JP2014034557A - Synthetic method of anti-anthradichalcogenophene - Google Patents

Synthetic method of anti-anthradichalcogenophene Download PDF

Info

Publication number
JP2014034557A
JP2014034557A JP2012177435A JP2012177435A JP2014034557A JP 2014034557 A JP2014034557 A JP 2014034557A JP 2012177435 A JP2012177435 A JP 2012177435A JP 2012177435 A JP2012177435 A JP 2012177435A JP 2014034557 A JP2014034557 A JP 2014034557A
Authority
JP
Japan
Prior art keywords
formula
compound represented
bis
compound
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012177435A
Other languages
Japanese (ja)
Other versions
JP5888815B2 (en
Inventor
Kazuo Takimiya
和男 瀧宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2012177435A priority Critical patent/JP5888815B2/en
Priority to PCT/JP2013/070864 priority patent/WO2014024769A1/en
Priority to TW102128451A priority patent/TW201406703A/en
Publication of JP2014034557A publication Critical patent/JP2014034557A/en
Application granted granted Critical
Publication of JP5888815B2 publication Critical patent/JP5888815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D517/00Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms
    • C07D517/02Heterocyclic compounds containing in the condensed system at least one hetero ring having selenium, tellurium, or halogen atoms as ring hetero atoms in which the condensed system contains two hetero rings
    • C07D517/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide selective synthetic method of anti-anthradichalcogenophene.SOLUTION: A method includes a process of reacting a compound of the formula 1 and a halogenation agent to obtain a compound of the formula 2, a process of reacting the compound of the formula 2 and a dealkylating agent to obtain a compound of the formula 3, a process of reacting the compound of the formula 3 and an acetylation agent to obtain a compound of the formula 4, a process of reacting the compound of the formula 4 and a terminal acetylene compound to obtain a compound of the formula 5, and a process of reacting the compound of the formula 5 with a base to cause the cyclization and obtain a compound of the formula 6. In the formulae, Rrepresents an alkyl group, X represents a halogen, Ac represents an acetyl group, Rrepresents a trimethylsilyl group, a phenyl group or an alkyl group, and Rrepresents a hydrogen, a phenyl group or an alkyl group.

Description

本発明は、anti−アントラジカルコゲノフェンの合成方法に関する。   The present invention relates to a method for synthesizing an anti-ant radical cogenophene.

ベンゾジチオフェンやナフトジチオフェン、アントラジチオフェン等のアセンジカルコゲノフェン化合物は、有機半導体材料として有望視されている。これらアセンジカルコゲノフェンでは、anti体、syn体の異性体が存在する。ベンゾジチオフェンやナフトジチオフェンの異性体では半導体特性が異なり、syn体よりもanti体の方が高いキャリヤ移動度を示すことが知られている。   Acene dichalcogenophene compounds such as benzodithiophene, naphthodithiophene and anthradithiophene are promising as organic semiconductor materials. In these ascendichalcogenophenes, there are anti-isomers and syn-isomers. It is known that the isomers of benzodithiophene and naphthodithiophene have different semiconductor characteristics, and the anti isomer exhibits higher carrier mobility than the syn isomer.

また、薄膜トランジスタの材料として、アントラジカルコゲノフェンが開示されている(例えば、特許文献1、非特許文献1)。これらはsyn体とanti体の混合物であり、syn体とanti体が混在したアントラジチオフェンのキャリヤ移動度は0.09cm−1−1であったことが報じられている。 Further, as a material for the thin film transistor, anant radical cogenophene is disclosed (for example, Patent Document 1 and Non-Patent Document 1). These are a mixture of a syn isomer and an anti isomer, and it is reported that the carrier mobility of anthradithiophene mixed with a syn isomer and an anti isomer was 0.09 cm 2 V −1 s −1 .

特開平11−195790号公報JP-A-11-195790

Laquindanum J. G., Katz H. E., Lovinger A. J. ; J. Am. Chem. Soc. 1998, 120, 664-672Laquindanum J. G., Katz H. E., Lovinger A. J.; J. Am. Chem. Soc. 1998, 120, 664-672

特許文献1及び非特許文献1では、アントラジカルコゲノフェンのanti体及びsyn体の混合物が得られており、anti体のみを選択的に合成する方法は記載されていない。   In Patent Document 1 and Non-Patent Document 1, a mixture of an anti-body and syn-body of anant radical cogenophene is obtained, and a method for selectively synthesizing only an anti-body is not described.

本発明は上記事項に鑑みてなされたものであり、アントラジカルコゲノフェンのanti体を選択的に合成し得るanti−アントラジカルコゲノフェンの製造方法を提供することを目的とする。   This invention is made | formed in view of the said matter, and it aims at providing the manufacturing method of the anti-ant radical cogenophene which can selectively synthesize | combine the anti isomer of anant radical cogenophene.

本発明の第1の観点に係るanti−アントラジカルコゲノフェンの合成方法は、
式1で表される化合物とハロゲン化剤とを反応させて、式2で表される化合物を得る工程と、

Figure 2014034557
前記式2で表される化合物と脱アルキル化剤とを反応させて、式3で表される化合物を得る工程と、
Figure 2014034557
前記式3で表される化合物とアセチル化剤とを反応させて、式4で表される化合物を得る工程と、
Figure 2014034557
前記式4で表される化合物と末端アセチレン化合物とを反応させて、式5で表される化合物を得る工程と、
Figure 2014034557
前記式5で表される化合物に塩基を作用させて環化させ、式6で表される化合物を得る工程と、を含む、
Figure 2014034557
ことを特徴とする。
(式1及び式2中、Rはアルキル基を表し、式2〜式4中、Xはハロゲンを表し、式4及び式5中、Acはアセチル基を表し、式5中、Rはトリメチルシリル基、フェニル基、又はアルキル基、式6中、Rは水素、フェニル基又はアルキル基を表す。) The method for synthesizing the anti-ant radical cogenophene according to the first aspect of the present invention includes:
Reacting a compound represented by Formula 1 with a halogenating agent to obtain a compound represented by Formula 2;
Figure 2014034557
Reacting the compound represented by Formula 2 with a dealkylating agent to obtain a compound represented by Formula 3;
Figure 2014034557
Reacting the compound represented by Formula 3 with an acetylating agent to obtain a compound represented by Formula 4,
Figure 2014034557
Reacting the compound represented by Formula 4 with a terminal acetylene compound to obtain a compound represented by Formula 5;
Figure 2014034557
Cyclizing the compound represented by Formula 5 by allowing a base to act to obtain a compound represented by Formula 6;
Figure 2014034557
It is characterized by that.
(In Formula 1 and Formula 2, R 1 represents an alkyl group, in Formula 2 to Formula 4, X represents a halogen, in Formula 4 and Formula 5, Ac represents an acetyl group, and in Formula 5, R 2 represents trimethylsilyl group, a phenyl group, or an alkyl group, in the formula 6, R 3 is hydrogen, phenyl or an alkyl group.)

本発明の第2の観点に係るanti−アントラジカルコゲノフェンの合成方法は、
式11で表される化合物と硫黄化合物又はセレン化合物とを反応させて式12で表される化合物を得る工程と、

Figure 2014034557
前記式12で表される化合物と脱アルキル化剤とを反応させて式13で表される化合物を得る工程と、
Figure 2014034557
前記式13で表される化合物と無水トリフルオロメタンスルホン酸とを反応させて式14で表される化合物を得る工程と、
Figure 2014034557
前記式14で表される化合物と末端アセチレン化合物とを反応させて式15で表される化合物を得る工程と、
Figure 2014034557
前記式15で表される化合物をヨウ素で環化させて式16で表される化合物を得る工程と、を含む、
Figure 2014034557
ことを特徴とする。
(式11及び式12中、R11はアルキル基を表し、式12〜式15中、R12はアルキル基を表し、式12〜式16中、Yは硫黄又はセレンを表し、式14中、Tfはトリフルオロメタンスルフォニル基を表し、式15及び式16中、R13はトリメチルシリル基、フェニル基又はアルキル基を表す。) The method for synthesizing the anti-ant radical cogenophene according to the second aspect of the present invention is as follows.
Reacting a compound represented by Formula 11 with a sulfur compound or a selenium compound to obtain a compound represented by Formula 12;
Figure 2014034557
Reacting the compound represented by Formula 12 with a dealkylating agent to obtain a compound represented by Formula 13;
Figure 2014034557
Reacting the compound represented by Formula 13 with trifluoromethanesulfonic anhydride to obtain a compound represented by Formula 14;
Figure 2014034557
Reacting the compound represented by Formula 14 with a terminal acetylene compound to obtain a compound represented by Formula 15;
Figure 2014034557
Cyclizing the compound represented by Formula 15 with iodine to obtain a compound represented by Formula 16;
Figure 2014034557
It is characterized by that.
(In Formula 11 and Formula 12, R 11 represents an alkyl group, in Formula 12 to Formula 15, R 12 represents an alkyl group, in Formula 12 to Formula 16, Y represents sulfur or selenium, and in Formula 14, Tf represents a trifluoromethanesulfonyl group, and in formulas 15 and 16, R 13 represents a trimethylsilyl group, a phenyl group, or an alkyl group.)

また、前記R13がトリメチルシリル基である前記式16で表される化合物を得た後、還元して、アントラ[2,3−b:6,7−b’]ジチオフェン又はアントラ[2,3−b:6,7−b’]ジセレノフェンを得てもよい。 Further, after obtaining the compound represented by the formula 16 wherein R 13 is a trimethylsilyl group, the compound is reduced to anthra [2,3-b: 6,7-b ′] dithiophene or anthra [2,3- b: 6,7-b ′] diselenophene may be obtained.

また、前記R13がフェニル基である前記式16で表される化合物を得た後、還元して2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン又は2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンを得てもよい。 Further, after obtaining the compound represented by the formula 16 wherein R 13 is a phenyl group, the compound is reduced to 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene or 2, 8-Diphenylanthra [2,3-b: 6,7-b ′] diselenophene may be obtained.

本発明に係るanti−アントラジカルコゲノフェンの合成方法では、選択的にanti−アントラジカルコゲノフェンを合成することができる。   In the method for synthesizing an anti-ant radical cogenophene according to the present invention, an anti-ant radical cogenophene can be selectively synthesized.

FET素子ADTのトランジスタ特性を示すグラフであり、図1(A)が出力特性、図1(B)が伝達特性を示すグラフである。FIG. 1A is a graph showing transistor characteristics of an FET element ADT, FIG. 1A is a graph showing output characteristics, and FIG. 1B is a graph showing transfer characteristics. FET素子ADSのトランジスタ特性を示すグラフであり、図2(A)が出力特性、図2(B)が伝達特性を示すグラフである。FIG. 2A is a graph showing transistor characteristics of an FET element ADS, FIG. 2A is an output characteristic, and FIG. 2B is a graph showing transfer characteristics. FET素子DPh−ADFのトランジスタ特性を示すグラフであり、図3(A)が出力特性、図3(B)が伝達特性を示すグラフである。FIG. 3 is a graph showing transistor characteristics of the FET element DPh-ADF. FIG. 3A is a graph showing output characteristics, and FIG. 3B is a graph showing transfer characteristics. FET素子DPh−ADTのトランジスタ特性を示すグラフであり、図4(A)が出力特性、図4(B)が伝達特性を示すグラフである。FIG. 4A is a graph illustrating transistor characteristics of the FET element DPh-ADT, FIG. 4A is a graph illustrating output characteristics, and FIG. 4B is a graph illustrating transfer characteristics.

(実施の形態1)
実施の形態1に係るanti−アントラジカルコゲノフェンの合成方法は、anti−アントラジフランを合成する方法である。以下、段階的にanti−アントラジフランの合成について説明する。
(Embodiment 1)
The method for synthesizing the anti-ant radical cogenophene according to Embodiment 1 is a method for synthesizing anti-anthradifuran. Hereinafter, the synthesis of anti-anthradifuran will be described step by step.

まず、式1で表される化合物のハロゲン化を行う。式1中、Rはアルキル基を表し、アルキル基の炭素数は6以下であることが好ましく、メチル基であることがより好ましい。

Figure 2014034557
First, the compound represented by Formula 1 is halogenated. In Formula 1, R 1 represents an alkyl group, and the alkyl group preferably has 6 or less carbon atoms, and more preferably a methyl group.
Figure 2014034557

ハロゲン化剤と反応させることで、式1で表される2,6−ジアルコキシアントラセンのアルコキシ基が結合した炭素に隣接する3位及び7位の炭素にハロゲンが結合し、式2で表される化合物である2,6−ジアルコキシ−3,7−ジハロゲノアントラセンが得られる。なお、式2中、Rは上記と同義であり、Xはハロゲンを表す。

Figure 2014034557
By reacting with a halogenating agent, a halogen is bonded to the carbon at the 3rd and 7th positions adjacent to the carbon to which the alkoxy group of the 2,6-dialkoxyanthracene represented by Formula 1 is bonded. 2,6-dialkoxy-3,7-dihalogenoanthracene is obtained. In formula 2, R 1 has the same meaning as described above, and X represents halogen.
Figure 2014034557

ハロゲン化剤として、例えば、Cl、Br、I、ヘキサ−クロロエタン、1,2−ジクロロテトラフルオロエタン、トルエン−4−スルホニル・クロライド、1,2−ジブロモ−テトラクロロエタン、1,2−ジブロモテトラフルオロエタン、トルエン−4−スルホニル・ブロミド、2,3−ジメチル−2,3−ジブロモブタン、1,2−ジヨードテトラフルオロエタン、パーフルオロプロピル・ヨージド、パーフルオロエチル・ヨージド、トルエン−4−スルホニル・ヨージド及びパーフルオロメチル・ヨージド等が挙げられる。 Examples of the halogenating agent include Cl 2 , Br 2 , I 2 , hexa-chloroethane, 1,2-dichlorotetrafluoroethane, toluene-4-sulfonyl chloride, 1,2-dibromo-tetrachloroethane, 1,2- Dibromotetrafluoroethane, toluene-4-sulfonyl bromide, 2,3-dimethyl-2,3-dibromobutane, 1,2-diiodotetrafluoroethane, perfluoropropyl iodide, perfluoroethyl iodide, toluene- 4-sulfonyl iodide, perfluoromethyl iodide, etc. are mentioned.

また、上記の反応では、リチウム試薬で2,6−ジアルコキシアントラセンをリチウム化してから行うとよい。2,6−ジアルコキシアントラセンの3位及び7位の炭素に結合する水素が選択的にリチウムに置換され、これとハロゲン化剤が反応し、ハロゲン化が進行する。リチウム試薬として、n−BuLi、s−BuLi、t−BuLiなどの有機リチウム試薬が挙げられる。   The above reaction may be performed after lithiating 2,6-dialkoxyanthracene with a lithium reagent. Hydrogen bonded to the 3rd and 7th carbons of 2,6-dialkoxyanthracene is selectively substituted with lithium, and this reacts with the halogenating agent to proceed the halogenation. Examples of the lithium reagent include organic lithium reagents such as n-BuLi, s-BuLi, and t-BuLi.

なお、出発物質である2,6−ジアルコキシアントラセンは、「J. Mater. Chem. 2003, 13, 1622-1630」等に記載の合成方法を参照し得ることができる。   The starting material 2,6-dialkoxyanthracene can be referred to a synthesis method described in “J. Mater. Chem. 2003, 13, 1622-1630” or the like.

続いて、式2で表される化合物の脱アルキル化を行う。脱アルキル化剤と反応させることで、2,6−ジアルコキシ−3,7−ジハロゲノアントラセンのアルコキシ基が脱アルキル化されて水酸基になり、式3で表される2,6−ジハロゲノ−3,7−ジヒドロキシアントラセンが得られる。なお、式3中、Xは式2と同義である。

Figure 2014034557
Subsequently, dealkylation of the compound represented by Formula 2 is performed. By reacting with a dealkylating agent, the alkoxy group of 2,6-dialkoxy-3,7-dihalogenoanthracene is dealkylated to a hydroxyl group, and 2,6-dihalogeno-3 represented by Formula 3 , 7-dihydroxyanthracene is obtained. In Formula 3, X has the same meaning as Formula 2.
Figure 2014034557

脱アルキル化剤として、アルコキシ基の脱アルキル化が可能であれば限定されることはなく、例えば、三臭化ホウ素、三塩化ホウ素等のハロゲン化ホウ素、ナトリウムチオエーテラート、カリウムチオエーテラート等のアルカリ金属チオエーテラート(アルキルメルカプトアルカリ金属塩など)、トリメチルシリルアイオダイド等のアルキルシリルハライド、臭化水素と酢酸の混合液、その他硫酸などのプロトン酸、塩化アルミニウムなどのルイス酸など各種のものが挙げられる。   The dealkylating agent is not limited as long as the alkoxy group can be dealkylated. For example, boron halides such as boron tribromide and boron trichloride, sodium thioetherate, potassium thioetherate, etc. Alkali metal thioetherates (alkyl mercapto alkali metal salts, etc.), alkylsilyl halides such as trimethylsilyl iodide, mixed liquids of hydrogen bromide and acetic acid, other protic acids such as sulfuric acid, Lewis acids such as aluminum chloride, etc. It is done.

続いて、式3で表される化合物のアセチル化を行う。アセチル化剤として、無水酢酸、塩化アセチル、臭化アセチル等が挙げられる。   Subsequently, the compound represented by Formula 3 is acetylated. Examples of the acetylating agent include acetic anhydride, acetyl chloride, acetyl bromide and the like.

アセチル化剤と反応させることで、2,6−ジハロゲノ−3,7−ジヒドロキシアントラセンの水酸基がアセチル化されてアセトキシ基になり、式4で表される2,6−ジアセトキシ−3,7−ジハロゲノアントラセンが得られる。なお、式4中、Acはアセチル基を表し、Xは式2と同義である。

Figure 2014034557
By reacting with an acetylating agent, the hydroxyl group of 2,6-dihalogeno-3,7-dihydroxyanthracene is acetylated to an acetoxy group, and 2,6-diacetoxy-3,7-dia represented by formula 4 Halogenoanthracene is obtained. In Formula 4, Ac represents an acetyl group, and X has the same meaning as Formula 2.
Figure 2014034557

続いて、式4で表される化合物と末端アセチレン化合物とを反応させる。末端アセチレン化合物として、トリメチルシリルアセチレン、フェニルアセチレン、1−デシン等が挙げられる。なお、末端アセチレン化合物のアセチレン水素は、トリアルキルスズ、ホウ酸エステル、ハロゲン化亜鉛などの反応性置換基で置換されていても、同様に用いることができる。   Subsequently, the compound represented by Formula 4 is reacted with the terminal acetylene compound. Examples of the terminal acetylene compound include trimethylsilylacetylene, phenylacetylene, and 1-decyne. The acetylene hydrogen of the terminal acetylene compound can be used in the same manner even when it is substituted with a reactive substituent such as trialkyltin, borate ester, zinc halide or the like.

これにより、式5で表される2,6−ジアセトキシ−3,7−ジエチニルアセチレン誘導体が得られる。なお、式5中、Rはトリメチルシリル基、フェニル基又はアルキル基を表し、Acは式4と同義である。

Figure 2014034557
Thereby, a 2,6-diacetoxy-3,7-diethynylacetylene derivative represented by the formula 5 is obtained. In Formula 5, R 2 represents a trimethylsilyl group, a phenyl group or an alkyl group, and Ac has the same meaning as in Formula 4.
Figure 2014034557

上記の反応は、DMFなどの溶媒にジハロゲノ−ジアセトキシアントラセンを溶解させ、トリエチルアミン等の塩基、Pd(PPhCl等のパラジウム触媒、CuI等の銅触媒を介在させて行うとよい。 The above reaction is preferably carried out by dissolving dihalogeno-diacetoxyanthracene in a solvent such as DMF and a base such as triethylamine, a palladium catalyst such as Pd (PPh 3 ) 2 Cl 2 and a copper catalyst such as CuI.

そして、式5で表される化合物に塩基を作用させる。塩基として、例えば、炭酸セシウム等が挙げられる。   Then, a base is allowed to act on the compound represented by Formula 5. Examples of the base include cesium carbonate.

これにより、式5で表される化合物で分子内環化反応が起こり、フラン環が形成され、式6で表される直線構造のanti−アントラジフランが得られる。なお、式6中、Rは水素、フェニル基又はアルキル基を表す。

Figure 2014034557
Thereby, an intramolecular cyclization reaction occurs in the compound represented by Formula 5 to form a furan ring, and an anti-anthradifuran having a linear structure represented by Formula 6 is obtained. In formula 6, R 3 represents hydrogen, a phenyl group or an alkyl group.
Figure 2014034557

なお、用いた末端アセチレン化合物に応じたanti−アントラジフランが得られる。例えば、末端アセチレン化合物としてトリメチルシリルアセチレンを用いた場合、アントラ[2,3−b:6,7−b’]ジフランが得られる。また、末端アセチレン化合物としてフェニルアセチレンを用いた場合、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジフランが得られる。また、末端アセチレン化合物として1−デシンを用いた場合、2,8−ジオクチルアントラ[2,3−b:6,7−b’]ジフランが得られる。   In addition, anti-anthradifuran according to the terminal acetylene compound used is obtained. For example, when trimethylsilylacetylene is used as the terminal acetylene compound, anthra [2,3-b: 6,7-b ′] difuran is obtained. In addition, when phenylacetylene is used as the terminal acetylene compound, 2,8-diphenylanthra [2,3-b: 6,7-b ′] difuran is obtained. In addition, when 1-decyne is used as the terminal acetylene compound, 2,8-dioctylanthra [2,3-b: 6,7-b ′] difuran is obtained.

なお、上記の各工程においては、適宜溶媒や触媒等を用いて反応させるとよい。   In each of the above steps, a reaction may be appropriately performed using a solvent, a catalyst, or the like.

(実施の形態2)
実施の形態2に係るanti−アントラジカルコゲノフェンの合成方法は、anti−アントラジチオフェン又はanti−アントラジセレノフェンを合成する方法である。
(Embodiment 2)
The method for synthesizing anti-ant radical kogenophene according to Embodiment 2 is a method for synthesizing anti-anthradithiophene or anti-anthradiselenophene.

まず、式11で表される化合物と硫黄化合物又はセレン化合物とを反応させる。なお、式11中、R11はアルキル基を表し、炭素数が6以下であることが好ましく、メチル基であることがより好ましい。

Figure 2014034557
First, the compound represented by Formula 11 is reacted with a sulfur compound or selenium compound. In Formula 11, R 11 represents an alkyl group, preferably having 6 or less carbon atoms, and more preferably a methyl group.
Figure 2014034557

硫黄化化合物として、アルキルチオ基を有する有機硫黄化合物が用いられ、例えば、ジメチルジスルフィド、ジエチルジスルフィド等のジアルキルジスルフィドが好適に用いられる。また、硫黄化合物として単体硫黄を、アルキル化剤としてはヨードメタン等のハロゲン化アルキルを用いてアルキルチオ化してもよい。   As the sulfur compound, an organic sulfur compound having an alkylthio group is used. For example, dialkyl disulfides such as dimethyl disulfide and diethyl disulfide are preferably used. Alternatively, simple sulfur may be used as the sulfur compound, and alkylthiolation may be performed using an alkyl halide such as iodomethane as the alkylating agent.

また、セレン化合物として、単体セレンを用いることができ、この場合、アルキル化剤として、ヨードメタン等のハロゲン化アルキルを用いるとよい。また、アルキルセレノ基を有する有機セレン化合物を用いてもよい。   In addition, single selenium can be used as the selenium compound. In this case, an alkyl halide such as iodomethane is preferably used as the alkylating agent. Alternatively, an organic selenium compound having an alkylseleno group may be used.

これにより、2,6−ジアルコキシアントラセンのアルコキシ基が結合した炭素に隣接する3位及び7位の炭素に選択的にアルキルチオ基又はアルキルセレノ基が結合し、式12で表される化合物である2,6−ジアルコキシ−3,7−ビス(アルキルチオ)アントラセン又は2,6−ジアルコキシ−3,7−ビス(アルキルセレノ)アントラセンが得られる。なお、式12中、R11は式11と同義であり、R12はアルキル基を表し、Yは硫黄又はセレンを表す。

Figure 2014034557
Thereby, an alkylthio group or an alkylseleno group is selectively bonded to the 3-position and 7-position carbons adjacent to the carbon to which the alkoxy group of 2,6-dialkoxyanthracene is bonded, and the compound is represented by Formula 12. 2,6-dialkoxy-3,7-bis (alkylthio) anthracene or 2,6-dialkoxy-3,7-bis (alkylseleno) anthracene is obtained. In Formula 12, R 11 has the same meaning as Formula 11, R 12 represents an alkyl group, and Y represents sulfur or selenium.
Figure 2014034557

なお、リチウム試薬で2,6−ジアルコキシアントラセンをリチウム化してから行うとよい。2,6−ジアルコキシアントラセンの3位及び7位の炭素に結合する水素が選択的にリチウムに置換され、アルキルチオ化又はアルキルセレノ化が進行する。リチウム試薬として、n−BuLi、s−BuLi、t−BuLiなどの有機リチウム試薬が挙げられる。   Note that it is preferable to lithiate 2,6-dialkoxyanthracene with a lithium reagent. Hydrogen bonded to the 3-position and 7-position carbons of 2,6-dialkoxyanthracene is selectively substituted with lithium, and alkylthiolation or alkylselenation proceeds. Examples of the lithium reagent include organic lithium reagents such as n-BuLi, s-BuLi, and t-BuLi.

なお、出発物質である2,6−ジアルコキシアントラセンは、実施の形態1と同様にして合成し用いられる。   The starting material 2,6-dialkoxyanthracene is synthesized and used in the same manner as in Embodiment 1.

続いて、2,6−ジアルコキシ−3,7−ビス(アルキルチオ)アントラセンと脱アルキル化剤とを反応させる。アルコキシ基が選択的に脱アルキル化されて水酸基になり、式13で表される2,6−ヒドロキシ−3,7−ビス(アルキルチオ)アントラセン又は2,6−ジヒドロキシ−3,7−ビス(アルキルセレノ)アントラセンが得られる。なお、式13中、R12及びYは式12と同義である。

Figure 2014034557
Subsequently, 2,6-dialkoxy-3,7-bis (alkylthio) anthracene and a dealkylating agent are reacted. The alkoxy group is selectively dealkylated to a hydroxyl group, and 2,6-hydroxy-3,7-bis (alkylthio) anthracene or 2,6-dihydroxy-3,7-bis (alkyl) represented by formula 13 Seleno) anthracene is obtained. In Formula 13, R 12 and Y are synonymous with Formula 12.
Figure 2014034557

脱アルキル化剤として、上述の実施の形態1で例示した脱アルキル化剤を用い得る。   As the dealkylating agent, the dealkylating agent exemplified in Embodiment 1 above can be used.

続いて、式13で表される化合物と無水トリフルオロメタンスルホン酸とを反応させる。水酸基がトリフルオロメタンスルフォニル基に置換され、式14で表される2,6−ビス(アルキルチオ)−3,7−ビス(トリフルオロメタンスルフォニル)アントラセンが得られる。なお、式14中、R12及びYは式12と同義であり、Tfはトリフルオロメタンスルフォニル基を表す。

Figure 2014034557
Subsequently, the compound represented by Formula 13 is reacted with trifluoromethanesulfonic anhydride. The hydroxyl group is substituted with a trifluoromethanesulfonyl group, and 2,6-bis (alkylthio) -3,7-bis (trifluoromethanesulfonyl) anthracene represented by the formula 14 is obtained. In Formula 14, R 12 and Y have the same meanings as in Formula 12, and Tf represents a trifluoromethanesulfonyl group.
Figure 2014034557

続いて、式14で表される化合物と末端アセチレン化合物とを反応させる。末端アセチレン化合物として、実施の形態1にて例示した末端アセチレン化合物等が用いられ得る。   Subsequently, the compound represented by Formula 14 is reacted with the terminal acetylene compound. As the terminal acetylene compound, the terminal acetylene compound exemplified in Embodiment 1 may be used.

これにより、式15で表される2,6−ビス(アルキルチオ)−3,7−ジエチニルアントラセン誘導体又は2,6−ビス(アルキルセレノ)−3,7−ジエチニルアントラセン誘導体が得られる。なお、式15中、R12及びYは式12と同義であり、R13はトリメチルシリル基、フェニル基又はアルキル基を表す。

Figure 2014034557
Thereby, the 2,6-bis (alkylthio) -3,7-diethynylanthracene derivative or the 2,6-bis (alkylseleno) -3,7-diethynylanthracene derivative represented by the formula 15 is obtained. In Formula 15, R 12 and Y have the same meaning as in Formula 12, and R 13 represents a trimethylsilyl group, a phenyl group, or an alkyl group.
Figure 2014034557

続いて、式15で表される化合物にヨウ素を作用させ環化させる(ヨウ素環化反応)。これにより、分子内環化反応が起こり、式16で表される直線構造のanti−アントラジチオフェン又はanti−アントラジセレノフェンが得られる。なお、式16中、R13は式15と同義であり、Yは式12と同義である。

Figure 2014034557
Subsequently, iodine is allowed to act on the compound represented by Formula 15 to cause cyclization (iodine cyclization reaction). Thereby, an intramolecular cyclization reaction occurs, and anti-anthradithiophene or anti-anthradiselenophene having a linear structure represented by Formula 16 is obtained. In Formula 16, R 13 has the same meaning as Formula 15, and Y has the same meaning as Formula 12.
Figure 2014034557

なお、末端アセチレン化合物としてトリメチルシリルアセチレンを用いた場合、2,6−ビス(アルキルチオ)−3,7−ビス(トリメチルシリルエチニル)アントラセン誘導体又は2,6−ビス(アルキルセレノ)−3,7−ビス(トリメチルシリルエチニル)アントラセン誘導体が得られる。これをヨウ素で環化させると、3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェン又は3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジセレノフェンが得られる。そして、これを還元し、ヨウ素及びトリメチルシリル基が脱離し、アントラ[2,3−b:7,8−b’]ジチオフェン又はアントラ[2,3−b:7,8−b’]ジセレノフェンを得ることができる。還元には、例えば、水酸化ナトリウム(NaOH)、フッ化テトラ−n−ブチルアンモニウム(TBAF)、水素化ホウ素ナトリウム(NaBH)、水素化アルミリチウム(LiAlH)など、公知の還元剤が用いられる。 Note that when trimethylsilylacetylene is used as the terminal acetylene compound, a 2,6-bis (alkylthio) -3,7-bis (trimethylsilylethynyl) anthracene derivative or a 2,6-bis (alkylseleno) -3,7-bis ( A trimethylsilylethynyl) anthracene derivative is obtained. When this is cyclized with iodine, 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene or 3,9-diiodo-2,8- Bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] diselenophene is obtained. And this is reduced, iodine and trimethylsilyl groups are eliminated, and anthra [2,3-b: 7,8-b ′] dithiophene or anthra [2,3-b: 7,8-b ′] diselenophene is obtained. be able to. For the reduction, for example, a known reducing agent such as sodium hydroxide (NaOH), tetra-n-butylammonium fluoride (TBAF), sodium borohydride (NaBH 4 ), lithium aluminum hydride (LiAlH 4 ) or the like is used. It is done.

また、3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェン又は3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジセレノフェンをフェニルボロン酸(PhB(OH))等で処理すると、3,9−ジフェニルアントラ[2,3−b:7,8−b’]ジチオフェン又は3,9−ジフェニルアントラ[2,3−b:7,8−b’]ジセレノフェンを得ることができる。 In addition, 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene or 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2 , 3-b: 7,8-b ′] diselenophene is treated with phenylboronic acid (PhB (OH) 2 ) or the like to give 3,9-diphenylanthra [2,3-b: 7,8-b ′] dithiophene. Alternatively, 3,9-diphenylanthra [2,3-b: 7,8-b ′] diselenophene can be obtained.

また、末端アセチレン化合物としてフェニルアセチレンを用いた場合、2,6−ビス(アルキルチオ)−3,7−ビス(フェニルエチニル)アントラセン誘導体又は2,6−ビス(アルキルセレノ)−3,7−ビス(フェニルエチニル)アントラセン誘導体が得られ、これをヨウ素で環化させると、3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:7,8−b’]ジチオフェン又は3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:7,8−b’]ジセレノフェンが得られる。そして、これを上述した水素化ホウ素ナトリウム等の還元剤で処理すると、2,8−ジフェニルアントラ[2,3−b:7,8−b’]ジチオフェン又は2,8−ジフェニルアントラ[2,3−b:7,8−b’]ジセレノフェンを得ることができる。   Further, when phenylacetylene is used as the terminal acetylene compound, a 2,6-bis (alkylthio) -3,7-bis (phenylethynyl) anthracene derivative or a 2,6-bis (alkylseleno) -3,7-bis ( A phenylethynyl) anthracene derivative, which is cyclized with iodine to give 3,9-diiodo-2,8-diphenylanthra [2,3-b: 7,8-b ′] dithiophene or 3,9- Diiodo-2,8-diphenylanthra [2,3-b: 7,8-b ′] diselenophene is obtained. When this is treated with a reducing agent such as sodium borohydride as described above, 2,8-diphenylanthra [2,3-b: 7,8-b ′] dithiophene or 2,8-diphenylanthra [2,3 -B: 7,8-b '] diselenophene can be obtained.

なお、上記の各工程においては、適宜溶媒や反応促進触媒を用いて反応させるとよい。   In addition, in each said process, it is good to make it react using a solvent and a reaction promotion catalyst suitably.

上述した合成方法によって、アントラジカルコゲノフェンのanti体を選択的に合成することができる。アントラジカルコゲノフェンのanti体は、syn体に比べて、キャリヤ移動度に優れるなど、良好な半導体特性を示す。したがって、優れた有機半導体材料の合成方法として有用である。   By the synthesis method described above, it is possible to selectively synthesize the anti isomer of anthradical cogenophene. The anti-body of anant radical kogenophene exhibits good semiconductor properties such as superior carrier mobility compared to the syn-body. Therefore, it is useful as a method for synthesizing an excellent organic semiconductor material.

以下、実施例に基づき、アンチアントラジカルコゲノフェンの合成例について詳細に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, although the synthesis example of an antiant radical cogenophene is demonstrated in detail based on an Example, this invention is not limited to a following example.

(一般事項)
使用した全ての化合物及び溶媒は、特に明記しない限り、試薬等級を用いた。テトラヒドロフラン(THF)、トリエチルアミン、N,N−ジメチルホルムアミド(DMF)及びジクロロメタンは、標準的な蒸留手順に従い精製した後に使用した。2,6−ジメトキシアントラセンは、「J.Mater.Chem.2003,13,1622-1630」を参照して合成し使用した。また、言及しない限り、すべての反応は窒素空気下で行った。また、化合物の構造は、H NMR(H核磁気共鳴スペクトル)、13C NMR(13C核磁気共鳴スペクトル)、EIMS(質量分析スペクトル)により決定した。
(General information)
All compounds and solvents used were reagent grade unless otherwise stated. Tetrahydrofuran (THF), triethylamine, N, N-dimethylformamide (DMF) and dichloromethane were used after purification according to standard distillation procedures. 2,6-Dimethoxyanthracene was synthesized and used with reference to “J. Mater. Chem. 2003, 13, 1622-1630”. Also, unless otherwise noted, all reactions were performed under nitrogen air. The structure of the compound was determined by 1 H NMR ( 1 H nuclear magnetic resonance spectrum), 13 C NMR ( 13 C nuclear magnetic resonance spectrum), and EIMS (mass spectrometry spectrum).

(アントラ[2,3−b:6,7−b’]ジフランの合成)
以下のように、アントラ[2,3−b:6,7−b’]ジフランを段階的に合成した。
(Synthesis of anthra [2,3-b: 6,7-b ′] difuran)
Anthra [2,3-b: 6,7-b ′] difuran was synthesized stepwise as follows.

まず、以下の反応式に示すように、2,6−ジブロモ−3,7−ジメトキシアントラセンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 2,6-dibromo-3,7-dimethoxyanthracene was synthesized.
Figure 2014034557

THF(2.0L)に2,6−ジメトキシアントラセン(12g,50mmol)を加えた懸濁液に、n−BuLiのヘキサン溶液(1.67M)(140mL,234mmol)を0℃で加えた。
これを、室温で1時間撹拌した後、1,2−ジブロモ−1,1,2,2−テトラクロロエタン(100g,307mmol)を0℃で加え、これを室温で12時間撹拌した。
この反応溶液を飽和塩化アンモニウム水溶液(200mL)に注ぎ、そして、有機相を蒸発させて除去した。
生成した沈殿物を濾取し、水、メタノール、少量のクロロホルムで洗浄し、減圧乾燥して2,6−ジブロモ−3,7−ジメトキシアントラセン(20.0g,quantitative yield)を淡緑色固体として得た。
To a suspension of 2,6-dimethoxyanthracene (12 g, 50 mmol) in THF (2.0 L), a hexane solution of n-BuLi (1.67 M) (140 mL, 234 mmol) was added at 0 ° C.
After stirring at room temperature for 1 hour, 1,2-dibromo-1,1,2,2-tetrachloroethane (100 g, 307 mmol) was added at 0 ° C., and this was stirred at room temperature for 12 hours.
The reaction solution was poured into saturated aqueous ammonium chloride (200 mL) and the organic phase was removed by evaporation.
The resulting precipitate was collected by filtration, washed with water, methanol, a small amount of chloroform, and dried under reduced pressure to obtain 2,6-dibromo-3,7-dimethoxyanthracene (20.0 g, quantitative yield) as a pale green solid. It was.

得られた2,6−ジブロモ−3,7−ジメトキシアントラセンの測定結果を以下に示す。
Mp 282-283 ℃;
1H NMR (400 MHz, CDCl3) δ 8.18 (s, 2H), 8.12 (s, 2H), 7.21 (s, 2H), 4.04 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 176.0, 132.7, 124.0, 1120.9, 115.0, 105.8, 90.1, 56.9;
EI-MS (70 eV) m/z = 394 (M+); HRMS: Calcd for C16H12Br2O2: 394.92768,[MH+]. Found: 394.92789.
The measurement results of the obtained 2,6-dibromo-3,7-dimethoxyanthracene are shown below.
Mp 282-283 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (s, 2H), 8.12 (s, 2H), 7.21 (s, 2H), 4.04 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 176.0, 132.7, 124.0, 1120.9, 115.0, 105.8, 90.1, 56.9;
EI-MS (70 eV) m / z = 394 (M + ); HRMS: Calcd for C 16 H 12 Br 2 O 2 : 394.92768, [MH + ]. Found: 394.92789.

続いて、以下の反応式に示すように、3,7−ジブロモアントラセン−2,6−ジオールを合成した。

Figure 2014034557
Subsequently, 3,7-dibromoanthracene-2,6-diol was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(700mL)に2,6−ジブロモ−3,7−ジメトキシアントラセン(25g、63mmol)を溶解させた溶液に、BBrのジクロロメタン溶液(ca.4M,50mL,100mmol)を0℃で滴下した。
12時間還流した後、0℃で氷を加えた。有機相を蒸発させて除去し、生成した沈殿物を濾取し、水とメタノールで洗浄した。
減圧乾燥して3,7−ジブロモアントラセン−2,6−ジオール(23.2g,quantitative yield)を淡緑色固体として得た。
To a solution of 2,6-dibromo-3,7-dimethoxyanthracene (25 g, 63 mmol) dissolved in dichloromethane (700 mL), a dichloromethane solution of BBr 3 (ca.4M, 50 mL, 100 mmol) was added dropwise at 0 ° C.
After refluxing for 12 hours, ice was added at 0 ° C. The organic phase was removed by evaporation and the resulting precipitate was collected by filtration and washed with water and methanol.
Drying under reduced pressure gave 3,7-dibromoanthracene-2,6-diol (23.2 g, quantitative yield) as a pale green solid.

得られた3,7−ジブロモアントラセン−2,6−ジオールの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, DMSO-d6) δ 10.61 (s, 2H), 8.27 (s, 2H), 8.20 (s, 2H), 7.31 (s, 2H); 13C NMR (100 MHz, DMSO-d6) δ 150.2, 131.4, 129.9, 128.2, 122.3, 114.8, 107.8; IR (KBr) ν= 3359 cm-1 (OH);
EI-MS (70 eV) m/z = 366 (M+); HRMS: Calcd for C14H9Br2O2: 366.89638,[MH+]. Found: 366.89654.
The measurement result of the obtained 3,7-dibromoanthracene-2,6-diol is shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, DMSO-d 6 ) δ 10.61 (s, 2H), 8.27 (s, 2H), 8.20 (s, 2H), 7.31 (s, 2H); 13 C NMR (100 MHz, DMSO- d 6 ) δ 150.2, 131.4, 129.9, 128.2, 122.3, 114.8, 107.8; IR (KBr) ν = 3359 cm -1 (OH);
EI-MS (70 eV) m / z = 366 (M + ); HRMS: Calcd for C 14 H 9 Br 2 O 2 : 366.89638, [MH + ]. Found: 366.89654.

続いて、以下の反応式に示すように、2,6−ジアセトキシ−3,7−ジブロモアントラセンを合成した。

Figure 2014034557
Subsequently, 2,6-diacetoxy-3,7-dibromoanthracene was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(400mL)に3,7−ジブロモアントラセン−2,6−ジオール(5.0g、14mmol)とトリエチルアミン(15mL、107mmol)を加えた懸濁液に無水酢酸(3.4mL、36mmol)を0℃で加えた。
室温で7時間撹拌した後、水(100mL)と塩酸(4M、100mL)で希釈した。
有機相を蒸発させて除去し、生成した沈殿物を濾取し、水と少量のクロロホルムで洗浄し、減圧乾燥して2,6−ジアセトキシ−3,7−ジブロモアントラセンを白色固体として得た。
Acetic anhydride (3.4 mL, 36 mmol) was added to a suspension of 3,7-dibromoanthracene-2,6-diol (5.0 g, 14 mmol) and triethylamine (15 mL, 107 mmol) in dichloromethane (400 mL) at 0 ° C. Added in.
After stirring at room temperature for 7 hours, it was diluted with water (100 mL) and hydrochloric acid (4M, 100 mL).
The organic phase was removed by evaporation, and the resulting precipitate was collected by filtration, washed with water and a small amount of chloroform, and dried under reduced pressure to give 2,6-diacetoxy-3,7-dibromoanthracene as a white solid.

得られた2,6−ジアセトキシ−3,7−ジブロモアントラセンの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, CDCl3) δ 8.26 (s, 2H), 8.25 (s, 2H), 7.75 (s, 2H), 2.45 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 168.6 145.6, 132.6, 131.0, 130.9, 125.5, 120.6, 116.7, 20.8; IR (KBr) ν = 1763 cm-1 (C=O);
EI-MS (70 eV) m/z = 450 (M+). HRMS: Calcd for C18H12Br2O4: 472.89946, [MNa+]. Found: 472.89948.
The measurement results of the obtained 2,6-diacetoxy-3,7-dibromoanthracene are shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.26 (s, 2H), 8.25 (s, 2H), 7.75 (s, 2H), 2.45 (s, 2H); 13 C NMR (100 MHz, CDCl 3 ) δ 168.6 145.6, 132.6, 131.0, 130.9, 125.5, 120.6, 116.7, 20.8; IR (KBr) ν = 1763 cm -1 (C = O);
EI-MS (70 eV) m / z = 450 (M + ). HRMS: Calcd for C 18 H 12 Br 2 O 4 : 472.89946, [MNa + ]. Found: 472.89948.

続いて、以下の反応式に示すように、2,6−ジアセトキシ−3,7−ビス(トリメチルシリルエチニル)アントラセンを合成した。

Figure 2014034557
Subsequently, 2,6-diacetoxy-3,7-bis (trimethylsilylethynyl) anthracene was synthesized as shown in the following reaction formula.
Figure 2014034557

トリエチルアミン(20mL)とDMF(20mL)に2,6−ビス(アセトキシ)−3,7−ジブロモアントラセン(1.8g,4.0mmol)を溶解させ脱気した溶液に、トリメチルシリルアセチレン(1.2mL,9.6mmol)、Pd(PPhCl(200mg,0.004mmol,1.0mol%)、CuI(100mg、0.01mmol、2.5mol%)を加えた。
60℃で12時間撹拌した後に、この混合溶液を水(10mL)と塩酸(4M、20mL)で希釈した。
生成した沈殿物を濾取し、水で洗浄した。そして、シリカゲルカラムクロマトグラフィー(Rf=1.0,クロロホルム)で分離精製し、2,6−ジアセトキシ−3,7−ビス(トリメチルシリルエチニル)アントラセン(1.6g、84%)を黄色固体として得た。
To a degassed solution of 2,6-bis (acetoxy) -3,7-dibromoanthracene (1.8 g, 4.0 mmol) in triethylamine (20 mL) and DMF (20 mL) was added trimethylsilylacetylene (1.2 mL, 9.6 mmol), Pd (PPh 3 ) 2 Cl 2 (200 mg, 0.004 mmol, 1.0 mol%), CuI (100 mg, 0.01 mmol, 2.5 mol%) were added.
After stirring at 60 ° C. for 12 hours, the mixed solution was diluted with water (10 mL) and hydrochloric acid (4M, 20 mL).
The formed precipitate was collected by filtration and washed with water. Then, separation and purification by silica gel column chromatography (Rf = 1.0, chloroform) gave 2,6-diacetoxy-3,7-bis (trimethylsilylethynyl) anthracene (1.6 g, 84%) as a yellow solid. .

得られた2,6−ジアセトキシ−3,7−ビス(トリメチルシリルエチニル)アントラセンの測定結果を以下に示す。
Mp 232-233 ℃;
1H NMR (400 MHz, CDCl3) δ 8.26 (s, 2H), 8.18 (s, 2H), 7.65 (s, 2H), 2.40 (s, 6H), 0.30 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 169.5, 147.9, 134.6, 131.4, 130.4, 126.5, 119.4, 117.8, 100.8, 100.4, 21.2, 0.24; IR (KBr) ν = 1774 cm-1 (C=O);
EI-MS (70 eV) m/z = 486 (M+). HRMS: Calcd for C28H30O4Si2: 487.17554, [M+]. Found: 487.17480.
The measurement results of the obtained 2,6-diacetoxy-3,7-bis (trimethylsilylethynyl) anthracene are shown below.
Mp 232-233 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.26 (s, 2H), 8.18 (s, 2H), 7.65 (s, 2H), 2.40 (s, 6H), 0.30 (s, 18H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 169.5, 147.9, 134.6, 131.4, 130.4, 126.5, 119.4, 117.8, 100.8, 100.4, 21.2, 0.24; IR (KBr) ν = 1774 cm -1 (C = O);
EI-MS (70 eV) m / z = 486 (M + ). HRMS: Calcd for C 28 H 30 O 4 Si 2 : 487.17554, [M + ]. Found: 487.17480.

続いて、以下の反応式に示すように、アントラ[2,3−b:6,7−b’]ジフランを合成した。

Figure 2014034557
Subsequently, anthra [2,3-b: 6,7-b ′] difuran was synthesized as shown in the following reaction formula.
Figure 2014034557

ジメチルアセトアミド(50mL)と水(6mL)に炭酸セシウム(6.0g、18mmol)を加えた懸濁液に、2,6−ジアセトキシ−3,7−ビス(トリメチルシリルエチニル)アントラセン(1.0g、2.1mmol)を加え、80℃で4時間撹拌した。
混合溶液を200mLの飽和塩化アンモニウム水溶液に注ぎ、生成した沈殿物を濾取して水で洗浄し、アントラ[2,3−b:6,7−b’]ジフラン(0.33g、63%)を黄色固体として得た。
これを窒素雰囲気下における温度勾配熱昇華法(ca.240℃ at <10−2Pa)で精製し、溶媒洗浄(クロロホルム)し、分析用サンプルを得た。
To a suspension of dimethylacetamide (50 mL) and water (6 mL) added cesium carbonate (6.0 g, 18 mmol), 2,6-diacetoxy-3,7-bis (trimethylsilylethynyl) anthracene (1.0 g, 2 0.1 mmol) and stirred at 80 ° C. for 4 hours.
The mixed solution was poured into 200 mL of saturated aqueous ammonium chloride solution, and the resulting precipitate was collected by filtration, washed with water, and anthra [2,3-b: 6,7-b ′] difuran (0.33 g, 63%). Was obtained as a yellow solid.
This was purified by a temperature gradient thermal sublimation method (ca. 240 ° C. at <10 −2 Pa) in a nitrogen atmosphere and washed with a solvent (chloroform) to obtain a sample for analysis.

得られたアントラ[2,3−b:6,7−b’]ジフランの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, DMSO-d6) δ 8.83 (s, 2H), 8.35 (s, 2H), 8.17 (s, 2H), 8.03 (d, J = 8.0 Hz, 2H), 7.07(d, J = 8.0 Hz, 2H); 13C NMR (100 MHz, DMSO-d6) δ 153.5, 149.1, 129.7, 129.1, 129.0, 125.5, 118.2, 106.3, 105.0;
EI-MS (70 eV) m/z = 258 (M+). Anal. Calcd for C18H10O2: C, 83.71; H, 3.90%. Found C, 83.77; H, 4.11%; HRMS: Calcd for C18H10O2: 259.07536, [MH+]. Found: 259.07547.
The measurement result of the obtained anthra [2,3-b: 6,7-b ′] difuran is shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, DMSO-d 6 ) δ 8.83 (s, 2H), 8.35 (s, 2H), 8.17 (s, 2H), 8.03 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H); 13 C NMR (100 MHz, DMSO-d 6 ) δ 153.5, 149.1, 129.7, 129.1, 129.0, 125.5, 118.2, 106.3, 105.0;
EI-MS (70 eV) m / z = 258 (M + ). Anal.Calcd for C 18 H 10 O 2 : C, 83.71; H, 3.90%. Found C, 83.77; H, 4.11%; HRMS: Calcd for C 18 H 10 O 2 : 259.07536, [MH + ]. Found: 259.07547.

(2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジフランの合成)
以下のように、アントラ[2,3−b:6,7−b’]ジフランを段階的に合成した。
(Synthesis of 2,8-diphenylanthra [2,3-b: 6,7-b ′] difuran)
Anthra [2,3-b: 6,7-b ′] difuran was synthesized stepwise as follows.

まず、以下の反応式に示すように、2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)アントラセンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 2,6-diacetoxy-3,7-bis (phenylethynyl) anthracene was synthesized.
Figure 2014034557

トリエチルアミン(20mL)及びDMF(20mL)に2,6−ビス(アセトキシ)−3,7−ジブロモアントラセン(1.8g、4.0mmol)を溶解させて脱気した溶液に、フェニルアセチレン(0.98g、9.6mmol)、Pd(PPhCl(200mg、0.004mmol、1.0mol%)及びCuI(100mg、0.01mmol、2.5mol%))を添加した。
60℃で12時間攪拌した後に、水(10mL)と塩酸(4M、20mL)で希釈した。
生じた沈殿物は濾取し、水、メタノール、ジクロロメタンで洗浄し、2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)アントラセン(1.6g、81%)を黄色固体として得た。
To a solution obtained by dissolving 2,6-bis (acetoxy) -3,7-dibromoanthracene (1.8 g, 4.0 mmol) in triethylamine (20 mL) and DMF (20 mL) was added phenylacetylene (0.98 g). 9.6 mmol), Pd (PPh 3 ) 2 Cl 2 (200 mg, 0.004 mmol, 1.0 mol%) and CuI (100 mg, 0.01 mmol, 2.5 mol%)).
After stirring at 60 ° C. for 12 hours, the mixture was diluted with water (10 mL) and hydrochloric acid (4M, 20 mL).
The resulting precipitate was collected by filtration and washed with water, methanol, and dichloromethane to obtain 2,6-diacetoxy-3,7-bis (phenylethynyl) anthracene (1.6 g, 81%) as a yellow solid.

得られた2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)アントラセンの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, CDCl3) δ 8.34 (s, 2H), 8.26 (s, 2H), 7.73 (s, 2H), 7.56-7.55 (m, 4H), 7.40-7.39(m, 6H), 2.46 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 186.7, 146.3, 140.4, 139.1, 133.7, 133.3, 130.3, 129.9, 12.7, 122.6, 122.5, 118.8, 144.0, 93.9, 23.3; IR (KBr) ν = 1752.36 cm-1 (C=O);
EI-MS (70 eV) m/z = 494 (M+). HRMS: Calcd for C34H22O4: 494.15126, [M+]. Found: 494.15195.
The measurement results of the obtained 2,6-diacetoxy-3,7-bis (phenylethynyl) anthracene are shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.34 (s, 2H), 8.26 (s, 2H), 7.73 (s, 2H), 7.56-7.55 (m, 4H), 7.40-7.39 (m, 6H), 2.46 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 186.7, 146.3, 140.4, 139.1, 133.7, 133.3, 130.3, 129.9, 12.7, 122.6, 122.5, 118.8, 144.0, 93.9, 23.3; IR ( KBr) ν = 1752.36 cm -1 (C = O);
EI-MS (70 eV) m / z = 494 (M + ). HRMS: Calcd for C 34 H 22 O 4 : 494.15126, [M + ]. Found: 494.15195.

続いて、以下の反応式に示すように、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジフランを合成した。

Figure 2014034557
Subsequently, 2,8-diphenylanthra [2,3-b: 6,7-b ′] difuran was synthesized as shown in the following reaction formula.
Figure 2014034557

ジメチルアセトアミド(200mL)と水(24mL)に炭酸セシウム(6.0g、18mmol)を加えた懸濁液に、2,6−ジアセトキシ−3,7−ビス(フェニルエチニル)アントラセン(1.04g、2.1mmol)を加え、100℃で24時間攪拌した。
200mLの飽和塩化アンモニウム水溶液へ注ぎ、生成した沈殿物を濾取し、水で洗浄して、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジフラン(0.74g、86%)を橙色固体として得た。
この固体を窒素雰囲気下における温度勾配熱昇華法(ca.280℃ at <10−2Pa)で精製し、溶媒洗浄(クロロホルム)し、分析用サンプルを得た。
To a suspension of cesium carbonate (6.0 g, 18 mmol) in dimethylacetamide (200 mL) and water (24 mL) was added 2,6-diacetoxy-3,7-bis (phenylethynyl) anthracene (1.04 g, 2 0.1 mmol) and stirred at 100 ° C. for 24 hours.
Pour into 200 mL of saturated aqueous ammonium chloride, filter the resulting precipitate, wash with water, and add 2,8-diphenylanthra [2,3-b: 6,7-b ′] difuran (0.74 g, 86%) as an orange solid.
This solid was purified by a temperature gradient thermal sublimation method (ca. 280 ° C. at <10 −2 Pa) in a nitrogen atmosphere, and washed with a solvent (chloroform) to obtain a sample for analysis.

得られた2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジフランの測定結果を以下に示す。
Mp > 300 ℃;
EI-MS (70 eV) m/z = 410 (M+). Anal. Calcd for; HRMS: Calcd for C30H18O2: 410.13013, [M+]. Found: 410.13120.
The solubility of 2,8-Diphenylanthra[2,3-b:6,7-b']difuran was not sufficient to obtain 1H and 13C NMR spectra useful for structural characterization.
The measurement results of the obtained 2,8-diphenylanthra [2,3-b: 6,7-b ′] difuran are shown below.
Mp> 300 ° C;
EI-MS (70 eV) m / z = 410 (M + ). Anal. Calcd for; HRMS: Calcd for C 30 H 18 O 2 : 410.13013, [M + ]. Found: 410.13120.
The solubility of 2,8-Diphenylanthra [2,3-b: 6,7-b '] difuran was not sufficient to obtain 1 H and 13 C NMR spectra useful for structural characterization.

(アントラ[2,3−b:6,7−b’]ジチオフェンの合成)
以下のように、アントラ[2,3−b:6,7−b’]ジチオフェンを段階的に合成した。
(Synthesis of anthra [2,3-b: 6,7-b ′] dithiophene)
Anthra [2,3-b: 6,7-b ′] dithiophene was synthesized stepwise as follows.

まず、以下の反応式に示すように、2,6−ジメトキシ−3,7−ビス(メチルチオ)アントラセンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 2,6-dimethoxy-3,7-bis (methylthio) anthracene was synthesized.
Figure 2014034557

THF(2.0L)に2,6−ジメトキシアントラセン(16.5g、69mmol)を加えた懸濁液に、n−BuLiのヘキサン溶液(1.62M,175mL,276mmol)を0℃で加えた。
これを室温で1時間撹拌した後、この反応溶液に、ジメチルジスルフィド(31mL、345mmol)を0℃で加え、室温で9時間撹拌した。
反応溶液を飽和塩化アンモニウム水溶液(500mL)に注ぎ、そして、有機相を蒸発させて除去し、生成した沈殿物を濾取して水で洗浄した。そして、クロロホルムに溶解させた。
この溶液をMgSOで乾燥させ、真空中で濃縮させた。
そして、シリカゲルカラムクロマトグラフィー(Rf=1.0,クロロホルム)で分離精製し、2,6−ジメトキシ−3,7−ビス(メチルチオ)アントラセン(22.7g,quantitative yield)を淡黄色の固体として得た。
To a suspension of 2,6-dimethoxyanthracene (16.5 g, 69 mmol) in THF (2.0 L), a hexane solution of n-BuLi (1.62 M, 175 mL, 276 mmol) was added at 0 ° C.
After stirring this at room temperature for 1 hour, dimethyl disulfide (31 mL, 345 mmol) was added to this reaction solution at 0 ° C., followed by stirring at room temperature for 9 hours.
The reaction solution was poured into saturated aqueous ammonium chloride solution (500 mL) and the organic phase was removed by evaporation, and the resulting precipitate was collected by filtration and washed with water. And it was made to melt | dissolve in chloroform.
The solution was dried over MgSO 4 and concentrated in vacuo.
Then, separation and purification by silica gel column chromatography (Rf = 1.0, chloroform) gave 2,6-dimethoxy-3,7-bis (methylthio) anthracene (22.7 g, quantitative yield) as a pale yellow solid. It was.

得られた2,6−ジメトキシ−3,7−ビス(メチルチオ)アントラセンの測定結果を以下に示す。
Mp 253-255 ℃;
1H NMR (400 MHz, CDCl3) δ 8.08 (s, 2H), 7.50 (s, 2H), 7.12 (s, 2H), 4.03 (s, 6H), 2.58 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 153.8, 130.7, 129.5, 128.3, 122.4, 122.0, 103.3, 55.9, 14.5;
EI-MS (70 eV) m/z = 330 (M+). Anal. Calcd for C18H18O2S2: C, 65.42; H, 5.49%. Found: C, 65.47; H, 5.34%.
The measurement results of the obtained 2,6-dimethoxy-3,7-bis (methylthio) anthracene are shown below.
Mp 253-255 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.08 (s, 2H), 7.50 (s, 2H), 7.12 (s, 2H), 4.03 (s, 6H), 2.58 (s, 6H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 153.8, 130.7, 129.5, 128.3, 122.4, 122.0, 103.3, 55.9, 14.5;
EI-MS (70 eV) m / z = 330 (M + ). Anal. Calcd for C 18 H 18 O 2 S 2 : C, 65.42; H, 5.49%. Found: C, 65.47; H, 5.34%.

続いて、以下の反応式に示すように、3,7−ビス(メチルチオ)アントラセン−2,6−ジオールを合成した。

Figure 2014034557
ジクロロメタン(2L)に2,6−ジメトキシ−3,7−ビス(メチルチオ)アントラセン(14g,42mmol)を溶解させた溶液に、BBrのジクロロメタン溶液(ca.4M,40mL,160mmol)を0℃で滴下して加えた。
室温で18時間撹拌した後、氷(およそ100g)を0℃で加えた。
有機相を蒸発させて除去し、生成した沈殿物を濾取し、水で洗浄して、減圧乾燥してほぼ純粋な3,7−ビス(メチルチオ)アントラセン−2,6−ジオール(12.7g,quantitative yield)を淡緑色固体として得た。 Subsequently, 3,7-bis (methylthio) anthracene-2,6-diol was synthesized as shown in the following reaction formula.
Figure 2014034557
To a solution of 2,6-dimethoxy-3,7-bis (methylthio) anthracene (14 g, 42 mmol) dissolved in dichloromethane (2 L), a solution of BBr 3 in dichloromethane (ca.4M, 40 mL, 160 mmol) at 0 ° C. Added dropwise.
After stirring for 18 hours at room temperature, ice (approximately 100 g) was added at 0 ° C.
The organic phase is removed by evaporation and the precipitate formed is filtered off, washed with water and dried under reduced pressure to give almost pure 3,7-bis (methylthio) anthracene-2,6-diol (12.7 g). , Quantitative yield) as a pale green solid.

得られた3,7−ビス(メチルチオ)アントラセン−2,6−ジオールの測定結果を以下に示す。
Mp 252-255 ℃;
1H NMR (400 MHz, CDCl3) δ 8.10 (s, 2H), 8.05 (s, 2H), 7.36 (s, 2H), 6.37 (s, 2H), 2.48 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 151.1, 132.9, 131.6, 129.2, 127.3, 123.7, 107.8, 19.4; IR (KBr) ν= 3396 cm-1 (OH);
EI-MS (70 eV) m/z = 302 (M+). Anal. Calcd for C16H14O2S2: C, 63.55; H, 4.67%. Found: C, 63.32; H, 4.42%.
The measurement results of the obtained 3,7-bis (methylthio) anthracene-2,6-diol are shown below.
Mp 252-255 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.10 (s, 2H), 8.05 (s, 2H), 7.36 (s, 2H), 6.37 (s, 2H), 2.48 (s, 6H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 151.1, 132.9, 131.6, 129.2, 127.3, 123.7, 107.8, 19.4; IR (KBr) ν = 3396 cm -1 (OH);
EI-MS (70 eV) m / z = 302 (M + ). Anal. Calcd for C 16 H 14 O 2 S 2 : C, 63.55; H, 4.67%. Found: C, 63.32; H, 4.42%.

続いて、以下の反応式に示すように、2,6−ビス(トリフルオロメタンスルフォニルオキシ)−3,7−ビス(メチルチオ)アントラセンを合成した。

Figure 2014034557
Subsequently, 2,6-bis (trifluoromethanesulfonyloxy) -3,7-bis (methylthio) anthracene was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(500mL)に3,7−ビス(メチルチオ)アントラセン−2,6−ジオール(10g、33mmol)及びトリエチルアミン(30mL、214mmol)を加えた懸濁液に、無水トリフルオロメタンスルホン酸(15mL、89mmol)を0℃で加えた。
室温で20時間撹拌した後、反応溶液を水(100mL)と塩酸(4M、100mL)で希釈した。
有機相を蒸発させて除去し、沈殿物を濾取して、水と少量のクロロホルムで洗浄し、2,6−ビス(トリフルオロメタンスルフォニルオキシ)−3,7−ビス(メチルチオ)アントラセン(10.5g、56%)を黄色固体として得た。
To a suspension of 3,7-bis (methylthio) anthracene-2,6-diol (10 g, 33 mmol) and triethylamine (30 mL, 214 mmol) in dichloromethane (500 mL) was added trifluoromethanesulfonic anhydride (15 mL, 89 mmol). Was added at 0 ° C.
After stirring at room temperature for 20 hours, the reaction solution was diluted with water (100 mL) and hydrochloric acid (4M, 100 mL).
The organic phase is removed by evaporation, the precipitate is filtered off, washed with water and a little chloroform, and 2,6-bis (trifluoromethanesulfonyloxy) -3,7-bis (methylthio) anthracene (10. 5 g, 56%) was obtained as a yellow solid.

得られた2,6−ビス(トリフルオロメタンスルフォニルオキシ)−3,7−ビス(メチルチオ)アントラセンの測定結果を以下に示す。
Mp 212-213 ℃;
1H NMR (400 MHz, CDCl3) δ 8.28 (s, 2H), 7.86 (s, 2H), 7.73 (s, 2H), 2.63 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 145.9, 132.2, 130.6, 130.0, 125.9, 125.6, 120.5, 119.1, 117.3, 15.6; IR (KBr) ν = 1429, 1222 cm-1 (-O-SO2-);
EI-MS (70 eV) m/z = 566 (M+). Anal. Calcd for C18H12F6O6S4: C, 38.16; H, 2.13%. Found C, 38.37; H, 1.83%.
The measurement results of the obtained 2,6-bis (trifluoromethanesulfonyloxy) -3,7-bis (methylthio) anthracene are shown below.
Mp 212-213 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.28 (s, 2H), 7.86 (s, 2H), 7.73 (s, 2H), 2.63 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 145.9, 132.2, 130.6, 130.0, 125.9, 125.6, 120.5, 119.1, 117.3, 15.6; IR (KBr) ν = 1429, 1222 cm -1 (-O-SO 2- );
EI-MS (70 eV) m / z = 566 (M + ). Anal. Calcd for C 18 H 12 F 6 O 6 S 4 : C, 38.16; H, 2.13%. Found C, 38.37; H, 1.83% .

続いて、以下の反応式に示すように、2,6−ビス(メチルチオ)−3,7−ビス(トリメチルシリルエチニル)アントラセンを合成した。

Figure 2014034557
Subsequently, 2,6-bis (methylthio) -3,7-bis (trimethylsilylethynyl) anthracene was synthesized as shown in the following reaction formula.
Figure 2014034557

トリエチルアミン(5.0mL)とDMF(5.0mL)に2,6−ビス(トリフルオロメタンスルフォニルオキシ)−3,7−ビス(メチルチオ)アントラセン(283mg、0.5mmol)を加え、脱気した溶液に、トリメチルシリルアセチレン(0.17mL、1.2mmol)、Pd(PPhCl(13mg、0.00025mmol、5mol%)及びCuI(5mg、0.0005mmol、10mol%)を加えた。
60℃で12時間撹拌した後、反応溶液を水(10mL)と塩酸(4M、2.0mL)で希釈した。
生成した沈殿物を濾取し、水で洗浄した。
濾取した沈殿物を、シリカゲルカラムクロマトグラフィー(Rf=1.0、クロロホルム)で分離精製し、2,6−ビス(メチルチオ)−3,7−ビス(トリメチルシリルエチニル)アントラセン(230mg,quantitative yield)を淡黄色固体として得た。
2,6-bis (trifluoromethanesulfonyloxy) -3,7-bis (methylthio) anthracene (283 mg, 0.5 mmol) was added to triethylamine (5.0 mL) and DMF (5.0 mL), and the degassed solution was added. , Trimethylsilylacetylene (0.17 mL, 1.2 mmol), Pd (PPh 3 ) 2 Cl 2 (13 mg, 0.00025 mmol, 5 mol%) and CuI (5 mg, 0.0005 mmol, 10 mol%) were added.
After stirring at 60 ° C. for 12 hours, the reaction solution was diluted with water (10 mL) and hydrochloric acid (4M, 2.0 mL).
The formed precipitate was collected by filtration and washed with water.
The precipitate collected by filtration was separated and purified by silica gel column chromatography (Rf = 1.0, chloroform), and 2,6-bis (methylthio) -3,7-bis (trimethylsilylethynyl) anthracene (230 mg, quantitative yield). Was obtained as a pale yellow solid.

得られた2,6−ビス(メチルチオ)−3,7−ビス(トリメチルシリルエチニル)アントラセンの測定結果を以下に示す。
Mp 210-213 ℃;
1H NMR (400 MHz, CDCl3) δ 8.08 (s, 2H), 8.05 (s, 2H), 7.47 (s, 2H), 2.60 (s, 6H), 0.33 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 137.9, 133.5, 131.5, 130.4, 124.9, 121.4, 120.7, 102.7, 102.1, 15.8, 0.51;
EI-MS (70 eV) m/z = 462 (M+). Anal. Calcd for C26H30F3S2Si2: C, 68.51; H, 6.98%. Found C, 68.72; H, 6.76%.
The measurement results of the obtained 2,6-bis (methylthio) -3,7-bis (trimethylsilylethynyl) anthracene are shown below.
Mp 210-213 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.08 (s, 2H), 8.05 (s, 2H), 7.47 (s, 2H), 2.60 (s, 6H), 0.33 (s, 18H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 137.9, 133.5, 131.5, 130.4, 124.9, 121.4, 120.7, 102.7, 102.1, 15.8, 0.51;
EI-MS (70 eV) m / z = 462 (M + ). Anal. Calcd for C 26 H 30 F 3 S 2 Si 2 : C, 68.51; H, 6.98%. Found C, 68.72; H, 6.76% .

続いて、以下の反応式に示すように、3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェンを合成した。

Figure 2014034557
Subsequently, 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(200mL)に2,6−ビス(メチルチオ)−3,7−ビス(トリメチルシリルエチニル)アントラセン(2.9g、6.3mmol)を溶解させた溶液に、ヨウ素(8.0g、31mmol)を0℃で加えた。
室温で3時間撹拌した後、十分に撹拌した亜硫酸水素水溶液(50mL)に注いだ。
生成した沈殿物を濾取し、水(100mL)とエタノール(100mL)で続けて洗浄し、減圧乾燥して3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェン(4.1g、88%)を暗赤色固体として得た。
To a solution of 2,6-bis (methylthio) -3,7-bis (trimethylsilylethynyl) anthracene (2.9 g, 6.3 mmol) dissolved in dichloromethane (200 mL), iodine (8.0 g, 31 mmol) was added to 0. Added at ° C.
After stirring at room temperature for 3 hours, the mixture was poured into a well-stirred aqueous bisulfite solution (50 mL).
The formed precipitate was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), dried under reduced pressure, and 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene (4.1 g, 88%) was obtained as a dark red solid.

得られた3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェンの測定結果を以下に示す。
Mp 250 ℃ (Decomp.);
1H NMR (400 MHz, CDCl3) δ 8.84 (s, 2H), 8.52 (s, 2H), 8.51 (s, 2H), 0.56 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 144.6, 142.4, 137.6, 129.8, 129.6, 126.1, 124.1, 119.9, 86.9, 0.8;
EI-MS (70 eV) m/z = 686 (M+). Anal. Calcd for C24H24I2S2Si2: C, 68.51; H, 6.98%. Found: C, 68.72; H, 6.74%.
The measurement results of the obtained 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene are shown below.
Mp 250 ° C (Decomp.);
1 H NMR (400 MHz, CDCl 3 ) δ 8.84 (s, 2H), 8.52 (s, 2H), 8.51 (s, 2H), 0.56 (s, 18H); 13 C NMR (100 MHz, CDCl 3 ) δ 144.6, 142.4, 137.6, 129.8, 129.6, 126.1, 124.1, 119.9, 86.9, 0.8;
EI-MS (70 eV) m / z = 686 (M + ). Anal. Calcd for C 24 H 24 I 2 S 2 Si 2 : C, 68.51; H, 6.98%. Found: C, 68.72; H, 6.74 %.

続いて、以下の反応式に示すように、アントラ[2,3−b:6,7−b’]ジチオフェンを合成した。

Figure 2014034557
Subsequently, anthra [2,3-b: 6,7-b ′] dithiophene was synthesized as shown in the following reaction formula.
Figure 2014034557

エタノール(200mL)に3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェン(2.0g、2.9mmol)を加えた懸濁液に、水素化ホウ素ナトリウム(8.0g、31mmol)を加えた。
この混合物を24時間還流した。
0℃まで冷却した後、塩酸(4M、50mL)を加えて約10分間撹拌した。
生成した暗赤色固体をを濾取し、水(100mL)とエタノール(100mL)で連続して洗浄し、アントラ[2,3−b:6,7−b’]ジチオフェン(4.1g、88%)の粗生成物を橙色固体として得た。
得られた固体を窒素雰囲気下における温度勾配熱昇華法(ca.290℃ at <10−2Pa)で精製し、溶媒洗浄(クロロホルム)し、分析用サンプルを得た。
Suspension obtained by adding 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene (2.0 g, 2.9 mmol) to ethanol (200 mL) Was added sodium borohydride (8.0 g, 31 mmol).
The mixture was refluxed for 24 hours.
After cooling to 0 ° C., hydrochloric acid (4M, 50 mL) was added and stirred for about 10 minutes.
The resulting dark red solid was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), and anthra [2,3-b: 6,7-b ′] dithiophene (4.1 g, 88% ) Was obtained as an orange solid.
The obtained solid was purified by a temperature gradient thermal sublimation method (ca. 290 ° C. at <10 −2 Pa) in a nitrogen atmosphere, and washed with a solvent (chloroform) to obtain an analytical sample.

得られたアントラ[2,3−b:6,7−b’]ジチオフェンの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, DMSO-d6) δ 8.84 (s, 2H), 8.69 (s, 2H), 8.63 (s, 2H), 7.75 (d, J = 5.2 Hz, 2H), 7.51 (d, J = 5.2 Hz, 2H);
EI-MS (70 eV) m/z = 290 (M+). Anal. Calcd for C18H10S2: C, 74.45; H, 3.47%. Found: C, 74.18; H, 3.22%; HRMS: Calcd for C18H10S2: 291.02967, [MH+]. Found: 291.02991. The solubility of Anthra[2,3-b:6,7-b’]dithiophene was not sufficient for measuring 13C NMR spectra.
The measurement result of the obtained anthra [2,3-b: 6,7-b ′] dithiophene is shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, DMSO-d 6 ) δ 8.84 (s, 2H), 8.69 (s, 2H), 8.63 (s, 2H), 7.75 (d, J = 5.2 Hz, 2H), 7.51 (d, J = 5.2 Hz, 2H);
EI-MS (70 eV) m / z = 290 (M + ). Anal.Calcd for C 18 H 10 S 2 : C, 74.45; H, 3.47%. Found: C, 74.18; H, 3.22%; HRMS: Calcd for C 18 H 10 S 2 : 291.02967, [MH + ]. Found: 291.02991. The solubility of Anthra [2,3-b: 6,7-b '] dithiophene was not sufficient for measuring 13 C NMR spectra.

(3,9−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンの合成)
以下のように、3,9−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンを合成した。
(Synthesis of 3,9-diphenylanthra [2,3-b: 6,7-b ′] dithiophene)
3,9-Diphenylanthra [2,3-b: 6,7-b ′] dithiophene was synthesized as follows.

まず、以下の反応式に示すように、3,9−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 3,9-diphenylanthra [2,3-b: 6,7-b ′] dithiophene was synthesized.
Figure 2014034557

DMF(3.0mL)に3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:7,8−b’]ジチオフェン(69mg、0.1mmol)、フェニルボロン酸(36.6mg、0.3mmol)、KPO・nHO(200mg)を加えて脱気した懸濁液に、Pd(PPh(12mg、0.01mmol、10mol%)を加えた。
15時間撹拌した後、飽和亜硫酸水素ナトリウム水溶液(50mL)に、約10分間かけて撹拌しながら注いだ。
生成した沈殿物を濾取し、水(100mL)とエタノール(100mL)で連続して洗浄した。そして、トリクロロメタンを用いて再結晶を行い、3,9−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン(30mg、68%)を暗赤色固体として得た。
In DMF (3.0 mL), 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 7,8-b ′] dithiophene (69 mg, 0.1 mmol), phenylboronic acid (36 0.6 mg, 0.3 mmol), and Pd (PPh 3 ) 4 (12 mg, 0.01 mmol, 10 mol%) was added to the suspension degassed by adding K 3 PO 4 .nH 2 O (200 mg).
After stirring for 15 hours, it was poured into a saturated aqueous sodium hydrogensulfite solution (50 mL) with stirring over about 10 minutes.
The formed precipitate was collected by filtration and washed successively with water (100 mL) and ethanol (100 mL). Then, recrystallization was performed using trichloromethane to obtain 3,9-diphenylanthra [2,3-b: 6,7-b ′] dithiophene (30 mg, 68%) as a dark red solid.

得られた3,9−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, CDCl3) δ 8.71 (s, 2H), 8.60 (s, 2H), 8.56 (s, 2H), 7.72 (d, J = 8.0 Hz, 4H), 7.59 - 7.43 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 138.5, 137.8, 137.2, 135.9, 129.4, 129.1, 128.9, 128.8, 127.9, 125.9, 125.7, 121.3, 120.8;
EI-MS (70 eV) m/z = 442 (M+); HRMS: Calcd for C30H18S2: 442.08444, [M+]. Found: 442.08450.
The measurement results of the obtained 3,9-diphenylanthra [2,3-b: 6,7-b ′] dithiophene are shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.71 (s, 2H), 8.60 (s, 2H), 8.56 (s, 2H), 7.72 (d, J = 8.0 Hz, 4H), 7.59-7.43 (m, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 138.5, 137.8, 137.2, 135.9, 129.4, 129.1, 128.9, 128.8, 127.9, 125.9, 125.7, 121.3, 120.8;
EI-MS (70 eV) m / z = 442 (M + ); HRMS: Calcd for C 30 H 18 S 2 : 442.08444, [M + ]. Found: 442.08450.

(2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンの合成)
以下のように、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンを段階的に合成した。
(Synthesis of 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene)
2,8-Diphenylanthra [2,3-b: 6,7-b ′] dithiophene was synthesized stepwise as follows.

まず、以下の反応式に示すように、2,6−ビス(メチルチオ)−3,7−ビス(フェニルエチニル)アントラセンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 2,6-bis (methylthio) -3,7-bis (phenylethynyl) anthracene was synthesized.
Figure 2014034557

トリエチルアミン(5.0mL)とDMF(5.0mL)に2,6−ビス(メチルチオ)−3,7ビス(トリフルオロメタンスルフォニルオキシ)アントラセン(283mg、0.5mmol)を溶解させて脱気した溶液に、フェニルアセチレン(1.23g、1.2mmol)、Pd(PPhCl(13mg、0.00025mmol、5mol%)、CuI(5mg、0.0005mmol、10mol%))を加えた。
60℃で12時間攪拌した後に、水(10mL)と塩酸(4M、2.0mL)で希釈した。
生成した沈殿物を濾取し、水で洗浄した。
得られた固体をシリカゲルカラムクロマトグラフィー(Rf=1.0、クロロホルム)で分離精製し、2,6−ビス(メチルチオ)−3,7−ビス(フェニルエチニル)アントラセン(234mg、quantitative yield)を淡黄色固体として得た。
To a degassed solution of 2,6-bis (methylthio) -3,7bis (trifluoromethanesulfonyloxy) anthracene (283 mg, 0.5 mmol) dissolved in triethylamine (5.0 mL) and DMF (5.0 mL) , Phenylacetylene (1.23 g, 1.2 mmol), Pd (PPh 3 ) 2 Cl 2 (13 mg, 0.00025 mmol, 5 mol%), CuI (5 mg, 0.0005 mmol, 10 mol%)) were added.
After stirring at 60 ° C. for 12 hours, the mixture was diluted with water (10 mL) and hydrochloric acid (4M, 2.0 mL).
The formed precipitate was collected by filtration and washed with water.
The obtained solid was separated and purified by silica gel column chromatography (Rf = 1.0, chloroform), and 2,6-bis (methylthio) -3,7-bis (phenylethynyl) anthracene (234 mg, quantitative yield) was pale. Obtained as a yellow solid.

得られた2,6−ビス(メチルチオ)−3,7−ビス(フェニルエチニル)アントラセンの測定結果を以下に示す。
Mp 222-223℃;
1H NMR (400 MHz, CDCl3) δ 8.12 (s, 2H), 8.10 (s, 2H), 7.66-7.64 (m, 2H), 7.52 (s, 2H), 7.40-7.38 (m, 6H), 2.63 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 138.1, 132.8, 132.3, 131.6, 130.5, 129.2, 129.0, 124.9, 123.6, 121.6, 120.9, 96.4, 87.8, 15.9;
EI-MS (70 eV) m/z = 470 (M+). Anal. Calcd for C32H22S2: C, 81.66; H, 4.71%. Found C, 81.56; H, 4.69%.
The measurement results of the obtained 2,6-bis (methylthio) -3,7-bis (phenylethynyl) anthracene are shown below.
Mp 222-223 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.12 (s, 2H), 8.10 (s, 2H), 7.66-7.64 (m, 2H), 7.52 (s, 2H), 7.40-7.38 (m, 6H), 2.63 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 138.1, 132.8, 132.3, 131.6, 130.5, 129.2, 129.0, 124.9, 123.6, 121.6, 120.9, 96.4, 87.8, 15.9;
EI-MS (70 eV) m / z = 470 (M + ). Anal.Calcd for C 32 H 22 S 2 : C, 81.66; H, 4.71%. Found C, 81.56; H, 4.69%.

(3,9−Diiodo−2,8−diphenylanthra[2,3−b:6,7−b’]dithiopheneの合成)
以下の反応式に示すように、3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンを合成した。

Figure 2014034557
(Synthesis of 3,9-Diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene)
As shown in the following reaction formula, 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene was synthesized.
Figure 2014034557

ジクロロメタン(200mL)に2,6−ビス(メチルチオ)−3,7−ビス(フェニルエチニル)アントラセン(2.96g、6.3mmol)を溶解させた溶液に、ヨウ素(8.0g、31mmol)を0℃で加えた。
室温で3時間攪拌した後、十分に攪拌した亜硫酸水素水溶液(50mL)に注いだ。
生じた沈殿物を濾取し、水(100mL)とエタノール(100mL)で連続して洗浄し、減圧乾燥して、3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン(4.71g、quantitative yield)の粗体を暗赤色固体として得た。そして、クロロベンゼンを用いて再結晶し、分析サンプルを得た。
To a solution of 2,6-bis (methylthio) -3,7-bis (phenylethynyl) anthracene (2.96 g, 6.3 mmol) dissolved in dichloromethane (200 mL), iodine (8.0 g, 31 mmol) was added to 0. Added at ° C.
After stirring at room temperature for 3 hours, the mixture was poured into a well-stirred aqueous solution of hydrogen sulfite (50 mL).
The resulting precipitate was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), dried under reduced pressure, and 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6 , 7-b ′] dithiophene (4.71 g, quantitative yield) was obtained as a dark red solid. And it recrystallized using chlorobenzene and obtained the analysis sample.

得られた3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンの測定結果を以下に示す。
Mp > 300 ℃;
EI-MS (70 eV) m/z = 694 (M+). Anal. Calcd for C30H16I2S2: C, 51.89; H, 2.32%. Found: C, 52.11; H, 2.42%.
Poor solubility of 3,9-diiodo-2,8-diphenylanthra[2,3-b:7,8-b’]dithiophene did not allow its characterization by means of 1H and 13C NMR spectra.
The measurement results of the obtained 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene are shown below.
Mp> 300 ° C;
EI-MS (70 eV) m / z = 694 (M + ). Anal.Calcd for C 30 H 16 I 2 S 2 : C, 51.89; H, 2.32%. Found: C, 52.11; H, 2.42%.
Poor solubility of 3,9-diiodo-2,8-diphenylanthra [2,3-b: 7,8-b '] dithiophene did not allow its characterization by means of 1 H and 13 C NMR spectra.

続いて、以下の反応式に示すように、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンを合成した。

Figure 2014034557
Subsequently, 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene was synthesized as shown in the following reaction formula.
Figure 2014034557

エタノール(200mL)に3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン(2.17g、2.9mmol)を加えた懸濁液に、水素化ホウ素ナトリウム(8.0g、31mmol)を加え、24時間還流した。
反応溶液を0℃まで冷却した後、撹拌しながら(およそ10分間)、塩酸(4M、50mL)を加え、暗赤色固体を析出させた。
この固体を濾取し、水(100mL)とエタノール(100mL)で連続して洗浄し、減圧乾燥して2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン(1.28g、quantitative yield)の租体を暗赤色固体として得た。
この粗生成物を、窒素雰囲気下における温度勾配熱昇華法(ca.320℃ at <10−2Pa)で精製し、溶媒洗浄(クロロホルム)し、分析用サンプルを得た。
To a suspension of ethanol (200 mL) with 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene (2.17 g, 2.9 mmol) was added hydrogen. Sodium borohydride (8.0 g, 31 mmol) was added and refluxed for 24 hours.
After cooling the reaction solution to 0 ° C., hydrochloric acid (4M, 50 mL) was added with stirring (approximately 10 minutes) to precipitate a dark red solid.
The solid was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), dried under reduced pressure, and 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene (1 .28 g (quantitative yield) as a dark red solid.
The crude product was purified by a temperature gradient thermal sublimation method (ca. 320 ° C. at <10 −2 Pa) in a nitrogen atmosphere, and washed with a solvent (chloroform) to obtain a sample for analysis.

得られた2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェンの測定結果を以下に示す。
Mp > 300 ℃;
EI-MS (70 eV) m/z = 442 (M+). Anal. Calcd for C30H18S2: C, 81.41; H, 4.10%. Found: C, 81.49; H, 4.11%.
The solubility of 2,8-DiphenylAnthra[2,3-b:6,7-b’]dithiophene was too low to obtain 1H and 13C NMR spectra for structural characterization.
The measurement results of the obtained 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene are shown below.
Mp> 300 ° C;
EI-MS (70 eV) m / z = 442 (M + ). Anal.Calcd for C 30 H 18 S 2 : C, 81.41; H, 4.10%. Found: C, 81.49; H, 4.11%.
The solubility of 2,8-DiphenylAnthra [2,3-b: 6,7-b '] dithiophene was too low to obtain 1 H and 13 C NMR spectra for structural characterization.

(アントラ[2,3−b:6,7−b’]ジセレノフェンの合成)
以下のように、アントラ[2,3−b:6,7−b’]ジセレノフェンを段階的に合成した。
(Synthesis of anthra [2,3-b: 6,7-b ′] diselenophene)
Anthra [2,3-b: 6,7-b ′] diselenophene was synthesized stepwise as follows.

まず、以下の反応式に示すように、2,6−ジメトキシ−3,7−ビス(メチルセレノ)アントラセンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 2,6-dimethoxy-3,7-bis (methylseleno) anthracene was synthesized.
Figure 2014034557

THF(2.0L)に2,6−ジメトキシアントラセン(12g、50mmol)を加えた懸濁液に、n−BuLiのヘキサン溶液(1.67M、140mL、234mmol)を0℃で加えた。
混合液を室温で1時間撹拌した後、粉状のセレン(16.6g、210mmol)を0℃で溶液に加え、室温で30分間撹拌し、対応するセレン酸を形成させた。そして、ヨードメタン(15mL、243mmol)をその溶液に0℃で加え、12時間撹拌した。
反応溶液を飽和塩化アンモニウム水溶液(500mL)に注ぎ、有機相を蒸発させ、水とメタノールで洗浄した。
減圧乾燥し、2,6−ジメトキシ−3,7−ビス(メチルセレノ)アントラセン(16.0g、76%)を白色固体として得た。
To a suspension of 2,6-dimethoxyanthracene (12 g, 50 mmol) in THF (2.0 L), a hexane solution of n-BuLi (1.67 M, 140 mL, 234 mmol) was added at 0 ° C.
After the mixture was stirred at room temperature for 1 hour, powdered selenium (16.6 g, 210 mmol) was added to the solution at 0 ° C. and stirred at room temperature for 30 minutes to form the corresponding selenic acid. And iodomethane (15 mL, 243 mmol) was added to the solution at 0 ° C. and stirred for 12 hours.
The reaction solution was poured into a saturated aqueous ammonium chloride solution (500 mL), the organic phase was evaporated and washed with water and methanol.
Drying under reduced pressure gave 2,6-dimethoxy-3,7-bis (methylseleno) anthracene (16.0 g, 76%) as a white solid.

得られた2,6−ジメトキシ−3,7−ビス(メチルセレノ)アントラセンの測定結果を以下に示す。
Mp 267-268 ℃ (Decomp.);
1H NMR (400 MHz, CDCl3) δ 8.08 (s, 2H), 7.62 (s, 2H), 7.11 (s, 2H), 4.02 (s, 6H), 2.42 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 154.6, 130.1, 128.8, 125.9, 125.4, 122.5, 103.1, 55.9, 5.0;
EI-MS (70 eV) m/z = 426 (M+). HRMS: Calcd for C18H18O2Se2: 426.97100, [M+]. Found: 426.97018.
The measurement results of the obtained 2,6-dimethoxy-3,7-bis (methylseleno) anthracene are shown below.
Mp 267-268 ° C (Decomp.);
1 H NMR (400 MHz, CDCl 3 ) δ 8.08 (s, 2H), 7.62 (s, 2H), 7.11 (s, 2H), 4.02 (s, 6H), 2.42 (s, 6H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 154.6, 130.1, 128.8, 125.9, 125.4, 122.5, 103.1, 55.9, 5.0;
EI-MS (70 eV) m / z = 426 (M + ). HRMS: Calcd for C 18 H 18 O 2 Se 2 : 426.97100, [M + ]. Found: 426.97018.

続いて、以下の反応式に示すように、3,7−ビス(メチルセレノ)アントラセン−2,6−ジオールを合成した。

Figure 2014034557
Subsequently, 3,7-bis (methylseleno) anthracene-2,6-diol was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(2L)に2,6−ジメトキシ−3,7−ビス(メチルセレノ)アントラセン(14g、33mmol)を加えた溶液に、BBrのジクロロメタン溶液(約4M、50mL、200mmol)を0℃で滴下した。
室温で12時間撹拌した後、氷(約100g)を0℃で加えた。
有機相を蒸発させて除去し、生じた析出物を濾取した。
これを水、少量のエタノール、クロロホルムで続けて洗浄し、減圧乾燥してほぼ純粋な3,7−ビス(メチルセレノ)アントラセン−2,6−ジオール(13.0g、quantitative yield)を淡緑色固体として得た。
To a solution of 2,6-dimethoxy-3,7-bis (methylseleno) anthracene (14 g, 33 mmol) added to dichloromethane (2 L), a solution of BBr 3 in dichloromethane (about 4 M, 50 mL, 200 mmol) was added dropwise at 0 ° C. .
After stirring at room temperature for 12 hours, ice (about 100 g) was added at 0 ° C.
The organic phase was removed by evaporation and the resulting precipitate was collected by filtration.
This was washed successively with water, a small amount of ethanol, and chloroform, and dried under reduced pressure to give almost pure 3,7-bis (methylseleno) anthracene-2,6-diol (13.0 g, quantitative yield) as a pale green solid. Obtained.

得られた3,7−ビス(メチルセレノ)アントラセン−2,6−ジオールの測定結果を以下に示す。
Mp 272-273 ℃ (Decomp.);
1H NMR (400 MHz, CDCl3) δ 8.21 (s, 2H), 8.13 (s, 2H), 7.36 (s, 2H), 2.32 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 151.2, 135.5, 131.8, 129.1, 123.6, 122.9, 107.1, 9.7; IR (KBr) ν = 3404 cm-1 (OH);
EI-MS (70 eV) m/z = 398 (M+); HRMS: Calcd for C16H14O2Se2: 398.93970, [MH+]. Found:398.93930.
The measurement results of the obtained 3,7-bis (methylseleno) anthracene-2,6-diol are shown below.
Mp 272-273 ° C (Decomp.);
1 H NMR (400 MHz, CDCl 3 ) δ 8.21 (s, 2H), 8.13 (s, 2H), 7.36 (s, 2H), 2.32 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 151.2, 135.5, 131.8, 129.1, 123.6, 122.9, 107.1, 9.7; IR (KBr) ν = 3404 cm -1 (OH);
EI-MS (70 eV) m / z = 398 (M + ); HRMS: Calcd for C 16 H 14 O 2 Se 2 : 398.93970, [MH + ]. Found: 398.93930.

続いて、以下の反応式に示すように、2,6−ビス(メチルセレノ)−3,7−ビス(トリフルオロメタンスルフォニルオキシ)アントラセンを合成した。

Figure 2014034557
Subsequently, 2,6-bis (methylseleno) -3,7-bis (trifluoromethanesulfonyloxy) anthracene was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(700mL)に3,7−ビス(メチルセレノ)アントラセン−2,6−ジオール(12g、30mmol)とトリエチルアミン(40.0mL、285mmol)を加えた懸濁液に、無水トリフルオロメタンスルホン酸(15mL、89mmol)を0℃で加えた。
室温で3時間撹拌した後、反応溶液を水(100mL)と塩酸(4M、100mL)で希釈した。
生じた混合物を、ジクロロメタン(400mL×3)で抽出した。
有機相を塩水(400mLの×3)で洗浄し、MgSOを用いて乾燥し、シリカゲルカラムクロマトグラフィー(Rf=1.0、クロロホルム)で分離精製して2,6−ビス(メチルセレノ)−3,7−ビス(トリフルオロメタンスルフォニルオキシ)アントラセン(7.5g、38%)を黄色固体として得た。
To a suspension of 3,7-bis (methylseleno) anthracene-2,6-diol (12 g, 30 mmol) and triethylamine (40.0 mL, 285 mmol) in dichloromethane (700 mL) was added trifluoromethanesulfonic anhydride (15 mL, 89 mmol) was added at 0 ° C.
After stirring at room temperature for 3 hours, the reaction solution was diluted with water (100 mL) and hydrochloric acid (4M, 100 mL).
The resulting mixture was extracted with dichloromethane (400 mL × 3).
The organic phase was washed with brine (400 mL × 3), dried using MgSO 4 , separated and purified by silica gel column chromatography (Rf = 1.0, chloroform), and 2,6-bis (methylseleno) -3. , 7-bis (trifluoromethanesulfonyloxy) anthracene (7.5 g, 38%) was obtained as a yellow solid.

得られた2,6−ビス(メチルセレノ)−3,7−ビス(トリフルオロメタンスルフォニルオキシ)アントラセンの測定結果を以下に示す。
Mp 223-224 ℃;
1H NMR (400 MHz, CDCl3) δ 8.31 (s, 2H), 7.90 (s, 2H), 7.88 (s, 2H), 2.51 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 146.9 130.8, 130.4, 129.8, 126.1, 125,7, 118.7, 7.2; IR (KBr) ν = 1425, 1222 cm-1 (-O-SO2-);
EI-MS (70 eV) m/z = 662 (M+); HRMS: Calcd for C18H12O6F6S2Se2: 661.83044, [M+]. Found: 661.82971.
The measurement results of the obtained 2,6-bis (methylseleno) -3,7-bis (trifluoromethanesulfonyloxy) anthracene are shown below.
Mp 223-224 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.31 (s, 2H), 7.90 (s, 2H), 7.88 (s, 2H), 2.51 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 146.9 130.8, 130.4, 129.8, 126.1, 125,7, 118.7, 7.2; IR (KBr) ν = 1425, 1222 cm -1 (-O-SO 2- );
EI-MS (70 eV) m / z = 662 (M + ); HRMS: Calcd for C 18 H 12 O 6 F 6 S 2 Se 2 : 661.83044, [M + ]. Found: 661.82971.

続いて、以下の反応式に示すように、2,6−ビス(メチルセレノ)−3,7−ビス[(トリメチルシリル)エチニル]アントラセンを合成した。

Figure 2014034557
Subsequently, 2,6-bis (methylseleno) -3,7-bis [(trimethylsilyl) ethynyl] anthracene was synthesized as shown in the following reaction formula.
Figure 2014034557

DMF(40mL)に2,6−ビス(メチルセレノ)−3,7−ビス(トリフルオロメタンスルフォニルオキシ)アントラセン(1.50g、2.27mmol)を加えて脱気した溶液に、トリメチル[(トリブチルスタニル)エチニル]シラン(2.2g、5.68mmol)、Pd(PPhCl(161mg、0.0031mmol、5mol%)を加えた。
60℃で2時間撹拌した後、反応溶液を水(10mL)と塩酸(4M、2.0mL)で希釈した。
生成した沈殿物を濾取し、水で洗浄し、、シリカゲルカラムクロマトグラフィー(Rf=1.0、クロロホルム)によって分離精製し、2,6−ビス(メチルセレノ)−3,7−ビス[(トリメチルシリル)エチニル]アントラセン(1.02g、81%)を淡黄色固体として得た。
To a degassed solution of 2,6-bis (methylseleno) -3,7-bis (trifluoromethanesulfonyloxy) anthracene (1.50 g, 2.27 mmol) in DMF (40 mL) was added trimethyl [(tributylstannyl). ) Ethynyl] silane (2.2 g, 5.68 mmol), Pd (PPh 3 ) 2 Cl 2 (161 mg, 0.0031 mmol, 5 mol%) was added.
After stirring at 60 ° C. for 2 hours, the reaction solution was diluted with water (10 mL) and hydrochloric acid (4M, 2.0 mL).
The formed precipitate was collected by filtration, washed with water, separated and purified by silica gel column chromatography (Rf = 1.0, chloroform), and 2,6-bis (methylseleno) -3,7-bis [(trimethylsilyl). ) Ethynyl] anthracene (1.02 g, 81%) was obtained as a pale yellow solid.

得られた2,6−ビス(メチルセレノ)−3,7−ビス[(トリメチルシリル)エチニル]アントラセンの測定結果を以下に示す。
Mp 227-228 ℃;
1H NMR (400 MHz, CDCl3) δ 8.11 (s, 2H), 8.05 (s, 2H), 7.67 (s, 2H), 2.46 (s, 6H), 0.33 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 132.8, 132.7, 131.6, 130.6, 125.3, 124.9, 122.2, 103.4, 101.3, 6.84, 0.25;
EI-MS (70 eV) m/z = 558 (M+); HRMS: Calcd for C26H30Se2Si2: 558.02110, [M+]. Found: 558.02063.
The measurement results of the obtained 2,6-bis (methylseleno) -3,7-bis [(trimethylsilyl) ethynyl] anthracene are shown below.
Mp 227-228 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.11 (s, 2H), 8.05 (s, 2H), 7.67 (s, 2H), 2.46 (s, 6H), 0.33 (s, 18H); 13 C NMR ( 100 MHz, CDCl 3 ) δ 132.8, 132.7, 131.6, 130.6, 125.3, 124.9, 122.2, 103.4, 101.3, 6.84, 0.25;
EI-MS (70 eV) m / z = 558 (M + ); HRMS: Calcd for C 26 H 30 Se 2 Si 2 : 558.02110, [M + ]. Found: 558.02063.

続いて、以下の反応式に示すように、3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:6,7−b’]ジセレノフェンを合成した。

Figure 2014034557
Subsequently, 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 6,7-b ′] diselenophene was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(60mL)に2,6−ビス(メチルセレノ)−3,7−ビス[(トリメチルシリル)エチニル]アントラセン(0.557g、1.0mmol)を加えた溶液に、ヨウ素(1.01g、4mmol)を0℃で加えた。
室温で3時間撹拌した。その後、撹拌しながら約10分間かけて反応溶液を飽和硫酸水素ナトリウム水溶液(5mL)に注いだ。
生成した沈殿物を濾取し、水(100mL)、エタノール(100mL)で連続して洗浄し、減圧乾燥して3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:6,7−b’]ジセレノフェン(0.694g、89%)を暗赤色固体として得た。
To a solution of 2,6-bis (methylseleno) -3,7-bis [(trimethylsilyl) ethynyl] anthracene (0.557 g, 1.0 mmol) in dichloromethane (60 mL) was added iodine (1.01 g, 4 mmol). Added at 0 ° C.
Stir at room temperature for 3 hours. Thereafter, the reaction solution was poured into a saturated aqueous solution of sodium hydrogensulfate (5 mL) with stirring for about 10 minutes.
The formed precipitate was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), dried under reduced pressure, and 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b. : 6,7-b ′] diselenophene (0.694 g, 89%) was obtained as a dark red solid.

得られた3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:6,7−b’]ジセレノフェンの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, CDCl3) δ 8.76 (s, 2H), 8.59 (s, 2H), 8.54 (s, 2H), 0.55 (s, 18H); 13C NMR (100 MHz, CDCl3) δ 164.6, 137.7, 130.7, 127.9, 126.7, 124.0, 114.4, 99.8, 98.6, 0.28 ;
EI-MS (70 eV) m/z = 782 (M+). HRMS: Calcd for C24H24I2Se2Si2: 781.78302, [M+]. Found: 781.78308.
The measurement results of the obtained 3,9-diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 6,7-b ′] diselenophene are shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.76 (s, 2H), 8.59 (s, 2H), 8.54 (s, 2H), 0.55 (s, 18H); 13 C NMR (100 MHz, CDCl 3 ) δ 164.6, 137.7, 130.7, 127.9, 126.7, 124.0, 114.4, 99.8, 98.6, 0.28;
EI-MS (70 eV) m / z = 782 (M + ). HRMS: Calcd for C 24 H 24 I 2 Se 2 Si 2 : 781.78302, [M + ]. Found: 781.78308.

続いて、以下の反応式に示すように、アントラ[2,3−b:6,7−b’]ジセレノフェンを合成した。

Figure 2014034557
Subsequently, anthra [2,3-b: 6,7-b ′] diselenophene was synthesized as shown in the following reaction formula.
Figure 2014034557

1,4−ジオキサン(100mL)に3,9−ジヨード−2,8−ビス(トリメチルシリル)アントラ[2,3−b:6,7−b’]ジセレノフェン(0.500g、0.64mmol)を加えた懸濁液に、LiAlH(0.5g、13.2mmol)を加え、24時間還流した後、撹拌しながら約10分かけて酢酸エチル(50mL)を0℃で加えた。
生成した沈殿物を濾取し、水(100mL)、エタノール(100mL)で連続して洗浄し、減圧乾燥してアントラ[2,3−b:6,7−b’]ジセレノフェン(0.212g、86%)を橙色固体として得た。
得られた固体を窒素雰囲気下における温度勾配熱昇華法(ca.310℃ at <10−2Pa)で精製し、溶媒洗浄(クロロホルム)し、分析用サンプルを得た。
3,9-Diiodo-2,8-bis (trimethylsilyl) anthra [2,3-b: 6,7-b ′] diselenophene (0.500 g, 0.64 mmol) was added to 1,4-dioxane (100 mL). LiAlH 4 (0.5 g, 13.2 mmol) was added to the resulting suspension, refluxed for 24 hours, and then ethyl acetate (50 mL) was added at 0 ° C. over about 10 minutes with stirring.
The formed precipitate was collected by filtration, washed successively with water (100 mL), ethanol (100 mL), dried under reduced pressure, and anthra [2,3-b: 6,7-b ′] diselenophene (0.212 g, 86%) as an orange solid.
The obtained solid was purified by a temperature gradient thermal sublimation method (ca. 310 ° C. at <10 −2 Pa) under a nitrogen atmosphere, and washed with a solvent (chloroform) to obtain a sample for analysis.

得られたアントラ[2,3−b:6,7−b’]ジセレノフェンの測定結果を以下に示す。
Mp > 300 ℃;
1H NMR (400 MHz, DMSO-d6) δ 8.76 (s, 2H), 8.74 (s, 2H), 8.61 (s, 2H), 8.17 (d, J = 5.2 Hz, 2H), 7.71 (d, J = 5.2 Hz, 2H);
EI-MS (70 eV) m/z = 386 (M+); HRMS: Calcd for C18H10Se2: 385.91075, [M+]. Found: 385.91040. The solubility of ADS was not sufficient for measuring 13C NMR spectra.
The measurement result of the obtained anthra [2,3-b: 6,7-b ′] diselenophene is shown below.
Mp> 300 ° C;
1 H NMR (400 MHz, DMSO-d 6 ) δ 8.76 (s, 2H), 8.74 (s, 2H), 8.61 (s, 2H), 8.17 (d, J = 5.2 Hz, 2H), 7.71 (d, J = 5.2 Hz, 2H);
EI-MS (70 eV) m / z = 386 (M + ); HRMS: Calcd for C 18 H 10 Se 2 : 385.91075, [M + ]. Found: 385.91040. The solubility of ADS was not sufficient for measuring 13 C NMR spectra.

(3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンの合成)
以下のように、3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンを段階的に合成した。
(Synthesis of 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene)
3,9-Diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene was synthesized stepwise as follows.

まず、以下の反応式に示すように、2,6−ビス(メチルセレノ)−3,7−ビス(フェニルエチニル)アントラセンを合成した。

Figure 2014034557
First, as shown in the following reaction formula, 2,6-bis (methylseleno) -3,7-bis (phenylethynyl) anthracene was synthesized.
Figure 2014034557

DMF(40mL)に2,6−ビス(トリフルオロメタンスルフォニルオキシ)−3,7−ビス(メチルセレノ)アントラセン(1.50g、2.27mmol)を溶解させて脱気した溶液に、トリブチル(フェニルエチニル)スズ(2.22g、5.68mmol)、(Pd(PPhCl(161mg、0.0031mmol、5mol%))を加えた。
60℃で2時間撹拌した後、水(10mL)と塩酸(4M、2.0mL)で希釈した。
生じた沈殿物を濾取し、水で洗浄した。
濾取した固体をシリカゲルカラムクロマトグラフィー(Rf=1.0、クロロホルム)で分離精製し、2,6−ビス(メチルセレノ)−3,7−ビス(フェニルエチニル)アントラセン(0.91g、71%)を淡黄色固体として得た。
To a degassed solution of 2,6-bis (trifluoromethanesulfonyloxy) -3,7-bis (methylseleno) anthracene (1.50 g, 2.27 mmol) in DMF (40 mL), tributyl (phenylethynyl) was added. Tin (2.22 g, 5.68 mmol), (Pd (PPh 3 ) 2 Cl 2 (161 mg, 0.0031 mmol, 5 mol%)) was added.
After stirring at 60 ° C. for 2 hours, the mixture was diluted with water (10 mL) and hydrochloric acid (4M, 2.0 mL).
The resulting precipitate was collected by filtration and washed with water.
The solid collected by filtration was separated and purified by silica gel column chromatography (Rf = 1.0, chloroform), and 2,6-bis (methylseleno) -3,7-bis (phenylethynyl) anthracene (0.91 g, 71%) Was obtained as a pale yellow solid.

得られた2,6−ビス(メチルセレノ)−3,7−ビス(フェニルエチニル)アントラセンの測定結果を以下に示す。
Mp 227-228℃;
1H NMR (400 MHz, CDCl3) δ 8.18 (s, 2H), 8.13 (s, 2H), 7.74 (s, 2H), 7.66-7.64 (m, 2H), 7.40-7.38 (m, 2H), 2.51 (s, 6H); 13C NMR (100 MHz, CDCl3) δ 131.2, 132.5, 132.3, 131.9, 130.9, 129.2, 129.0, 125.6, 125.2, 123.5, 122.6, 95.6, 88.6, 7.06;
EI-MS (70 eV) m/z = 564 (M+); HRMS: Calcd for C32H22Se2: 566.00465, [M+]. Found: 566.00598.
The measurement results of the obtained 2,6-bis (methylseleno) -3,7-bis (phenylethynyl) anthracene are shown below.
Mp 227-228 ° C;
1 H NMR (400 MHz, CDCl 3 ) δ 8.18 (s, 2H), 8.13 (s, 2H), 7.74 (s, 2H), 7.66-7.64 (m, 2H), 7.40-7.38 (m, 2H), 2.51 (s, 6H); 13 C NMR (100 MHz, CDCl 3 ) δ 131.2, 132.5, 132.3, 131.9, 130.9, 129.2, 129.0, 125.6, 125.2, 123.5, 122.6, 95.6, 88.6, 7.06;
EI-MS (70 eV) m / z = 564 (M + ); HRMS: Calcd for C 32 H 22 Se 2 : 566.00465, [M + ]. Found: 566.00598.

続いて、以下の反応式に示すように、3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンを合成した。

Figure 2014034557
Subsequently, 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene was synthesized as shown in the following reaction formula.
Figure 2014034557

ジクロロメタン(60mL)に2,6−ビス(メチルセレノ)−3,7−ビス(フェニルエチニル)アントラセン(0.566g、1.0mmol)を溶解させた溶液に、0℃で、ヨウ素(1.01g、4mmol)を加えた。
室温で3時間撹拌した後、飽和亜硫酸水素ナトリウム水溶液(5mL)に撹拌しながら(およそ10分間)注いだ。
生成した沈殿物を濾取し、水(100mL)、エタノール(100mL)で連続して洗浄し、減圧乾燥して3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェン(0.788g、quantitative yield)を暗赤色固体として得た。
To a solution of 2,6-bis (methylseleno) -3,7-bis (phenylethynyl) anthracene (0.566 g, 1.0 mmol) dissolved in dichloromethane (60 mL) at 0 ° C., iodine (1.01 g, 4 mmol) was added.
After stirring at room temperature for 3 hours, the mixture was poured into a saturated aqueous sodium hydrogensulfite solution (5 mL) with stirring (approximately 10 minutes).
The formed precipitate was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), dried under reduced pressure, and 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6, 7-b ′] diselenophene (0.788 g, quantitative yield) was obtained as a dark red solid.

得られた3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンの測定結果を以下に示す。
Mp > 300 ℃;
EI-MS (70 eV) m/z = 788 (M+). HRMS: Calcd for C24H24I2Se2Si2: 789.76663, [M+]. Found: 789.76819.
The solubility of 3,9-Diiodo-2,8-diphenylanthra[2,3-b:6,7-b’]diselenophene was not sufficient for measuring 1H and 13C NMR spectra.
The measurement results of the obtained 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene are shown below.
Mp> 300 ° C;
EI-MS (70 eV) m / z = 788 (M + ). HRMS: Calcd for C 24 H 24 I 2 Se 2 Si 2 : 789.76663, [M + ]. Found: 789.76819.
The solubility of 3,9-Diiodo-2,8-diphenylanthra [2,3-b: 6,7-b '] diselenophene was not sufficient for measuring 1 H and 13 C NMR spectra.

続いて、以下の反応式に示すように、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンを合成した。

Figure 2014034557
Subsequently, 2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene was synthesized as shown in the following reaction formula.
Figure 2014034557

THF(100mL)に3,9−ジヨード−2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェン(0.504g、0.64mmol)を加えた懸濁液に、LiAlH(0.5g、13.2mmol)を加え、24時間還流した。
冷却後、反応溶液を撹拌しながら(およそ10分間)、酢酸エチル(50mL)を0℃で加えた。
生成した沈殿物を濾取し、水(100mL)とエタノール(100mL)で続けて洗浄し、減圧乾燥して2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェン(0.343g、quantitative yield)を暗赤色固体として得た。
この固体を窒素雰囲気下における温度勾配熱昇華法(ca.360℃ at <10−2Pa)で精製し、溶媒洗浄(クロロホルム)し、分析用サンプルを得た。
To a suspension of 3,9-diiodo-2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene (0.504 g, 0.64 mmol) in THF (100 mL) was added LiAlH. 4 (0.5 g, 13.2 mmol) was added and refluxed for 24 hours.
After cooling, ethyl acetate (50 mL) was added at 0 ° C. while stirring the reaction solution (approximately 10 minutes).
The formed precipitate was collected by filtration, washed successively with water (100 mL) and ethanol (100 mL), dried under reduced pressure, and 2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene ( 0.343 g (quantitative yield) was obtained as a dark red solid.
This solid was purified by a temperature gradient thermal sublimation method (ca. 360 ° C. at <10 −2 Pa) in a nitrogen atmosphere, and washed with a solvent (chloroform) to obtain a sample for analysis.

得られた2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンの測定結果を以下に示す。
Mp > 300 ℃;
EI-MS (70 eV) m/z = 536 (M+); Anal. Calcd for ;HRMS: Calcd for C30H19Se2: 538.98117, [MH+]. Found: 538.98096.
The solubility of DPh-ADS was not sufficient for measuring 1H and 13C NMR spectra.
The measurement results of the obtained 2,8-diphenylanthra [2,3-b: 6,7-b ′] diselenophene are shown below.
Mp> 300 ° C;
EI-MS (70 eV) m / z = 536 (M + ); Anal.Calcd for; HRMS: Calcd for C 30 H 19 Se 2 : 538.98117, [MH + ]. Found: 538.98096.
The solubility of DPh-ADS was not sufficient for measuring 1 H and 13 C NMR spectra.

上記で合成したアントラ[2,3−b:6,7−b’]ジチオフェン(以下、ADT)、アントラ[2,3−b:6,7−b’]ジセレノフェン(以下、ADS)、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジフラン(以下、DPh−ADF)、2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン(以下、DPh−ADT)を用いてトランジスタ素子を作製し、そのトランジスタ特性を評価した。   Anthra [2,3-b: 6,7-b ′] dithiophene (hereinafter ADT), anthra [2,3-b: 6,7-b ′] diselenophene (hereinafter ADS), 2, 8-diphenylanthra [2,3-b: 6,7-b ′] difuran (hereinafter referred to as DPh-ADF), 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene (hereinafter referred to as “dithiophene”) , DPh-ADT) was used to fabricate transistor elements, and the transistor characteristics were evaluated.

SiO基板を面積1cm×1cmの大きさに切り出し、裏面をフッ化水素酸で処理し、空気中で酸化されているシリカを取り除いた後、Auを真空蒸着してゲート電極を形成した。次に、SiO基板表面上に、真空蒸着法でADTの有機薄膜を形成した。なお、SiO基板は、オクチルトリクロロシランで表面処理を施して用いた。形成した有機薄膜上にシャドウマスクを用いてAuを真空蒸着することで、チャネル長50μm、チャネル幅1.5mmのソース電極とドレイン電極とを形成し、トップコンタクト型のトランジスタ素子を作製した。以下、このトランジスタ素子をFET素子ADTと記す。 The SiO 2 substrate was cut into a size of 1 cm × 1 cm in area, the back surface was treated with hydrofluoric acid, and silica oxidized in air was removed, and then Au was vacuum deposited to form a gate electrode. Next, an ADT organic thin film was formed on the surface of the SiO 2 substrate by vacuum deposition. The SiO 2 substrate was used after being surface-treated with octyltrichlorosilane. Au was vacuum-deposited on the formed organic thin film using a shadow mask to form a source electrode and a drain electrode having a channel length of 50 μm and a channel width of 1.5 mm, and a top contact type transistor element was manufactured. Hereinafter, this transistor element is referred to as an FET element ADT.

また、上記と同様に、ADS、DPh−ADF、DPh−ADTを用いてトランジスタ素子を作製した。これらのトランジスタ素子をFET素子ADS、FET素子DPh−ADF、FET素子DPh−ADTと記す。   Similarly to the above, transistor elements were manufactured using ADS, DPh-ADF, and DPh-ADT. These transistor elements are referred to as FET element ADS, FET element DPh-ADF, and FET element DPh-ADT.

作製したそれぞれのトランジスタ素子に、ソース・ドレイン間電圧Vdを0〜−60V、ゲート電圧Vgを20〜−60Vに変化させてトランジスタ特性(出力特性、伝達特性)を測定した。   The transistor characteristics (output characteristics and transfer characteristics) were measured by changing the source-drain voltage Vd to 0 to −60 V and the gate voltage Vg to 20 to −60 V for each of the manufactured transistor elements.

FET素子ADTの出力特性、伝達特性をそれぞれ図1(A)及び図2(B)に示す。また、FET素子ADSの出力特性、伝達特性をそれぞれ図2(A)及び図2(B)に示す。FET素子DPh−ADFの出力特性、伝達特性をそれぞれ図3(A)及び図3(B)に示す。FET素子DPh−ADTの出力特性、伝達特性をそれぞれ図4(A)及び図4(B)に示す。   The output characteristics and transfer characteristics of the FET element ADT are shown in FIG. 1 (A) and FIG. 2 (B), respectively. Further, the output characteristics and transfer characteristics of the FET element ADS are shown in FIGS. 2A and 2B, respectively. The output characteristics and transfer characteristics of the FET element DPh-ADF are shown in FIG. 3 (A) and FIG. 3 (B), respectively. The output characteristics and transfer characteristics of the FET element DPh-ADT are shown in FIG. 4 (A) and FIG. 4 (B), respectively.

そして、これらの出力特性、伝達特性から、FET素子ADTのキャリヤ移動度は0.3cm−1−1、FET素子ADSのキャリヤ移動度は0.7cm−1−1、FET素子DPh−ADFのキャリヤ移動度は0.6cm−1−1、FET素子DPh−ADTのキャリヤ移動度は1.3cm−1−1とそれぞれ算出された。 Then, these output characteristics from the transfer characteristics, the carrier mobility of the FET device ADT is 0.3cm 2 V -1 s -1, carrier mobility of the FET device ADS is 0.7cm 2 V -1 s -1, FET The carrier mobility of the element DPh-ADF was calculated as 0.6 cm 2 V −1 s −1 , and the carrier mobility of the FET element DPh-ADT was calculated as 1.3 cm 2 V −1 s −1 .

anti−アントラジチオフェン及びsyn−アントラジチオフェンの混合体で、上記とほぼ同様の条件で作製されたFET素子では、0.09cm−1−1(非特許文献)であることが報じられているところ、FET素子ADT、FET素子ADS、FET素子DPh−ADF及びFET素子DPh−ADTのキャリヤ移動度はいずれも大きく上回っていた。 It is reported that the FET element manufactured under the same conditions as described above with a mixture of anti-anthradithiophene and syn-anthradithiophene has 0.09 cm 2 V −1 s −1 (non-patent document). As a result, the carrier mobilities of the FET element ADT, the FET element ADS, the FET element DPh-ADF, and the FET element DPh-ADT were significantly higher.

以上の結果から、半導体特性の良好なアンチアントラジカルコゲノフェンを合成できることを確認した。   From the above results, it was confirmed that antiant radical cogenophene having good semiconductor properties could be synthesized.

以上説明したように、本発明に係るanti−アントラカルコゲノフェンの合成方法では、アントラカルコゲノフェンのanti体を選択的に合成することが可能である。anti−アントラカルコゲノフェンは優れた半導体特性を有するので、有機半導体材料の合成に利用可能である。   As described above, in the method for synthesizing anti-anthra chalcogenophene according to the present invention, it is possible to selectively synthesize an anti-antichalcogenophene anti-body. Since anti-anthra chalcogenophene has excellent semiconductor properties, it can be used for the synthesis of organic semiconductor materials.

Claims (4)

式1で表される化合物とハロゲン化剤とを反応させて、式2で表される化合物を得る工程と、
Figure 2014034557
前記式2で表される化合物と脱アルキル化剤とを反応させて、式3で表される化合物を得る工程と、
Figure 2014034557
前記式3で表される化合物とアセチル化剤とを反応させて、式4で表される化合物を得る工程と、
Figure 2014034557
前記式4で表される化合物と末端アセチレン化合物とを反応させて、式5で表される化合物を得る工程と、
Figure 2014034557
前記式5で表される化合物に塩基を作用させて環化させ、式6で表される化合物を得る工程と、を含む、
Figure 2014034557
ことを特徴とするanti−アントラジカルコゲノフェンの合成方法。
(式1及び式2中、Rはアルキル基を表し、式2〜式4中、Xはハロゲンを表し、式4及び式5中、Acはアセチル基を表し、式5中、Rはトリメチルシリル基、フェニル基又はアルキル基、式6中、Rは水素、フェニル基又はアルキル基を表す。)
Reacting a compound represented by Formula 1 with a halogenating agent to obtain a compound represented by Formula 2;
Figure 2014034557
Reacting the compound represented by Formula 2 with a dealkylating agent to obtain a compound represented by Formula 3;
Figure 2014034557
Reacting the compound represented by Formula 3 with an acetylating agent to obtain a compound represented by Formula 4,
Figure 2014034557
Reacting the compound represented by Formula 4 with a terminal acetylene compound to obtain a compound represented by Formula 5;
Figure 2014034557
Cyclizing the compound represented by Formula 5 by allowing a base to act to obtain a compound represented by Formula 6;
Figure 2014034557
And a method for synthesizing an anti-ant radical cogenophene.
(In Formula 1 and Formula 2, R 1 represents an alkyl group, in Formula 2 to Formula 4, X represents a halogen, in Formula 4 and Formula 5, Ac represents an acetyl group, and in Formula 5, R 2 represents trimethylsilyl, phenyl or alkyl group, in the formula 6, R 3 is hydrogen, phenyl or an alkyl group.)
式11で表される化合物と硫黄化合物又はセレン化合物とを反応させて式12で表される化合物を得る工程と、
Figure 2014034557
前記式12で表される化合物と脱アルキル化剤とを反応させて式13で表される化合物を得る工程と、
Figure 2014034557
前記式13で表される化合物と無水トリフルオロメタンスルホン酸とを反応させて式14で表される化合物を得る工程と、
Figure 2014034557
前記式14で表される化合物と末端アセチレン化合物とを反応させて式15で表される化合物を得る工程と、
Figure 2014034557
前記式15で表される化合物をヨウ素で環化させて式16で表される化合物を得る工程と、を含む、
Figure 2014034557
ことを特徴とするanti−アントラジカルコゲノフェンの合成方法。
(式11及び式12中、R11はアルキル基を表し、式12〜式15中、R12はアルキル基を表し、式12〜式16中、Yは硫黄又はセレンを表し、式14中、Tfはトリフルオロメタンスルフォニル基を表し、式15及び式16中、R13はトリメチルシリル基、フェニル基又はアルキル基を表す。)
Reacting a compound represented by Formula 11 with a sulfur compound or a selenium compound to obtain a compound represented by Formula 12;
Figure 2014034557
Reacting the compound represented by Formula 12 with a dealkylating agent to obtain a compound represented by Formula 13;
Figure 2014034557
Reacting the compound represented by Formula 13 with trifluoromethanesulfonic anhydride to obtain a compound represented by Formula 14;
Figure 2014034557
Reacting the compound represented by Formula 14 with a terminal acetylene compound to obtain a compound represented by Formula 15;
Figure 2014034557
Cyclizing the compound represented by Formula 15 with iodine to obtain a compound represented by Formula 16;
Figure 2014034557
And a method for synthesizing an anti-ant radical cogenophene.
(In Formula 11 and Formula 12, R 11 represents an alkyl group, in Formula 12 to Formula 15, R 12 represents an alkyl group, in Formula 12 to Formula 16, Y represents sulfur or selenium, and in Formula 14, Tf represents a trifluoromethanesulfonyl group, and in formulas 15 and 16, R 13 represents a trimethylsilyl group, a phenyl group, or an alkyl group.)
前記R13がトリメチルシリル基である前記式16で表される化合物を得た後、還元して、アントラ[2,3−b:6,7−b’]ジチオフェン又はアントラ[2,3−b:6,7−b’]ジセレノフェンを得る、
ことを特徴とする請求項2に記載のanti−アントラジカルコゲノフェンの合成方法。
After obtaining the compound represented by Formula 16 wherein R 13 is a trimethylsilyl group, the compound is reduced to anthrac [2,3-b: 6,7-b ′] dithiophene or anthra [2,3-b: 6,7-b ′] diselenophene,
The method for synthesizing an anti-ant radical cogenophene according to claim 2.
前記R13がフェニル基である前記式16で表される化合物を得た後、還元して2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジチオフェン又は2,8−ジフェニルアントラ[2,3−b:6,7−b’]ジセレノフェンを得る、
ことを特徴とする請求項2に記載のanti−アントラジカルコゲノフェンの合成方法。
After obtaining the compound represented by the formula 16 wherein R 13 is a phenyl group, it is reduced to 2,8-diphenylanthra [2,3-b: 6,7-b ′] dithiophene or 2,8- Diphenylanthra [2,3-b: 6,7-b ′] diselenophene is obtained,
The method for synthesizing an anti-ant radical cogenophene according to claim 2.
JP2012177435A 2012-08-09 2012-08-09 Method for synthesizing anti-ant radical kogenophene Active JP5888815B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012177435A JP5888815B2 (en) 2012-08-09 2012-08-09 Method for synthesizing anti-ant radical kogenophene
PCT/JP2013/070864 WO2014024769A1 (en) 2012-08-09 2013-08-01 Method for synthesizing anti-anthradichalcogenophene
TW102128451A TW201406703A (en) 2012-08-09 2013-08-08 Method for synthesizing anti-anthradichalcogenophene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177435A JP5888815B2 (en) 2012-08-09 2012-08-09 Method for synthesizing anti-ant radical kogenophene

Publications (2)

Publication Number Publication Date
JP2014034557A true JP2014034557A (en) 2014-02-24
JP5888815B2 JP5888815B2 (en) 2016-03-22

Family

ID=50068000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177435A Active JP5888815B2 (en) 2012-08-09 2012-08-09 Method for synthesizing anti-ant radical kogenophene

Country Status (3)

Country Link
JP (1) JP5888815B2 (en)
TW (1) TW201406703A (en)
WO (1) WO2014024769A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10056563B2 (en) 2016-04-08 2018-08-21 Samsung Electronics Co., Ltd. Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound, and intermediate thereof
KR20180051260A (en) * 2016-11-08 2018-05-16 삼성전자주식회사 Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound and intermediate therefor and synthetic method of intermediate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195790A (en) * 1997-10-16 1999-07-21 Lucent Technol Inc Thin-film transistor and semiconductor material therefor
WO2010058692A1 (en) * 2008-11-21 2010-05-27 国立大学法人広島大学 Novel compound, process for producing the compound, organic semiconductor material, and organic semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11195790A (en) * 1997-10-16 1999-07-21 Lucent Technol Inc Thin-film transistor and semiconductor material therefor
WO2010058692A1 (en) * 2008-11-21 2010-05-27 国立大学法人広島大学 Novel compound, process for producing the compound, organic semiconductor material, and organic semiconductor device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013051754; Masahiro NAKANO et al: 'Naphtho[2,3-b:6,7-b']dichalcogenophenes: Syntheses, Characterizations, and Chalcogene Atom Effects o' Chemistry of Materials Vol.24, No.1, 20111126, p.190-198 *
JPN6013051757; 伊東椒など: マクマリー 有機化学(中)第4版 第4版, 19980330, 第589-590頁, 株式会社 東京化学同人 *
JPN6013051758; Tanay KESHARWANI et al: 'Synthesis of 2,3-Disubstituted Benzo[b]selenophenes via Electrophilic Cyclization' The Journal of Organic Chemistry Vol.71, No.6, 20060217, p.2307-2312 *

Also Published As

Publication number Publication date
TW201406703A (en) 2014-02-16
WO2014024769A1 (en) 2014-02-13
JP5888815B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US8816100B2 (en) Compound, method of producing the compound, organic semiconductor material and organic semiconductor device
US9260451B2 (en) Method for producing aromatic compound
US8921553B2 (en) Stannyl derivatives of naphthalene diimides and related compositions and methods
JP6080870B2 (en) Organic semiconductor material for solution process and organic semiconductor device
WO2013021953A1 (en) Condensed polycyclic aromatic compound, aromatic polymer, and method for synthesizing aromatic compound
TWI460180B (en) And intermediates of benzodimerine heterocyclic pentadiene derivatives and their synthesis
RU2624820C2 (en) Donor-acceptor conjugated molecules and methods for their production
JP5888815B2 (en) Method for synthesizing anti-ant radical kogenophene
Wang et al. Synthesis, characterization, and reactions of 6, 13-disubstituted 2, 3, 9, 10-tetrakis (trimethylsilyl) pentacene derivatives
Liu et al. Dialkylated dibenzotetrathienoacene derivative as semiconductor for organic field effect transistors
JP5780624B2 (en) Method for producing condensed ring compound and novel compound
US9000170B2 (en) Process for the preparation of tetracarboxynaphthalenediimide compounds disubstituted with heteroaryl groups
KR101424978B1 (en) Novel method for preparing hetero fused ring compounds using gilman reagent compounds
EP2789620B1 (en) Process for the preparation of benzoheterodiazole compounds disubstituted with benzodithiophene groups
Kostyuchenko et al. New approach to the synthesis of 2, 2': 5', 2''-terthiophene-5, 5''-and 2, 2': 5', 2'': 5'', 2'''-quaterthiophene-5, 5'''-dicarboxylic acids
JP7241346B2 (en) Method for producing aromatic compound
JP2018145109A (en) Polycyclic aromatic compound, multimer of polycyclic aromatic compound, method for producing the same, and organic semiconductor device containing the same
JP6252306B2 (en) Method for producing heteroacene derivative
JP2010155791A (en) Condensed polycyclic aromatic compound, method for producing the same, and copolymer of condensed polycyclic aromatic compound
JP2013163663A (en) Method for producing fused ring compound
JP2010254636A (en) Halobenzochalcogenophene derivative, raw material compound of the same and production method thereof
WO2011132479A1 (en) Compound preparation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140508

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150216

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160215

R150 Certificate of patent or registration of utility model

Ref document number: 5888815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250