JP2005009240A - Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile - Google Patents

Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile Download PDF

Info

Publication number
JP2005009240A
JP2005009240A JP2003176740A JP2003176740A JP2005009240A JP 2005009240 A JP2005009240 A JP 2005009240A JP 2003176740 A JP2003176740 A JP 2003176740A JP 2003176740 A JP2003176740 A JP 2003176740A JP 2005009240 A JP2005009240 A JP 2005009240A
Authority
JP
Japan
Prior art keywords
pile
soil
slag
ready
auger screw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003176740A
Other languages
Japanese (ja)
Inventor
Masaki Akane
正樹 赤根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geotop Corp
Original Assignee
Geotop Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Geotop Corp filed Critical Geotop Corp
Priority to JP2003176740A priority Critical patent/JP2005009240A/en
Publication of JP2005009240A publication Critical patent/JP2005009240A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for installing a soil hardened matter on-site-manufactured pile and a prefabricated pipe capable of executing installation with hardly generating general surplus soil and surplus soil as an industrial waste at a low construction cost. <P>SOLUTION: A pile pit 6 is excavated by an auger screw 5 while excavated soil 1 in a quantity corresponding to the injection quantity of a hardener 2 is rubbed into the pit wall of the pile pit 6 by a large diameter section 55 having approximately the same diameter as an excavating head 51 installed to the upper section of the auger screw 5. The hardener 2 is injected to the excavated soil 1 in the pile pit 6, the hardener 2 and the excavated soil 1 are mixed and agitated by repeatedly reciprocating the auger screw 5 while being forward and reversely turned, the auger screw 5 is pulled up and the prefabricated pile 4 is built into the pile pit 6. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ソイル硬化物現場造成杭及び既製杭の施工法に関し、特に、一般残土や産業廃棄物となる残土をほとんど発生させることなく施工するとともに、工費も低廉ですむソイル硬化物現場造成杭及び既製杭の施工法に関するものである。
【0002】
【従来の技術】
従来、例えば、建物の基礎杭としてコンクリートパイル等の既製杭を使用する場合、オーガスクリューによりプレボーリングをして杭孔を造成し、この杭孔に既製杭を建て込んでセメントミルクを充填する方法が取られる。
また、杭孔の中に既製杭を建て込む際に、オーガスクリューを引き上げながら、掘削ヘッドの先端からセメントミルク等の硬化材を注入することにより、杭孔中の掘削土をソイルセメントとなし、このソイルセメント中に既製杭を挿入するこにより、既製杭の周囲を硬化性材料で定着させることも行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、上記従来の既製杭の施工法は、セメントミルク等の硬化材と掘削土とを混練したソイルセメント中に既製杭を挿入することから、セメントミルク等の硬化材を注入したり、既製杭を挿入する際に、ソイルセメントが杭孔から地上へあふれ出して残土(産業廃棄物)となり、これを処分するために大きな費用が発生するという問題を有していた。
なお、この問題は、既製杭を挿入しないソイルセメント杭の場合も同様であった。
【0004】
本発明は、上記従来の既製杭の施工法が有する問題点に鑑み、一般残土や産業廃棄物となる残土をほとんど発生させることなく施工するとともに、工費も低廉ですむソイル硬化物現場造成杭及び既製杭の施工法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明のソイル硬化物現場造成杭の施工法は、掘削土に硬化材を注入して杭を形成するソイル硬化物現場造成杭の施工法において、オーガスクリューにより杭孔を掘削するとともに、オーガスクリューの上部に設けた、掘削ヘッドと略同径の大径部により、硬化材の注入量に応じた量の掘削土を杭孔の孔壁に擦り込み、その後、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げることを特徴とする。
【0006】
また、同じ目的を達成するため、本発明の既製杭の施工法は、掘削土に硬化材を注入したソイルセメントに既製杭を建て込む既製杭の施工法において、オーガスクリューにより杭孔を掘削するとともに、オーガスクリューの上部に設けた、掘削ヘッドと略同径の大径部により、硬化材の注入量と既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込み、その後、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げた後、杭孔に既製杭を建て込むことを特徴とする。
【0007】
このソイル硬化物現場造成杭及び既製杭の施工法は、オーガスクリューにより杭孔を掘削するとともに、オーガスクリューの上部に設けた、掘削ヘッドと略同径の大径部により、硬化材の注入量や既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込むことから、一般残土の発生を極力低減し、また、ソイルセメントの杭孔からの溢れ出しを防止し、産業廃棄物となる残土の発生を抑制して産業廃棄物の処理費用を大幅に削減するとともに、余分な硬化材を使用することなく、品質が安定したソイルセメントを造成し、また、混合攪拌するストロークが短くてすむので施工能率が上がり、施工費用を低減することができ、さらに、杭頭付近の孔壁周囲地盤を押圧して圧密できるので、地盤反力を高め杭の水平耐力を増大させることができる。
【0008】
また、上記本発明のソイル硬化物現場造成杭及び既製杭の施工法において、前記大径部の上部に掘削ヘッドより大径の拡大大径部を設け、該拡大大径部と大径部により、硬化材の注入量や既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込むことができる。
【0009】
これにより、一掘削工程で杭頭付近を大径に形成し経済的に施工を行うとともに、杭頭付近の軟弱地盤の地盤改良を行い、この地盤改良部分の支圧効果によって杭の水平抵抗を増大させることができる。杭径は上部構造物を支持するのに必要な鉛直支持力に見合う大きさで設計できるので、鉛直と水平支持力のバランスのとれた設計ができる。
【0010】
また、前記硬化材には、遊離CaOや遊離MgO等の膨張、固化成分を含有する膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物を用いることができる。
ここで、粉体と粒体の区別として、粒と粉の境界は粒子の自重と付着力が等しくなる付着平衡粒径30〜50μmとする。
そして、前記膨張性及び固化性を有するスラグ粉粒体に、製鋼スラグ(転炉スラグ及び/又は電気炉スラグ(酸化スラグ及び/又は還元スラグ)をいい、ここでは、特に、エージング処理を行っていない製鋼スラグのほか、エージング処理を部分的に行うことにより膨張性を調整した製鋼スラグ等の膨張性を消失させていない製鋼スラグをいう。)、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物を用いることができる。
さらに、前記膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の粉粒体を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものを用いることができる。
【0011】
これにより、膨張性及び固化性を有するスラグ粉粒体が吸水し、膨張、固化することによって、杭の周囲の地盤を容易に、静的に、かつ確実に締め固めることができ、さらに、既製杭の施工法の場合、ソイル硬化物層と既製杭との付着を一層密に行い、これによって、膨張力が杭の支持力を高めることができ、また、セメントの使用量を減らすことができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができる。
【0012】
【発明の実施の形態】
以下、本発明のソイル硬化物現場造成杭及び既製杭の施工法の実施の形態を、図面に基づいて説明する。
【0013】
図1〜図2に、本発明の既製杭の施工法の第1実施例を示す。
この既製杭の施工法は、掘削土1に硬化材2を注入したソイルセメント3に、例えば、PC杭、PHC杭、コンクリート製節杭、鋼管杭等の既製杭4を建て込むようにしたものである。
この場合、この既製杭の施工法は、オーガスクリュー5により杭孔6を掘削するとともに、オーガスクリュー5の上部に設けた、掘削ヘッド51と略同径の大径部55により、硬化材2の注入量に応じた量の掘削土1を杭孔6の孔壁に擦り込み、その後、杭孔6中の掘削土1に硬化材2を注入し、オーガスクリュー5を正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリュー5を引き上げた後、杭孔6に既製杭4を建て込むようにする。
【0014】
この場合において、硬化材2としては、セメント(普通ポルトランドセメント、混合セメント(高炉セメント、フライアッシュセメント))のほか、膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物を用いることができる。
そして、膨張性及び固化性を有するスラグ粉粒体に、製鋼スラグ(転炉スラグ及び/又は電気炉スラグ(酸化スラグ及び/又は還元スラグ)をいい、ここでは、特に、エージング処理を行っていない製鋼スラグのほか、エージング処理を部分的に行うことにより膨張性を調整した製鋼スラグ等の膨張性を消失させていない製鋼スラグをいう。)、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物を用いることができる。
さらに、膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の微粉末を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものを用いることができる。
【0015】
これにより、膨張性及び固化性を有するスラグ粉粒体が吸水し、膨張、固化することによって、杭の周囲の地盤を容易に、静的に、かつ確実に締め固めることができ、さらに、既製杭の施工法の場合、ソイル硬化物層と既製杭との付着を一層密に行い、これによって、膨張力が杭の支持力を高めることができ、また、セメントの使用量を減らすことができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができる。
【0016】
また、オーガスクリュー5は、駆動装置7により正逆回転可能に構成するとともに、図示省略する昇降装置により昇降可能に支持されている。
このオーガスクリュー5は、先端部に掘削ヘッド51を備えるとともに、掘削ヘッド51の上に、スリットスクリュー52と、攪拌ロッド53と、周面にスクリューが形成された連結シャフト54と、大径部55とを順次一体に備えた構成を有している。
【0017】
オーガスクリュー5の大径部55は、下部に円錐状のテーパ部55aを備えた柱状のものからなり、杭孔に挿入される大径部55の体積は、杭と硬化材の体積から求められる。この大径部55は連結式になっており、必要体積分になるように、長さを簡易に調整することができる。
本実施例では、大径部55は掘削ヘッド51と略同径であり、その断面形状は、ふくらみをもたせたローター状の三角形や円形、多角形等があり、地盤の性状に適合した形状を選択したり、また、組み合わせて使用することもできる。
例えば、粘土層に当たる部分には円形を、砂層に当たる部分には三角形を対応させると施工能率が上がり、擦り込んだ孔壁の健全性も良好になる。
【0018】
以下、この既製杭の施工法を具体的に説明する。
【0019】
掘削作業は、図1(a)に示すように、掘削芯を確認しつつ、必要に応じて、適量の掘削水を供給しながら、オーガスクリュー5を正回転させ、地盤に適した速度で、レベルで確認を行い、図1(b)に示すように、杭孔6を所定の深度まで掘削する。
このとき、オーガスクリュー大径部55の体積分の土砂は、この大径部55と接する孔壁に擦り込まれ、大径部55は、テーパ部55aの円錐形圧土面を掘削土に作用させて、孔周面を徐々に圧締めして杭孔6を形成する。これにより、大径部55は対面する孔周面の崩壊を防止することができる。
【0020】
そして、図1(c)に示すように、オーガスクリュー5を逆回転させながら引き上げるとともに、オーガスクリュー5の先端からセメントとスラグ粉粒体混合物ミルク等の硬化材2を注入することによって、掘削土1と硬化材2とを混合攪拌する。
この場合、杭長の1/2程度の範囲でオーガスクリュー5を上下反復して硬化材2と掘削土1とを混合攪拌し、逆転で所定深度に到達するまでかつ3回以上これを繰り返す。
なお、硬化材2の注入量は、予め施工現地盤ボーリングデータの土質サンプルにより、所定掘削長の土質の種類や層厚、N値、地下水位等により決める。
【0021】
例えば、水位の低い砂質土では、透水性の大きい砂質土層がある場合、充填液が流出し、掘削土1との混合攪拌に影響を及ぼすことから、ベントナイト等の添加剤も含め、硬化材2を多め(10〜20%)にする。
また、砂質土では、一旦地盤を緩めると、1.1〜1.2倍体積が増えるため、硬化材2を少なめ(10〜20%)にする。
腐植土層では、成層状態に空隙が多いため逸液になりやすく、このため、ベントナイト等の添加剤も含め、硬化材2を多めにする。
粘性土層では、N値にもよるが、10以下の粘性土層では、適宜注水しながら掘削、混合攪拌する場合があるので、硬化材2を注水分減量する。分散剤等の添加剤も含む。
比較的硬質な粘性土又は崩壊しない砂質土については、孔壁が自立して崩壊の可能性が少ないので、それに応じた所定量の硬化材2を注入する。
なお、硬化材2としては、普通セメント、高炉セメント(普通セメントに高炉セメントを混合したもの)、微粉末高炉セメント(単体)等と、スラグ粉粒体との混合物を好適に採用することができる。
【0022】
ソイルセメント3の造成が完了すると、図1(d)〜(e)に示すように、オーガスクリュー5が逆転で所定深度まで到達したことを確認し、必要に応じて、掘削ヘッド51の先端より根固め液(セメントを富配合としたもの)を注入しながら、根固め部8の範囲で混合攪拌して根固め部8を築造した後、オーガスクリュー5を引き上げる。
【0023】
そして、オーガスクリュー5を引き上げた杭孔6に、図1(f)に示すように、鉛直性を確認しながら既製杭4を建て込む。
なお、継ぎ杭の場合は、下杭を保持装置で保持し、上下杭の軸芯と鉛直性を確認して接続した後、建て込むようにする。
【0024】
最後に、図1(g)に示すように、回転圧入又はモンケンでの軽打・圧入により、所定の深度まで杭4を押し込み、杭孔6に定着させる。
【0025】
このように、本実施例の既製杭の施工法は、オーガスクリュー5により杭孔を掘削するとともに、オーガスクリュー5の上部に設けた掘削ヘッド51と略同径の大径部55により、硬化材2の注入量と既製杭4の体積に応じた量の掘削土を杭孔6の孔壁に擦り込むことから、一般残土の発生を極力低減し、また、ソイルセメント3の杭孔6からの溢れ出しを防止し、産業廃棄物となる残土の発生を抑制して、産業廃棄物の処理費用を大幅に削減するとともに、余分な硬化材2を使用することなく、また、混合攪拌するストロークが短くてすむので施工能率が上がり、施工費用を低減することができ、さらに、杭頭付近の孔壁周囲地盤を押圧して圧密できるので、地盤反力を高め杭4の水平耐力を増大させることができる。
【0026】
図3に、本発明の既製杭の施工法の第2実施例を示す。
この既製杭の施工法は、第1実施例の施工法に加えて、大径部55の上部に掘削ヘッド51より大径の拡大大径部56を設け、該拡大大径部56と大径部55により、硬化材2の注入量と既製杭4の体積に応じた量の掘削土を杭孔6の孔壁に擦り込むようにしている。
【0027】
拡大大径部56は、下部に円錐状のテーパ部56aと、該テーパ部56aに形成されたスクリュー56bとを備えた柱状のものからなり、杭孔6に挿入される拡大大径部56と大径部55の体積は、既製杭4と硬化材2の体積から求められる。拡大大径部56は連結式になっており、必要体積分になるように、長さを簡易に調整することができる。
拡大大径部56の断面形状は、例えば、ふくらみをもたせたローター状の三角形や円形、多角形等を採用することができ、地盤の性状に適合した形状を選択したり、これらの断面形状のものを組み合わせて使用することもできる。
【0028】
このように、大径部55の上部に拡大大径部56を設けることにより、一掘削工程で杭頭付近を大径に形成し経済的に施工を行うとともに、杭頭付近の軟弱地盤の地盤改良を行い、この地盤改良部分の支圧効果によって杭4の水平抵抗を増大させることができる。また、杭径は上部構造物を支持するのに必要な鉛直支持力に見合う大きさで設計できるので、鉛直と水平支持力のバランスがとれた設計をすることができる。
【0029】
以下、この既製杭の施工法を具体的に説明する。
【0030】
図3(a)に示すように、掘削芯を確認しつつ、適宜、掘削水を送りながら地盤に適した速度で、所定の位置まで掘削する。
この場合、杭頭部付近の拡頭は拡大大径部56により行われ、拡大大径部56は、テーパ部56aの円錐形圧土面を掘削土に作用させて、孔周面を徐々に圧締めして杭孔6を形成する。
【0031】
図3(b)に示すように、杭孔6の先端部でオーガスクリュー5を逆転させ、掘削ヘッド51の拡大羽根57を開き、硬化材2を吐出しながら所定の深度まで拡大掘削して引き上げる。
【0032】
図3(c)に示すように、オーガスクリュー5を正転に切り替えて、拡大周面部を再掘削した後、再度逆転にて拡翼し、拡大周面部でオーガスクリュー5を上下反復して、硬化材2と掘削土砂1とを混合攪拌し、逆転で所定深度に到達するまでかつ3回以上これを繰り返す。
【0033】
図4(d)に示すように、掘削底より根固め液を注入しながら、根固め部8の範囲で混合攪拌して、拡大根固め部8を築造した後、正転にて拡大羽根57を閉じ、オーガスクリュー5を引き上げる。
【0034】
最後に、図4(e)に示すように、鉛直性を確認しながら既製杭4を建て込み、所定位置に定着させる。
なお、杭の構成は、上部の拡頭部分に対応する位置には、下部の節杭の節径とほぼ同径の丸杭41を使用している。
【0035】
以上、本発明の実施例を説明したが、本発明の既製杭の施工法は、この実施例の記載に限定されるものではなく、その趣旨を逸脱しない範囲において適宜に変更することが可能であり、また、同様にして(図1(f)、(g)又は図4(e)の工程を省略することにより)、ソイル硬化物現場造成杭を施工することができる。
【0036】
【発明の効果】
本発明のソイル硬化物現場造成杭及び既製杭の施工法によれば、オーガスクリューにより杭孔を掘削するとともに、オーガスクリューの上部に設けた、掘削ヘッドと略同径の大径部により、硬化材の注入量や既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込むことから、一般残土の発生を極力低減し、また、ソイルセメントの杭孔からの溢れ出しを防止し、産業廃棄物となる残土の発生を抑制して産業廃棄物の処理費用を大幅に削減するとともに、余分な硬化材を使用することなく、品質が安定したソイルセメントを造成し、また、混合攪拌するストロークが短くてすむので施工能率が上がり、施工費用を低減することができ、さらに、杭頭付近の孔壁周囲地盤を押圧して圧密できるので、地盤反力を高め杭の水平耐力を増大させることができる。
【0037】
また、前記大径部の上部に掘削ヘッドより大径の拡大大径部を設け、該拡大大径部と大径部により、硬化材の注入量や既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込むことにより、一掘削工程で杭頭付近を大径に形成し経済的に施工を行うとともに、杭頭付近の軟弱地盤の地盤改良を行い、この地盤改良部分の支圧効果によって杭の水平抵抗を増大させることができる。杭径は上部構造物を支持するのに必要な鉛直支持力に見合う大きさで設計できるので、鉛直と水平支持力のバランスのとれた設計ができる。
【0038】
また、前記硬化材には、遊離CaOや遊離MgO等の膨張、固化成分を含有する膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物を用いることができる。
そして、前記膨張性及び固化性を有するスラグ粉粒体に、製鋼スラグ(転炉スラグ及び/又は電気炉スラグ(酸化スラグ及び/又は還元スラグ)をいい、ここでは、特に、エージング処理を行っていない製鋼スラグのほか、エージング処理を部分的に行うことにより膨張性を調整した製鋼スラグ等の膨張性を消失させていない製鋼スラグをいう。)、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物を用いることができる。
さらに、前記膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の粉粒体を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものを用いることができる。
これにより、膨張性及び固化性を有するスラグ粉粒体が吸水し、膨張、固化することによって、杭の周囲の地盤を容易に、静的に、かつ確実に締め固めることができ、さらに、既製杭の施工法の場合、ソイル硬化物層と既製杭との付着を一層密に行い、これによって、膨張力が杭の支持力を高めることができる。
さらに、膨張性及び固化性を有するスラグ粉粒体をセメントと併用することによって、セメントの使用量を減らし、施工コストを低減できるほか、硬化材ミルク(硬化材)の流動性を向上することができる。
また、産業廃棄物である製鋼スラグ等の有効利用を図ることができ、循環型社会の形成に寄与することができる。
【図面の簡単な説明】
【図1】本発明の既製杭の施工法の第1実施例を示す工程図である。
【図2】オーガスクリューの一例を示す正面図である。
【図3】本発明の既製杭の施工法の第2実施例を示す前半の工程図である。
【図4】本発明の既製杭の施工法の第2実施例を示す後半の工程図である。
【符号の説明】
1 掘削土
2 硬化材
3 ソイルセメント
4 既製杭
41 丸杭
5 オーガスクリュー
51 掘削ヘッド
52 スリットスクリュー
53 攪拌ロッド
54 連結シャフト
55 大径部
55a テーパ部
56 拡大大径部
56a テーパ部
56b スクリュー
57 拡大羽根
6 杭孔
7 駆動装置
8 根固め部
L 地盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for constructing a pile of soil-cured material on site and a method for constructing a ready-made pile, and in particular, a soil-cured material site-created pile that is constructed with little generation of general residual soil and industrial waste as well as low construction costs. And the construction method of ready-made piles.
[0002]
[Prior art]
Conventionally, for example, when using a ready-made pile such as a concrete pile as a foundation pile of a building, a method of pre-boring with an auger screw to create a pile hole, and building the ready-made pile into this pile hole and filling cement milk Is taken.
Also, when building ready-made piles in the pile hole, by lifting up the auger screw and injecting a hardening material such as cement milk from the tip of the drilling head, the excavated soil in the pile hole is made as soil cement, By inserting a ready-made pile into the soil cement, the periphery of the ready-made pile is fixed with a curable material.
[0003]
[Problems to be solved by the invention]
However, since the above-mentioned conventional ready-made pile construction method inserts a ready-made pile into a soil cement kneaded with hardened material such as cement milk and excavated soil, it can inject hardened material such as cement milk, When inserting the soil, the soil cement overflows from the pile hole to the ground to become residual soil (industrial waste), and there is a problem that a large cost is required to dispose of it.
In addition, this problem was the same also in the case of the soil cement pile which does not insert a ready-made pile.
[0004]
In view of the problems of the above-mentioned conventional methods for constructing ready-made piles, the present invention provides a soil-cured material site-built pile that can be constructed with little generation of general residual soil and residual soil that is industrial waste, and at low construction costs. It aims at providing the construction method of a ready-made pile.
[0005]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the method of constructing a pile of soil cured material according to the present invention is a method of constructing a pile of soil cured material in-situ pile in which a hardened material is injected into excavated soil to form a pile. And excavating the excavated soil in an amount corresponding to the amount of hardened material injected into the hole wall of the pile hole with the large diameter part provided at the upper part of the auger screw. The hardened material is poured into the excavated soil, and the auger screw is reciprocally moved while being rotated forward and backward to perform mixing and stirring, and the auger screw is pulled up.
[0006]
Moreover, in order to achieve the same purpose, the method for constructing a ready-made pile according to the present invention is to excavate a pile hole with an auger screw in a method for constructing a ready-made pile in which soil pile in which hardened material is injected into excavated soil is built. Along with the large diameter part of the same diameter as the excavation head, provided at the upper part of the auger screw, rubbing the amount of excavated soil according to the injection amount of the hardener and the volume of the ready-made pile into the hole wall of the pile hole, Inject hardened material into the excavated soil in the pile hole, repeat the reciprocating movement while rotating the auger screw forward and backward, mix and agitate, pull up the auger screw, and then build the ready-made pile in the pile hole It is characterized by.
[0007]
The method of constructing this soil hardened material site pile and ready-made pile is to drill the pile hole with an auger screw, and to inject the amount of the hardened material by the large diameter part with the same diameter as the excavation head provided at the upper part of the auger screw. In addition, the amount of excavated soil according to the volume of the piles and the ready-made piles is rubbed into the hole walls of the pile holes, so that the generation of general residual soil is reduced as much as possible, and the overflow of soil cement from the pile holes is prevented. In addition to significantly reducing the cost of processing industrial waste by reducing the generation of residual soil, it is possible to create a soil cement with stable quality without using extra hardener, and to mix and stir Because it is short, construction efficiency can be increased, construction costs can be reduced, and the ground around the hole wall near the head of the pile can be pressed and consolidated, increasing the ground reaction force and increasing the horizontal strength of the pile. it can
[0008]
Moreover, in the construction method of the soil hardened material field-constructed pile and the ready-made pile of the present invention, an enlarged large-diameter portion larger than the excavation head is provided on the upper portion of the large-diameter portion, and the enlarged large-diameter portion and the large-diameter portion are provided. The amount of excavated soil according to the amount of the hardener injected and the volume of the ready-made pile can be rubbed into the hole wall of the pile hole.
[0009]
As a result, in the excavation process, the area near the pile head is formed into a large diameter for economical construction, and the soft ground near the pile head is improved, and the horizontal resistance of the pile is reduced by the bearing effect of this ground improved portion. Can be increased. Since the pile diameter can be designed with a size suitable for the vertical support force required to support the superstructure, it is possible to design with a balance between vertical and horizontal support force.
[0010]
Moreover, the mixture of the slag powder particle | grains which have expansion | swelling and solidification property containing expansion | swelling and solidification components, such as free CaO and free MgO, and cement can be used for the said hardening | curing material.
Here, as a distinction between the powder and the granule, the boundary between the particle and the powder is set to an adhesion equilibrium particle size of 30 to 50 μm in which the particle's own weight and adhesion force are equal.
And the steelmaking slag (converter slag and / or electric furnace slag (oxidized slag and / or reduced slag) is said to the slag granular material which has the expansibility and the solidification property, and aging treatment is especially performed here. Steelmaking slag that does not lose its expansibility, such as steelmaking slag whose expansibility is adjusted by partially performing an aging treatment in addition to no steelmaking slag.), One or two types of waste incineration slag and sludge slag A mixture of the above can be used.
Furthermore, steel slag, blast furnace slag, ferroalloy slag, granulated slag, copper smelting slag, red mud, fly ash, garbage incineration ash, and glass crushing that have lost expansibility to the slag powder having expandability and solidification Materials, concrete waste, industrial waste such as waste gypsum, gypsum, quicklime, crushed stone and other building materials, man-made materials, mineral powders, or a mixture of one or more, and has expandability and solidification What can utilize the expansibility and solidification property of a slag granular material can be used.
[0011]
As a result, the slag powder having expandability and solidification absorbs water, expands and solidifies, so that the ground around the pile can be easily, statically and surely compacted. In the case of the pile construction method, the soil hardened material layer and the ready-made pile are more closely attached, and thereby the expansion force can increase the support capacity of the pile and the amount of cement used can be reduced. .
Moreover, effective use of steelmaking slag etc. which are industrial waste can be aimed at.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment of the construction method of the soil hardened material field creation pile and ready-made pile of this invention is described based on drawing.
[0013]
1 to 2 show a first embodiment of a method for constructing a ready-made pile according to the present invention.
This prefabricated pile construction method is such that prefabricated piles 4 such as PC piles, PHC piles, concrete joint piles, steel pipe piles, etc. are built in the soil cement 3 in which the hardened material 2 is injected into the excavated soil 1. It is.
In this case, the construction method of this ready-made pile is that the pile hole 6 is excavated by the auger screw 5 and the hardened material 2 is formed by the large-diameter portion 55 having the same diameter as the excavation head 51 provided on the upper portion of the auger screw 5. The excavated soil 1 in an amount corresponding to the injection amount is rubbed into the hole wall of the pile hole 6, and then the hardened material 2 is injected into the excavated soil 1 in the pile hole 6, and the auger screw 5 is rotated repeatedly forward and backward. After mixing and stirring by reciprocating, the auger screw 5 is pulled up, and then the ready-made pile 4 is built in the pile hole 6.
[0014]
In this case, as the hardener 2, in addition to cement (ordinary Portland cement, mixed cement (blast furnace cement, fly ash cement)), a mixture of slag particles and cement having expandability and solidification property may be used. it can.
And the steelmaking slag (converter slag and / or electric furnace slag (oxidized slag and / or reduced slag) is referred to as the slag powder having expandability and solidification, and in particular, no aging treatment is performed here. In addition to steelmaking slag, this refers to steelmaking slag that has not lost its expansibility, such as steelmaking slag whose expansibility has been adjusted by partially performing an aging treatment.), One or more of waste incineration slag and sludge slag Can be used.
In addition, steel slag, blast furnace slag, ferroalloy slag, granulated slag, copper smelting slag, red mud, fly ash, garbage incineration ash, and glass crushed material that have lost expansibility into slag powder having expandability and solidification Slag powder with expandability and solidification, mixed with one or more kinds of industrial waste such as concrete waste, waste gypsum, building materials such as gypsum, quicklime and crushed stone, artificial materials and mineral fine powder What can utilize the expansibility and solidification property of a granule can be used.
[0015]
As a result, the slag powder having expandability and solidification absorbs water, expands and solidifies, so that the ground around the pile can be easily, statically and surely compacted. In the case of the pile construction method, the soil hardened material layer and the ready-made pile are more closely attached, and thereby the expansion force can increase the support capacity of the pile and the amount of cement used can be reduced. .
Moreover, effective use of steelmaking slag etc. which are industrial waste can be aimed at.
[0016]
In addition, the auger screw 5 is configured to be able to rotate in the forward and reverse directions by the driving device 7 and is supported so as to be lifted and lowered by a lifting device (not shown).
The auger screw 5 includes a digging head 51 at the tip, a slit screw 52, a stirring rod 53, a connecting shaft 54 having a screw formed on the peripheral surface, and a large diameter portion 55 on the digging head 51. Are sequentially provided integrally.
[0017]
The large-diameter portion 55 of the auger screw 5 is a columnar member having a conical tapered portion 55a at the lower portion, and the volume of the large-diameter portion 55 inserted into the pile hole is obtained from the volumes of the pile and the hardened material. . The large-diameter portion 55 is a connection type, and the length can be easily adjusted so that the required volume integral is obtained.
In the present embodiment, the large-diameter portion 55 has substantially the same diameter as the excavation head 51, and the cross-sectional shape thereof includes a rotor-like triangle, a circle, a polygon, etc. with a bulge, and a shape suitable for the properties of the ground. They can be selected or used in combination.
For example, if a portion corresponding to the clay layer corresponds to a circle and a portion corresponding to the sand layer corresponds to a triangle, the construction efficiency increases and the soundness of the rubbed hole wall also improves.
[0018]
Hereinafter, the construction method of this ready-made pile is demonstrated concretely.
[0019]
As shown in FIG. 1 (a), the excavation work is performed by rotating the auger screw 5 while confirming the excavation core and supplying an appropriate amount of excavation water as necessary, at a speed suitable for the ground. The level is confirmed, and the pile hole 6 is excavated to a predetermined depth as shown in FIG.
At this time, the earth and sand corresponding to the volume of the auger screw large-diameter portion 55 is rubbed into the hole wall in contact with the large-diameter portion 55, and the large-diameter portion 55 causes the conical crush surface of the tapered portion 55a to act on the excavated soil. Then, the hole peripheral surface is gradually pressed to form the pile hole 6. Thereby, the large diameter part 55 can prevent collapse of the hole peripheral surface which faces.
[0020]
Then, as shown in FIG. 1 (c), the auger screw 5 is pulled up while being reversely rotated, and the hardened material 2 such as cement and slag powder mixture milk is injected from the tip of the auger screw 5, thereby excavating soil. 1 and the hardener 2 are mixed and stirred.
In this case, the auger screw 5 is repeated up and down in the range of about 1/2 of the pile length to mix and stir the hardened material 2 and the excavated soil 1, and this is repeated three times or more until reaching a predetermined depth by reverse rotation.
In addition, the injection amount of the hardener 2 is determined in advance by the soil type sample of the construction site board boring data, the soil type of the predetermined excavation length, the layer thickness, the N value, the groundwater level, and the like.
[0021]
For example, in sandy soil with a low water level, if there is a sandy soil layer with high water permeability, the filling liquid will flow out and affect the mixing and stirring with the excavated soil 1, including additives such as bentonite, Increase the amount of the curing material 2 (10 to 20%).
In sandy soil, once the ground is loosened, the volume increases by 1.1 to 1.2 times, so the amount of the hardener 2 is reduced (10 to 20%).
In the humus soil layer, since there are many voids in the stratified state, it tends to be a liquid loss. For this reason, the hardening material 2 is increased including an additive such as bentonite.
In the viscous soil layer, although depending on the N value, in the case of a viscous soil layer of 10 or less, there is a case where excavation and mixing agitation are performed while appropriately injecting water. Also includes additives such as dispersants.
For relatively hard viscous soil or sandy soil that does not collapse, the hole wall is self-supporting and the possibility of collapse is small, so a predetermined amount of the hardener 2 is injected accordingly.
As the hardener 2, a mixture of ordinary cement, blast furnace cement (ordinary cement mixed with blast furnace cement), fine powder blast furnace cement (single), and slag powder can be suitably used. .
[0022]
When the formation of the soil cement 3 is completed, as shown in FIGS. 1D to 1E, it is confirmed that the auger screw 5 has reached a predetermined depth by reverse rotation, and if necessary, from the tip of the excavation head 51. The auger screw 5 is pulled up after the root-solidified portion 8 is built by mixing and stirring in the range of the root-solidified portion 8 while injecting a root-solidifying solution (a cement-rich mixture).
[0023]
And as shown in FIG.1 (f), the ready-made pile 4 is built in the pile hole 6 which pulled up the auger screw 5, confirming perpendicularity.
In the case of joint piles, the lower pile is held by a holding device, and after checking and connecting the vertical axis and verticality of the upper and lower piles, it is built.
[0024]
Finally, as shown in FIG. 1 (g), the pile 4 is pushed down to a predetermined depth by rotary press-fitting or light hitting / press-fitting with monken and fixed in the pile hole 6.
[0025]
As described above, the method for constructing the ready-made pile according to the present embodiment excavates the pile hole with the auger screw 5 and the hardened material by the large-diameter portion 55 having substantially the same diameter as the excavation head 51 provided on the upper portion of the auger screw 5. 2 is rubbed into the hole wall of the pile hole 6 so that the amount of the excavated soil according to the volume of the prepared pile 4 and the volume of the ready-made pile 4 is rubbed, and the generation of general residual soil is reduced as much as possible. Prevents overflow, suppresses the generation of residual soil as industrial waste, greatly reduces the cost of processing industrial waste, and does not use extra hardener 2 and has a mixing and stirring stroke Because it is short, construction efficiency can be increased, construction costs can be reduced, and the ground around the hole wall near the head of the pile can be pressed and consolidated, increasing the ground reaction force and increasing the horizontal strength of the pile 4 Can do.
[0026]
In FIG. 3, the 2nd Example of the construction method of the ready-made pile of this invention is shown.
In addition to the construction method of the first embodiment, this ready-made pile construction method is provided with an enlarged large-diameter portion 56 having a larger diameter than the excavation head 51 at the upper portion of the large-diameter portion 55, and the enlarged large-diameter portion 56 and the large-diameter portion. The part 55 rubs the excavated soil in an amount corresponding to the injection amount of the hardener 2 and the volume of the ready-made pile 4 into the hole wall of the pile hole 6.
[0027]
The enlarged large-diameter portion 56 is formed of a columnar shape having a conical tapered portion 56a at the lower portion and a screw 56b formed in the tapered portion 56a, and the enlarged large-diameter portion 56 inserted into the pile hole 6; The volume of the large diameter portion 55 is determined from the volumes of the ready-made pile 4 and the hardened material 2. The enlarged large-diameter portion 56 is a connection type, and the length can be easily adjusted so that the required volume integral is obtained.
As the cross-sectional shape of the enlarged large-diameter portion 56, for example, a rotor-like triangle, circle, polygon or the like with a bulge can be adopted, and a shape suitable for the properties of the ground can be selected. A combination of these can also be used.
[0028]
Thus, by providing the enlarged large-diameter portion 56 in the upper portion of the large-diameter portion 55, the vicinity of the pile head is formed with a large diameter in one excavation process and economically constructed, and the ground of the soft ground near the pile head is provided. It is possible to improve the horizontal resistance of the pile 4 by the effect of supporting the ground improvement portion. Moreover, since the pile diameter can be designed with a size suitable for the vertical support force required to support the superstructure, a design in which the vertical and horizontal support forces are balanced can be achieved.
[0029]
Hereinafter, the construction method of this ready-made pile is demonstrated concretely.
[0030]
As shown in FIG. 3A, excavating to a predetermined position at a speed suitable for the ground while appropriately sending excavation water while checking the excavation core.
In this case, the enlargement of the head near the pile head is performed by the enlarged large-diameter portion 56, and the enlarged large-diameter portion 56 acts on the excavated soil with the conical crushing surface of the tapered portion 56a to gradually compress the hole peripheral surface. The pile hole 6 is formed by tightening.
[0031]
As shown in FIG. 3 (b), the auger screw 5 is reversed at the tip of the pile hole 6, the enlarged blade 57 of the excavation head 51 is opened, and the excavated material 2 is expanded to a predetermined depth and pulled up. .
[0032]
As shown in FIG. 3 (c), after switching the auger screw 5 to normal rotation and reexcavating the enlarged peripheral surface portion, the blades are expanded again by reverse rotation, and the auger screw 5 is repeated up and down at the enlarged peripheral surface portion, The hardened material 2 and the excavated earth and sand 1 are mixed and stirred, and this is repeated three or more times until reaching a predetermined depth by reverse rotation.
[0033]
As shown in FIG. 4 (d), while injecting the root-setting liquid from the bottom of the excavation, mixing and stirring in the range of the root-setting part 8 to build the enlarged root-setting part 8, and then rotating the expansion blade 57 by forward rotation. Is closed and the auger screw 5 is pulled up.
[0034]
Finally, as shown in FIG. 4E, the ready-made pile 4 is built and confirmed at a predetermined position while checking the verticality.
In addition, the structure of a pile uses the round pile 41 of the substantially same diameter as the node diameter of a lower node pile in the position corresponding to an upper head expansion part.
[0035]
As mentioned above, although the Example of this invention was described, the construction method of the ready-made pile of this invention is not limited to description of this Example, It is possible to change suitably in the range which does not deviate from the meaning. In addition, in the same manner (by omitting the step of FIG. 1 (f), (g) or FIG. 4 (e)), the soil cured product on-site pile can be constructed.
[0036]
【The invention's effect】
According to the method for constructing the soil cured material field-built pile and the ready-made pile of the present invention, the pile hole is excavated by the auger screw, and is hardened by the large diameter portion substantially the same diameter as the excavation head provided at the upper portion of the auger screw. The amount of excavated soil according to the amount of material injected and the volume of ready-made piles is rubbed into the hole walls of the pile holes, reducing the generation of general residual soil as much as possible and preventing the overflow of soil cement from the pile holes In addition, it suppresses the generation of residual soil that becomes industrial waste, greatly reduces the cost of processing industrial waste, and creates soil cement with stable quality without using extra hardener, and mixing Since the agitation stroke is short, construction efficiency increases, construction costs can be reduced, and the ground around the hole wall near the pile head can be pressed and consolidated, increasing the ground reaction force and increasing the horizontal strength of the pile. To increase Can.
[0037]
Further, an enlarged large-diameter portion having a diameter larger than that of the excavation head is provided on the upper portion of the large-diameter portion, and the enlarged large-diameter portion and the large-diameter portion allow the amount of excavated soil according to the amount of the hardener to be injected and the volume of the ready-made pile. By rubbing into the hole wall of the pile hole, the area around the pile head is formed into a large diameter in one excavation process and economically constructed, and the ground of the soft ground near the pile head is improved. The horizontal resistance of the pile can be increased by the bearing effect. Since the pile diameter can be designed with a size suitable for the vertical support force required to support the superstructure, it is possible to design with a balance between vertical and horizontal support force.
[0038]
Moreover, the mixture of the slag powder particle | grains which have expansion | swelling and solidification property containing expansion | swelling and solidification components, such as free CaO and free MgO, and cement can be used for the said hardening | curing material.
And the steelmaking slag (converter slag and / or electric furnace slag (oxidized slag and / or reduced slag) is said to the slag granular material which has the expansibility and the solidification property, and aging treatment is especially performed here. Steelmaking slag that does not lose its expansibility, such as steelmaking slag whose expansibility is adjusted by partially performing an aging treatment in addition to no steelmaking slag.), One or two types of waste incineration slag and sludge slag A mixture of the above can be used.
Furthermore, the steel slag, blast furnace slag, ferroalloy slag, granulated slag, copper smelting slag, red mud, fly ash, garbage incineration ash, and glass crushing that have lost the expansibility are added to the slag powder having expandability and solidification. Materials, concrete waste, industrial waste such as waste gypsum, gypsum, quicklime, crushed stone and other building materials, man-made materials, mineral powders, or a mixture of one or more, and has expandability and solidification What can utilize the expansibility and solidification property of a slag granular material can be used.
As a result, the slag powder having expandability and solidification absorbs water, expands and solidifies, so that the ground around the pile can be easily, statically and surely compacted. In the case of a pile construction method, the soil hardened material layer and the ready-made pile are more closely attached, whereby the expansion force can increase the support capacity of the pile.
In addition, by using slag granules with expandability and solidification in combination with cement, the amount of cement used can be reduced, construction costs can be reduced, and the fluidity of hardened milk (hardened material) can be improved. it can.
In addition, it is possible to effectively use steelmaking slag, which is industrial waste, and contribute to the formation of a recycling society.
[Brief description of the drawings]
FIG. 1 is a process diagram showing a first embodiment of a method for constructing a ready-made pile according to the present invention.
FIG. 2 is a front view showing an example of an auger screw.
FIG. 3 is a process diagram of the first half showing a second embodiment of the method for constructing a ready-made pile according to the present invention.
FIG. 4 is a process chart of the latter half showing a second embodiment of the method for constructing a ready-made pile according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Excavation soil 2 Hardening material 3 Soil cement 4 Ready-made pile 41 Round pile 5 Auger screw 51 Excavation head 52 Slit screw 53 Stirring rod 54 Connecting shaft 55 Large diameter part 55a Taper part 56 Expanding large diameter part 56a Taper part 56b Screw 57 Expansion blade 6 Pile hole 7 Drive unit 8 Rooting part L Ground

Claims (7)

掘削土に硬化材を注入して杭を形成するソイル硬化物現場造成杭の施工法において、オーガスクリューにより杭孔を掘削するとともに、オーガスクリューの上部に設けた、掘削ヘッドと略同径の大径部により、硬化材の注入量に応じた量の掘削土を杭孔の孔壁に擦り込み、その後、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げることを特徴とするソイル硬化物現場造成杭の施工法。In the construction method of soil hardened material construction pile that injects hardening material into excavated soil and forms pile, excavating pile hole with auger screw and large diameter of drilling head provided at the upper part of auger screw Rubbing the amount of excavated soil according to the injection amount of the hardened material into the hole wall of the pile hole with the diameter part, then injecting the hardened material into the excavated soil in the pile hole and repeating while rotating the auger screw forward and backward A method for constructing piles on site of cured soil, characterized by mixing and stirring by reciprocating and pulling up the auger screw. 前記大径部の上部に掘削ヘッドより大径の拡大大径部を設け、該拡大大径部と大径部により、硬化材の注入量に応じた量の掘削土を杭孔の孔壁に擦り込むことを特徴とする請求項1記載のソイル硬化物現場造成杭の施工法。An enlarged large diameter portion having a diameter larger than that of the excavation head is provided on the upper portion of the large diameter portion, and the expanded large diameter portion and the large diameter portion allow an amount of excavated soil according to the amount of the hardener to be injected to the hole wall of the pile hole. 2. The method for constructing a pile of soil-cured piles according to claim 1, wherein the pile is rubbed. 掘削土に硬化材を注入したソイルセメントに既製杭を建て込む既製杭の施工法において、オーガスクリューにより杭孔を掘削するとともに、オーガスクリューの上部に設けた、掘削ヘッドと略同径の大径部により、硬化材の注入量と既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込み、その後、杭孔中の掘削土に硬化材を注入し、オーガスクリューを正逆回転させながら反復して往復移動させることにより混合攪拌を行い、オーガスクリューを引き上げた後、杭孔に既製杭を建て込むことを特徴とする既製杭の施工法。In the construction method of ready-made piles in which ready-made piles are built in soil cement in which hardener is injected into the excavated soil, a pile hole is excavated with an auger screw and a large diameter approximately the same diameter as the excavation head provided at the upper part of the auger screw Rubs the amount of hardened material into the hole wall of the pile hole, and then injects the hardened material into the drilled soil in the pile hole and rotates the auger screw forward and backward. The construction method of the ready-made pile characterized by carrying out mixing agitation by repeating and reciprocating, making the auger screw up, and then building the ready-made pile in the pile hole. 前記大径部の上部に掘削ヘッドより大径の拡大大径部を設け、該拡大大径部と大径部により、硬化材の注入量と既製杭の体積に応じた量の掘削土を杭孔の孔壁に擦り込むことを特徴とする請求項3記載の既製杭の施工法。An enlarged large-diameter portion having a diameter larger than that of the excavation head is provided on the upper portion of the large-diameter portion, and the enlarged large-diameter portion and the large-diameter portion are used to pile an amount of excavated soil according to the amount of the hardener injected and the volume of the ready-made pile The method for constructing a ready-made pile according to claim 3, wherein the method is rubbed into a hole wall of the hole. 前記硬化材が、膨張性及び固化性を有するスラグ粉粒体とセメントとの混合物からなることを特徴とする請求項1、2、3又は4記載のソイル硬化物現場造成杭又は既製杭の施工法。5. The construction of a soil cured product on-site pile or ready-made pile according to claim 1, wherein the hardener is made of a mixture of slag powder particles and cement having expandability and solidification. Law. 前記膨張性及び固化性を有するスラグ粉粒体が、製鋼スラグ、ゴミ焼却スラグ、汚泥スラグの1種若しくは2種以上の混合物からなることを特徴とする請求項5記載のソイル硬化物現場造成杭又は既製杭の施工法。The soil hardened material on-site pile according to claim 5, wherein the slag powder particles having expandability and solidification properties are composed of one or a mixture of steelmaking slag, waste incineration slag and sludge slag. Or construction method of ready-made piles. 前記膨張性及び固化性を有するスラグ粉粒体に、膨張性を消失した製鋼スラグ、高炉スラグ、フェロアロイスラグ、水砕スラグ、銅製錬スラグ、赤泥、フライアッシュ、ゴミ焼却灰、ガラス破砕物、コンクリート廃材、廃石膏等の産業廃棄物、石膏、生石灰、砕石等の建築用材料、人工材料、鉱物の粉粒体を1種若しくは2種以上を混合した、膨張性及び固化性を有するスラグ粉粒体の膨張性及び固化性を利用できるものであることを特徴とする請求項5又は6記載のソイル硬化物現場造成杭又は既製杭の施工法。Steel slag, blast furnace slag, ferroalloy slag, granulated slag, copper smelting slag, red mud, fly ash, garbage incinerated ash, glass crushed material, which has lost its expansibility, in the slag powder having expandability and solidification Concrete waste, industrial waste such as gypsum, building materials such as gypsum, quicklime, crushed stone, artificial materials, slag powder with expandability and solidification, mixed with one or more mineral powders The method for constructing a soil cured product site-built pile or ready-made pile according to claim 5 or 6, wherein the expandability and solidification property of the granules can be used.
JP2003176740A 2003-06-20 2003-06-20 Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile Pending JP2005009240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176740A JP2005009240A (en) 2003-06-20 2003-06-20 Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176740A JP2005009240A (en) 2003-06-20 2003-06-20 Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile

Publications (1)

Publication Number Publication Date
JP2005009240A true JP2005009240A (en) 2005-01-13

Family

ID=34099536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176740A Pending JP2005009240A (en) 2003-06-20 2003-06-20 Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile

Country Status (1)

Country Link
JP (1) JP2005009240A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257749A (en) * 2005-03-17 2006-09-28 Geotop Corp Pile foundation structure
JP2006342560A (en) * 2005-06-08 2006-12-21 Toyo Asano Found Co Ltd Construction method of foundation pile
JP2008075336A (en) * 2006-09-21 2008-04-03 Jfe Steel Kk Construction method for precast pile
JP2011117215A (en) * 2009-12-04 2011-06-16 Asahi Kasei Construction Materials Co Ltd Construction method of pile using pile follower
JP2015096676A (en) * 2013-11-15 2015-05-21 三谷セキサン株式会社 Excavation method of pile hole having expanded head part
JP2016217121A (en) * 2015-05-15 2016-12-22 創伸産業株式会社 Ground reinforcement casing and ground reinforcement method
CN113638409A (en) * 2021-08-19 2021-11-12 天津智城工程技术有限公司 Mud digestion pile planting method
CN113832957A (en) * 2021-09-09 2021-12-24 西北水利水电工程有限责任公司 Construction method of loess layer photovoltaic module support PHC pipe pile

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006257749A (en) * 2005-03-17 2006-09-28 Geotop Corp Pile foundation structure
JP4562558B2 (en) * 2005-03-17 2010-10-13 ジャパンパイル株式会社 Pile foundation structure
JP2006342560A (en) * 2005-06-08 2006-12-21 Toyo Asano Found Co Ltd Construction method of foundation pile
JP4589813B2 (en) * 2005-06-08 2010-12-01 株式会社トーヨーアサノ How to build an enlarged bulb for root consolidation
JP2008075336A (en) * 2006-09-21 2008-04-03 Jfe Steel Kk Construction method for precast pile
JP2011117215A (en) * 2009-12-04 2011-06-16 Asahi Kasei Construction Materials Co Ltd Construction method of pile using pile follower
JP2015096676A (en) * 2013-11-15 2015-05-21 三谷セキサン株式会社 Excavation method of pile hole having expanded head part
JP2016217121A (en) * 2015-05-15 2016-12-22 創伸産業株式会社 Ground reinforcement casing and ground reinforcement method
CN113638409A (en) * 2021-08-19 2021-11-12 天津智城工程技术有限公司 Mud digestion pile planting method
CN113832957A (en) * 2021-09-09 2021-12-24 西北水利水电工程有限责任公司 Construction method of loess layer photovoltaic module support PHC pipe pile
CN113832957B (en) * 2021-09-09 2023-02-03 西北水利水电工程有限责任公司 Construction method of loess layer photovoltaic module support PHC pipe pile

Similar Documents

Publication Publication Date Title
US5378085A (en) Methods for in situ construction of deep soil-cement structures
JPH10204876A (en) Soil improvement method by using pile
JP4852732B2 (en) Column replacement construction method
JP2005009240A (en) Method for installing soil hardened matter on-site-manufactured pile and prefabricated pile
JP4923011B2 (en) Construction method of columnar ground improvement body
JP2000073354A (en) Preparating method of ground improving body and preparating method of continuous walls
JP2006312865A (en) Method for replacing and constructing column, and replaced column
JP2003171932A (en) Ready-made pile burying construction method and device used therefor
JP2004353243A (en) Soil hardening object site formation pile, construction method of prefabricated pile and auger screw used therefor
JP2001200537A (en) Soil improving method and support pile for soil improvement
JP2005282063A (en) Composite field preparation pile, its construction method and device for preparing composite field preparation pile
JP5202743B2 (en) Columnar ground improvement body construction device
JP2005083151A (en) Work execution method for steel pipe pile, and foundation structure using steel pipe pile
JP5466272B2 (en) Construction method of soil cement continuous wall
JP5023320B2 (en) Column replacement construction method
JP4867044B2 (en) Column replacement construction method
JP4867045B2 (en) Column replacement construction method
JP4200237B2 (en) Construction method of foundation pile
JP2004270260A (en) Non-removed earth foundation post construction apparatus and non-removed earth foundation pole construction method
JP7430103B2 (en) Ground improvement method for pile extraction holes
JP4688214B2 (en) Concrete foundation method
JP2004353310A (en) Method of improving soil with kneaded material including a large quantity of coal ash
JPS62202118A (en) Burying work of pile
JP2004278041A (en) Impervious wall method
JP2000345546A (en) Improvement method for soft ground containing hard stratum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A711 Notification of change in applicant

Effective date: 20070423

Free format text: JAPANESE INTERMEDIATE CODE: A712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070620

A131 Notification of reasons for refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071106