness Rz]
The surface roughness Rz was measured by using a shape measurement laser microscope (manufactured by KEYENCE) at a planned bonding position with a resin molded body to be described later on the chemical film forming surface. As a result, the surface roughness Rz was 11.6 μm.

〔表面積比〕
表面積比は、化成膜表面において、後述する樹脂成形体との接合予定箇所で、測定領域の三次元形状の表面積を、形状測定レーザマイクロスコープ(KEYENCE社製)を用いて測定し、その測定領域の二次元面積で除して求めた。その結果、表面積比は、2.1であった。
[Surface area ratio]
The surface area ratio is measured by measuring the surface area of the three-dimensional shape of the measurement area at the location where the resin molded body, which will be described later, is to be bonded on the chemical film formation surface, using a shape measurement laser microscope (manufactured by KEYENCE) It was obtained by dividing by the two-dimensional area of the region. As a result, the surface area ratio was 2.1.

次に、得られた基材表面上の化成膜に直接樹脂成形体を射出成形によって接合した。樹脂形成体の形状は、以下の接合強度及び接合度合の測定で説明する。
(樹脂成形体接合条件)
樹脂:PPS:ポリフェニレンサルファイド(エラストマ改質タイプ、GF(ガラス繊維)40%配合)
樹脂温度:280℃
金型温度:160℃
射出圧:120MPa
Next, the resin molding was directly joined to the obtained chemical film on the substrate surface by injection molding. The shape of the resin formed body will be described in the following measurement of bonding strength and bonding degree.
(Resin molded body joining conditions)
Resin: PPS: Polyphenylene sulfide (Elastomer modified type, 40% GF (glass fiber) blended)
Resin temperature: 280 ℃
Mold temperature: 160 ℃
Injection pressure: 120MPa

〔接合強度〕
化成膜に接合された樹脂成形体の接合強度を測定した。その結果を表1に示す。ここでは、図2(A)に示すように、円柱状の樹脂成形体10を2つ用意し、樹脂成形体10の端面と基材2上の化成膜3とを接合し、マグネシウム合金部材1とした。化成膜3と2つの樹脂成形体10との接合面積は合計で52mm2であった。基材2を固定した状態で、矢印の方向に2つの樹脂成形体10を引張速度1mm/minで6回引張り、その平均値を樹脂成形体10の化成膜3に対する接合強度とした。その結果、接合強度は、0.82MPaであった。
[Joint strength]
The bonding strength of the resin molded body bonded to the chemical film formation was measured. The results are shown in Table 1. Here, as shown in FIG. 2 (A), two cylindrical resin molded bodies 10 are prepared, and the end surface of the resin molded body 10 and the chemical film 3 on the substrate 2 are joined together to form a magnesium alloy member. It was set to 1. The total bonding area between the chemical conversion film 3 and the two resin molded bodies 10 was 52 mm 2 . With the base material 2 fixed, the two resin molded bodies 10 were pulled six times at a tensile speed of 1 mm / min in the direction of the arrow, and the average value was defined as the bonding strength of the resin molded body 10 to the chemical film 3. As a result, the bonding strength was 0.82 MPa.

〔接合度合〕
化成膜に接合された樹脂成形体の接合度合を測定した。その結果を表1に示す。ここでは、図2(B)に示すように、]状の樹脂成形体11を2つ用意し、各樹脂成形体11の端面2面と基材2上の化成膜3とを接合し、マグネシウム合金部材1とした。]状の樹脂成形体11は、例えば、天板部と、天板部の両端部から立設される脚部とが一体成形されている。化成膜3と脚部との接合面積は合計30mm2であった。基材2を固定した状態で、樹脂成形体11の長さ方向と直交し、かつ基材2に平行な矢印の方向に樹脂成形体11を押圧し、同成形体11を押し倒すのに要した最大荷重を接合度合とした。各樹脂成形体11の押圧箇所は、天板部の長手方向中央で高さ8.5mmの位置であって、樹脂成形体11全体の高さに対して77%の位置である。その結果18.8Nであった。
[Degree of joining]
The degree of bonding of the resin molded body bonded to the chemical film formation was measured. The results are shown in Table 1. Here, as shown in FIG. 2 (B), two] resin molded bodies 11 are prepared, and the end face 2 surface of each resin molded body 11 and the chemical film 3 on the substrate 2 are joined, A magnesium alloy member 1 was obtained. ] -Shaped resin molded body 11 is formed by integrally molding, for example, a top plate portion and leg portions erected from both ends of the top plate portion. The total bonding area between the chemical conversion film 3 and the legs was 30 mm 2 . With the base material 2 fixed, it was necessary to press the resin molding body 11 in the direction of the arrow perpendicular to the length direction of the resin molding body 11 and parallel to the base material 2, and to push down the molding body 11. The maximum load was the degree of joining. The press location of each resin molded body 11 is a position having a height of 8.5 mm at the center in the longitudinal direction of the top plate portion, and is a position of 77% with respect to the height of the entire resin molded body 11. As a result, it was 18.8N.

[比較例1]
比較例1は、上記圧延工程後、得られた圧延板を、窒素中で400℃×8時間加熱し、析出物を再溶解させた点が実施例1と異なる。その他の鋳造工程、溶体化工程、圧延工程、前処理工程、化成処理工程、樹脂成形体接合工程は、実施例1と同様である。また、表面粗さRz及び表面積比の測定方法、接合強度及び接合度合の測定方法も実施例1と同様である。
[Comparative Example 1]
Comparative Example 1 differs from Example 1 in that after the rolling step, the obtained rolled plate was heated in nitrogen at 400 ° C. for 8 hours to re-dissolve the precipitate. Other casting processes, solution treatment processes, rolling processes, pretreatment processes, chemical conversion treatment processes, and resin molded body joining processes are the same as those in the first embodiment. Further, the method for measuring the surface roughness Rz and the surface area ratio and the method for measuring the bonding strength and the degree of bonding are the same as those in Example 1.

得られた基材表面上の化成膜の表面状態を図1(B)に示す。図1(B)において、薄い灰色(白色)の小さい粒状体が析出物であり、隣り合う析出物の間隔が、実施例1と比較して大きくなっていることがわかる。このとき、表面粗さRzは20.3μm、表面積比は1.6であり、接合強度は0.56MPa、接合度合は13.7Nであった(表1)。   FIG. 1B shows the surface state of the chemical film formation on the surface of the obtained substrate. In FIG. 1B, it can be seen that the light gray (white) small granular material is a precipitate, and the interval between adjacent precipitates is larger than that in Example 1. At this time, the surface roughness Rz was 20.3 μm, the surface area ratio was 1.6, the bonding strength was 0.56 MPa, and the bonding degree was 13.7 N (Table 1).

[比較例2]
比較例2は、上記圧延工程において、素材の加熱温度域を230℃〜260℃の温度域に保持する点と、研磨工程において、#600の研磨ベルトを用いた点とが、実施例1と異なる。その他の鋳造工程、溶体化工程、前処理工程、化成処理工程、樹脂成形体接合工程は、実施例1と同様である。また、表面粗さRz及び表面積比の測定方法、接合強度及び接合度合の測定方法も実施例1と同様である。
[Comparative Example 2]
In Comparative Example 2, in the rolling step, the heating temperature range of the material is maintained in a temperature range of 230 ° C. to 260 ° C., and the point that the # 600 polishing belt is used in the polishing step is the same as in Example 1. Different. Other casting steps, solution treatment steps, pretreatment steps, chemical conversion treatment steps, and resin molded body joining steps are the same as those in the first embodiment. Further, the method for measuring the surface roughness Rz and the surface area ratio and the method for measuring the bonding strength and the degree of bonding are the same as those in Example 1.

得られた基材表面上の化成膜の表面状態を図1(C)に示す。図1(C)において、薄い灰色(白色)の小さい粒状体が析出物であり、析出物の大きさが、実施例1と比較して小さくなっていることがわかる。このとき、表面粗さRzは8.9μm、表面積比は2.1であり、接合強度は0.67MPa、接合度合は8.7Nであった(表1)。   FIG. 1C shows the surface state of the chemical film formation on the surface of the obtained substrate. In FIG. 1C, it can be seen that the light gray (white) small granular material is a precipitate, and the size of the precipitate is smaller than that of Example 1. At this time, the surface roughness Rz was 8.9 μm, the surface area ratio was 2.1, the bonding strength was 0.67 MPa, and the bonding degree was 8.7 N (Table 1).

[比較例3]
比較例3は、化成処理ではなく、陽極酸化処理を施した点が実施例1と異なる。その他の鋳造工程、溶体化工程、圧延工程、前処理工程、樹脂成形体接合工程は、実施例1と同様である。また、表面粗さRz及び表面積比の測定方法、接合強度及び接合度合の測定方法も実施例1と同様である。
[Comparative Example 3]
Comparative Example 3 is different from Example 1 in that anodization was performed instead of chemical conversion. Other casting processes, solution treatment processes, rolling processes, pretreatment processes, and resin molded body joining processes are the same as those in the first embodiment. Further, the method for measuring the surface roughness Rz and the surface area ratio and the method for measuring the bonding strength and the degree of bonding are the same as those in Example 1.

得られた基材表面上の陽極酸化膜の表面状態を図1(D)(SEM(300,000倍))に示す。図1(D)において、黒い穴状体が存在していることがわかる。このとき、表面粗さRzは1.2μm、表面積比は1.5であった。比較例3では、溶体化処理によって形成された膜上に、樹脂成形体を接合することはできなかった。よって、接合強度は0.00MPa、接合度合は0.0Nであった(表1)。   The surface state of the anodic oxide film on the surface of the obtained substrate is shown in FIG. 1 (D) (SEM (300,000 times)). In FIG. 1 (D), it can be seen that black holes are present. At this time, the surface roughness Rz was 1.2 μm, and the surface area ratio was 1.5. In Comparative Example 3, the resin molded body could not be bonded onto the film formed by the solution treatment. Therefore, the bonding strength was 0.00 MPa and the bonding degree was 0.0 N (Table 1).

表1に示すように、表面粗さRzが10μm以上であり、かつ表面積比が2以上であることで、接合強度及び接合度合が大きく、化成膜と樹脂成形体とを強固に接合できることが分かる。   As shown in Table 1, when the surface roughness Rz is 10 μm or more and the surface area ratio is 2 or more, the bonding strength and the degree of bonding are large, and the chemical film can be firmly bonded to the resin molded body. I understand.

<実施形態2>
化成膜の表面粗さRz及び表面積比に影響する凹凸は、実施形態1では、基材中に形成された析出物に起因するものであったが、実施形態2では、基材中に無機材料を添加し、化成膜の表面に露出した無機材料に起因するものである。実施形態2は、基材の組成が実施形態1と異なる。化成膜及び樹脂成形体については実施形態1と同様である。以下、基材について詳細に説明する。
<Embodiment 2>
The unevenness affecting the surface roughness Rz and the surface area ratio of the chemical film formation was caused by precipitates formed in the base material in the first embodiment, but in the second embodiment, the unevenness in the base material was inorganic. This is due to the addition of the material and the inorganic material exposed on the surface of the chemical film formation. The second embodiment is different from the first embodiment in the composition of the substrate. The chemical film formation and the resin molded body are the same as those in the first embodiment. Hereinafter, the substrate will be described in detail.

(基材)
基材は、マグネシウム合金に無機材料が添加されている。無機材料は、SiCなどのセラミックスが代表的である。その他、Al2O3が挙げられる。無機材料は、体積分布中心粒径D50が、80nm以上であることが好ましい。体積分布中心粒径D50が80nm以上であれば、基材表面上の表面粗さを大きくすることができる。
(Base material)
The base material is an inorganic material added to a magnesium alloy. Inorganic materials are typically ceramics such as SiC. Other examples include Al 2 O 3 . The inorganic material preferably has a volume distribution center particle size D50 of 80 nm or more. When the volume distribution center particle diameter D50 is 80 nm or more, the surface roughness on the substrate surface can be increased.

無機材料は、基材中にほぼ均一に分散した状態であり、基材中の無機材料の含有量は、この基材を100体積%とするとき、10体積%以上とする。基材中の無機材料の含有量が多いほど、表面に無機材料が露出し易く、表面を粗面化し易い。   The inorganic material is in a substantially uniformly dispersed state in the base material, and the content of the inorganic material in the base material is 10% by volume or more when the base material is 100% by volume. The greater the content of the inorganic material in the base material, the easier it is to expose the inorganic material on the surface, and the easier it is to roughen the surface.

上記基材に化成膜を形成し、その化成膜に樹脂成形体を接合したマグネシウム合金部材の製造方法は、準備工程において、無機材料を混合したマグネシウム合金を連続鋳造した鋳造板を準備する点、溶体化工程を行わない点が実施形態1と異なる。その他、圧延工程以降の工程については、実施形態1と同様である。無機材料は、溶融したマグネシウム合金に混合する。   The manufacturing method of the magnesium alloy member which formed the chemical film on the said base material, and joined the resin molding to the chemical film formed in the preparatory process, and prepares the cast board which continuously cast the magnesium alloy which mixed the inorganic material The difference from Embodiment 1 is that the solution treatment step is not performed. Other steps after the rolling step are the same as in the first embodiment. The inorganic material is mixed into the molten magnesium alloy.

実施形態2のマグネシウム合金部材は、無機材料による凹凸によって、化成膜と樹脂成形体との接合面積を十分に確保し、両者を強固に接合することができる。   The magnesium alloy member of the second embodiment can sufficiently secure the bonding area between the chemical film formation and the resin molded body by the unevenness of the inorganic material, and can firmly bond both.

<実施形態3>
その他、実施形態1及び実施形態2のマグネシウム合金部材において、基材の少なくとも一部にプレス加工が施されたプレス加工部を有する形態を図3に基づいて説明する。基材にプレス加工が施されている点が実施形態1と異なり、その他の構成は実施形態1と同様である。
<Embodiment 3>
In addition, in the magnesium alloy member according to the first embodiment and the second embodiment, an embodiment having a press working part in which at least a part of the base material is subjected to press working will be described with reference to FIG. The point that the base material is subjected to press working is different from the first embodiment, and other configurations are the same as those of the first embodiment.

プレス加工部は、例えば、素材として実施形態1のマグネシウム合金部材の製造方法により得られた研磨板にプレス加工を施して製造することができる。ここでは、ノートパソコンの筐体で、底面の四隅近傍に補強用のリブとして樹脂成形体を接合した形態である。プレス加工を施して得られたプレス加工部20を有する基材2に化成処理を施し化成膜3を形成し、この化成膜3に樹脂成形体12を接合することで、本発明のマグネシウム合金部材1を得ることができる。プレス加工部は、例えば、天板部(底面部)と、天板部の周縁から立設される側壁部とを有する断面]状の箱体や]状の屈曲体等が挙げられ、形状及び大きさは特に問わない。   The press working part can be manufactured, for example, by subjecting a polishing plate obtained by the method for manufacturing a magnesium alloy member of Embodiment 1 as a raw material to press working. Here, it is a form in which a resin molded body is joined as reinforcing ribs in the vicinity of the four corners of the bottom surface of the casing of the notebook computer. The base material 2 having the press-worked portion 20 obtained by the press working is subjected to a chemical conversion treatment to form a chemical film 3, and the resin molded body 12 is joined to the chemical film 3 to thereby form the magnesium of the present invention. Alloy member 1 can be obtained. Examples of the press working part include a cross section having a top plate part (bottom surface part) and a side wall part erected from the periphery of the top plate part, a box-like bent body, and the like. The size is not particularly limited.

なお、上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、マグネシウム合金の組成(特にAlの含有量)、マグネシウム合金材の厚さや形状、化成膜の構成材料などを適宜変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, the composition of the magnesium alloy (particularly the Al content), the thickness and shape of the magnesium alloy material, the constituent materials for the chemical film formation, and the like can be changed as appropriate.

本発明マグネシウム合金部材は、携帯電話やノートパソコン等の携帯用電気・電子機器類の筐体や自動車部品等の各種の部材の構成材料に好適に利用することができる。   The magnesium alloy member of the present invention can be suitably used as a constituent material of various members such as a casing of a portable electric / electronic device such as a mobile phone or a notebook personal computer or an automobile part.

1 マグネシウム合金部材
2 基材 3 化成膜
10,11,12 樹脂成形体
20 プレス加工部
1 Magnesium alloy parts
2 Substrate 3 Film formation
10,11,12 Molded resin
20 Press working section

Claims (5)

Alを7.5質量%超含有するマグネシウム合金からなる基材と、
前記基材表面に形成された化成膜と、
前記化成膜に直接接合された樹脂成形体とを備え、
前記化成膜の表面粗さがRzで10μm以上、かつ表面積比が2以上であるマグネシウム合金部材。
A base material made of a magnesium alloy containing more than 7.5% by mass of Al,
A chemical film formed on the substrate surface;
A resin molded body directly bonded to the chemical film,
A magnesium alloy member having a surface roughness Rz of 10 μm or more and a surface area ratio of 2 or more.
前記化成膜は、リン酸化合物から構成されている請求項1に記載のマグネシウム合金部材。   2. The magnesium alloy member according to claim 1, wherein the chemical film formation is made of a phosphate compound. 前記化成膜は、膜厚が1μm以下である請求項1又は2に記載のマグネシウム合金部材。   3. The magnesium alloy member according to claim 1, wherein the chemical film formation has a film thickness of 1 μm or less. 前記マグネシウム合金は、Alを8.3質量%以上9.5質量%以下、Znを0.5質量%以上1.5質量%以下含有する請求項1〜3のいずれか一項に記載のマグネシウム合金部材。   The magnesium alloy member according to any one of claims 1 to 3, wherein the magnesium alloy contains Al in a range of 8.3 mass% to 9.5 mass% and Zn in a range of 0.5 mass% to 1.5 mass%. 前記基材の少なくとも一部にプレス加工が施されたプレス加工部を有する請求項1〜4のいずれか一項に記載のマグネシウム合金部材。   The magnesium alloy member according to any one of claims 1 to 4, further comprising a press-worked portion in which at least a part of the base material is press-worked.
JP2012175071A 2012-08-07 2012-08-07 Magnesium alloy parts Expired - Fee Related JP5725424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175071A JP5725424B2 (en) 2012-08-07 2012-08-07 Magnesium alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175071A JP5725424B2 (en) 2012-08-07 2012-08-07 Magnesium alloy parts

Publications (2)

Publication Number Publication Date
JP2014034687A true JP2014034687A (en) 2014-02-24
JP5725424B2 JP5725424B2 (en) 2015-05-27

Family

ID=50283865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175071A Expired - Fee Related JP5725424B2 (en) 2012-08-07 2012-08-07 Magnesium alloy parts

Country Status (1)

Country Link
JP (1) JP5725424B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047018A1 (en) * 2017-08-11 2019-02-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Component for a motor vehicle, and method for producing a coated component from a magnesium material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015337A (en) * 2005-07-11 2007-01-25 Sharp Corp Casing, electronic device and composite molding process
JP2009114504A (en) * 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same
JP2009120877A (en) * 2007-11-12 2009-06-04 Sumitomo Electric Ind Ltd Magnesium alloy member
JP2009249663A (en) * 2008-04-03 2009-10-29 Shingijutsu Kenkyusho:Kk Magnesium alloy article and magnesium alloy member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007015337A (en) * 2005-07-11 2007-01-25 Sharp Corp Casing, electronic device and composite molding process
JP2009114504A (en) * 2007-11-07 2009-05-28 Shingijutsu Kenkyusho:Kk Magnesium alloy article, magnesium alloy member, and method for manufacturing the same
JP2009120877A (en) * 2007-11-12 2009-06-04 Sumitomo Electric Ind Ltd Magnesium alloy member
JP2009249663A (en) * 2008-04-03 2009-10-29 Shingijutsu Kenkyusho:Kk Magnesium alloy article and magnesium alloy member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190047018A1 (en) * 2017-08-11 2019-02-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Component for a motor vehicle, and method for producing a coated component from a magnesium material
US10828670B2 (en) * 2017-08-11 2020-11-10 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Component for a motor vehicle, and method for producing a coated component from a magnesium material

Also Published As

Publication number Publication date
JP5725424B2 (en) 2015-05-27

Similar Documents

Publication Publication Date Title
JP5757105B2 (en) Magnesium alloy material and manufacturing method thereof
KR101324715B1 (en) A method for increasing formability of magnesium alloy sheet and magnesium alloy sheet prepared by the same method
JP5648885B2 (en) Magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy plate
JP5872256B2 (en) Aluminum alloy sheet for lithium ion battery sealing material and method for producing the same
JP2008024964A (en) High-strength aluminum alloy sheet and producing method therefor
JPWO2015146981A1 (en) Copper alloy sheet, connector, and method for producing copper alloy sheet
KR20100108370A (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP5757104B2 (en) Magnesium alloy material and manufacturing method thereof
JP2021532261A (en) Manufacturing method of aluminum alloy with high formability and its aluminum alloy products
KR102055962B1 (en) Magnesium alloy sheet and magnesium alloy structural member
JP2010077465A (en) Molded body of magnesium alloy
JP2011084818A (en) Magnesium-lithium alloy, rolled material, molding, and method for producing the same
JP5725424B2 (en) Magnesium alloy parts
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JP2004107743A (en) Magnesium alloy sheet and its manufacturing method
JP2017082281A (en) Small sized electronic device case, molding method thereof and aluminum alloy rolled laminate sheet material for small sized electronic device case
JP2011084800A (en) High purity aluminum rolled sheet and method for producing the rolled sheet
KR20150071215A (en) Magnesium alloys plate and method for manufacturing the same
KR20160036297A (en) Method for manufacturing magnesium alloy sheet and magnesium alloy sheet manufactured thereby
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JP2011125887A (en) Cast plate for magnesium alloy tip, and its manufacturing method
KR20100056635A (en) Cu-ti-based copper alloy sheet material and method of manufacturing same
WO2011071023A1 (en) Magnesium alloy member
KR101089790B1 (en) A method for manufacturing Al casting alloys for anodizing obtained by using Al cutting chip
JP2011122243A (en) Magnesium alloy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150319

R150 Certificate of patent or registration of utility model

Ref document number: 5725424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees