JP2014029062A - Construction method of soil cement continuous wall - Google Patents

Construction method of soil cement continuous wall Download PDF

Info

Publication number
JP2014029062A
JP2014029062A JP2012169210A JP2012169210A JP2014029062A JP 2014029062 A JP2014029062 A JP 2014029062A JP 2012169210 A JP2012169210 A JP 2012169210A JP 2012169210 A JP2012169210 A JP 2012169210A JP 2014029062 A JP2014029062 A JP 2014029062A
Authority
JP
Japan
Prior art keywords
cement
soil
drilling
excavation
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169210A
Other languages
Japanese (ja)
Other versions
JP5466272B2 (en
Inventor
Hidetaka Onodera
秀隆 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012169210A priority Critical patent/JP5466272B2/en
Publication of JP2014029062A publication Critical patent/JP2014029062A/en
Application granted granted Critical
Publication of JP5466272B2 publication Critical patent/JP5466272B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a construction method of a soil cement continuous wall with which increase in the quantity of mud can be suppressed by preventing cement milk of an injection material from being increased considerably, even in the case of construction without performing pre-drilling that becomes double labor on a hard ground.SOLUTION: A mix proportion of the quantity of cement to be added to cement milk of lean-mix to be injected into source position soil from the start of drilling to reaching planned depth per object soil 1 mis equal to or less than 25% of the quantity of cement per object soil 1 mfinally required for constructing a wall, and a water/cement ratio (W/C) is equal to or less than 600%. When lifting a screw from the reached planned depth to a position of the start of drilling, the quantity resulting from subtracting materials of cement milk injected from the start of drilling to reaching the planned depth from all additives required for constructing the wall is injected as cement milk of rich-mix.

Description

本発明は、多軸オーガ等の施工機械により、地盤を掘削し、固化材を含む注入液を現位置土に注入して混合攪拌して、ソイルセメントによる柱列壁を地中に施工するソイルセメント連続壁の施工法に関するものである。   The present invention is a soil which excavates the ground by a construction machine such as a multi-axis auger, injects an injection solution containing a solidified material into the current soil, mixes and agitates, and constructs a column wall of soil cement in the ground It relates to the construction method of cement continuous wall.

ソイルセメント連続地中壁は、アースオーガによる掘削時に、掘削土とセメントミルク等の硬化材とを攪拌してソイルセメントの杭体を地中に製作するが、かかる杭体を重ね合わせた柱列杭壁を施工してなるもので、セメントミルクの注入量以上分の(ソイルセメントと原土の混合した)産業廃棄物残土が発生する。そして、処分のために莫大な費用が必要となる。   The soil cement continuous underground wall is manufactured by mixing the excavated soil and a hardened material such as cement milk when excavating with an earth auger. It is constructed by pile walls and generates industrial waste residue (mixed with soil cement and raw soil) that exceeds the amount of cement milk injected. And huge costs are required for disposal.

そこで、下記特許文献1は、予め先行掘削としてセメントミルク等の硬化材を注入する量に応じた量の掘削土を地上に排土し、その後、さらなる掘削と同時にセメントミルク等の硬化材を注入して、後行掘削での掘削土と硬化材とを混合すること、および、先行掘削は後行掘削とは別の掘削手段で行い、後行掘削はソイルセメント杭造成機で行うこととした。
特許第270081号公報
Therefore, in Patent Document 1 below, an amount of excavated soil corresponding to the amount of hardened material such as cement milk injected in advance as a prior excavation is discharged to the ground, and then hardened material such as cement milk is injected simultaneously with further excavation. Then, it was decided to mix the excavated soil and the hardened material in the subsequent excavation, and to perform the previous excavation by a different excavation means from the subsequent excavation and to perform the subsequent excavation by a soil cement pile generator. .
Japanese Patent No. 270081

これによれば、先行掘削で地上に排土するのは原土としての一般残土であり、これは産業廃棄物とせずに処分できる。そして、セメントミルク等の硬化材と掘削土との混合は、硬化材はこの排土された部分に充填したものであり、掘削土は先行掘削の後の後行掘削する際に発生するものを利用し、かかる硬化材と掘削土との混合でソイルセメント杭体を構築するものであるから、産業廃棄物残土を発生させずに施工できる。また、セメントミルク等の硬化材は排土とともに捨てられることがないので、無駄のない経済的な利用となる。   According to this, it is the general residual soil as the raw soil that is discharged to the ground by the preceding excavation, and this can be disposed without industrial waste. The mixing of the hardened material such as cement milk and the excavated soil is the one in which the hardened material is filled in the excavated portion, and the excavated soil is generated when the subsequent excavation is performed after the previous excavation. Since it is used to construct a soil cement pile by mixing such hardener and excavated soil, it can be constructed without generating industrial waste residue. Further, since the hardened material such as cement milk is not thrown away with the soil, it is economically utilized without waste.

しかし、先行掘削は後行掘削とは別の掘削手段で行うことは重機の入れ替え等の手間がかかるものであり、さらに、オーガ1が単軸ではなく多軸の場合は掘削形状がそれなりに限定されるので先行掘削と後行掘削とを別の掘削手段で行うことは事実上不可能である。   However, if the excavation is different from the subsequent excavation, it takes time and labor to replace heavy machinery, and if the auger 1 is not single-axis but multi-axis, the excavation shape is limited to that. Therefore, it is practically impossible to perform the preceding excavation and the subsequent excavation by different excavation means.

これに対して、下記特許文献2は、普通残土や産業廃棄物残土の発生を大幅に減少させることができ、硬化材の注入量も少なくてすみ、工費も低廉で、手間のかからない、かつ、迅速に、しかも精度のよい施工が可能なソイルセメント杭の施工法として提案されたものである。
特許第3706354号公報
On the other hand, the following Patent Document 2 can greatly reduce the generation of ordinary residual soil and industrial waste residual soil, requires only a small amount of hardener injection, has a low construction cost, and does not require time and effort. It was proposed as a method for constructing soil cement piles that can be constructed quickly and accurately.
Japanese Patent No. 3706354

多軸オーガであるソイルセメント杭造成機で、セメントミルク等の硬化材と掘削土との混練り材(ソイルセメント)で充填される施工箇所の所定長を施工するのに、全長の約3割程度の排土区間とその下方の注入区間に分け、オーガの位置合わせを行い、第1段階掘削として前記排土区間にオーガをその周囲に土を残したまま挿入し、挿入される掘削軸の体積分の土が地上を排出し、次いで第2段階掘削としてその下方の注入区間である残りの深度が混練り材で充填されるように硬化材を注入しながら攪拌掘削を行い、その後第3段階掘削として前記第1段階掘削の個所を硬化材を注入しながら攪拌する。   About 30% of the total length of a soil cement pile construction machine, which is a multi-axis auger, to construct a predetermined length of a construction site filled with a kneading material (soil cement) of hardened material such as cement milk and excavated soil The excavation shaft is divided into an earthing section and a pouring section below it, and the auger is aligned, and the auger is inserted into the earthing section while leaving soil around it as the first stage excavation. A volume of soil is discharged from the ground, and then, as the second stage excavation, stirring excavation is performed while injecting the hardener so that the remaining depth, which is the lower injection section, is filled with the kneading material, and then the third excavation. As the step excavation, the portion of the first step excavation is agitated while injecting a hardening material.

図1〜図7は各工程説明図、図8は模式図で、図中1はソイルセメント杭造成機であるオーガであり、5軸の多軸オーガである。アースオーガ1は周知のごとく、油圧モータ等の駆動装置2により回転駆動されるスクリューまたは攪拌羽根付き掘削軸3の先端を掘削ヘッド4とし、かかるスクリュー掘削軸3が5本あり、その内の何本かは掘削軸3の内部を通過するセメントミルク等の硬化材を掘削ヘッド4から注入できるようにしている。   1-7 is explanatory drawing of each process, FIG. 8 is a schematic diagram, 1 is an auger which is a soil cement pile construction machine in the figure, and is a 5-axis multi-axis auger. As is well known, the earth auger 1 has a drilling head 4 at the tip of a drilling shaft 3 with a screw or a stirring blade that is rotationally driven by a driving device 2 such as a hydraulic motor, and there are five such screw drilling shafts 3. The book is made so that a hardening material such as cement milk passing through the inside of the excavation shaft 3 can be injected from the excavation head 4.

まず、オーガ1の位置合わせを行い、図1、図8に示すように、第1段階掘削工程として周囲に土10を残したまま所定長深度(排土区間)にオーガを挿入する。この掘削は掘削ヘッド4よりエアー12を吐出しながら行う。この場合、挿入される掘削軸3の体積分のみの土10が地上に排出され、地上に山積みされる。図8においてaは掘削すべき所定長である。   First, the auger 1 is aligned, and as shown in FIGS. 1 and 8, the auger is inserted at a predetermined length (excavation section) while leaving the soil 10 in the first stage excavation process. This excavation is performed while discharging air 12 from the excavation head 4. In this case, the soil 10 having only the volume of the excavation shaft 3 to be inserted is discharged to the ground and piled on the ground. In FIG. 8, a is a predetermined length to be excavated.

第2段階掘削工程として、図3に示すように、引き続き、その下方の残りの深度がセメントミルク等の硬化材5と掘削土との混練り材(ソイルセメント)9で充填されるように硬化材5を注入しながら所定長a(排土区間+注入区間)の攪拌掘削を行う。   As the second stage excavation process, as shown in FIG. 3, the remaining depth below is continuously hardened so as to be filled with a kneading material (soil cement) 9 of hardened material 5 such as cement milk and excavated soil. While the material 5 is being injected, the agitation excavation is performed for a predetermined length a (soil removal section + injection section).

この第2段階掘削工程では、前記周囲に残した土10がいわば栓となって硬化材5を地上に漏れ出るのを防止する。多少はオーガ1の周囲から浸み出ることもあるがその量は僅かである。特に、前記のごとく地上に排出され、山積みされる土10があるので栓としての効果は大きく、硬化材5の地上漏出し防止が図れる。   In the second stage excavation process, the soil 10 left around the periphery serves as a plug to prevent the hardened material 5 from leaking to the ground. Although it may ooze out from the periphery of the auger 1 slightly, the amount is small. In particular, since there is soil 10 that is discharged to the ground and piled up as described above, the effect as a plug is great, and the leakage of the hardened material 5 to the ground can be prevented.

また、上方を土10により塞がれた状態での第2段階掘削の土中注出の硬化材5は注入圧で孔壁の割れ目等にも浸透し、孔壁を密なものとする。   Further, the hardened material 5 poured out into the soil of the second stage excavation in a state where the upper portion is closed with the soil 10 penetrates into cracks and the like of the hole wall by the injection pressure to make the hole wall dense.

また、図8の(ロ)に示すように前記土10の部分では、第2段階掘削工程で注入する硬化材5が下側を押し上げるとともに浸透し、硬化材浸透部分11aとなる。   Further, as shown in FIG. 8B, in the portion of the soil 10, the hardener 5 injected in the second stage excavation process pushes up the lower side and penetrates to become a hardener permeation portion 11a.

図3に示すようにオーガ1が全長(所定長α)の深度に達した後は、図4に示すように反復攪拌を行い、図5に示すように硬化材5を注入しながら逆回転による攪拌引き上げを行う。この段階での注入する硬化材5も前記土10及び硬化材浸透部分11aの下側を押し上げ、硬化材浸透部分11bとなる。   After the auger 1 reaches the depth of the full length (predetermined length α) as shown in FIG. 3, repeated stirring is performed as shown in FIG. 4, and by reverse rotation while injecting the curing material 5 as shown in FIG. 5. Pull up with stirring. The hardening material 5 to be injected at this stage also pushes up the lower side of the soil 10 and the hardening material permeating portion 11a to become a hardening material permeating portion 11b.

次いで、図6に示すようにその後第3段階掘削工程として前記第1段階掘削の個所、すなわち、土10、硬化材浸透部分11a、11bの部分を硬化材5を注入しながら攪拌する。なお、この攪拌はオーガ1を上下動するターニングである。   Next, as shown in FIG. 6, as the third stage excavation process, the first stage excavation site, that is, the soil 10 and the hardener penetration portions 11a and 11b are stirred while the hardener 5 is injected. This agitation is turning that moves the auger 1 up and down.

この第3段階掘削工程での攪拌は第1段階掘削の個所の下端位置から上方へと行う場合と、第1階掘削の度個所の上端位置から下方へと行う場合があり、前者は硬化材5の未注入部である第1段階掘削の個所を注入攪拌するのに、第3段階掘削の攪拌は第2段階掘削の工程から地上にオーガ1を引き上げずにそのまま移行できる。   The agitation in the third stage excavation process may be performed upward from the lower end position of the location of the first stage excavation, or may be performed downward from the upper end position of the location every time the first floor excavation is performed. However, the third stage excavation can be transferred as it is without lifting the auger 1 to the ground from the second stage excavation process.

後者では、硬化材5の未注入部分に注入攪拌行うのに、一度オーガ1を地上に引き上げて、再度挿入することになる。   In the latter case, the auger 1 is once pulled up to the ground and inserted again in order to inject and stir the uninjected portion of the hardening material 5.

以上の本発明の工程において、排土量および硬化材の注入量について述べると、図8の(イ)での第1段階掘削ではオーガ1の挿入は全長αの約3割程度であり、残り7割の深度に対しての第2段階掘削では第1段階掘削のオーガ1の周囲を埋める土10は約4割が地上に押し上げられ、6割が残留する。   In the above-described process of the present invention, the amount of soil removal and the amount of hardener injected will be described. In the first stage excavation in FIG. 8 (a), the insertion of the auger 1 is about 30% of the total length α, and the remaining In the second stage excavation for a depth of 70%, about 40% of the soil 10 filling the periphery of the auger 1 of the first stage excavation is pushed up to the ground, and 60% remains.

さらに、硬化材浸透部分11a、11bの両方が形成された後の、第3段階掘削での硬化材5の注入は孔内残留土砂量に応じた少ないものでよい。   Furthermore, the injection of the hardener 5 in the third stage excavation after both of the hardener penetration portions 11a and 11b are formed may be small according to the amount of residual sediment in the hole.

このように一般残土を掘削孔の上端部分に残して栓状としたままで、その下方に掘削で硬化材5を充填し、この下方掘削する際の掘削土はすべてこの硬化材5と混合してソイルセメントとして利用するものであるので、産業廃棄物残土をほとんど発生させずに施工できる。   Thus, the general residual soil is left in the upper end portion of the excavation hole and is plugged, and the lower portion thereof is filled with the hardener 5 by excavation, and all of the excavated soil at the time of the lower excavation is mixed with the hardener 5. Because it is used as soil cement, it can be constructed with little industrial waste residue.

多軸削孔において削孔途中に当初計画した削孔速度では掘進出来ないような硬質地盤が出現した場合には、プラントで製造されているセメントミルクを当初計画の圧送速度のまま、その後も硬質地盤範囲が予測出来ないために継続圧送してしまい、結果的に削孔速度の極端に低下する硬質地盤範囲にセメントミルクが大量に吐出されることとなる。これにより、硬質地盤範囲外の削孔対象土には当初計画した造壁に必要なセメントミルクが不足するため、セメントミルクを増量する必要がある。   In the case of hard ground that cannot be drilled at the drilling speed originally planned in the middle of drilling in multi-axis drilling, the cement milk produced in the plant remains at the original planned pumping speed and is hard thereafter. Since the ground range cannot be predicted, continuous pumping is performed, and as a result, a large amount of cement milk is discharged to the hard ground range where the drilling speed is extremely reduced. As a result, the soil to be drilled outside the hard ground area lacks the cement milk necessary for the originally planned wall making, so it is necessary to increase the amount of cement milk.

また、注入するセメントミルク総量が増加するため排出される泥土量も増加する。   Moreover, since the total amount of cement milk to be injected increases, the amount of mud discharged increases.

前記特許文献1や特許文献2は先行掘削を行い、地上に排土するのは原土としての一般残土であり、これは産業廃棄物とせずに処分できるようにした。しかし、土質によっては先行掘削を行ことは二重の手間になる場合もあり、一概にすべてを、先行掘削することができないこともある。   In Patent Document 1 and Patent Document 2, prior excavation is performed, and what is dumped on the ground is general residual soil as raw soil, which can be disposed of without industrial waste. However, depending on the soil type, performing a pre-excavation may be a double effort, and it may not be possible to pre-exclude everything.

このように、硬質地盤で二重の手間となる先行削孔を行わずに施工する場合でも、注入材のセメントミルクの大幅な増加となることを防止し、泥土量の増加を抑制できるソイルセメント連続壁の施工法を提供する。   In this way, soil cement can be used to prevent a significant increase in the cement milk of the injection material and to suppress an increase in the amount of mud soil even when construction is carried out without a prior drilling that is a double effort on hard ground. Provides a method for constructing continuous walls.

本発明の目的は前記従来例の不都合を解消し、硬質地盤で二重の手間となる先行削孔を行わずに施工する場合でも、注入材のセメントミルクの大幅な増加となることを防止し、泥土量の増加を抑制できるソイルセメント連続壁の施工法を提供することにある。   The object of the present invention is to eliminate the inconvenience of the above-mentioned conventional example, and to prevent a significant increase in cement milk in the injecting material even when construction is performed without hard drilling that requires double labor on hard ground. An object of the present invention is to provide a soil cement continuous wall construction method capable of suppressing an increase in the amount of mud.

前記目的を達成するため本発明は、削孔開始から計画深度到達までの原位置土に注入する貧配合のセメントミルクに添加されるセメント量の対象土1m当りの配合は最終的に造壁に必要な対象土1m当りセメント量の25%以下、水セメント比(W/C比)は600%以下とし、計画深度到達から削孔開始位置までのスクリュー引上げ時には、削孔開始から計画深度到達までに注入したセメントミルクの各材料を造壁に必要な全添加材から差し引いた量を富配合のセメントミルクとして注入すること、および、引き上げ時には混練性能を確保するためターニングを行いながら引き上げること要旨とするものである。 In order to achieve the above-mentioned object, according to the present invention, the composition per 1 m 3 of the target soil of the amount of cement added to the poorly blended cement milk to be poured into the in situ soil from the start of drilling until reaching the planned depth is finally a wall-making less than 25% of the target soil 1 m 3 per cement amount required, water-cement ratio (W / C ratio) is set to 600% or less, planning depth at the time the screw pulled up drilling start position from the arrival, plans from drilling start depth Inject the amount of cement milk that has been injected to reach the total amount required for the building wall from the total amount of additive, and inject it as a rich blend of cement milk, and at the time of lifting, pull up while turning to ensure kneading performance It is a summary.

請求項1記載の本発明によれば、施工を掘削開始から削孔到達までと、到達から引上げまでの2パスに分けることとし、両方を総合したセメント注入量は従来と大幅に変えることなく、削孔開始から到達まで貧配合[セメント系固化材に対する水の重量比(W/C比)が低い]のセメントミルクを注入するので、多くの水量の注出の削孔となり、土質が固い場合でも、先行掘削を行うことなく、掘削速度が遅くならずにすむ。このように、土質が固い場合でも掘削速度が遅くならずにすむので、大幅な泥土量、セメントミルクの増加をもたらすことはない。   According to the present invention of claim 1, the construction is divided into two passes from the start of excavation to the arrival of the drilling hole and from the arrival to the pulling up, and the total cement injection amount of both is not significantly changed from the conventional one, When cement milk of poor mix (low weight ratio of water to cement-based solidified material (W / C ratio) is low) is injected from the start to the end of drilling, so that it becomes a drilling hole for a large amount of water and the soil is hard However, the excavation speed does not slow down without performing prior excavation. In this way, even when the soil is hard, the excavation speed does not have to be slow, so there is no significant increase in the amount of mud and cement milk.

請求項2記載の本発明によれば、引き上げ時に、富配合[セメント系固化材に対する水の重量比(W/C比)が高い]のセメントミルクを注入しながら引き上げ、ターニングするので、掘削開始から削孔到達までとの両方を総合した対象土に対するセメント注入量は従来と大幅に変えることなく、ソイルセメントの性状を損なうこともない。   According to the second aspect of the present invention, at the time of pulling up, since it is pulled up and turning while injecting cement milk having a rich blend [the weight ratio of water to cement-based solidified material (W / C ratio) is high], excavation starts. The amount of cement injected into the target soil that combines both the process from drilling to drilling is not significantly changed from the conventional one, and the properties of the soil cement are not impaired.

以上述べたように本発明のソイルセメント連続壁の施工法は、硬質地盤で二重の手間となる先行削孔を行わずに施工する場合でも、注入材のセメントミルクの大幅な増加となることを防止し、泥土量の増加を抑制できるものである。   As described above, the soil cement continuous wall construction method of the present invention can significantly increase the cement milk in the injecting material even when construction is performed without hard drilling that requires double labor on hard ground. Can prevent the increase in the amount of mud.

以下、本発明の実施の形態を詳細に説明する。本発明は、ソイルセメント連続壁を構築する場合であり、原位置地盤にセメント系硬化液(セメントスラリー・セメントミルク)を注入してソイルセメント柱列壁を築造する。   Hereinafter, embodiments of the present invention will be described in detail. The present invention is a case where a soil cement continuous wall is constructed, and a cement-based hardening liquid (cement slurry / cement milk) is injected into an in-situ ground to construct a soil cement column wall.

本発明で、原位置地盤とは、土や砂、岩石などで構成され、掘削施工前(すなわち、本発明のセメントスラリーが注入される前)の自然堆積状態における地盤を意味する。   In the present invention, the in-situ ground is composed of soil, sand, rocks, and the like, and means a ground in a naturally deposited state before excavation work (that is, before the cement slurry of the present invention is injected).

本発明で、セメント系硬化液(セメントスラリー・セメントミルク)に使用するセメント系固化材(セメント)としては、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、耐硫酸塩ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、各種地盤改良用セメント系固化材等のセメント系材料を用いることができる。これらの中でも、特に、高炉セメント(高炉B種)が好ましい。   In the present invention, the cement-based solidifying material (cement) used in the cement-based hardening liquid (cement slurry / cement milk) includes ordinary Portland cement, early-strength Portland cement, ultra-early-strength Portland cement, moderately hot Portland cement, and low heat Portland cement. Cement-based materials such as cement, sulfate-resistant Portland cement, blast furnace cement, silica cement, fly ash cement, various ground improvement cement-based solidifying materials can be used. Among these, blast furnace cement (type blast furnace B) is particularly preferable.

セメント系硬化液(セメントスラリー・セメントミルク)は、セメントの他に水、ベントナイト、添加材で構成する。   The cement hardening liquid (cement slurry / cement milk) is composed of water, bentonite and additives in addition to cement.

ソイルセメント連続壁は、多軸オーガ等の施工機械により掘削時に、掘削土とセメントミルク等の硬化材とを攪拌してソイルセメントの杭体を地中に製作し、かかる杭体を重ね合わせた柱列杭壁を施工してなるものである。   Soil cement continuous wall was made by excavating soil with hardened material such as cement milk during excavation with a construction machine such as a multi-axis auger. A column pile wall is constructed.

多軸オーガ等の施工機械は、図1にも示すように、油圧モータ等の駆動装置により回転駆動されるスクリュー掘削軸の先端を掘削ヘッド4とし、このスクリュー掘削軸3の内部を通過するセメントミルク等の硬化材を掘削ヘッドから注入できるようにしている。   As shown in FIG. 1, the construction machine such as a multi-axis auger has a drilling head 4 as a tip of a screw drilling shaft that is rotationally driven by a driving device such as a hydraulic motor, and the cement passing through the inside of the screw drilling shaft 3. A hardening material such as milk can be poured from the drilling head.

駆動装置2はベースマシンのリーダマストから昇降自在に吊り下げられ、また、スクリュー掘削軸3は適宜継ぎ足して長尺とすることができる。また、スクリュー掘削軸は連続するスクリューではなく、攪拌翼による不連続のものでもよい。   The drive device 2 is suspended from the leader mast of the base machine so as to be able to be lifted and lowered, and the screw excavation shaft 3 can be appropriately extended to be long. Further, the screw excavation shaft may not be a continuous screw but a discontinuous one with a stirring blade.

オーガの位置決めを行い、オーガのスクリュー掘削軸の掘削ヘッドを正転させ、削孔を開始する。その際、硬化液を掘削ヘッドから出して孔内に注入する。   The auger is positioned, and the drilling head of the auger screw drilling shaft is rotated forward to start drilling. At that time, the hardening liquid is taken out from the excavation head and injected into the hole.

本発明は先行掘削を行わず、削孔開始から到達までと、到達から引き上げ完了までの2つに別け分け(2パス)て、それぞれ注出するセメントミルク等の硬化材の水/セメント比(W/C比)を変えるものである。図1〜図7に示すような排土区間を設けず、排土区間+注入区間を到達予定の所定深度とする。   The present invention does not perform advanced excavation, and is divided into two parts (from the start to the end of the drilling and to the end of the end of the drilling until the completion of the pulling (two passes), and the water / cement ratio of the hardened material such as cement milk to be poured ( (W / C ratio) is changed. A soil removal section as shown in FIGS. 1 to 7 is not provided, and the soil removal section + injection section is set to a predetermined depth to be reached.

削孔開始から所定深度到達までを、貧配合[セメント系固化材に対する水の重量比(W/C比)が低い]のセメントミルクを注入し、引き上げ時に、富配合[セメント系固化材に対する水の重量比(W/C比)が高い]のセメントミルクを注入しながら引き上げ、ターニングすることとした。   From the start of drilling until reaching the specified depth, cement milk of poor blending [low weight ratio of water to cement-based solidification material (W / C ratio) is low] is injected, and when it is pulled up, rich blending [water for cement-based solidification material] The weight ratio (W / C ratio) is high] while the cement milk is being poured and turned.

富配合のセメントミルクは、貧配合のセメントミルクに対してそのセメント系固化材の不足を補う量のセメント系固化材を投入する。   The rich blended cement milk is charged with a cement-based solidifying material in an amount that compensates for the lack of cement-based solidified material relative to the poor blended cement milk.

ちなみに、貧配合のセメントミルクの水/セメント比(W/C比)は、600%程度とする。   Incidentally, the water / cement ratio (W / C ratio) of poorly blended cement milk is about 600%.

このように、削孔開始から到達まで貧配合[セメント系固化材に対する水の重量比(W/C比)が低い]のセメントミルクを注入することで、質が固い場合でも、先行掘削を行うことなく、掘削速度が遅くならにすみ、大幅な泥土量、セメントミルクの増加をもたらすことはない。   In this way, even when the quality is hard, the excavation is performed by injecting cement milk with poor blending (low weight ratio of water to cement-based solidified material (W / C ratio) is low) from the start to the end of drilling. Without slowing down the drilling speed, there is no significant mud volume and cement milk increase.

下記は、本発明の実施例を示すものである。
[壁諸元]
φ850 34m 先行エレメント 削孔断面:1.49425m2
[1パス施工]
注入区間長の設定
セメント 200kg
ベントナイト 20kg
添加材(Emax-7) 10kg
水 400kg(W/C:200%)
全注入量
Qt=200/3.04+20/2.6+10/2.1+200×(200/100)=478.2L
注入区間長
Lq=34.0/(1+(478.2/1000))=23.0m

注入材料使用量
セメント 1.49425×23.0×200 =6873.6kg
ベントナイト 1.49425×23.0×20 = 687.4kg
添加材(Emax-7) 1.49425×23.0×10 = 343.7kg
水 1.49425×23.0×400 =13747.1kg
Qt=6873.6/3.04+687.4/2.6+343.7/2.1+13747.1 =16436.2L
The following shows examples of the present invention.
[Wall specifications]
φ850 34m Leading element Drilling section: 1.49425m 2
[One pass construction]
Setting the injection section length Cement 200kg
Bentonite 20kg
Additive (Emax-7) 10kg
400kg of water (W / C: 200%)
Total injection volume
Qt = 200 / 3.04 + 20 / 2.6 + 10 / 2.1 + 200 × (200/100) = 478.2L
Injection section length
Lq = 34.0 / (1+ (478.2 / 1000)) = 23.0m

Amount of injected material used Cement 1.49425 × 23.0 × 200 = 6873.6kg
Bentonite 1.49425 × 23.0 × 20 = 687.4kg
Additive (Emax-7) 1.49425 × 23.0 × 10 = 343.7kg
Water 1.49425 × 23.0 × 400 = 13747.1kg
Qt = 6873.6 / 3.04 + 687.4 / 2.6 + 343.7 / 2.1 + 13747.1 = 16436.2L

[2パス施工]
(1)削孔開始位置〜計画深度到達までを下記のようにした。
注入配合(注入対象土1m3当り)
セメント 50kg
ベントナイト 15kg
添加材(Emax-7) 0kg
水 250kg(W/C:500%)

注入量 Q1=50/3.04 + 15/2.6 +50×(500/100)=272.2L

注入材料使用量
セメント 1.49425×23.0×50 =1718.4kg
ベントナイト 1.49425×23.0×15 = 515.5kg
添加材(Emax-7) = 0.0kg
水 1.49425×23.0×250 =8591.9kg
Qt=1718.4/3.04+515.5/2.6+8591.9=9355.4L
[2-pass construction]
(1) The drilling start position to the planned depth reaching was as follows.
Injection formulation (per injection target soil 1 m 3)
50kg cement
Bentonite 15kg
Additive (Emax-7) 0kg
Water 250kg (W / C: 500%)

Injection volume Q1 = 50 / 3.04 + 15 / 2.6 +50 x (500/100) = 272.2L

Amount of injected material Cement 1.49425 × 23.0 × 50 = 1718.4kg
Bentonite 1.49425 × 23.0 × 15 = 515.5kg
Additive (Emax-7) = 0.0kg
Water 1.49425 × 23.0 × 250 = 8591.9kg
Qt = 1718.4 / 3.04 + 515.5 / 2.6 + 8591.9 = 9355.4L

(2)計画深度到達〜削孔開始位置までを下記のようにした。
注入配合(注入対象土1m3当り)
セメント 150kg
ベントナイト 5kg
添加材(Emax-7) 10kg
水 150kg(W/C:100%)

注入量 Q2=150/3.04 + 5/2.6 10/2.1 +150×(100/100)=206.0L

注入材料使用量
セメント 1.49425×23.0×150 =5155.2kg
ベントナイト 1.49425×23.0× 5 = 171.8kg
添加材(Emax-7) 1.49425×23.0×10 = 343.7kg
水 1.49425×23.0×150 =5155.2kg
Qt=5155.2/3.04+171.8/2.6+343.7/2.1+5155.2=7080.7L
(2) The process from reaching the planned depth to the drilling start position was as follows.
Injection formulation (per injection target soil 1 m 3)
150kg cement
Bentonite 5kg
Additive (Emax-7) 10kg
150kg of water (W / C: 100%)

Injection volume Q2 = 150 / 3.04 + 5 / 2.6 10 / 2.1 +150 x (100/100) = 206.0L

Injection material consumption Cement 1.49425 × 23.0 × 150 = 5155.2kg
Bentonite 1.49425 × 23.0 × 5 = 171.8kg
Additive (Emax-7) 1.49425 × 23.0 × 10 = 343.7kg
Water 1.49425 × 23.0 × 150 = 5155.2kg
Qt = 5155.2 / 3.04 + 171.8 / 2.6 + 343.7 / 2.1 + 5155.2 = 7080.7L

両者の比較は下記表の通りである。
[表1]
注入材料使用量(総注入量)

Figure 2014029062
The comparison between the two is shown in the table below.
[table 1]
Injection material usage (total injection)
Figure 2014029062

従来例としてのソイルセメント杭の施工法の1実施形態を示す第1工程説明図である。It is 1st process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の1実施形態を示す第2工程説明図である。It is 2nd process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の1実施形態を示す第3工程説明図である。It is 3rd process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の1実施形態を示す第4工程説明図である。It is 4th process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の1実施形態を示す第5工程説明図である。It is 5th process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の1実施形態を示す第6工程説明図である。It is 6th process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の1実施形態を示す第7工程説明図である。It is 7th process explanatory drawing which shows one Embodiment of the construction method of the soil cement pile as a prior art example. 従来例としてのソイルセメント杭の施工法の模式図である。It is a schematic diagram of the construction method of the soil cement pile as a prior art example.

1…オーガ 2…駆動装置
3…掘削軸 4…掘削ヘッド
5…硬化材 6…先行掘削孔
7…リーダマスト 8…ベースマシン
9…混練り材 10…土
11a、11b…硬化材浸透部分
12…エアー
DESCRIPTION OF SYMBOLS 1 ... Auger 2 ... Drive apparatus 3 ... Excavation shaft 4 ... Excavation head 5 ... Hardening material 6 ... Leading excavation hole 7 ... Leader mast 8 ... Base machine 9 ... Kneading material 10 ... Soil 11a, 11b ... Hardening material penetration part 12 ... Air

Claims (2)

削孔開始から計画深度到達までの原位置土に注入する貧配合のセメントミルクに添加されるセメント量の対象土1m当りの配合は最終的に造壁に必要な対象土1m当りセメント量の25%以下、水セメント比(W/C比)は600%以下とし、計画深度到達から削孔開始位置までのスクリュー引上げ時には、削孔開始から計画深度到達までに注入したセメントミルクの各材料を造壁に必要な全添加材から差し引いた量を富配合のセメントミルクとして注入することを特徴としたソイルセメント連続壁の施工法。 Target earth 1m 3 per cement weight required formulation eventually Zokabe eligible soil 1m per 3 cement amount to be added to the cement milk poor formulation to be injected into the original position soil from drilling start to plan the depth reached 25% or less and water cement ratio (W / C ratio) is 600% or less. When pulling up the screw from the planned depth to the drilling start position, each material of cement milk injected from the drilling start to the planned depth reached The soil cement continuous wall construction method is characterized by injecting as a rich blended cement milk the amount subtracted from all the additives required for building walls. 引き上げ時には混練性能を確保するためターニングを行いながら引き上げる請求項1記載のソイルセメント連続壁の施工法。   2. The method for constructing a soil cement continuous wall according to claim 1, wherein the wall is pulled up while turning to ensure kneading performance.
JP2012169210A 2012-07-31 2012-07-31 Construction method of soil cement continuous wall Active JP5466272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169210A JP5466272B2 (en) 2012-07-31 2012-07-31 Construction method of soil cement continuous wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169210A JP5466272B2 (en) 2012-07-31 2012-07-31 Construction method of soil cement continuous wall

Publications (2)

Publication Number Publication Date
JP2014029062A true JP2014029062A (en) 2014-02-13
JP5466272B2 JP5466272B2 (en) 2014-04-09

Family

ID=50201781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169210A Active JP5466272B2 (en) 2012-07-31 2012-07-31 Construction method of soil cement continuous wall

Country Status (1)

Country Link
JP (1) JP5466272B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114855765A (en) * 2022-05-07 2022-08-05 中交第二航务工程局有限公司 Mud anti-overflow construction method for diaphragm wall pouring construction
JP7231273B1 (en) 2021-11-15 2023-03-01 エポコラム機工株式会社 ground improvement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131469A (en) * 1997-11-04 1999-05-18 Taisei Corp Earth auger excavator and constructing method for large depth column type continuous underground wall in collapsible gravel bed
JP2004003131A (en) * 2002-03-28 2004-01-08 Hidetaka Onodera Method of constructing soil cement pile

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131469A (en) * 1997-11-04 1999-05-18 Taisei Corp Earth auger excavator and constructing method for large depth column type continuous underground wall in collapsible gravel bed
JP2004003131A (en) * 2002-03-28 2004-01-08 Hidetaka Onodera Method of constructing soil cement pile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7231273B1 (en) 2021-11-15 2023-03-01 エポコラム機工株式会社 ground improvement method
JP2023072875A (en) * 2021-11-15 2023-05-25 エポコラム機工株式会社 ground improvement method
CN114855765A (en) * 2022-05-07 2022-08-05 中交第二航务工程局有限公司 Mud anti-overflow construction method for diaphragm wall pouring construction

Also Published As

Publication number Publication date
JP5466272B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
US5378085A (en) Methods for in situ construction of deep soil-cement structures
JPH10204876A (en) Soil improvement method by using pile
CN105239561A (en) Long spiral mix spray pre-grouting press concrete post-inserted steel reinforcement cage cast-in-place pile construction process
CN100386483C (en) High-performance cement soil continuous wall construction method
JP5466272B2 (en) Construction method of soil cement continuous wall
CN105040683A (en) Informatization construction method for cement mixing piles
JP2012246730A (en) Method for constructing earth retaining wall
JP2006312865A (en) Method for replacing and constructing column, and replaced column
JP6973878B2 (en) Soil cement underground continuous wall construction method
JP5740667B2 (en) Replacement column filler
JP2005009240A (en) Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile
CN105507338B (en) A kind of campshed grafting rubble formula supporting water blockoff diaphragm wall is molded engineering method
JP2010053668A (en) Construction method of columnar soil improving body
JP2004353243A (en) Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor
JP2017057705A (en) Construction method of continuous soil cement underground wall
JP2012149480A (en) Soil cement method
JPH01219212A (en) Pile or continuous wall and its constructing method
JP3706354B2 (en) Construction method of soil cement pile
JP5767815B2 (en) Drilling solution
JP2700781B2 (en) Construction method of soil cement pile
JP5202743B2 (en) Columnar ground improvement body construction device
JP2008057117A (en) Soil cement structure and its construction method
JP2013142256A (en) Construction method associated with improvement of ground property
JP2698768B2 (en) Method of forming underground continuous wall
JP7430103B2 (en) Ground improvement method for pile extraction holes

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140123

R150 Certificate of patent or registration of utility model

Ref document number: 5466272

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250