JP2014030086A - Microwave/quasi-millimeter wave band oscillator - Google Patents

Microwave/quasi-millimeter wave band oscillator Download PDF

Info

Publication number
JP2014030086A
JP2014030086A JP2012169354A JP2012169354A JP2014030086A JP 2014030086 A JP2014030086 A JP 2014030086A JP 2012169354 A JP2012169354 A JP 2012169354A JP 2012169354 A JP2012169354 A JP 2012169354A JP 2014030086 A JP2014030086 A JP 2014030086A
Authority
JP
Japan
Prior art keywords
substrate
probes
circuit
cylindrical body
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169354A
Other languages
Japanese (ja)
Other versions
JP5946353B2 (en
Inventor
Kazuo Oikawa
和夫 及川
Yasunori Kishizawa
靖典 岸澤
Ryota Suga
良太 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP2012169354A priority Critical patent/JP5946353B2/en
Publication of JP2014030086A publication Critical patent/JP2014030086A/en
Application granted granted Critical
Publication of JP5946353B2 publication Critical patent/JP5946353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

PROBLEM TO BE SOLVED: To minimize effects on resonance and oscillation frequencies even when a substrate changes in dielectric constant, and efficiently lay out a circuit on the substrate.SOLUTION: An open end of a cylinder 22 with a closed opposite end is connected onto a resin substrate 1 with a conductive adhesive 21 and two probes 23, 24 comprising coplanar lines are arranged on the substrate 1 from an outer circumference to a center of the cylinder 22 to provide a surface-mounted cavity resonant circuit, and the two probes 23, 24 are connected to an amplification element 27 via transmission lines 25, 26 comprising coplanar lines. The two probes 23, 24 are led out from positions on the circumference of the cylinder 22 apart from each other by an angle of zero degrees (parallel positions), so that the probes 23, 24 and the transmission lines 25, 26 have minimum lengths satisfying an oscillation condition.

Description

本発明はマイクロ波/準ミリ波帯発振器、特に樹脂基板上に共振回路及び発振回路を形成した自励発振型の発振器の構成に関する。   The present invention relates to a microwave / quasi-millimeter wave band oscillator, and more particularly to a self-oscillation type oscillator in which a resonance circuit and an oscillation circuit are formed on a resin substrate.

図6には、従来の高周波発振器(下記特許文献1)の構成が示されており、図6に示されるように、誘電体基板1上(表面)に、誘電体共振器2、第1マイクロストリップ線路3及び第2マイクロストリップ線路4からなる共振回路(共振器)が形成され、この共振回路に対し、発振回路としてトランジスタ5、バイアス抵抗6,7、発振制御用キャパシタ8及び直流電源供給端子Vccが設けられ、上記トランジスタ5のコレクタに、出力負荷抵抗9、容量結合部10を介して出力端子が接続される。なお、基板1の裏面側にはGND面が形成される。   FIG. 6 shows a configuration of a conventional high-frequency oscillator (Patent Document 1 below). As shown in FIG. 6, a dielectric resonator 2 and a first micro are formed on a dielectric substrate 1 (surface). A resonance circuit (resonator) composed of the strip line 3 and the second microstrip line 4 is formed, and for this resonance circuit, a transistor 5, bias resistors 6 and 7, an oscillation control capacitor 8 and a DC power supply terminal as an oscillation circuit. Vcc is provided, and an output terminal is connected to the collector of the transistor 5 through an output load resistor 9 and a capacitive coupling unit 10. A GND surface is formed on the back side of the substrate 1.

上記の構成によれば、上記誘電体共振器2と第1マイクロストリップ線路3及び第2マイクロストリップ線路4とが結合することで、この誘電体共振器2の共振周波数に基づき、所望の周波数で発振する。   According to the above configuration, the dielectric resonator 2 and the first microstrip line 3 and the second microstrip line 4 are coupled to each other at a desired frequency based on the resonance frequency of the dielectric resonator 2. Oscillates.

図7には、従来の発振器の他の例(パターン共振回路を用いたもの)が示されており、図7の例では、基板1の上に、銅膜12が設けられ、この銅膜12の中に、共振回路として、コプレーナ線路となる第1入出力線路13、第2入出力線路14、パターン共振部15が形成される(銅膜12を除去した領域Hに、銅膜からなる線路13,14及び共振部15が設けられる)。また、発振回路として、上記第1入出力線路13と第2入出力線路14に接続された増幅器16等が配置され、これらの回路の全体は筺体17で覆われ、基板1の裏面側にもGND面が形成される。このような構成によっても、パターン共振部15を用いた共振に基づき、所望の発振周波数が得られる。   FIG. 7 shows another example of a conventional oscillator (using a pattern resonance circuit). In the example of FIG. 7, a copper film 12 is provided on the substrate 1. The first input / output line 13, the second input / output line 14, and the pattern resonance unit 15, which are coplanar lines, are formed as resonance circuits (a line made of a copper film in the region H from which the copper film 12 is removed). 13 and 14 and the resonance part 15 are provided). In addition, an amplifier 16 connected to the first input / output line 13 and the second input / output line 14 is arranged as an oscillation circuit, and these circuits are entirely covered with a casing 17 and also on the back side of the substrate 1. A GND surface is formed. Even with such a configuration, a desired oscillation frequency can be obtained based on resonance using the pattern resonance unit 15.

特開2008−35351号公報JP 2008-35351 A

しかしながら、従来の発振器では、上記基板1として、テフロン(登録商標)を除く、熱硬化型の樹脂の高周波基板を用いた場合、この基板1の樹脂表面が空気に触れることにより、表面から徐々に酸化し、誘電率が変化することが知られている。   However, in the conventional oscillator, when a thermosetting resin high-frequency substrate excluding Teflon (registered trademark) is used as the substrate 1, the resin surface of the substrate 1 is gradually exposed from the surface by being exposed to air. It is known that the dielectric constant changes due to oxidation.

図8(A)には、図6の発振器の一部の構成が示されており、基板1の表面に、第1マイクロストリップ線路3及び第2マイクロストリップ線路4が設けられ、基板1の裏面にGND(接地導体)19が設けられるが、マイクロストリップ線路3,4が存在する基板1の表面が空気に触れることで、表面から酸化が進み、図8(B)に示されるように、時間の経過と共に等価誘電率が高くなる。   FIG. 8A shows the configuration of a part of the oscillator of FIG. 6, where the first microstrip line 3 and the second microstrip line 4 are provided on the surface of the substrate 1, and the back surface of the substrate 1. A ground (GND) 19 is provided on the surface of the substrate 1. When the surface of the substrate 1 on which the microstrip lines 3 and 4 are present is exposed to air, the oxidation proceeds from the surface. As shown in FIG. As the time elapses, the equivalent dielectric constant increases.

また、図7の発振器の場合も、図7(A)のハッチ部分のパターン共振回路部分の誘電率が高くなる。そして、このパターン共振回路を用いたものでは、共振回路のQが低く、共振回路自体が樹脂基板で構成されていると、共振周波数、即ち発振周波数が保管又は運用の際に徐々に変化し(例えば、2年で100MHz程度の変化)、数年で電波法により許可された周波数範囲を外れてしまうという問題があった。   Also in the case of the oscillator of FIG. 7, the dielectric constant of the pattern resonance circuit portion of the hatched portion of FIG. In the case of using this pattern resonance circuit, when the resonance circuit has a low Q and the resonance circuit itself is made of a resin substrate, the resonance frequency, that is, the oscillation frequency gradually changes during storage or operation ( For example, there is a problem that the frequency range permitted by the Radio Law is deviated in several years.

図6のように、誘電体共振器2を用いた場合は、共振回路のQが高いため、誘電率の変化(例えば、5年で100MHz程度の変化)が緩やかであるが、誘電体共振器2を基板に接着するため、共振周波数自体が基板酸化の影響を受け易いという問題がある。   As shown in FIG. 6, when the dielectric resonator 2 is used, since the resonance circuit has a high Q, the change in the dielectric constant (for example, a change of about 100 MHz in 5 years) is gentle. Since 2 is bonded to the substrate, the resonance frequency itself is susceptible to substrate oxidation.

また、図6、図7の発振器の場合、基板1の裏面全体にGND19が設けられるため、裏面に回路を配置できないという不都合もある。   Further, in the case of the oscillators of FIGS. 6 and 7, since the GND 19 is provided on the entire back surface of the substrate 1, there is a disadvantage that a circuit cannot be arranged on the back surface.

本発明は上記問題点に鑑みてなされたものであり、その目的は、基板に誘電率の変化がある場合でも、共振周波数及び発振周波数に与える影響を極力小さくすることができ、また基板に回路を効率良く配置できるマイクロ波/準ミリ波帯発振器を提供することにある。   The present invention has been made in view of the above problems, and the object thereof is to reduce the influence on the resonance frequency and the oscillation frequency as much as possible even when there is a change in the dielectric constant of the substrate. It is an object of the present invention to provide a microwave / quasi-millimeter wave band oscillator that can be efficiently arranged.

上記目的を達成するために、請求項1に係る発明は、樹脂基板上に発振回路及び共振回路を配置するマイクロ波/準ミリ波帯発振器において、一端が開放、他端が閉塞された円筒体の上記開放端を上記基板上に接続し、この基板上の上記円筒体の外周から中心へ向けてコプレーナ線路からなる2つのプローブを配置した表面実装型空洞共振回路と、この空洞共振回路の2つのプローブを上記発振回路に接続するコプレーナ線路の伝送線路と、を備え、上記2つのプローブを上記円筒体円周の180度未満の角度位置にて上記円筒体から上記発振回路側へ取り出し、上記プローブと上記伝送線路が発振条件を満たす最短の長さとなるようにしたことを特徴とする。
請求項2の発明は、上記円筒体を配置した上記基板の裏面側に、回路を形成したことを特徴とする。
In order to achieve the above object, the invention according to claim 1 is a microwave / quasi-millimeter wave band oscillator in which an oscillation circuit and a resonance circuit are arranged on a resin substrate. A cylindrical body having one end open and the other end closed. A surface mount type cavity resonance circuit in which the open end is connected to the substrate, and two probes composed of coplanar lines are arranged from the outer periphery to the center of the cylindrical body on the substrate, and 2 of the cavity resonance circuit. A coplanar transmission line connecting the two probes to the oscillation circuit, and taking out the two probes from the cylinder to the oscillation circuit side at an angular position of less than 180 degrees of the circumference of the cylinder, The probe and the transmission line have the shortest length that satisfies the oscillation condition.
According to a second aspect of the present invention, a circuit is formed on the back side of the substrate on which the cylindrical body is disposed.

上記の構成によれば、簡易な構造でQの高い表面実装型空洞共振回路を用いると共に、主に円筒体空洞内で共振が行われることから、共振回路の共振周波数が基板の誘電率変化の影響を受け難い構造となる。また、2つのプローブ(入出力プローブ)が円筒体から発振回路側へ取り出される角度を、円筒体円周の180度未満の角度、例えば90度或いは0度(平行位置)だけ離れた位置とし、プローブと伝送線路の長さを発振条件が満たされる最短の長さとするので、発振周波数への影響もなくすことができる。即ち、発振器では、発振条件が満たされるように、プローブを含む伝送線路の全体の位相を合わせる必要があり、また伝送線路が長くなればなる程、基板の酸化の影響を受ける範囲が広くなる。本発明では、プローブと伝送線路の長さを発振条件が満たされる最短の長さにすることで、基板の酸化による誘電率の変化を小さくし、発振周波数への影響も少なくすることが可能になる。   According to the above configuration, since a surface-mounted cavity resonance circuit having a simple structure and a high Q is used, and resonance is mainly performed in a cylindrical cavity, the resonance frequency of the resonance circuit is caused by a change in the dielectric constant of the substrate. The structure is not easily affected. In addition, the angle at which the two probes (input / output probes) are taken out from the cylindrical body to the oscillation circuit side is a position that is less than 180 degrees of the circumference of the cylindrical body, for example, 90 degrees or 0 degrees (parallel position), Since the length of the probe and the transmission line is the shortest length that satisfies the oscillation condition, the influence on the oscillation frequency can be eliminated. That is, in the oscillator, it is necessary to match the phase of the entire transmission line including the probe so that the oscillation condition is satisfied, and the longer the transmission line, the wider the range affected by the oxidation of the substrate. In the present invention, by making the length of the probe and the transmission line as short as possible to satisfy the oscillation condition, it is possible to reduce the change in the dielectric constant due to the oxidation of the substrate and reduce the influence on the oscillation frequency. Become.

本発明のマイクロ波/準ミリ波帯発振器によれば、共振回路のQが高く、かつ円筒体空洞内の共振となるから、基板に誘電率の変化が生じた場合でも、共振周波数に与える影響を極力小さくすることができ、またプローブと伝送線路(帰還線路)の位相変化も最小に抑え、発振周波数への影響を小さくすることができ、長期に周波数安定度の優れた発振器を得ることが可能になる。   According to the microwave / quasi-millimeter wave oscillator of the present invention, since the resonance circuit has a high Q and resonance occurs in the cylindrical cavity, even if a change in the dielectric constant occurs in the substrate, it has an effect on the resonance frequency. The phase change between the probe and the transmission line (feedback line) can be minimized, the influence on the oscillation frequency can be reduced, and an oscillator with excellent frequency stability can be obtained over a long period of time. It becomes possible.

また、プローブ部はコプレーナ線路で構成され、円筒体はコプレーナ線路のグランドパターンに接続されるので、プローブ部を除く部分の基板の裏面には、必要な回路を効率良く配置することができる。   Further, since the probe portion is composed of a coplanar line and the cylindrical body is connected to the ground pattern of the coplanar line, a necessary circuit can be efficiently arranged on the back surface of the substrate excluding the probe portion.

本発明の第1実施例に係るマイクロ波/準ミリ波帯発振器の構成を示し、図(A)は上面図、図(B)は側面図である。1 shows a configuration of a microwave / quasi-millimeter wave oscillator according to a first embodiment of the present invention, in which FIG. (A) is a top view and FIG. (B) is a side view. 第1実施例の発振器の全体斜視図である。1 is an overall perspective view of an oscillator according to a first embodiment. 第1実施例の発振器における円筒体での作用を示し、図(A)は斜視図、図(B)は上面から見た図、図(C)は側面から見た図である。The operation of the cylindrical body in the oscillator according to the first embodiment is shown, in which FIG. (A) is a perspective view, FIG. (B) is a view from the top, and FIG. (C) is a view from the side. 第1実施例の発振器を用いたマイクロ波センサの構成を示し、図(A)は上面図、図(B)は側面図、図(C)は底面図、図(D)は斜視図である。The structure of the microwave sensor using the oscillator of 1st Example is shown, A figure (A) is a top view, A figure (B) is a side view, A figure (C) is a bottom view, A figure (D) is a perspective view. . 第2実施例に係るマイクロ波/準ミリ波帯発振器の構成を示し、図(A)は上面図、図(B)は図(A)のB−B断面図である。The structure of the microwave / quasi-millimeter wave band oscillator concerning the 2nd example is shown, and Drawing (A) is a top view and Drawing (B) is a BB sectional view of Drawing (A). 従来の高周波発振器の構成を示す回路図である。It is a circuit diagram which shows the structure of the conventional high frequency oscillator. 従来の発振器の他の構成例を示し、図(A)は上面図、図(B)は側面図である。The other example of a structure of the conventional oscillator is shown, A figure (A) is a top view, A figure (B) is a side view. 従来の発振器における基板酸化の説明図で、図(A)は基板酸化の状態を示す図、図(B)は等価誘電率の変化を示すグラフである。FIG. 5A is a diagram illustrating the state of substrate oxidation in a conventional oscillator, and FIG. 5B is a graph illustrating the state of substrate oxidation, and FIG.

図1乃至図4には、本発明の第1実施例に係るマイクロ波/準ミリ波帯発振器の構成が示されており、図1(A),(B)において、樹脂基板1の上(表面)に、銅膜(導電性膜)12が形成され、この銅膜12(のグランドパターン)の上に、銀ペースト等の導電性接着剤(又は半田等)21により金属製円筒体22(図1(A)の円筒体22は鎖線で示される)が接続される。この円筒体22は、上面が閉塞され、下面が開放されており、この開放端が銅膜12に接着される。   FIGS. 1 to 4 show the configuration of a microwave / quasi-millimeter wave band oscillator according to the first embodiment of the present invention. In FIGS. A copper film (conductive film) 12 is formed on the surface), and a metal cylinder 22 (with a conductive adhesive (or solder or the like) 21 such as a silver paste is formed on the copper film 12 (the ground pattern). 1A is connected). The cylindrical body 22 in FIG. The cylindrical body 22 has an upper surface closed and a lower surface opened, and the open end is bonded to the copper film 12.

また、基板1上の円筒体22内には、コプレーナ線路とされた第1プローブ(入出力プローブ)23と第2プローブ(入出力プローブ)24が形成され、この第1プローブ23は第1伝送線路25、第2プローブ24は、第2伝送線路26を介して基板1上の増幅素子(FET等)27に接続される。これら第1伝送線路25及び第2伝送線路26もコプレーナ線路とされる。即ち、上記円筒体22と第1プローブ23及び第2プローブ24により、表面実装型空洞共振回路(共振器)が構成され、上記増幅素子27と端子28までのその他の回路(線路)にて、発振回路が構成されており、この共振回路と発振回路が第1及び第2伝送線路25,26で接続される。なお、29は裏面のグランド(GND)と表面のグランド(銅膜12)を接続するスルーホールである。   Further, a first probe (input / output probe) 23 and a second probe (input / output probe) 24, which are coplanar lines, are formed in the cylindrical body 22 on the substrate 1, and the first probe 23 performs the first transmission. The line 25 and the second probe 24 are connected to an amplifying element (FET or the like) 27 on the substrate 1 via the second transmission line 26. The first transmission line 25 and the second transmission line 26 are also coplanar lines. That is, the cylindrical body 22 and the first probe 23 and the second probe 24 constitute a surface mount type cavity resonance circuit (resonator). In the other circuit (line) to the amplification element 27 and the terminal 28, An oscillation circuit is configured, and the resonance circuit and the oscillation circuit are connected by the first and second transmission lines 25 and 26. Reference numeral 29 denotes a through hole that connects the back surface ground (GND) and the front surface ground (copper film 12).

そして、第1実施例では、上記第1プローブ23と第2プローブ24が円筒体22から0度の角度離れた位置にて取り出される。即ち、これらプローブ23,24は、例えば点線矢示Fで示したように、円筒体円周において180度離れた位置から取り出すこともできるが、実施例では、第1プローブ23と第1伝送線路25の長さ及び第2プローブ24と第2伝送線路26の長さが発振条件を満たす最短の長さ(例えば伝送信号の1波長)となるように、0度、即ち平行位置にて取り出すようにしている。このようにプローブ23,24と伝送線路25,26の長さを短くすることで、これらが配置される基板1の領域を小さくすることができる。   In the first embodiment, the first probe 23 and the second probe 24 are taken out from the cylindrical body 22 at a position separated by 0 degrees. That is, these probes 23 and 24 can be taken out from a position 180 degrees apart on the circumference of the cylindrical body, for example, as indicated by a dotted arrow F, but in the embodiment, the first probe 23 and the first transmission line The length 25 and the lengths of the second probe 24 and the second transmission line 26 are the shortest length satisfying the oscillation condition (for example, one wavelength of the transmission signal), so that they are taken out at 0 degree, that is, at a parallel position. I have to. Thus, by shortening the lengths of the probes 23 and 24 and the transmission lines 25 and 26, the area of the substrate 1 on which they are arranged can be reduced.

図3には、上記円筒体22を用いた空洞共振回路での共振モードが示されており、図3(B),(C)のように、例えばTM010の基本モードの共振を利用している。このような空洞共振回路では、共振が主に円筒体22で行われ、その共振周波数は円筒体22の内径で略決定されるため、基板1の誘電率の変化が共振周波数に与える影響は非常に小さくなる。 FIG 3 has resonant modes in the cavity resonance circuit using the cylinder 22 is shown, FIG. 3 (B), the utilizing manner, for example, resonance of the fundamental mode of the TM 010 of (C) Yes. In such a cavity resonance circuit, resonance is mainly performed by the cylindrical body 22, and the resonance frequency is substantially determined by the inner diameter of the cylindrical body 22. Therefore, the influence of the change in the dielectric constant of the substrate 1 on the resonance frequency is extremely high. Becomes smaller.

図4には、図1の発振器を組み込んだマイクロ波センサの構成例が示されており、この例では、基板1に組み込まれた共振回路及び発振回路を筺体31で覆い、基板1の裏面には、パッチ状アンテナ32が設けられる。このパッチ状アンテナ32は、スルーホール33を介して基板1の表面側の入出力回路に接続されており、実施例では、図4(C)に示されるように、基板1の裏面側に、グランド34と共に、複数個のアンテナ32を配置する構成とされる。   FIG. 4 shows a configuration example of a microwave sensor in which the oscillator of FIG. 1 is incorporated. In this example, the resonance circuit and the oscillation circuit incorporated in the substrate 1 are covered with a casing 31, and the back surface of the substrate 1 is covered. Is provided with a patch-like antenna 32. The patch antenna 32 is connected to the input / output circuit on the front surface side of the substrate 1 through the through-hole 33. In the embodiment, as shown in FIG. A plurality of antennas 32 are arranged together with the ground 34.

このような第1実施例によれば、表面実装型空洞共振回路を用いるので、共振のQが高くなり、また共振が円筒体空洞内で行われるので、基板1の誘電率が経年変化した場合でも、共振回路の共振周波数はその影響を受け難くなる。更に、第1及び第2プローブ23,24が円筒体22から取り出される角度を、0度とし、プローブ23,24及び伝送線路25,26の長さを発振条件が満たされる最短の長さにしたので、誘電率変化による発振周波数への影響もなくすことができる。   According to the first embodiment, since the surface mount type cavity resonance circuit is used, the resonance Q becomes high, and the resonance is performed in the cylindrical cavity, so that the dielectric constant of the substrate 1 changes over time. However, the resonance frequency of the resonance circuit is not easily affected. Further, the angle at which the first and second probes 23 and 24 are taken out from the cylindrical body 22 is set to 0 degree, and the lengths of the probes 23 and 24 and the transmission lines 25 and 26 are set to the shortest length that satisfies the oscillation condition. Therefore, the influence on the oscillation frequency due to the change in dielectric constant can be eliminated.

即ち、発振器においては、発振条件が満たされるように、第1のプローブ23と伝送線路25、第2のプローブ24と伝送線路26(帰還線路)の全体の位相を合わせる必要があり、これらの線路の位相がずれると発振周波数も若干変化する。一方、伝送線路25,26が長くなればなる程、基板1上の広い範囲に線路を形成することになり、樹脂基板1の酸化による誘電率の変化を助長することになる。そこで、実施例では、これらプローブ23,24と伝送線路25,26の長さを発振条件が満たされる最短の長さ(例えば1波長)とし、基板の酸化による誘電率の変化を小さくすることで、発振周波数への影響を少なくしている。   That is, in the oscillator, it is necessary to match the phases of the first probe 23 and the transmission line 25 and the second probe 24 and the transmission line 26 (feedback line) so that the oscillation condition is satisfied. The oscillation frequency also changes slightly when the phase of is shifted. On the other hand, as the transmission lines 25 and 26 become longer, lines are formed in a wider area on the substrate 1, and the change in dielectric constant due to oxidation of the resin substrate 1 is promoted. Therefore, in the embodiment, the lengths of the probes 23 and 24 and the transmission lines 25 and 26 are set to the shortest length (for example, one wavelength) that satisfies the oscillation condition, and the change in the dielectric constant due to the oxidation of the substrate is reduced. The influence on the oscillation frequency is reduced.

更に、プローブ23,24及び伝送線路25,26をコプレーナ線路で構成し、円筒体22はコプレーナ線路のグランドパターン12に接続されているので、図4に示すように、基板1の裏面にアンテナ32等の回路を効率良く配置することが可能となる。   Furthermore, the probes 23 and 24 and the transmission lines 25 and 26 are formed by coplanar lines, and the cylindrical body 22 is connected to the ground pattern 12 of the coplanar lines. Such a circuit can be arranged efficiently.

図5には、プローブの取出し角度を90度とした第2実施例の構成が示されており、図5に示されるように、第2実施例は、第1プローブ35と第2プローブ36を円筒体22の円周方向で90度離れた位置に形成し、第1伝送線路37と第2伝送線路38を第1プローブ35と第2プローブ36に対し同じ方向に設ける。そして、この第1プローブ35と第1伝送線路37の長さ及び第2プローブ36と第2伝送線路38の長さが発振条件を満たす最短の長さとなるようにする。また、基板1の裏面には、アンテナ等の他の回路としての伝送線路39が形成される。   FIG. 5 shows the configuration of the second embodiment in which the probe take-out angle is 90 degrees. As shown in FIG. 5, the second embodiment includes the first probe 35 and the second probe 36. The cylindrical body 22 is formed at a position 90 degrees apart in the circumferential direction, and the first transmission line 37 and the second transmission line 38 are provided in the same direction with respect to the first probe 35 and the second probe 36. The lengths of the first probe 35 and the first transmission line 37 and the lengths of the second probe 36 and the second transmission line 38 are set to the shortest length that satisfies the oscillation condition. A transmission line 39 as another circuit such as an antenna is formed on the back surface of the substrate 1.

このような構成によっても、プローブ35,36と伝送線路37,38が配置される基板1の領域を小さくし、共振周波数及び発振周波数に対する影響を小さくすることができ、また基板1の裏面を有効に利用することが可能となる。   Even with such a configuration, the area of the substrate 1 on which the probes 35 and 36 and the transmission lines 37 and 38 are arranged can be reduced, and the influence on the resonance frequency and the oscillation frequency can be reduced. It becomes possible to use it.

本発明の発振器をホモダインミキサと共に用いることで、簡単な構造でマイクロ波/ミリ波帯のドップラーセンサ等を構成することができ、マイクロ波を用いた移動物体の検知、速度測定等に適用することができる。   By using the oscillator of the present invention together with a homodyne mixer, a microwave / millimeter wave band Doppler sensor or the like can be configured with a simple structure, and applied to detection of moving objects using microwaves, speed measurement, and the like. Can do.

1…基板、 12…銅膜、
16,27…増幅素子、 21…導電性接着剤(又は半田)、
22…円筒体、
23,35…第1プローブ、 24,36…第2プローブ、
25,37…第1伝送線路、 26,38…第2伝送線路、
29,33…スルーホール、
32…パッチアンテナ。
1 ... substrate 12 ... copper film,
16, 27 ... Amplifying element, 21 ... Conductive adhesive (or solder),
22 ... Cylinder,
23, 35 ... first probe, 24, 36 ... second probe,
25, 37 ... first transmission line, 26, 38 ... second transmission line,
29,33 ... through hole,
32: Patch antenna.

Claims (2)

樹脂基板上に発振回路及び共振回路を配置するマイクロ波/準ミリ波帯発振器において、
一端が開放、他端が閉塞された円筒体の上記開放端を上記基板上に接続し、この基板上の上記円筒体の外周から中心へ向けてコプレーナ線路からなる2つのプローブを配置した表面実装型空洞共振回路と、
この空洞共振回路の2つのプローブを上記発振回路に接続するコプレーナ線路の伝送線路と、を備え、
上記2つのプローブを上記円筒体円周の180度未満の角度位置にて上記円筒体から上記発振回路側へ取り出し、上記プローブと上記伝送線路が発振条件を満たす最短の長さとなるようにしたことを特徴とするマイクロ波/準ミリ波帯発振器。
In a microwave / quasi-millimeter wave band oscillator in which an oscillation circuit and a resonance circuit are arranged on a resin substrate,
A surface mount in which the open end of a cylindrical body whose one end is open and the other end is closed is connected to the substrate, and two probes comprising coplanar lines are arranged from the outer periphery to the center of the cylindrical body on the substrate. Mold cavity resonant circuit,
A coplanar transmission line connecting the two probes of the cavity resonance circuit to the oscillation circuit, and
The two probes are taken out from the cylindrical body to the oscillation circuit side at an angular position of less than 180 degrees on the circumference of the cylindrical body so that the probe and the transmission line have the shortest length that satisfies the oscillation condition. A microwave / quasi-millimeter wave oscillator.
上記円筒体を配置した上記基板の裏面側に、回路を形成したことを特徴とする請求項1記載のマイクロ波/準ミリ波帯発振器。   2. The microwave / quasi-millimeter wave band oscillator according to claim 1, wherein a circuit is formed on the back side of the substrate on which the cylindrical body is disposed.
JP2012169354A 2012-07-31 2012-07-31 Microwave / Quasi-millimeter wave oscillator Active JP5946353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169354A JP5946353B2 (en) 2012-07-31 2012-07-31 Microwave / Quasi-millimeter wave oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169354A JP5946353B2 (en) 2012-07-31 2012-07-31 Microwave / Quasi-millimeter wave oscillator

Publications (2)

Publication Number Publication Date
JP2014030086A true JP2014030086A (en) 2014-02-13
JP5946353B2 JP5946353B2 (en) 2016-07-06

Family

ID=50202402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169354A Active JP5946353B2 (en) 2012-07-31 2012-07-31 Microwave / Quasi-millimeter wave oscillator

Country Status (1)

Country Link
JP (1) JP5946353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086740A (en) * 2012-10-19 2014-05-12 New Japan Radio Co Ltd Cavity resonator

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48113344U (en) * 1972-04-03 1973-12-25
JPS52109437U (en) * 1976-02-14 1977-08-19
JPS61128604A (en) * 1984-11-28 1986-06-16 Hitachi Ltd High frequency distributing and combining device
JPH05183335A (en) * 1991-05-29 1993-07-23 Sadis Bruker Spectrospin Sa De Diffusion De Instr Scient Bruker Spectrospin Microwave generator
JPH09148804A (en) * 1995-11-20 1997-06-06 Fujitsu General Ltd Filter circuit and oscillation circuit having cavity resonator
JP2000151228A (en) * 1998-11-09 2000-05-30 Murata Mfg Co Ltd Resonator device, oscillator, filter, duplexer and communication device
JP2001217648A (en) * 2000-02-03 2001-08-10 Sharp Corp Dielectric resonance and oscillation circuit
JP2003168925A (en) * 2001-11-30 2003-06-13 Nippon Dempa Kogyo Co Ltd High frequency oscillator
JP2008035351A (en) * 2006-07-31 2008-02-14 New Japan Radio Co Ltd High-frequency oscillator

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48113344U (en) * 1972-04-03 1973-12-25
JPS52109437U (en) * 1976-02-14 1977-08-19
JPS61128604A (en) * 1984-11-28 1986-06-16 Hitachi Ltd High frequency distributing and combining device
JPH05183335A (en) * 1991-05-29 1993-07-23 Sadis Bruker Spectrospin Sa De Diffusion De Instr Scient Bruker Spectrospin Microwave generator
JPH09148804A (en) * 1995-11-20 1997-06-06 Fujitsu General Ltd Filter circuit and oscillation circuit having cavity resonator
JP2000151228A (en) * 1998-11-09 2000-05-30 Murata Mfg Co Ltd Resonator device, oscillator, filter, duplexer and communication device
JP2001217648A (en) * 2000-02-03 2001-08-10 Sharp Corp Dielectric resonance and oscillation circuit
JP2003168925A (en) * 2001-11-30 2003-06-13 Nippon Dempa Kogyo Co Ltd High frequency oscillator
JP2008035351A (en) * 2006-07-31 2008-02-14 New Japan Radio Co Ltd High-frequency oscillator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086740A (en) * 2012-10-19 2014-05-12 New Japan Radio Co Ltd Cavity resonator

Also Published As

Publication number Publication date
JP5946353B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP2011061276A5 (en)
US7394334B2 (en) Dielectric resonance apparatus, oscillation apparatus, and transmission/reception apparatus
WO2006033204A1 (en) High frequency oscillation circuit and transmitter/receiver
JP5946353B2 (en) Microwave / Quasi-millimeter wave oscillator
JPS6141441B2 (en)
JP5451987B2 (en) Voltage controlled oscillator
JP6666652B2 (en) High frequency oscillator
WO2006085470A9 (en) Negative resistance input amplifier circuit and oscillation circuit
JP4535127B2 (en) Voltage controlled oscillator and radio device
JPH09238025A (en) High frequency oscillator
JP4772617B2 (en) High frequency oscillator
JP2007142977A (en) Tunable antenna and its control method
JP3848860B2 (en) Planar circuit with cavity resonator
JP2007135007A (en) Oscillation circuit and communication equipment with same
JP2016025419A (en) High frequency circuit for multilayer structure
JPWO2005004322A1 (en) Oscillator device and transmitting / receiving device
JP2005151165A (en) High-frequency resonance circuit, and oscillator using the same
KR101758091B1 (en) Oscillator using dielectric resonator
JPS6024001Y2 (en) microwave integrated circuit
JPS6261161B2 (en)
JPH11340737A (en) Dielectric oscillator
JP2007509553A (en) Coupling structure for cylindrical resonators.
JPS61196604A (en) Microwave oscillator
JP2008277938A (en) Strip line resonator and micro strip line resonator
JPS6033707A (en) Oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160531

R150 Certificate of patent or registration of utility model

Ref document number: 5946353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250