JP2014032952A - Polymer electrolyte membrane consisting of aromatic polymer membrane base material and method for manufacturing the same - Google Patents

Polymer electrolyte membrane consisting of aromatic polymer membrane base material and method for manufacturing the same Download PDF

Info

Publication number
JP2014032952A
JP2014032952A JP2013107085A JP2013107085A JP2014032952A JP 2014032952 A JP2014032952 A JP 2014032952A JP 2013107085 A JP2013107085 A JP 2013107085A JP 2013107085 A JP2013107085 A JP 2013107085A JP 2014032952 A JP2014032952 A JP 2014032952A
Authority
JP
Japan
Prior art keywords
membrane
graft
polymer
vinyl monomer
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013107085A
Other languages
Japanese (ja)
Other versions
JP5641457B2 (en
Inventor
Yasunari Maekawa
康成 前川
Shin Hasegawa
伸 長谷川
Yasuyuki Suzuki
康之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2013107085A priority Critical patent/JP5641457B2/en
Publication of JP2014032952A publication Critical patent/JP2014032952A/en
Application granted granted Critical
Publication of JP5641457B2 publication Critical patent/JP5641457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolyte membrane excellent in terms not only of endurance factors at times of long-term operations such as proton conductivity, high-temperature mechanical characteristics, oxidation resistance, etc. but also of fuel impermeability and optimal for portable appliances using methanol, hydrogen, etc. as fuels; and fuel cells for family-use cogenerators and automobiles.SOLUTION: The provided polymer electrolyte membrane is prepared by graft-polymerizing, within solvents including an amide-based solvent and an alcohol solvent, a vinyl monomer with an aromatic polymer membrane base material including a polyester structure so as to introduce a graft chain to the latter and subsequently by partially converting the graft chain and/or a portion of the aromatic polymer chain into a sulfonate group chemically; a method for manufacturing the same is also provided.

Description

本発明は、基材である芳香族高分子膜にビニルモノマーをグラフト重合した後、グラフト鎖、又は/及び、芳香族高分子鎖をスルホン酸基に化学変換することで、固体高分子型燃料電池に適した高分子電解質膜であって、優れたプロトン伝導性、機械特性、耐酸化性、燃料不透過性を有する高分子電解質膜を提供すること、及び、その製造方法に関する。   The present invention provides a polymer electrolyte fuel by graft-polymerizing a vinyl monomer onto an aromatic polymer film as a base material and then chemically converting the graft chain or / and the aromatic polymer chain into a sulfonic acid group. The present invention relates to a polymer electrolyte membrane suitable for a battery, and to a polymer electrolyte membrane having excellent proton conductivity, mechanical properties, oxidation resistance, and fuel impermeability, and a method for producing the same.

高分子電解質膜を用いた燃料電池は、作動温度が150℃以下と低く、発電効率やエネルギー密度が高いことから、メタノール、水素等を燃料として利用した、携帯機器用電源、家庭向けコージェネレーション電源、燃料電池自動車の電源として期待されている。この燃料電池において高分子電解質膜、電極触媒、ガス拡散電極、及び、膜電極接合体などに関する重要な要素技術がある。その中でも燃料電池として優れた特性を有する高分子電解質膜の開発は最も重要な技術の一つである。 Fuel cells using polymer electrolyte membranes have a low operating temperature of 150 ° C or less and high power generation efficiency and energy density. Therefore, power supplies for portable devices and cogeneration power supplies for homes that use methanol, hydrogen, etc. as fuel. It is expected as a power source for fuel cell vehicles. In this fuel cell, there are important elemental technologies related to a polymer electrolyte membrane, an electrode catalyst, a gas diffusion electrode, a membrane electrode assembly, and the like. Among them, the development of a polymer electrolyte membrane having excellent characteristics as a fuel cell is one of the most important technologies.

固体高分子型燃料電池において、電解質膜は、水素イオン(プロトン)を伝導するためのいわゆる“電解質”として、更に、燃料である水素やメタノールと酸素とを直接混合させないための“隔膜”として作用する。該高分子電解質膜としては、イオン交換容量が大きいこと、長期間の使用に耐える化学的な安定性、特に、膜の劣化の主因となる水酸化ラジカル等に対する耐性(耐酸化性)が優れていること、電池の動作温度である80℃以上での耐熱性があること、また、電気抵抗を低く保持するために膜の保水性が一定で高いことが要求される。一方、隔膜としての役割から、膜の力学的な強度や寸法安定性が優れていることや、水素、メタノール及び酸素の透過性が低い性質を有することなどが要求される。 In a polymer electrolyte fuel cell, the electrolyte membrane functions as a so-called “electrolyte” for conducting hydrogen ions (protons), and also functions as a “membrane” for preventing direct mixing of hydrogen, methanol, and oxygen as fuel. To do. The polymer electrolyte membrane has a large ion exchange capacity, chemical stability that can withstand long-term use, and particularly excellent resistance (oxidation resistance) to hydroxyl radicals, etc., which are the main cause of membrane deterioration. In addition, heat resistance at 80 ° C. or higher, which is the operating temperature of the battery, is required, and in order to keep electric resistance low, the water retention of the film is required to be constant and high. On the other hand, due to the role as a diaphragm, it is required that the film has excellent mechanical strength and dimensional stability, and has low hydrogen, methanol and oxygen permeability.

固体高分子型燃料電池用の電解質膜としては、デュポン社により開発されたパーフルオロスルホン酸膜「ナフィオン(デュポン社登録商標)」などが一般に用いられてきた。しかしながら、ナフィオン等の従来の含フッ素系高分子電解質膜は、化学的な耐久性や安定性には優れているが、イオン交換容量が1 meq/g前後と小さく、また、保水性が不十分でイオン交換膜の乾燥が生じてプロトン伝導性が低下したり、メタノールを燃料とする場合に膜の膨潤やメタノールのクロスオーバーが起きたりする。更に、自動車用電源で必要な100℃を超える作動条件での機械特性が著しく低下する欠点があった。更に、フッ素樹脂系高分子電解質膜はモノマーの合成から出発するために、製造工程が多くなり、したがって高価であり、家庭向けコジェネレーションシステム用電源や燃料電池自動車用電源として実用化する場合の大きな障害になる。
そこで、該フッ素樹脂系高分子電解質膜に替わる低コストの高分子電解質膜の開発が活発に進められてきた。例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンやエチレン-テトラフルオロエチレン共重合体などのフッ素系高分子膜基材にスチレンモノマーをグラフト重合により導入し、次いでスルホン化することにより固体高分子型燃料電池用の電解質膜を作製する試みがなされている(特許文献1、2参照のこと)。しかし、フッ素系高分子膜基材は、ガラス転移温度が低いため、100℃以上の高温での機械的強打が著しく低下すること、膜に大きな電流を長時間流すとポリスチレンに導入されたスルホン酸基の脱落が起こり、膜のイオン交換能が大幅に低下すること、更に、燃料である水素や酸素のクロスオーバーを起こす欠点があった。
As an electrolyte membrane for a polymer electrolyte fuel cell, a perfluorosulfonic acid membrane “Nafion (registered trademark of DuPont)” developed by DuPont has been generally used. However, conventional fluorine-containing polymer electrolyte membranes such as Nafion are excellent in chemical durability and stability, but have a small ion exchange capacity of around 1 meq / g and insufficient water retention. As a result, the ion exchange membrane is dried, resulting in a decrease in proton conductivity, or when methanol is used as a fuel, membrane swelling or methanol crossover occurs. Furthermore, there was a drawback that the mechanical characteristics under operating conditions exceeding 100 ° C. required for the power source for automobiles were remarkably deteriorated. Furthermore, since the fluororesin-based polymer electrolyte membrane starts from the synthesis of the monomer, the number of manufacturing processes is increased, and therefore it is expensive, which is a big problem when it is put to practical use as a power source for household cogeneration systems or a power source for fuel cell vehicles. It becomes an obstacle.
Therefore, development of a low-cost polymer electrolyte membrane replacing the fluororesin polymer electrolyte membrane has been actively promoted. For example, a polymer electrolyte fuel cell is obtained by introducing a styrene monomer into a fluorine-based polymer membrane substrate such as polytetrafluoroethylene, polyvinylidene fluoride or ethylene-tetrafluoroethylene copolymer by graft polymerization and then sulfonating the polymer. Attempts have been made to produce electrolyte membranes for use (see Patent Documents 1 and 2). However, since the fluoropolymer membrane substrate has a low glass transition temperature, mechanical hitting at a high temperature of 100 ° C. or higher is remarkably reduced, and when a large current is passed through the membrane for a long time, sulfonic acid introduced into polystyrene. There was a drawback that the ion dropping ability of the group occurred and the ion exchange ability of the membrane was greatly lowered, and further crossover of hydrogen and oxygen as fuels occurred.

一方、低コスト高分子電解質膜として、エンジニアリングプラスチックに代表される高温での機械的強度に優れ、メタノール、水素、酸素などの燃料透過性の低い、芳香族高分子膜をスルホン化した構造が提案されている。該スルホン化芳香族高分子電解質膜は、プロトン伝導を担うスルホン酸基が結合した芳香族モノマーの合成と、その重合反応により芳香族高分子を合成し、次いで製膜することとで得られる(特許文献3、4、5参照のこと)。しかし、電気伝導度を上げるためにスルホン酸基の導入量を増やすと、水溶性の増加に伴い、機械的強度の低下やハンドリング性の低下が生じる。更に、スルホン酸基がランダムに芳香族高分子鎖中に存在するため、機械的強度を維持する疎水性部分とプロトン伝導を担う電解質層の分離が明瞭でないことから、グラフト重合により得られた高分子電解質膜や市販のフッ素系高分子電解質膜(ナフィオン等)のように相分離構造をとる高分子電解質膜に比べて、プロトン伝導性、燃料不透過性や耐酸化性に代表される長期運転における耐久性に劣っていた。 On the other hand, as a low-cost polymer electrolyte membrane, a structure in which an aromatic polymer membrane with excellent mechanical strength at high temperatures represented by engineering plastics and low fuel permeability such as methanol, hydrogen, oxygen, etc. is sulfonated is proposed. Has been. The sulfonated aromatic polymer electrolyte membrane is obtained by synthesizing an aromatic monomer to which a sulfonic acid group responsible for proton conduction is bonded, synthesizing an aromatic polymer by the polymerization reaction, and then forming a membrane ( (See Patent Documents 3, 4, and 5). However, when the amount of sulfonic acid groups introduced is increased in order to increase the electrical conductivity, the mechanical strength and handling properties are lowered with an increase in water solubility. Furthermore, since sulfonic acid groups are randomly present in the aromatic polymer chain, the separation of the hydrophobic portion maintaining mechanical strength and the electrolyte layer responsible for proton conduction is not clear. Long-term operation represented by proton conductivity, fuel impermeability and oxidation resistance compared to polymer electrolyte membranes that have a phase separation structure, such as molecular electrolyte membranes and commercially available fluoropolymer electrolyte membranes (Nafion, etc.) It was inferior in durability.

特開2001-348439号公報JP 2001-348439 A 特開2004-246376号公報JP 2004-246376 A 特開2004-288497号公報JP 2004-288497 A 特開2004-346163号公報JP 2004-346163 A 特開2006-12791号公報JP 2006-12791 A

本発明は、フッ素樹脂系電解質の課題である高温での機械的強度の低下、燃料のクロスオーバーを解決するとともに、スルホン化芳香族高分子電解質膜の課題であるプロトン伝導性と機械的強度、ハンドリング性の両立を合せて解決するため、グラフト重合により芳香族高分子膜にグラフト鎖を導入し、次いで、グラフト鎖、又は/及び、芳香族高分子鎖をスルホン化することで、優れたプロトン伝導性、燃料不透過性、耐酸化性など長期運転での耐久性を有する高分子電解質膜を提供するものである。 The present invention solves the decrease in mechanical strength at high temperatures, which is a problem of fluororesin-based electrolytes, and crossover of fuel, as well as proton conductivity and mechanical strength, which are problems of sulfonated aromatic polymer electrolyte membranes, In order to solve the problem of compatibility of handling properties, a graft chain is introduced into an aromatic polymer membrane by graft polymerization, and then the graft chain or / and the aromatic polymer chain is sulfonated to provide excellent protons. The present invention provides a polymer electrolyte membrane having durability in long-term operation such as conductivity, fuel impermeability, and oxidation resistance.

本発明は、燃料電池への使用に適した、高いプロトン伝導性、高温での高い機械的特性、耐酸化性など長期運転での高い耐久性、及び、低い燃料透過性を有する高分子電解質膜及びその製造方法を提供する。 The present invention relates to a polymer electrolyte membrane suitable for use in a fuel cell, having high proton conductivity, high mechanical properties at high temperature, high durability in long-term operation such as oxidation resistance, and low fuel permeability. And a method for manufacturing the same.

すなわち、本発明は、芳香族高分子膜基材に、ビニルモノマーをグラフト重合した後、グラフト鎖、又は/及び、芳香族高分子鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜の提供、及び、その製造方法である。 That is, the present invention is prepared by graft-polymerizing a vinyl monomer onto an aromatic polymer membrane substrate and then chemically converting a graft chain or / and part of the aromatic polymer chain to a sulfonic acid group. And a method for producing the polymer electrolyte membrane.

該芳香族高分子膜基材は、ポリエーテルエーテルケトン構造、ポリイミド構造、ポリスルホン構造、及び、ポリエステル構造を有する高分子膜基材であることが好ましい。 The aromatic polymer membrane substrate is preferably a polymer membrane substrate having a polyetheretherketone structure, a polyimide structure, a polysulfone structure, and a polyester structure.

本発明によって製造された高分子電解質膜は、フッ素樹脂系高分子電解質膜と比べ、非常に低コストで製造できるにもかかわらず、高温での高い機械的特性や低い燃料透過性を示す。更に、グラフト重合によるグラフト鎖導入により、従来のスルホン化芳香族高分子電解質膜に比べ、高いプロトン伝導性と耐酸化性を両立した特性を有するため、特に、長期使用耐久性が望まれる家庭向けコージェネレーション用や100℃以上の高温使用に耐える自動車用の燃料電池への使用に適している。 Although the polymer electrolyte membrane produced by the present invention can be produced at a very low cost as compared with the fluororesin polymer electrolyte membrane, it exhibits high mechanical properties and low fuel permeability at high temperatures. In addition, the introduction of graft chains by graft polymerization has characteristics that combine high proton conductivity and oxidation resistance compared to conventional sulfonated aromatic polymer electrolyte membranes, so that long-term use durability is particularly desirable. It is suitable for use in fuel cells for automobiles that can withstand high temperatures of 100 ° C or higher.

本発明で使用することができる芳香族高分子膜基材として、芳香族炭化水素からなる高分子膜であれば特に限定されない。例えば、ポリエーテルケトン誘導体、ポリイミド誘導体、ポリスルホン誘導体、ポリエステル誘導体、ポリアミド誘導体、ポリカーボネート、ポリフェニレンサルファイド、又は、ポリベンゾイミダゾールなどの芳香族高分子膜基材が挙げられる。該ポリエーテルケトン誘導体としては、グラフト重合及びスルホン化における反応溶液中で膜形状が維持できること、及び、得られた高分子電解質膜が高い機械的特性を示すことからポリエーテルエーテルケトンなどが好ましい。該ポリイミド誘導体としては、グラフト重合及びスルホン化における反応溶液中で膜形状が維持できること、及び、得られた高分子電解質膜が高い機械的特性を示すことからポリエーテルイミドなどが好ましい。該ポリスルホン誘導体としては、グラフト重合及びスルホン化における反応溶液中で膜形状が維持できること、及び、得られた高分子電解質膜が高い機械的特性を示すことからポリエーテルイミドなどが好ましい。該ポリエステル誘導体としては、グラフト重合及びスルホン化における反応溶液中で膜形状が維持できること、及び、得られた高分子電解質膜が高い機械的特性を示すことからポリエチレンナフタレート、液晶ポリエステルなどが好ましい。 The aromatic polymer membrane substrate that can be used in the present invention is not particularly limited as long as it is a polymer membrane made of an aromatic hydrocarbon. For example, an aromatic polymer membrane substrate such as polyether ketone derivative, polyimide derivative, polysulfone derivative, polyester derivative, polyamide derivative, polycarbonate, polyphenylene sulfide, or polybenzimidazole can be used. As the polyetherketone derivative, polyetheretherketone and the like are preferable because the membrane shape can be maintained in a reaction solution in graft polymerization and sulfonation, and the obtained polymer electrolyte membrane exhibits high mechanical properties. As the polyimide derivative, polyetherimide or the like is preferable because the membrane shape can be maintained in a reaction solution in graft polymerization and sulfonation, and the obtained polymer electrolyte membrane exhibits high mechanical properties. As the polysulfone derivative, polyetherimide or the like is preferable because the membrane shape can be maintained in a reaction solution in graft polymerization and sulfonation, and the obtained polymer electrolyte membrane exhibits high mechanical properties. As the polyester derivative, polyethylene naphthalate, liquid crystal polyester, and the like are preferable because the membrane shape can be maintained in a reaction solution in graft polymerization and sulfonation, and the obtained polymer electrolyte membrane exhibits high mechanical properties.

本発明において、芳香族高分子膜基材にグラフト重合するビニルモノマーとして、(1)スルホン酸基保持可能な芳香環を持つビニルモノマー、(2)加水分解でスルホン酸基に変換可能なハロゲン化スルホニル基、スルホン酸エステル基を有するビニルモノマー、(3)スルホン化反応でスルホン酸基が導入可能なハロゲンを有するビニルモノマー、(4)芳香族高分子鎖への求電子置換スルホン化反応で、スルホン化されることのない脂肪族ビニルモノマー、芳香環ビニルモノマーやパーフルオロアルキルビニルモノマーなどが挙げられる。 In the present invention, (1) vinyl monomer having an aromatic ring capable of retaining a sulfonic acid group, and (2) halogenation capable of being converted into a sulfonic acid group by hydrolysis. A sulfonyl group, a vinyl monomer having a sulfonic acid ester group, (3) a vinyl monomer having a halogen capable of introducing a sulfonic acid group by a sulfonation reaction, and (4) an electrophilic substitution sulfonation reaction to an aromatic polymer chain, Examples thereof include aliphatic vinyl monomers that are not sulfonated, aromatic vinyl monomers, and perfluoroalkyl vinyl monomers.

(1)スルホン酸基保持可能な芳香環を持つビニルモノマーとして、スチレン、α−メチルスチレン、4-ビニルトルエン、4-tert-ブチルスチレンなどのアルキルスチレン、2-クロロスチレン、4-クロロスチレン、2-ブロモスチレン、3-ブロモスチレン、4-ブロモスチレン、2-フルオロスチレン、3-フルオロスチレン、4-フルオロスチレンなどのハロゲン化スチレン、4-メトキシスチレン、4-メトキシメチルスチレン、2,4-ジメトキシスチレン、ビニルフェニルアリルエーテル類などのアルコキシスチレン、4-ヒドロキシスチレン、4-アセトキシスチレン、4- tert -ブチロキシスチレン、4- tert -ブチロキカルボニロキシスチレン、4-ビニルベンジルアルキルエーテルどのヒドロキシスチレン誘導体などが挙げられる。 (1) As vinyl monomers having an aromatic ring capable of retaining a sulfonic acid group, alkyl styrene such as styrene, α-methylstyrene, 4-vinyltoluene, 4-tert-butylstyrene, 2-chlorostyrene, 4-chlorostyrene, Halogenated styrene such as 2-bromostyrene, 3-bromostyrene, 4-bromostyrene, 2-fluorostyrene, 3-fluorostyrene, 4-fluorostyrene, 4-methoxystyrene, 4-methoxymethylstyrene, 2,4- Alkoxy styrene such as dimethoxy styrene, vinyl phenyl allyl ether, 4-hydroxy styrene, 4-acetoxy styrene, 4-tert-butoxy styrene, 4-tert-butyloxy carbonyloxy styrene, 4-vinyl benzyl alkyl ether which hydroxy Examples thereof include styrene derivatives.

(2)加水分解でスルホン酸基に変換可能なハロゲン化スルホニル基、スルホン酸エステル基、スルホン酸塩基を有するビニルモノマーとして、4-ビニルベンゼンスルホン酸ナトリウム塩、4-ビニルベンジルスルホン酸ナトリウム塩、4-メトキシスルホニルスチレン、4-エトキシスルホニルスチレン、4-スチレンスルホニルフルオリド、CF2=CF-O-(CF2)n-SO2F(式中、n=1〜5)、CF2=CF-O-CF2-CF(CF3)-O-(CF2)n-SO2F(式中、n=1〜5)などのパーフルオロ(フルオロスルホニルアルキルビニルエーテル)誘導体、CF2=CF-SO2Fなどのフルオロスルホニルテトラフルオロビニル誘導体などが挙げられる。 (2) 4-vinylbenzenesulfonic acid sodium salt, 4-vinylbenzylsulfonic acid sodium salt as vinyl monomers having a sulfonyl halide group, a sulfonic acid ester group, and a sulfonic acid group that can be converted into a sulfonic acid group by hydrolysis, 4-methoxy sulfonyl styrene, 4-ethoxy sulfonyl styrene, 4-styrene sulfonyl fluoride, CF 2 = CF-O- ( CF 2) n-SO 2 F ( wherein, n = 1~5), CF 2 = CF -O-CF2-CF (CF 3 ) -O- (CF 2) n-SO 2 F ( wherein, n = 1 to 5) perfluoro (fluorosulfonyl vinyl ether) derivatives such as, CF 2 = CF-SO And fluorosulfonyltetrafluorovinyl derivatives such as 2 F.

(3)スルホン化反応でスルホン酸基が導入可能なハロゲンを有するビニルモノマーとしては、4-クロロメチルスチレン、CH2=CH-O-(CH2)n-X(式中、nは1〜5。Xはハロゲン基で、塩素又はフッ素である)、CF2=CF-O-(CH2)n-X(式中、nは1〜5。Xはハロゲン基で、塩素又はフッ素である)、CH2=CH-O-(CF2)n-X(式中、nは1〜5。Xはハロゲン基で、塩素又はフッ素である)、CF2=CF-O-(CF2)n-X(式中、nは1〜5。Xはハロゲン基で、塩素又はフッ素である)、CF2=CF-O-CF2-CF(CF3)-O-(CF2)n-X(式中、nは1〜5。Xはハロゲン基で、塩素又はフッ素である)。 (3) As the vinyl monomer having a halogen sulfonic acid group can be introduced by sulfonation reaction, 4-chloromethyl styrene, CH 2 = CH-O- ( CH 2) nX ( wherein, n 1-5. X is a halogen group, chlorine or fluorine), CF 2 = CF—O— (CH 2 ) nX (where n is 1 to 5, X is a halogen group, chlorine or fluorine), CH 2 = CH-O- (CF 2) nX ( wherein, n 1~5.X a halogen group, chlorine or fluorine), CF 2 = CF-O- (CF 2) nX ( in wherein, n 1 to 5. X is a halogen group, which is chlorine or fluorine), CF 2 = CF—O—CF 2 —CF (CF 3 ) —O— (CF 2 ) nX (where n is 1 to 5). X is a halogen group, chlorine or fluorine).

(4)芳香族高分子鎖への求電子置換スルホン化反応で、スルホン化されることのない脂肪族ビニルモノマー、芳香環を有するビニルモノマーやパーフルオロアルキルビニルモノマーとして、アクリロニトリル、アクリル酸、アクリル酸メチルなどのアクリル酸誘導体、メタクリル酸、メタクリル酸メチルなどのメタクリル酸誘導体、2,4,6-トリメチルスチレンなどのアルキル置換スチレン誘導体、テトラフルオロスチレン、4-フルオロスチレン、4-クロロスチレンなどの電子不足芳香族ビニルモノマー誘導体、CH2=CH-O-(CH2)n-CH3(式中、nは1〜5)、CF2=CF-O-(CH2)n--CH3(式中、nは1〜5)、CH2=CH-O-(CF2)n-CF3(式中、nは1〜5)などのアルキルビニルエーテル誘導体、CF2=CF-O-(CF2)n- CF3(式中、nは1〜5)、CF2=CF-O-CF2-CF(CF3)-O-(CF2)n- CF3(式中、nは1〜5)などのパーフルオロアルキルビニルエーテル誘導体などが挙げられる。 (4) As an aliphatic vinyl monomer that is not sulfonated by an electrophilic substitution sulfonation reaction to an aromatic polymer chain, a vinyl monomer having an aromatic ring or a perfluoroalkyl vinyl monomer, acrylonitrile, acrylic acid, acrylic Acrylic acid derivatives such as methyl acid, methacrylic acid derivatives such as methacrylic acid and methyl methacrylate, alkyl-substituted styrene derivatives such as 2,4,6-trimethylstyrene, tetrafluorostyrene, 4-fluorostyrene, 4-chlorostyrene, etc. electron-deficient aromatic vinyl monomer derivatives, CH 2 = CH-O- ( CH 2) n-CH 3 ( wherein, n 1~5), CF 2 = CF- O- (CH 2) n - CH 3 (Where n is 1 to 5), alkyl vinyl ether derivatives such as CH 2 = CH-O- (CF 2 ) n-CF 3 (where n is 1 to 5), CF 2 = CF-O- ( CF 2) n- CF 3 (wherein, n 1~5), CF 2 = CF- O-CF2-CF (CF 3) -O- (CF 2) n- C And perfluoroalkyl vinyl ether derivatives such as F 3 (wherein n is 1 to 5).

多官能性モノマーなどの架橋剤をビニルモノマーと併用することで、グラフト鎖を架橋することも可能である。また、グラフト重合後に、多官能性モノマーの添加や放射線照射により、グラフト鎖同士、芳香族高分子鎖同士、及び、グラフト鎖と芳香族高分子鎖間を架橋することも可能である。架橋剤として用いる多官能性モノマーとしては、ビス(ビニルフェニル)エタン、ジビニルベンゼン、2,4,6-トリアリロキシ-1,3,5-トリアジン(トリアリルシアヌレート)、トリアリル-1,2,4-ベンゼントリカルボキシレート(トリアリルトリメリテート)、ジアリルエーテル、ビス(ビニルフェニル)メタン、ジビニルエーテル、1,5-ヘキサジエン、ブタジエンなどが挙げられる。架橋剤は、ビニルモノマーとの重量比で10%以下用いることが好ましい。10%以上使用すると高分子電解質膜が脆くなる。 It is also possible to crosslink the graft chain by using a crosslinking agent such as a polyfunctional monomer in combination with the vinyl monomer. Further, after graft polymerization, graft chains, aromatic polymer chains, and graft chains and aromatic polymer chains can be cross-linked by addition of a polyfunctional monomer or irradiation with radiation. Polyfunctional monomers used as crosslinking agents include bis (vinylphenyl) ethane, divinylbenzene, 2,4,6-triallyloxy-1,3,5-triazine (triallyl cyanurate), triallyl-1,2,4 -Benzene tricarboxylate (triallyl trimellitate), diallyl ether, bis (vinylphenyl) methane, divinyl ether, 1,5-hexadiene, butadiene and the like. The crosslinking agent is preferably used in an amount of 10% or less by weight with respect to the vinyl monomer. If used over 10%, the polymer electrolyte membrane becomes brittle.

高分子電解質膜は、イオン交換容量と正の相関関係にある電気伝導度が高いものほど、高分子電解質膜としての性能は優れている。ここで、イオン交換容量とは、乾燥電解質膜の重量1g当たりのイオン交換基量(mmol/g)である。しかし、25℃におけるイオン交換膜の電気伝導度が0.02([Ω・cm]-1)以下である場合は、燃料電池としての出力性能が著しく低下する場合が多いため、高分子電解質膜の電気伝導度は0.02([Ω・cm]-1)以上、より高性能の高分子電解質膜では0.10([Ω・cm]-1)以上に設計されていることが多い。 As the polymer electrolyte membrane has a higher electrical conductivity having a positive correlation with the ion exchange capacity, the performance as the polymer electrolyte membrane is better. Here, the ion exchange capacity is the amount of ion exchange groups (g / g) per gram of dry electrolyte membrane. However, when the electric conductivity of the ion exchange membrane at 25 ° C is 0.02 ([Ω · cm] -1 ) or less, the output performance as a fuel cell often decreases significantly. In many cases, the conductivity is designed to be 0.02 ([Ω · cm] −1 ) or more, and higher performance polymer electrolyte membranes are designed to be 0.10 ([Ω · cm] −1 ) or more.

本発明において、放射線の作用により、芳香族高分子膜基材に生成したラジカルを利用して、ビニルモノマーのグラフト重合と、次いでスルホン酸基に化学変換することで高分子電解質膜は作製される。したがって、グラフト率やスルホン化率を制御することによって、得られる膜のイオン交換容量、ひいては、電気伝導度を制御することができる。 In the present invention, a polymer electrolyte membrane is produced by graft polymerization of a vinyl monomer using a radical generated on an aromatic polymer membrane substrate by the action of radiation and then chemical conversion to a sulfonic acid group. . Therefore, by controlling the graft rate and the sulfonation rate, the ion exchange capacity and thus the electrical conductivity of the resulting membrane can be controlled.

本発明において、放射線は、室温〜150℃、不活性ガス下又は酸素存在下で、芳香族高分子膜基材に1〜1000 kGy照射する。より好ましくは、10〜500 kGy照射する。10kGy以下では0.02([Ω・cm]-1)以上の導電率を得るために必要なグラフト率を得ることが困難であり、500 kGy以上だと高分子膜基材が脆くなる。グラフト重合は、芳香族高分子膜基材とモノマーを同時に放射線照射してグラフト重合させる同時照射法と、芳香族高分子膜基材を先に放射線照射した後にビニルモノマーと接触させてグラフト重合させる前照射法のいずれかの方法によって行うことができる。 In the present invention, the radiation is applied to the aromatic polymer membrane substrate at 1 to 1000 kGy at room temperature to 150 ° C. in an inert gas or in the presence of oxygen. More preferably, irradiation is performed at 10 to 500 kGy. If it is 10 kGy or less, it is difficult to obtain a graft ratio necessary for obtaining a conductivity of 0.02 ([Ω · cm] −1 ) or more, and if it is 500 kGy or more, the polymer membrane substrate becomes brittle. Graft polymerization is a simultaneous irradiation method in which an aromatic polymer membrane substrate and a monomer are simultaneously irradiated and graft polymerized, and an aromatic polymer membrane substrate is irradiated with radiation and then contacted with a vinyl monomer for graft polymerization. It can be performed by any of the pre-irradiation methods.

高分子膜基材のグラフト重合は、ビニルモノマー液体中に、高分子膜基材を浸漬する方法が一般的に用いられている。しかし、本発明において、芳香族高分子膜基材への該ビニルモノマーのグラフト重合では、該高分子基材のグラフト重合性、グラフト重合して得られるグラフト高分子膜基材の重合溶液中での膜形状維持の観点から、ジクロロエタン、クロロホルム、N-メチルホルムアミド、N-メチルアセトアミド、N-メチルピロリドン、γ-プチロラクトン、n-ヘキサン、メタノール、エタノール、1-プロパノール、t-ブタノール、トルエン、シクロヘキサン、シクロヘキサノン、ジメチルスルホオキシドなどの溶媒で希釈したビニルモノマー溶液中に、高分子膜基材を浸漬する方法を用いる。グラフト重合溶媒として芳香族高分子膜基材を膨潤させるアミド系溶媒を利用すると、ビニルモノマーの高分子膜基材中への浸透が促進され、グラフト率が向上する。該アミド系溶媒としては、N-メチルホルムアミド、N-メチルピロリドンなどが挙げられる。更に、ビニルモノマーの溶解性の低いアルコール類及びその水溶液を利用すると、グラフト重合過程でビニルモノマーが効率的に芳香族高分子膜基材中に移動するため、グラフト重合が促進される。該アルコール類として、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、及びそれらの水溶液が挙げられる。 For graft polymerization of a polymer film substrate, a method of immersing the polymer film substrate in a vinyl monomer liquid is generally used. However, in the present invention, in the graft polymerization of the vinyl monomer onto the aromatic polymer membrane substrate, the graft polymerizability of the polymer substrate, in the polymerization solution of the graft polymer membrane substrate obtained by graft polymerization. Dichloroethane, chloroform, N-methylformamide, N-methylacetamide, N-methylpyrrolidone, γ-ptyrolactone, n-hexane, methanol, ethanol, 1-propanol, t-butanol, toluene, cyclohexane A method of immersing the polymer membrane substrate in a vinyl monomer solution diluted with a solvent such as cyclohexanone or dimethyl sulfoxide is used. When an amide solvent that swells the aromatic polymer membrane substrate is used as the graft polymerization solvent, the penetration of the vinyl monomer into the polymer membrane substrate is promoted, and the graft ratio is improved. Examples of the amide solvent include N-methylformamide and N-methylpyrrolidone. Furthermore, when an alcohol having a low solubility of the vinyl monomer and an aqueous solution thereof are used, the vinyl monomer is efficiently transferred into the aromatic polymer membrane substrate during the graft polymerization process, so that the graft polymerization is promoted. Examples of the alcohols include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and aqueous solutions thereof.

本発明において、グラフト率は高分子膜基材に対し、2〜120重量%、より好ましくは4〜80重量%である。4重量%以下では0.02([Ω・cm]-1)以上の導電率を得ることが困難であり、80重量%以上だとグラフト高分子膜の機械的強度が得られない。 In the present invention, the graft ratio is 2 to 120% by weight, more preferably 4 to 80% by weight, based on the polymer membrane substrate. If it is 4% by weight or less, it is difficult to obtain a conductivity of 0.02 ([Ω · cm] −1 ) or more. If it is 80% by weight or more, the mechanical strength of the graft polymer film cannot be obtained.

本発明において、スルホン酸基を導入する方法は、グラフト重合に用いる該ビニルモノマー(1)〜(4)によって異なる。該ビニルモノマー(1)から得られたグラフト高分子膜において、グラフト鎖中の芳香環へのスルホン化は、濃硫酸や発煙硫酸、もしくはクロロスルホン酸のジクロロエタン溶液やクロロホルム溶液を反応させることによって行うことができる。グラフト高分子膜のグラフト率によって、高分子電解質膜に適用できる伝導率を示すためのスルホン化率は異なる。ここで、スルホン化率は、グラフト鎖のビニルモノマー単位当たりに1分子のスルホン酸が導入されたときの値を100%とする。スルホン化率は、反応時間と反応温度を変えることで、10〜150%に調整することが好ましい。更に好ましくは、30〜100%である。30%以下では0.02([Ω・cm]-1)以上の導電率を得ることが困難であり、100%以上だとグラフト鎖の耐熱性、耐酸化性が著しく低下する。 In the present invention, the method for introducing a sulfonic acid group varies depending on the vinyl monomers (1) to (4) used for graft polymerization. In the graft polymer membrane obtained from the vinyl monomer (1), sulfonation to the aromatic ring in the graft chain is carried out by reacting concentrated sulfuric acid, fuming sulfuric acid, or dichloroethane solution or chloroform solution of chlorosulfonic acid. be able to. Depending on the graft ratio of the graft polymer membrane, the sulfonation rate for showing conductivity applicable to the polymer electrolyte membrane varies. Here, the sulfonation rate is 100% when one molecule of sulfonic acid is introduced per vinyl monomer unit of the graft chain. The sulfonation rate is preferably adjusted to 10 to 150% by changing the reaction time and the reaction temperature. More preferably, it is 30 to 100%. If it is 30% or less, it is difficult to obtain a conductivity of 0.02 ([Ω · cm] −1 ) or more. If it is 100% or more, the heat resistance and oxidation resistance of the graft chain are remarkably lowered.

該ビニルモノマー(2)から得られたグラフト高分子膜において、グラフト鎖中のハロゲン化スルホニル基、スルホン酸エステル基、スルホン酸塩基のスルホン酸基への加水分解は、中性水溶液、アルカリ性水溶液、もしくは酸性水溶液で処理することでできる。ビニルモノマー(2)以外のビニルモノマーとのグラフト共重合において,その組成比を変えることで、スルホン化率を、10〜100%に調整することが好ましい。更に好ましくは、30〜100%である。30%以下では0.02([Ω・cm]-1)以上の導電率を得ることが困難であり、100%以上だとグラフト鎖の耐熱性、耐酸化性が著しく低下する。 In the graft polymer membrane obtained from the vinyl monomer (2), hydrolysis of a sulfonyl halide group, a sulfonate group, and a sulfonate group in the graft chain into a sulfonate group is carried out by using a neutral aqueous solution, an alkaline aqueous solution, Or it can process by processing with acidic aqueous solution. In graft copolymerization with vinyl monomers other than vinyl monomer (2), the sulfonation rate is preferably adjusted to 10 to 100% by changing the composition ratio. More preferably, it is 30 to 100%. If it is 30% or less, it is difficult to obtain a conductivity of 0.02 ([Ω · cm] −1 ) or more. If it is 100% or more, the heat resistance and oxidation resistance of the graft chain are remarkably lowered.

該ビニルモノマー(3)から得られたグラフト高分子膜において、グラフト鎖中のハロゲン原子のスルホン酸塩への化学変換は、亜硫酸ナトリウム水溶液、亜硫酸水素ナトリウム水溶液、又は、それらとジメチルスルホキシドとの混合溶液で処理することができる。ビニルモノマー(3)以外のビニルモノマーとのグラフト共重合において,その組成比を変えることで、スルホン化率を、10〜100%に調整することが好ましい。更に好ましくは、30〜100%である。30%以下では0.02([Ω・cm]-1)以上の導電率を得ることが困難であり、100%以上だとグラフト鎖の耐熱性、耐酸化性が著しく低下する。 In the graft polymer membrane obtained from the vinyl monomer (3), the chemical conversion of the halogen atom in the graft chain to the sulfonate is carried out by using a sodium sulfite aqueous solution, a sodium hydrogen sulfite aqueous solution, or a mixture thereof with dimethyl sulfoxide. Can be treated with a solution. In graft copolymerization with vinyl monomers other than the vinyl monomer (3), the sulfonation rate is preferably adjusted to 10 to 100% by changing the composition ratio. More preferably, it is 30 to 100%. If it is 30% or less, it is difficult to obtain a conductivity of 0.02 ([Ω · cm] −1 ) or more. If it is 100% or more, the heat resistance and oxidation resistance of the graft chain are remarkably lowered.

該ビニルモノマー(4)から得られたグラフト高分子膜は、これまで報告のある放射線グラフト重合を利用して作製された高分子電解質膜、及び、本発明にある上記ビニルモノマー(1)〜(3)を用いて作製した高分子電解質膜と異なり、高分子膜基材にスルホン化することで、高分子膜基材由来の領域が導電性を担う親水性相として、グラフト鎖が機械的強度などを担う疎水性のマトリックス相として働くことを特徴とする。したがって、グラフト重合するビニルモノマー(4)は、機械的特性、耐熱性を有するものであれば特に制限されない。好ましくは、多官能性モノマーなどの架橋剤をビニルモノマーと併用することで、その機械的強度、耐熱性がさらに向上する。また、グラフト重合後のグラフト高分子膜、又は、スルホン化後の高分子電解質膜を加熱処理することで、グラフト鎖上の更なる架橋構造導入により機械的強度、耐熱性が向上する。芳香族基材膜の芳香環へのスルホン化は、濃硫酸や発煙硫酸、もしくはクロロスルホン酸のジクロロエタン溶液やクロロホルム溶液を反応させることによって行うことができる。グラフト高分子膜のグラフト率によって、高分子電解質膜に適用できる伝導率を示すためのスルホン化率は異なるため、スルホン化率は、反応時間と反応温度を変えることで、10〜150%に調整することが好ましい。更に好ましくは、20〜100%である。20%以下では0.02([Ω・cm]-1)以上の導電率を得ることが困難であり、100%以上だとグラフト鎖の耐熱性、耐酸化性が著しく低下する。 The graft polymer membrane obtained from the vinyl monomer (4) includes a polymer electrolyte membrane prepared by utilizing the radiation graft polymerization reported so far, and the vinyl monomers (1) to (1) of the present invention. 3) Unlike the polymer electrolyte membrane prepared by using 3), the graft chain has mechanical strength as a hydrophilic phase in which the region derived from the polymer membrane substrate bears conductivity by sulfonated to the polymer membrane substrate. It is characterized by acting as a hydrophobic matrix phase that bears the above. Therefore, the vinyl monomer (4) to be graft polymerized is not particularly limited as long as it has mechanical properties and heat resistance. Preferably, the mechanical strength and heat resistance are further improved by using a crosslinking agent such as a polyfunctional monomer in combination with the vinyl monomer. Further, by subjecting the graft polymer membrane after graft polymerization or the polymer electrolyte membrane after sulfonation to heat treatment, mechanical strength and heat resistance are improved by introducing a further crosslinked structure on the graft chain. Sulfonation of the aromatic base membrane into the aromatic ring can be carried out by reacting concentrated sulfuric acid, fuming sulfuric acid, dichloroethane solution of chlorosulfonic acid or chloroform solution. Depending on the grafting rate of the graft polymer membrane, the sulfonation rate to show the conductivity applicable to the polymer electrolyte membrane is different, so the sulfonation rate is adjusted to 10-150% by changing the reaction time and reaction temperature It is preferable to do. More preferably, it is 20 to 100%. If it is 20% or less, it is difficult to obtain a conductivity of 0.02 ([Ω · cm] −1 ) or more, and if it is 100% or more, the heat resistance and oxidation resistance of the graft chain are remarkably lowered.

本発明において、高分子電解質膜の電気伝導度を高めるため、高分子電解質膜を薄くすることも考えられる。しかし現状では、過度に薄い高分子電解質膜では破損しやすく、膜自体の製作が困難である。したがって、本発明では、30〜200 μmの高分子電解質膜が好ましい。さらに好ましくは20〜100 μmの範囲の高分子電解質膜である。 In the present invention, in order to increase the electric conductivity of the polymer electrolyte membrane, it is also conceivable to make the polymer electrolyte membrane thin. However, at present, an excessively thin polymer electrolyte membrane is easily damaged, and it is difficult to manufacture the membrane itself. Therefore, in the present invention, a polymer electrolyte membrane of 30 to 200 μm is preferable. More preferred is a polymer electrolyte membrane in the range of 20 to 100 μm.

本発明において、放射線により与えられたエネルギーは、芳香族高分子鎖に作用し、ビニルモノマーのグラフト重合を開始するラジカル等の活性種を該高分子鎖上に生じさせる。従って、高分子鎖上にラジカル等の活性種を発生する反応を起こすエネルギー源であれば、放射線は特に制限されるものではない。具体的には、γ線、電子線、イオン線、X線などが挙げられる。 In the present invention, the energy imparted by radiation acts on the aromatic polymer chain to generate an active species such as a radical that initiates graft polymerization of the vinyl monomer on the polymer chain. Therefore, radiation is not particularly limited as long as it is an energy source that causes a reaction that generates active species such as radicals on the polymer chain. Specific examples include γ rays, electron beams, ion rays, and X-rays.

以下、本発明を実施例及び比較例により説明するが、本発明はこれに限定されるものではない。なお、各測定値は以下の測定によって求めた。 Hereinafter, although an example and a comparative example explain the present invention, the present invention is not limited to this. In addition, each measured value was calculated | required by the following measurements.

(1)グラフト率(%)
高分子膜基材を主鎖部、ビニルモノマーとのグラフト重合した部分をグラフト鎖部とすると、主鎖部に対するグラフト鎖部の重量比は、次式のグラフト率(Xdg [重量%])として表される。
(1) Graft rate (%)
When the polymer membrane substrate is the main chain part and the graft polymerized part with the vinyl monomer is the graft chain part, the weight ratio of the graft chain part to the main chain part is the graft ratio (X dg [wt%]) Represented as:

Figure 2014032952
Figure 2014032952

(2)イオン交換容量(meq/g)
高分子電解質膜のイオン交換容量(Ion Exchange Capacity, IEC)は次式で表される。
(2) Ion exchange capacity (meq / g)
The ion exchange capacity (IEC) of the polymer electrolyte membrane is expressed by the following equation.

Figure 2014032952
Figure 2014032952

[n(酸性基)obs]の測定は、高分子電解質膜を1M硫酸溶液中に50℃で4時間浸漬し、完全にプロトン型(H型)とした後、50℃の3M NaCl水溶液中に4時間浸漬することで再度-SO3Na型とする。高分子電解質膜を取り出した後、残存のNaCl水溶液を0.2M NaOHで中和滴定することで、高分子電解質膜の酸性基濃度を、置換されたプロトン(H+)として求めた。 [n (acidic group) obs ] is measured by immersing the polymer electrolyte membrane in a 1M sulfuric acid solution at 50 ° C for 4 hours to form a complete proton type (H type), and then in a 3M NaCl aqueous solution at 50 ° C. Re-SO 3 Na type by immersion for 4 hours. After removing the polymer electrolyte membrane, the remaining NaCl aqueous solution was neutralized and titrated with 0.2 M NaOH to obtain the acidic group concentration of the polymer electrolyte membrane as a substituted proton (H + ).

(3)含水率(%)
室温下、水中で保存のH型の高分子電解質膜を取り出し、表面の水を軽くふき取った後(約1分後)、重量を測定する(W (g))。この膜を60℃にて16時間、真空乾燥後、重量測定することで高分子電解質膜の乾燥重量 Wd(g)を求め、Ws、Wdから次式により含水率を算出する。
(3) Moisture content (%)
Remove the H-type polymer electrolyte membrane stored in water at room temperature, gently wipe off the water on the surface (after about 1 minute), and then measure the weight (W (g)). This membrane is vacuum-dried at 60 ° C. for 16 hours and then weighed to obtain the dry weight W d (g) of the polymer electrolyte membrane, and the moisture content is calculated from W s and W d by the following formula.

Figure 2014032952
Figure 2014032952

(4)電気伝導度(Ω-1cm-1
交流法による測定(新実験化学講座19、高分子化学(II)、p998、丸善)に従い、通常の膜抵抗測定セルとヒュ−レットパッカード製のLCRメータ、E-4925Aを使用して、高分子電解質膜の膜抵抗(Rm)の測定を行った。1M 硫酸水溶液をセルに満たして二つの白金電極間(距離 5 mm)の抵抗を測定し、高分子電解質膜の電気伝導度を次式を用いて算出した。
(4) Electrical conductivity (Ω -1 cm -1 )
In accordance with the measurement by the AC method (New Experimental Chemistry Course 19, Polymer Chemistry (II), p998, Maruzen), using a normal membrane resistance measurement cell and Hewlett Packard LCR meter, E-4925A, polymer The membrane resistance (Rm) of the electrolyte membrane was measured. The cell was filled with a 1M aqueous sulfuric acid solution, the resistance between two platinum electrodes (distance 5 mm) was measured, and the electrical conductivity of the polymer electrolyte membrane was calculated using the following equation.

Figure 2014032952
Figure 2014032952

(5)耐酸化性(重量残存率%)
60℃で16時間真空感想後の高分子電解質膜の重量をW3とし、80℃の3%過酸化水素溶液に24時間した電解質膜の乾燥重量をW4とする。
(5) Oxidation resistance (weight residual rate%)
The weight of the polymer electrolyte membrane after vacuum impression at 60 ° C. for 16 hours is defined as W 3, and the dry weight of the electrolyte membrane after 24 hours in a 3% hydrogen peroxide solution at 80 ° C. is defined as W 4 .

Figure 2014032952
Figure 2014032952

(参考例1)
2 cm x 3 cmのポリエーテルエーテルケトン(以下、PEEKと略す)膜(膜厚 25 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PEEK膜に60Co線源からのγ線を室温で30 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt%スチレンの1-プロパノール溶液20gを、照射されたPEEK膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、80℃で48時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。0.05Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で8時間放置した後、水洗による加水分解処理を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(Reference Example 1)
A 2 cm x 3 cm polyetheretherketone (hereinafter abbreviated as PEEK) film (film thickness: 25 μm) was placed in a separable container made of glass with a cock and deaerated, and the inside of the glass container was replaced with argon gas. In this state, the PEEK film was irradiated with γ rays from a 60 Co source at 30 kGy at room temperature. Subsequently, 20 g of a 1 wt-propanol solution of 50 wt% styrene degassed by bubbling argon gas was added to the glass container so that the irradiated PEEK film was immersed therein. After replacing with argon gas, the glass container was sealed and allowed to stand at 80 ° C. for 48 hours. The obtained graft polymer membrane was washed with cumene and dried. After standing in a 1,2-dichloroethane solution of 0.05 M chlorosulfonic acid at 0 ° C. for 8 hours, a polymer electrolyte membrane was obtained by performing a hydrolysis treatment by washing with water. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.

Figure 2014032952
Figure 2014032952

(参考例2)
2 cm x 3 cm のPEEK膜(膜厚25 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PEEK膜に60Co線源からのγ線を室温で100 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt% p-スチレンスルホン酸エチルのN-メチルピロリドン溶液20gを、照射されたPEEK膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、80℃で12時間放置した。得られたグラフト高分子膜をN-メチルピロリドンで洗浄し乾燥した。グラフト鎖上のスルホン酸エステルを、0.5Mの塩酸水溶液中、80℃で12時間浸漬させることで加水分解し、その後、水洗することで、グラフト鎖にスルホン酸基を有する高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(参考例3)
2 cm x 3 cm のPEEK膜(25 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PEEK膜に60Co線源からのγ線を室温で30 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt%アクリロニトリルの1-プロパノール溶液20gをPEEK膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、80℃で24時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。グラフト高分子膜を、窒素雰囲気下、200℃、3時間放置することで、ポリアクリロニトリルグラフト鎖を架橋・環化した。この架橋グラフト膜を、0.05Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で8時間処理した後、水洗による加水分解を行うことで、芳香族高分子鎖にスルホン酸基を有する高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(参考例4)
2 cm x 3 cmのポリエーテルイミド(以下、PEIと略す)膜(50 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PEI膜に60Co線源からのγ線を室温で100 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した70 wt%スチレンの1-プロパノール溶液20gをPEI膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、60℃で24時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。0.02Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で1時間放置した後、水洗による加水分解処理を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(参考例5)
2 cm x 3 cm のPEI膜(50 μm)をコック付きのガラス製セパラブル容器に入れて脱気の後、ガラス容器内をアルゴンガスで置換した。この状態で、PEI膜に60Co線源からのγ線を室温で30 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した70 wt%アクリロニトリルの1-プロパノール溶液20gをPEI膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、60℃にして24時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。グラフト高分子膜を窒素雰囲気下、200℃、3時間放置することで、ポリアクリロニトリルグラフト鎖を架橋・環化した。この架橋グラフト膜を、0.02Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で1間処理した後、水洗による加水分解を行うことで、芳香族高分子鎖にスルホン酸基を有する高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(参考例6)
2 cm x 3 cmのポリスルホン(以下、PSUと略す)膜(50 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PSU膜に60Co線源からのγ線を室温で30 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt%スチレンの1-プロパノール溶液20gをPSU膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、40℃にして48時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。0.02Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で3時間放置した後、水洗による加水分解処理を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(参考例7)
2 cm x 3 cm のPSU膜(50 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、PSU膜に60Co線源からのγ線を室温で線量30 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt%アクリロニトリルの1-プロパノール溶液20gをPSU膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、60℃にして24時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。グラフト高分子膜を窒素雰囲気下、200℃、3時間放置することで、ポリアクリロニトリルグラフト鎖を架橋・環化した。この架橋グラフト膜を、0.02Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で3間処理した後、水洗による加水分解を行うことで、芳香族高分子主鎖にスルホン酸基を有する高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、電気伝導度、及び、電気伝導度を表1に示す。
(Reference Example 2)
A 2 cm x 3 cm PEEK film (film thickness: 25 μm) was put in a glass separable container with a cock and deaerated, and the inside of the glass container was replaced with argon gas. In this state, the PEEK film was irradiated with 100 gGy of γ rays from a 60 Co radiation source at room temperature. Subsequently, 20 g of an N-methylpyrrolidone solution of 50 wt% ethyl p-styrenesulfonate degassed by bubbling with argon gas was added to the glass container so that the irradiated PEEK membrane was immersed therein. After replacing with argon gas, the glass container was sealed and left at 80 ° C. for 12 hours. The obtained graft polymer membrane was washed with N-methylpyrrolidone and dried. The sulfonate ester on the graft chain is hydrolyzed by immersing it in a 0.5M aqueous hydrochloric acid solution at 80 ° C for 12 hours, and then washed with water to obtain a polymer electrolyte membrane having a sulfonate group in the graft chain. It was. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.
(Reference Example 3)
A 2 cm x 3 cm PEEK membrane (25 μm) was placed in a glass separable container with a cock and deaerated, and the inside of the glass container was replaced with argon gas. In this state, the PEEK film was irradiated with γ rays from a 60 Co source at 30 kGy at room temperature. Subsequently, 20 g of a 1 wt-propanol solution of 50 wt% acrylonitrile degassed by bubbling with argon gas was added to the glass container so that the PEEK film was immersed therein. After replacing with argon gas, the glass container was sealed and left at 80 ° C. for 24 hours. The obtained graft polymer membrane was washed with cumene and dried. The graft polymer membrane was allowed to stand at 200 ° C. for 3 hours under a nitrogen atmosphere to crosslink and cyclize the polyacrylonitrile graft chain. This cross-linked graft membrane was treated in a 1,2-dichloroethane solution of 0.05 M chlorosulfonic acid at 0 ° C. for 8 hours, and then hydrolyzed by washing with water to obtain a polymer having a sulfonic acid group in the aromatic polymer chain. A molecular electrolyte membrane was obtained. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.
(Reference Example 4)
A 2 cm × 3 cm polyetherimide (hereinafter abbreviated as PEI) membrane (50 μm) was placed in a separable container made of glass with a cock and deaerated, and the inside of the glass container was replaced with argon gas. In this state, the PEI film was irradiated with 100 kGy of γ rays from a 60 Co ray source at room temperature. Subsequently, 20 g of a 1-propanol solution of 70 wt% styrene degassed by bubbling with argon gas was added to the glass container so that the PEI film was immersed therein. After replacing with argon gas, the glass container was sealed and left at 60 ° C. for 24 hours. The obtained graft polymer membrane was washed with cumene and dried. A polymer electrolyte membrane was obtained by leaving it to stand in a 1,2-dichloroethane solution of 0.02M chlorosulfonic acid at 0 ° C. for 1 hour and then performing a hydrolysis treatment by washing with water. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.
(Reference Example 5)
A 2 cm × 3 cm PEI membrane (50 μm) was placed in a glass separable container with a cock, and after deaeration, the inside of the glass container was replaced with argon gas. In this state, the PEI film was irradiated with γ rays from a 60 Co ray source at room temperature for 30 kGy. Subsequently, 20 g of a 1 wt-propanol solution of 70 wt% acrylonitrile degassed by bubbling with argon gas was added to the glass container so that the PEI film was immersed therein. After replacing with argon gas, the glass container was sealed and left at 60 ° C. for 24 hours. The obtained graft polymer membrane was washed with cumene and dried. The graft polymer membrane was allowed to stand at 200 ° C. for 3 hours in a nitrogen atmosphere to crosslink and cyclize the polyacrylonitrile graft chain. This cross-linked graft membrane was treated for 1 hour at 0 ° C. in a 1,2-dichloroethane solution of 0.02M chlorosulfonic acid, and then hydrolyzed by washing with water to obtain a polymer having a sulfonic acid group in the aromatic polymer chain. A molecular electrolyte membrane was obtained. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.
(Reference Example 6)
A 2 cm × 3 cm polysulfone (hereinafter abbreviated as PSU) membrane (50 μm) was placed in a separable container made of glass with a cock, and after deaeration, the inside of the glass container was replaced with argon gas. In this state, the PSU film was irradiated with γ rays from a 60 Co ray source at room temperature for 30 kGy. Subsequently, 20 g of a 1 wt-propanol solution of 50 wt% styrene degassed by bubbling with argon gas was added to the glass container so that the PSU film was immersed therein. After replacing with argon gas, the glass container was sealed and left at 40 ° C. for 48 hours. The obtained graft polymer membrane was washed with cumene and dried. A polymer electrolyte membrane was obtained by leaving it to stand at 0 ° C. for 3 hours in a 1,2-dichloroethane solution of 0.02M chlorosulfonic acid, followed by a hydrolysis treatment by washing with water. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.
(Reference Example 7)
A 2 cm × 3 cm PSU membrane (50 μm) was placed in a glass separable container with a cock and deaerated, and the inside of the glass container was replaced with argon gas. In this state, the PSU film was irradiated with γ rays from a 60 Co source at a room temperature of 30 kGy. Subsequently, 20 g of a 1 wt-propanol solution of 50 wt% acrylonitrile degassed by bubbling with argon gas was added to the glass container so that the PSU film was immersed therein. After replacing with argon gas, the glass container was sealed and left at 60 ° C. for 24 hours. The obtained graft polymer membrane was washed with cumene and dried. The graft polymer membrane was allowed to stand at 200 ° C. for 3 hours in a nitrogen atmosphere to crosslink and cyclize the polyacrylonitrile graft chain. This crosslinked graft membrane is treated with 0.02M chlorosulfonic acid in 1,2-dichloroethane for 3 hours at 0 ° C., and then hydrolyzed by washing with water, so that the aromatic polymer main chain has a sulfonic acid group. A polymer electrolyte membrane was obtained. Table 1 shows the graft ratio, ion exchange capacity, electrical conductivity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.

(実施例8)
2 cm x 3 cmの液晶ポリエステル(以下、LCPと略す)膜(膜厚 25 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、LCP膜に60Co線源からのγ線を室温で60kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt%スチレンの1-プロパノール溶液20gを、照射されたLCP膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、80℃で48時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。0.05Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で8時間放置した後、水洗による加水分解処理を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、及び、電気伝導度を表1に示す。
(Example 8)
A 2 cm × 3 cm liquid crystal polyester (hereinafter abbreviated as LCP) film (film thickness: 25 μm) was placed in a separable container made of glass with a cock, and after deaeration, the inside of the glass container was replaced with argon gas. In this state, the LCP film was irradiated with 60 kGy of γ rays from a 60 Co ray source at room temperature. Subsequently, 20 g of a 1 wt-propanol solution of 50 wt% styrene degassed by bubbling argon gas was added to the glass container so that the irradiated LCP film was immersed therein. After replacing with argon gas, the glass container was sealed and allowed to stand at 80 ° C. for 48 hours. The obtained graft polymer membrane was washed with cumene and dried. After standing in a 1,2-dichloroethane solution of 0.05 M chlorosulfonic acid at 0 ° C. for 8 hours, a polymer electrolyte membrane was obtained by performing a hydrolysis treatment by washing with water. Table 1 shows the graft ratio, ion exchange capacity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.

(実施例9)
2 cm x 3 cm のLCP膜(25 μm)をコック付きのガラス製セパラブル容器に入れて脱気後、ガラス容器内をアルゴンガスで置換した。この状態で、LCP膜に60Co線源からのγ線を室温で30 kGy照射した。引き続いて、このガラス容器中に、アルゴンガスのバブリングにより脱気した50 wt%アクリロニトリルの1-プロパノール溶液20gをLCP膜が浸漬するよう添加した。アルゴンガスで置換した後、ガラス容器を密閉し、80℃で24時間放置した。得られたグラフト高分子膜をクメンで洗浄し乾燥した。グラフト高分子膜を、窒素雰囲気下、200℃、3時間放置することで、ポリアクリロニトリルグラフト鎖を架橋・環化した。この架橋グラフト膜を、0.05Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で8時間処理した後、水洗による加水分解を行うことで、芳香族高分子鎖にスルホン酸基を有する高分子電解質膜を得た。本実施例で得られた高分子電解質膜のグラフト率、イオン交換容量、電気伝導度、及び、電気伝導度を表1に示す。
Example 9
A 2 cm × 3 cm LCP membrane (25 μm) was put into a glass separable container with a cock and deaerated, and then the inside of the glass container was replaced with argon gas. In this state, the LCP film was irradiated with γ rays from a 60 Co ray source at room temperature for 30 kGy. Subsequently, 20 g of a 1 wt-propanol solution of 50 wt% acrylonitrile degassed by bubbling argon gas was added to the glass container so that the LCP film was immersed therein. After replacing with argon gas, the glass container was sealed and left at 80 ° C. for 24 hours. The obtained graft polymer membrane was washed with cumene and dried. The graft polymer membrane was allowed to stand at 200 ° C. for 3 hours under a nitrogen atmosphere to crosslink and cyclize the polyacrylonitrile graft chain. This cross-linked graft membrane was treated in a 1,2-dichloroethane solution of 0.05 M chlorosulfonic acid at 0 ° C. for 8 hours, and then hydrolyzed by washing with water to obtain a polymer having a sulfonic acid group in the aromatic polymer chain. A molecular electrolyte membrane was obtained. Table 1 shows the graft ratio, ion exchange capacity, electrical conductivity, and electrical conductivity of the polymer electrolyte membrane obtained in this example.

(比較例1)
2 cm x 3 cm のPEEK膜(25 μm)を、実施例1と同じスルホン化条件で処理したところ、反応溶液中に完全に溶解し、高分子電解質膜は得られなかった。
(比較例2)
2 cm x 3 cm PEEK膜(25 μm)を、0.05Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で2間処理した後、水洗による加水分解を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のイオン交換容量、及び、電気伝導度を表1の比較例2に示す。
(比較例3)
2 cm x 3 cm PEI膜(25 μm)を、実施例4と同じスルホン化条件で処理したところ、反応溶液中に完全に溶解し、高分子電解質膜は得られなかった。
(比較例4)
2 cm x 3 cm のPEI膜(50 μm)を、0.01Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で3間処理した後、水洗による加水分解を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のイオン交換容量、及び、電気伝導度を表1の比較例4に示す。
(比較例5)
2 cm x 3 cm PSU膜(50 μm)を、実施例6と同じスルホン化条件で処理したところ、反応溶液中に完全に溶解し、高分子電解質膜は得られなかった。
(比較例6)
2 cm x 3 cm のPSU膜(50 μm)を、0.01Mクロロスルホン酸の1,2-ジクロロエタン溶液中、0℃で3間処理した後、水洗による加水分解を行うことで高分子電解質膜を得た。本実施例で得られた高分子電解質膜のイオン交換容量、及び、電気伝導度を表1の比較例6に示す。
(比較例7)
下記の表1に示したナフィオン112(デュポン社製)について測定されたイオン交換容量、電気伝導度、及び酸素透過率の結果を表1の比較例7に示す。
(Comparative Example 1)
When a 2 cm × 3 cm PEEK membrane (25 μm) was treated under the same sulfonation conditions as in Example 1, it completely dissolved in the reaction solution, and no polymer electrolyte membrane was obtained.
(Comparative Example 2)
A 2 cm x 3 cm PEEK membrane (25 μm) was treated with 0.05M chlorosulfonic acid in 1,2-dichloroethane for 2 hours at 0 ° C, followed by hydrolysis with water to obtain a polymer electrolyte membrane. It was. The ion exchange capacity and electrical conductivity of the polymer electrolyte membrane obtained in this example are shown in Comparative Example 2 in Table 1.
(Comparative Example 3)
When a 2 cm × 3 cm PEI membrane (25 μm) was treated under the same sulfonation conditions as in Example 4, it was completely dissolved in the reaction solution, and no polymer electrolyte membrane was obtained.
(Comparative Example 4)
A 2 cm x 3 cm PEI membrane (50 μm) was treated in 0.01M chlorosulfonic acid 1,2-dichloroethane solution at 0 ° C for 3 hours, and then hydrolyzed by water washing to form a polymer electrolyte membrane. Obtained. The ion exchange capacity and electrical conductivity of the polymer electrolyte membrane obtained in this example are shown in Comparative Example 4 in Table 1.
(Comparative Example 5)
When a 2 cm × 3 cm PSU membrane (50 μm) was treated under the same sulfonation conditions as in Example 6, it was completely dissolved in the reaction solution, and no polymer electrolyte membrane was obtained.
(Comparative Example 6)
A 2 cm x 3 cm PSU membrane (50 μm) was treated in 0.01 M chlorosulfonic acid 1,2-dichloroethane solution at 0 ° C for 3 hours, and then hydrolyzed by water washing to form a polymer electrolyte membrane. Obtained. The ion exchange capacity and electrical conductivity of the polymer electrolyte membrane obtained in this example are shown in Comparative Example 6 in Table 1.
(Comparative Example 7)
The results of ion exchange capacity, electrical conductivity, and oxygen permeability measured for Nafion 112 (manufactured by DuPont) shown in Table 1 below are shown in Comparative Example 7 in Table 1.

本発明の高分子電解質膜は、高温での機械的特性や燃料不透過性に優れた芳香族高分子膜基材に、スルホン酸基の構造やスルホン化率が制御できるグラフト重合によりグラフト鎖を導入できることから、従来のスルホン化芳香族高分子電解質膜に比べ、高いプロトン伝導性、耐久性、及び、燃料不透過性を示す。これにより、メタノール、水素などを燃料とした携帯機器、家庭向けコージェネレーションや自動車用の電源として期待されている燃料電池に最適な、プロトン伝導性、耐久性、燃料不透過性に優れた高分子電解質膜を提供することができる。   The polymer electrolyte membrane of the present invention has a graft chain formed on an aromatic polymer membrane substrate excellent in mechanical properties and fuel impermeability at high temperatures by graft polymerization capable of controlling the structure and sulfonation rate of the sulfonic acid group. Since it can be introduced, it exhibits higher proton conductivity, durability, and fuel impermeability than conventional sulfonated aromatic polymer electrolyte membranes. As a result, this polymer is excellent in proton conductivity, durability, and fuel impermeability, ideal for portable devices powered by methanol, hydrogen, etc., fuel cells expected as power sources for household cogeneration and automobiles. An electrolyte membrane can be provided.

以下に、本発明の実施態様を示す。
(1)芳香族高分子膜基材に、ビニルモノマーをグラフト重合した後、グラフト鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜。
(2)芳香族高分子膜基材に、ビニルモノマーをグラフト重合した後、芳香族高分子鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜。
(3)芳香族高分子膜基材に、ビニルモノマーをグラフト重合した後、グラフト鎖及び芳香族高分子鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜。
(4)芳香族高分子膜基材が、ポリエーテルエーテルケトン構造を有することを特徴とする(1)乃至(3)のいずれかに記載の高分子電解質膜。
(5)芳香族高分子膜基材が、ポリイミド構造を有することを特徴とする(1)乃至(3)のいずれかに記載の高分子電解質膜。
(6)芳香族高分子膜基材が、ポリスルホン構造を有することを特徴とする(1)乃至(3)のいずれかに記載の高分子電解質膜。
(7)芳香族高分子膜基材が、ポリエステル構造を有することを特徴とする(1)乃至(3)のいずれかに記載の高分子電解質膜。
(8)ポリエーテルケトン誘導体、ポリイミド誘導体、ポリスルホン誘導体、ポリエステル誘導体、ポリアミド誘導体、ポリカーボネート、ポリフェニレンサルファイド、又はポリベンゾイミダゾールから成る芳香族高分子膜基材にビニルモノマーをグラフト重合した後、グラフト鎖及び/又は芳香族高分子鎖の一部をスルホン酸基に化学変換することを特徴とする高分子電解質膜の製造方法。
(9)スルホン酸基保持可能な芳香環を持つビニルモノマーが、1)スルホン酸基保持可能な芳香環を持つビニルモノマー、2)加水分解でスルホン酸基に変換可能なハロゲン化スルホニル基若しくはスルホン酸エステル基を有するビニルモノマー、3)スルホン化反応でスルホン酸基が導入可能なハロゲンを有するビニルモノマー、又は4)芳香族高分子鎖への求電子置換スルホン化反応でスルホン化されることのない脂肪族ビニルモノマー、芳香環ビニルモノマー若しくはパーフルオロアルキルビニルモノマーであることを特徴とする(8)記載の方法。
Embodiments of the present invention are shown below.
(1) A polymer electrolyte membrane produced by graft-polymerizing a vinyl monomer on an aromatic polymer membrane substrate and then chemically converting a part of the graft chain to a sulfonic acid group.
(2) A polymer electrolyte membrane produced by graft-polymerizing a vinyl monomer on an aromatic polymer membrane substrate and then chemically converting a part of the aromatic polymer chain to a sulfonic acid group.
(3) A polymer electrolyte produced by graft-polymerizing a vinyl monomer onto an aromatic polymer membrane substrate and then chemically converting a part of the graft chain and the aromatic polymer chain to a sulfonic acid group film.
(4) The polymer electrolyte membrane according to any one of (1) to (3), wherein the aromatic polymer membrane substrate has a polyetheretherketone structure.
(5) The polymer electrolyte membrane according to any one of (1) to (3), wherein the aromatic polymer membrane substrate has a polyimide structure.
(6) The polymer electrolyte membrane according to any one of (1) to (3), wherein the aromatic polymer membrane substrate has a polysulfone structure.
(7) The polymer electrolyte membrane according to any one of (1) to (3), wherein the aromatic polymer membrane substrate has a polyester structure.
(8) After graft polymerization of a vinyl monomer on an aromatic polymer film substrate made of polyetherketone derivative, polyimide derivative, polysulfone derivative, polyester derivative, polyamide derivative, polycarbonate, polyphenylene sulfide, or polybenzimidazole, graft chain and A method for producing a polymer electrolyte membrane, wherein a part of an aromatic polymer chain is chemically converted into a sulfonic acid group.
(9) A vinyl monomer having an aromatic ring capable of retaining a sulfonic acid group is 1) a vinyl monomer having an aromatic ring capable of retaining a sulfonic acid group, 2) a sulfonyl halide or sulfone which can be converted into a sulfonic acid group by hydrolysis. A vinyl monomer having an acid ester group, 3) a vinyl monomer having a halogen capable of introducing a sulfonic acid group by a sulfonation reaction, or 4) being sulfonated by an electrophilic substitution sulfonation reaction to an aromatic polymer chain. (8) The method according to (8), which is not an aliphatic vinyl monomer, an aromatic ring vinyl monomer or a perfluoroalkyl vinyl monomer.

Claims (5)

ポリエステル構造を有する芳香族高分子膜基材をアミド系溶媒、アルコール類を溶媒として含むビニルモノマー液体中に浸漬してグラフト重合した後、グラフト鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜。   Prepared by immersing an aromatic polymer membrane base material having a polyester structure in a vinyl monomer liquid containing an amide solvent and alcohol as a solvent, graft polymerization, and then chemically converting a part of the graft chain to a sulfonic acid group. A polymer electrolyte membrane characterized by comprising: ポリエステル構造を有する芳香族高分子膜基材をアミド系溶媒、アルコール類を溶媒として含むビニルモノマー液体中に浸漬してグラフト重合した後、芳香族高分子鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜。   The polymer substrate with an aromatic polymer membrane having a polyester structure is immersed in a vinyl monomer liquid containing an amide solvent and alcohols as a solvent for graft polymerization, and then a part of the aromatic polymer chain is chemically converted to a sulfonic acid group. A polymer electrolyte membrane characterized by being manufactured as follows. ポリエステル構造を有する芳香族高分子膜基材アミド系溶媒、アルコール類を溶媒として含むビニルモノマー液体中に浸漬してグラフト重合した後、グラフト鎖及び芳香族高分子鎖の一部をスルホン酸基に化学変換して作製することを特徴とする高分子電解質膜。   Aromatic polymer membrane substrate amide solvent having a polyester structure, and after graft polymerization by immersing in a vinyl monomer liquid containing alcohol as a solvent, the graft chain and a part of the aromatic polymer chain are converted to sulfonic acid groups. A polymer electrolyte membrane produced by chemical conversion. ポリエステル構造を有する芳香族高分子膜基材を、アミド系溶媒、アルコール類を溶媒として含むビニルモノマー液体中に浸漬してグラフト重合した後、グラフト鎖及び/又は芳香族高分子鎖の一部をスルホン酸基に化学変換することを特徴とする高分子電解質膜の製造方法。   An aromatic polymer membrane substrate having a polyester structure is immersed in a vinyl monomer liquid containing an amide solvent and an alcohol as a solvent for graft polymerization, and then a graft chain and / or a part of the aromatic polymer chain is formed. A method for producing a polymer electrolyte membrane, which is chemically converted to a sulfonic acid group. スルホン酸基保持可能な芳香環を持つビニルモノマーが、(1)スルホン酸基保持可能な芳香環を持つビニルモノマー、(2)加水分解でスルホン酸基に変換可能なハロゲン化スルホニル基若しくはスルホン酸エステル基を有するビニルモノマー、(3)スルホン化反応でスルホン酸基が導入可能なハロゲンを有するビニルモノマー、又は(4)芳香族高分子鎖への求電子置換スルホン化反応でスルホン化されることのない脂肪族ビニルモノマー、芳香環ビニルモノマー若しくはパーフルオロアルキルビニルモノマーであることを特徴とする請求項4記載の方法。   The vinyl monomer having an aromatic ring capable of retaining a sulfonic acid group is (1) a vinyl monomer having an aromatic ring capable of retaining a sulfonic acid group, or (2) a halogenated sulfonyl group or sulfonic acid that can be converted into a sulfonic acid group by hydrolysis. A vinyl monomer having an ester group, (3) a vinyl monomer having a halogen capable of introducing a sulfonic acid group by a sulfonation reaction, or (4) being sulfonated by an electrophilic substitution sulfonation reaction to an aromatic polymer chain. 5. A process according to claim 4, characterized in that it is a free aliphatic vinyl monomer, aromatic ring vinyl monomer or perfluoroalkyl vinyl monomer.
JP2013107085A 2013-05-21 2013-05-21 POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP5641457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013107085A JP5641457B2 (en) 2013-05-21 2013-05-21 POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013107085A JP5641457B2 (en) 2013-05-21 2013-05-21 POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006227935A Division JP5545609B2 (en) 2006-08-24 2006-08-24 POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2014032952A true JP2014032952A (en) 2014-02-20
JP5641457B2 JP5641457B2 (en) 2014-12-17

Family

ID=50282587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013107085A Expired - Fee Related JP5641457B2 (en) 2013-05-21 2013-05-21 POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP5641457B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122195A (en) * 2016-01-08 2017-07-13 デンカ株式会社 Process for producing sulfonated cross-copolymer
JP2017145297A (en) * 2016-02-16 2017-08-24 国立研究開発法人日本原子力研究開発機構 Manufacturing method of cation exchange membrane used for membrane bunsen reactor in thermochemical hydrogen manufacturing iodine-sulfur (is) process
WO2019031454A1 (en) 2017-08-07 2019-02-14 東ソー・ファインケム株式会社 High-purity amphipathic arylsulfonic acid amine salt vinyl monomer and copolymer thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP2006140086A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Electrolyte membrane superior in oxidation resistance
JP2006179301A (en) * 2004-12-22 2006-07-06 Japan Atomic Energy Agency High-durability polymer electrolyte membrane for fuel cell with cross-linked structure introduced therein

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005078849A (en) * 2003-08-28 2005-03-24 Japan Atom Energy Res Inst Forming method for nano structure control polymer ion-exchange membrane
JP2006140086A (en) * 2004-11-15 2006-06-01 Nitto Denko Corp Electrolyte membrane superior in oxidation resistance
JP2006179301A (en) * 2004-12-22 2006-07-06 Japan Atomic Energy Agency High-durability polymer electrolyte membrane for fuel cell with cross-linked structure introduced therein

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017122195A (en) * 2016-01-08 2017-07-13 デンカ株式会社 Process for producing sulfonated cross-copolymer
JP2017145297A (en) * 2016-02-16 2017-08-24 国立研究開発法人日本原子力研究開発機構 Manufacturing method of cation exchange membrane used for membrane bunsen reactor in thermochemical hydrogen manufacturing iodine-sulfur (is) process
WO2019031454A1 (en) 2017-08-07 2019-02-14 東ソー・ファインケム株式会社 High-purity amphipathic arylsulfonic acid amine salt vinyl monomer and copolymer thereof
KR20200033951A (en) 2017-08-07 2020-03-30 토소 화인켐 가부시키가이샤 High purity amphiphilic arylsulfonic acid amine salt vinyl monomer and its (co) polymer
US11459410B2 (en) 2017-08-07 2022-10-04 Tosoh Finechem Corporation High-purity amphipathic arylsulfonic acid amine salt vinyl monomer and copolymer thereof

Also Published As

Publication number Publication date
JP5641457B2 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5545609B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP4748410B2 (en) Method for producing a polymer electrolyte membrane for a highly durable fuel cell incorporating a crosslinked structure
EP1893323B1 (en) A method of preparing a radiation fuel cell membrane with enhanced chemical stability and a membrane electrode assembly
JP5011567B2 (en) Nano-inorganic particle composite cross-linked polymer electrolyte membrane, method for producing the same, and membrane / electrode assembly using the same
JP5004178B2 (en) High proton conductive polymer electrolyte membrane excellent in mechanical strength and method for producing the same
JP5376485B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL GRAFT CHAIN AND PROCESS FOR PRODUCING THE SAME
JP2006344552A (en) Cross-link type electrolyte membrane and its manufacturing method
JP4532812B2 (en) Fuel cell electrolyte membrane comprising a cross-linked fluoropolymer substrate
JP5333913B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING ALKYL ETHER GRAFT CHAIN AND METHOD FOR PRODUCING THE SAME
JP4997625B2 (en) Method for producing polymer electrolyte membrane for fuel cell, electrolyte membrane thereof, and membrane electrode assembly for fuel cell using the membrane
JP4854284B2 (en) Method for producing polymer electrolyte membrane
JP5641457B2 (en) POLYMER ELECTROLYTE MEMBRANE COMPRISING AROMATIC POLYMER MEMBRANE SUBSTRATE AND METHOD FOR PRODUCING THE SAME
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
JP4576620B2 (en) Method for producing nanostructure control polymer ion exchange membrane
US7714027B2 (en) Crosslinked aromatic polymer electrolyte membrane and method for producing same
JP4670074B2 (en) Fuel cell electrolyte membrane with excellent acid resistance
JP2010092787A (en) Polyelectrolyte membrane including polyimide substrate containing cycloaliphatic hydrocarbon, and method of manufacturing the same
JP2005142014A (en) Electrolyte membrane for fuel cells superior in acid resistance
JP4814860B2 (en) Method for producing electrolyte membrane for fuel cell comprising cross-linked fluororesin substrate
JP2008243393A (en) Forming method of solid polymer electrolyte membrane

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141016

R150 Certificate of patent or registration of utility model

Ref document number: 5641457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees