JP2014028988A - Electrode, electrolytic device and electrodeposition coating method using them - Google Patents

Electrode, electrolytic device and electrodeposition coating method using them Download PDF

Info

Publication number
JP2014028988A
JP2014028988A JP2012169280A JP2012169280A JP2014028988A JP 2014028988 A JP2014028988 A JP 2014028988A JP 2012169280 A JP2012169280 A JP 2012169280A JP 2012169280 A JP2012169280 A JP 2012169280A JP 2014028988 A JP2014028988 A JP 2014028988A
Authority
JP
Japan
Prior art keywords
electrode
electrodeposition coating
electrodeposition
counter electrode
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169280A
Other languages
Japanese (ja)
Other versions
JP6015208B2 (en
Inventor
Shunsuke Yamamoto
俊佑 山本
Hiroyuki Masuoka
弘之 増岡
Minako Morimoto
美奈子 森本
Hiroshi Suzuki
博志 鈴木
Yukio Takeyama
幸男 竹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012169280A priority Critical patent/JP6015208B2/en
Publication of JP2014028988A publication Critical patent/JP2014028988A/en
Application granted granted Critical
Publication of JP6015208B2 publication Critical patent/JP6015208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an electrode and an electrolytic device that enable an electrolyte and an electrodeposition coating to be efficiently cooled for stabilization of a bath temperature, and an electrodeposition coating method using them.SOLUTION: An electrode includes cooling means inside it. An electrolytic device includes a counter electrode comprising the electrode, and a working electrode. The cooling means uses water as a cooling medium, and preferably has a passage for water conduction from the lower side to the upper side.

Description

本発明は、浴を効率的に冷却して浴温を安定にするための電極、電解装置およびそれらを用いた電着塗装方法に関する。   The present invention relates to an electrode for efficiently cooling a bath and stabilizing the bath temperature, an electrolysis apparatus, and an electrodeposition coating method using them.

機能性や美観向上あるいは防錆を目的として、幅広い分野で電解(電着を含む)が利用されている。例えば、アルミニウムやアルミニウム合金材などで行われる電解(陽極酸化)は、耐食性や耐摩耗性の向上、あるいは着色を目的としてコンデンサーの分野などで用いられる。また電気めっきや電着塗装は、耐食性や美観付与などを目的とし、家電、建築や自動車分野などで用いられ、その適用例は幅広い。   Electrolysis (including electrodeposition) is used in a wide range of fields for the purpose of improving functionality and aesthetics or preventing rust. For example, electrolysis (anodization) performed with aluminum or an aluminum alloy material is used in the field of capacitors for the purpose of improving corrosion resistance and wear resistance, or coloring. Electroplating and electrodeposition coating are used in the fields of home appliances, architecture and automobiles for the purpose of corrosion resistance and imparting aesthetics, and have a wide range of application examples.

上記電解における電解液、めっき液および電着塗装における電着塗料(以下、まとめて浴と称することもある)は、規定の膜厚を得、試料に適切な機能性を付与し、そして安全を保つためなどの観点から使用温度範囲が電解液、めっき液、および電着塗料ごとに設定されていることが多く、電解液、めっき液、および電着塗料の温度(以下、浴温と称することもある)のコントロールが非常に重要となる。実際に電解や電着塗装を行う際には、被電解試料や被電着塗装試料となる電極(作用電極)と対極となる電極の間に電流が流れジュール熱が発生し浴温が上昇するため、浴温を冷却する必要がある。例えば、装置に冷却機能を組み込み、浴温を冷却する方法があるが、浴温を一定に保つことは難しい。   The electrolytic solution in the above electrolysis, the plating solution, and the electrodeposition coating in the electrodeposition coating (hereinafter sometimes collectively referred to as a bath) obtain a specified film thickness, impart appropriate functionality to the sample, and ensure safety. From the standpoint of maintaining the temperature, the operating temperature range is often set for each electrolyte, plating solution, and electrodeposition paint, and the temperature of the electrolyte, plating solution, and electrodeposition paint (hereinafter referred to as bath temperature). Control is also very important. When electrolysis or electrodeposition coating is actually performed, current flows between the electrode to be electrolyzed or the electrodeposition coating sample (working electrode) and the counter electrode to generate Joule heat, increasing the bath temperature. Therefore, it is necessary to cool the bath temperature. For example, there is a method of cooling the bath temperature by incorporating a cooling function in the apparatus, but it is difficult to keep the bath temperature constant.

上記の問題を解決するために、例えば特許文献1には、電着塗装装置において、電着液の温度が上昇あるいは低下した際に、電着液を循環させ、冷却あるいは加熱を行い、電着液の温度を制御する方法が提案されている。この際、電着液の温度が高い場合には冷却制御用バルブを介して冷却用熱交換器にて冷却を行い、電着液の温度が低い場合には加熱制御用バルブを介して加熱用熱交換器にて加熱を行うことで、電着液の温度制御が可能とされている。   In order to solve the above problem, for example, in Patent Document 1, in an electrodeposition coating apparatus, when the temperature of the electrodeposition liquid rises or falls, the electrodeposition liquid is circulated, cooled or heated, and electrodeposition is performed. A method for controlling the temperature of the liquid has been proposed. At this time, when the temperature of the electrodeposition liquid is high, cooling is performed by a cooling heat exchanger via a cooling control valve, and when the temperature of the electrodeposition liquid is low, heating is performed via a heating control valve. The temperature of the electrodeposition liquid can be controlled by heating with a heat exchanger.

また、特許文献2には、電解加工装置において、電解槽外周に冷却液を流し、さらに電解槽の外周壁から放熱フィンを突設することで接触部の面積を拡げ、冷却能力を大幅に向上することが可能とされている。   Further, in Patent Document 2, in the electrolytic processing apparatus, the cooling liquid is allowed to flow on the outer periphery of the electrolytic cell, and further, the heat radiation fins are projected from the outer peripheral wall of the electrolytic cell. It is possible to do.

特開2005−256096号公報JP 2005-256096 A 特開平5−239700号公報JP-A-5-239700

しかしながら、特許文献1で提案された技術では、電着液を冷却あるいは加熱するために新規の槽が必要となり、またバルブの開閉制御が必要になるなど、装置が大掛かりとなる。また、電着液を循環している際にも電着槽では反応が起こっていることから、循環後の電着液と電着槽内の電着液が混じり合った際に混じり合う前の電着液の濃度と異なる可能性があり、均一な膜厚が得られない問題がある。   However, in the technique proposed in Patent Document 1, a new tank is required to cool or heat the electrodeposition liquid, and the opening / closing control of the valve is required, which makes the apparatus large. In addition, since the reaction occurs in the electrodeposition tank even when the electrodeposition liquid is circulated, when the electrodeposition liquid after circulation and the electrodeposition liquid in the electrodeposition tank are mixed, There is a possibility that it may be different from the concentration of the electrodeposition solution, and there is a problem that a uniform film thickness cannot be obtained.

特許文献2で提案された技術のように、接触面積を拡げることで冷却機能は向上することは考えられるが、電解槽を介しての冷却となるため、大幅な冷却能力の向上は望めない。   Although it is conceivable that the cooling function can be improved by expanding the contact area as in the technique proposed in Patent Document 2, since the cooling is performed through the electrolytic cell, a significant improvement in the cooling capacity cannot be expected.

本発明は、かかる事情に鑑みなされたもので、浴を効率的に冷却しうることを可能にし浴温を安定にするための電極、電解装置およびそれらを用いた電着塗装方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides an electrode, an electrolysis apparatus, and an electrodeposition coating method using the same for enabling the bath to be efficiently cooled and stabilizing the bath temperature. With the goal.

そこで、本発明者らは、電解槽内部に配置される対極となる電極に着目した。その結果、電極内部に冷却手段を有し、冷却機能を持たせることで浴温を効率的に制御できることを見出した。   Therefore, the present inventors paid attention to an electrode serving as a counter electrode disposed inside the electrolytic cell. As a result, it has been found that the bath temperature can be efficiently controlled by providing a cooling means inside the electrode and providing a cooling function.

本発明は、以上の知見に基づき鋭意研究を重ねた結果完成されたもので、その要旨は以下のとおりである。
[1]内部に冷却手段を有することを特徴とする電極。
[2]前記冷却手段は、冷媒として水を用いて冷却することを特徴とする[1]に記載の電極。
[3]前記冷却手段が下部から上部へ通水する経路を有することを特徴とする[2]に記載の電極。
[4][1]〜[3]のいずれかに記載の電極からなる対極と、作用電極を有することを特徴とする電解装置。
[5]前記対極と前記作用電極の間の距離が変更可能であることを特徴とする[4]に記載の電解装置。
[6][4]または[5]に記載の電解装置を用い、前記対極を陽極、前記作用電極を金属材からなる陰極とし、電着塗料を電解液として、金属材に電着塗装することを特徴とする電着塗装方法。
The present invention has been completed as a result of intensive studies based on the above findings, and the gist thereof is as follows.
[1] An electrode having cooling means inside.
[2] The electrode according to [1], wherein the cooling means cools using water as a refrigerant.
[3] The electrode according to [2], wherein the cooling means has a path through which water flows from the lower part to the upper part.
[4] An electrolysis apparatus comprising a counter electrode composed of the electrode according to any one of [1] to [3] and a working electrode.
[5] The electrolysis apparatus according to [4], wherein a distance between the counter electrode and the working electrode can be changed.
[6] Using the electrolytic apparatus according to [4] or [5], the counter electrode is an anode, the working electrode is a cathode made of a metal material, and the electrodeposition paint is used as an electrolytic solution, and the electrodeposition is applied to the metal material An electrodeposition coating method characterized by

本発明によれば、電解槽内で濃度分布が生じることなく、ジュール熱により上昇した浴を効率良くかつ安定的に冷却することができる。その結果、例えば、鋼板などの金属材の被電解試料に均一な膜厚で電着塗装することができる。   According to the present invention, it is possible to efficiently and stably cool a bath that has risen due to Joule heat without causing a concentration distribution in the electrolytic cell. As a result, for example, it is possible to perform electrodeposition coating with a uniform film thickness on an electrolytic sample of a metal material such as a steel plate.

本発明による電解装置の一実施形態の一つであり、断面概略図である。It is one of the one embodiment of the electrolysis device by the present invention, and is a section schematic diagram. 本発明による電解装置の一実施形態の一つであり、上面概略図である。It is one of the one Embodiment of the electrolysis apparatus by this invention, and is an upper surface schematic diagram. 本発明による電極内部の概略図である。1 is a schematic view of the inside of an electrode according to the present invention. 従来の電解装置の一例の概略図である。It is the schematic of an example of the conventional electrolysis apparatus.

以下に、本発明を詳細に説明する。
図1、図2に、本発明の一実施形態である電解装置を示す。なお、図1は断面概略図であり、図2は上面概略図である。図1、2によれば、電解液1を貯留し被電解試料である作用電極2を浸漬する電解槽3と、前記作用電極2とその対極となる電極5との間に電圧を印加する直流電源4と、電解槽3の底部には電解液1を撹拌するためのスターラーなどの攪拌手段6とを備えている。前記対極(電極)5には直流電源4の陽極側が接続し、作用電極2には陰極側が接続し、両極間に電圧が印加される。
The present invention is described in detail below.
1 and 2 show an electrolysis apparatus according to an embodiment of the present invention. 1 is a schematic sectional view, and FIG. 2 is a schematic top view. According to FIGS. 1 and 2, a direct current that applies a voltage between an electrolytic cell 3 in which the electrolytic solution 1 is stored and a working electrode 2 that is an electrolyzed sample is immersed, and the working electrode 2 and its counter electrode 5 is applied. A power source 4 and a stirring means 6 such as a stirrer for stirring the electrolytic solution 1 are provided at the bottom of the electrolytic cell 3. The counter electrode (electrode) 5 is connected to the anode side of the DC power supply 4 and the working electrode 2 is connected to the cathode side, and a voltage is applied between both electrodes.

ここで、対極(電極)5は、電解液1を冷却するための手段を有しており、例えば、対極(電極)5内に冷却するための冷媒が貯留されている。冷媒としては例えば水を用いることができる。このように、内部に電解液1を冷却するための手段を有する対極(電極)5を使用することで、電解液1を効率的に冷却して浴温を制御できる。その結果、電解装置を電着塗装に用いた場合、ばらつきの少ない膜厚で電着塗装することができる。   Here, the counter electrode (electrode) 5 has means for cooling the electrolytic solution 1, and for example, a coolant for cooling is stored in the counter electrode (electrode) 5. For example, water can be used as the refrigerant. Thus, by using the counter electrode (electrode) 5 having a means for cooling the electrolytic solution 1 inside, the electrolytic solution 1 can be efficiently cooled and the bath temperature can be controlled. As a result, when the electrolysis apparatus is used for electrodeposition coating, it is possible to perform electrodeposition coating with a film thickness with little variation.

また、対極(電極)5内部では、図3に示すように下部から上部へ通水する経路を有しており、入側より侵入した気泡などが溜まらないよう冷媒の進行方向先が少しずつ高くなるような構造とするのが好ましい。図3によれば、冷媒入側7より冷媒が流れ込み、下部から冷媒が溜まり、対極電極5の下部から上部へと流れ、冷媒出側8から流れ出る。このように、対極(電極)5内部の冷媒が対極(電極)5下部から上部へ通水することで、下部から冷媒が充填していき、冷媒内の気泡が対極(電極)5内部に滞留することがなくなり、一定の流量で安定的に冷媒を流すことができ、冷却効率が向上する。   Further, inside the counter electrode (electrode) 5, there is a path through which water flows from the lower part to the upper part as shown in FIG. 3, so that the direction of travel of the refrigerant is gradually increased so that bubbles that enter from the inlet side do not accumulate. Such a structure is preferable. According to FIG. 3, the refrigerant flows from the refrigerant inlet side 7, accumulates from the lower part, flows from the lower part to the upper part of the counter electrode 5, and flows out from the refrigerant outlet side 8. Thus, the refrigerant inside the counter electrode (electrode) 5 flows from the lower part to the upper part of the counter electrode (electrode) 5 so that the refrigerant is filled from the lower part, and bubbles in the refrigerant stay inside the counter electrode (electrode) 5. Thus, the refrigerant can flow stably at a constant flow rate, and the cooling efficiency is improved.

対極(電極)5の材質については特に限定されないが、大きな電流が流れた際にも対極(電極)5自身の特性変化が小さいステンレス製が望ましい。   The material of the counter electrode (electrode) 5 is not particularly limited, but it is desirable that the counter electrode (electrode) 5 itself has a small characteristic change even when a large current flows.

上記のように本発明の電解装置は、電解液1を冷却するための手段を有した対極(電極)5と作用電極2を有する。そして、対極(電極)5は、作用電極2の面に正対し、かつ、作用電極2を中心として、かつ対称的に複数配置することが好ましい。作用電極2の面に正対に配置することで、電極間距離が一定となり、安定的な膜厚を得ることができる。また、対称的に複数配置することで、作用電極2の両面に一定の膜厚を得ることができるとともに、複数の対極(電極)5が電解液1を挟み込む配置となり、電解液1を効率的かつ安定的に冷却することができる。   As described above, the electrolysis apparatus of the present invention includes the counter electrode (electrode) 5 having the means for cooling the electrolyte solution 1 and the working electrode 2. A plurality of counter electrodes (electrodes) 5 are preferably arranged so as to face the surface of the working electrode 2 and be symmetrical about the working electrode 2. By disposing it directly on the surface of the working electrode 2, the distance between the electrodes becomes constant, and a stable film thickness can be obtained. In addition, by arranging a plurality of symmetrically, it is possible to obtain a constant film thickness on both surfaces of the working electrode 2, and a plurality of counter electrodes (electrodes) 5 are arranged to sandwich the electrolytic solution 1. And it can cool stably.

さらに、対極(電極)5と作用電極2の間の距離(以下、電極間距離と称す)が変更可能となるように対極(電極)5と作用電極2の位置は可変式になっていることが好ましい。電極間距離は電解液1の仕様により決まっていることが多く、作用電極2の厚みに対して適宜電極間距離を変える必要がある。そのため、対極(電極)5と作用電極2はともに対極(電極)5面または作用電極2面に対して垂直方向に位置を可変可能とすることが好ましい。   Furthermore, the positions of the counter electrode (electrode) 5 and the working electrode 2 are variable so that the distance between the counter electrode (electrode) 5 and the working electrode 2 (hereinafter referred to as the interelectrode distance) can be changed. Is preferred. The distance between the electrodes is often determined by the specifications of the electrolytic solution 1, and the distance between the electrodes needs to be appropriately changed with respect to the thickness of the working electrode 2. Therefore, it is preferable that the position of the counter electrode (electrode) 5 and the working electrode 2 can be varied in the direction perpendicular to the surface of the counter electrode (electrode) 5 or the surface of the working electrode 2.

以上、本発明の電極および電解装置によれば、対極(電極)5および作用電極2に直流電源5から電流が流れることによりジュール熱が発生するが、対極(電極)5は電解液1と直接接触していることから熱交換が容易に行われ、浴温コントロールが従来と比較し大幅に容易となる。さらに、対極(電極)5の内部に下部から上部へ通水する冷却経路を有する電極を用いることで、冷却効率が向上し、従来の電解装置に比較して大幅な冷却効果を得ることができる。   As described above, according to the electrode and the electrolysis apparatus of the present invention, Joule heat is generated when a current flows from the DC power source 5 to the counter electrode (electrode) 5 and the working electrode 2, but the counter electrode (electrode) 5 is directly connected to the electrolyte solution 1. Because of the contact, heat exchange is easily performed, and bath temperature control is greatly facilitated compared to the conventional case. Furthermore, by using an electrode having a cooling path for passing water from the lower part to the upper part inside the counter electrode (electrode) 5, the cooling efficiency is improved, and a significant cooling effect can be obtained as compared with the conventional electrolyzer. .

本発明の電極および電解装置が適用される電解装置としては、特に制限されず、陽極酸化、電気めっき、電着塗装などの電解装置全般を対象とする。特に、本発明の電解装置を用い、対極を陽極、作用電極を被電着塗装試料からなる陰極とし、電着塗料を電解液として、金属材に電着塗装することは特に好ましい。電着塗装は浴温の電着塗装膜の膜厚への影響が大きく、浴温制御を厳密にしなければならず、本発明の電解装置は浴温制御が容易となるからである。被電着塗装試料としては、特に制限されず、金属材全般を対象とするが、特に電着塗装の適用例が多い鋼板に対して好適である。さらに、本発明の電極および電解装置を用いた電着塗装方法では、被電解試料となる鋼板の処理枚数を増やしても浴温の制御が容易であり、安定的な膜厚制御が可能であるため、ドアパネル等、自動車部材の生産ラインなどに対しても適用することが可能である。   The electrolysis apparatus to which the electrode and electrolysis apparatus of the present invention are applied is not particularly limited, and covers all electrolysis apparatuses such as anodization, electroplating, and electrodeposition coating. In particular, it is particularly preferable to use the electrolysis apparatus of the present invention to perform electrodeposition coating on a metal material using the counter electrode as an anode, the working electrode as a cathode made of an electrodeposition coating sample, and the electrodeposition paint as an electrolyte. This is because electrodeposition coating greatly affects the bath temperature on the film thickness of the electrodeposition coating film, and the bath temperature control must be strict, and the electrolysis apparatus of the present invention facilitates bath temperature control. The electrodeposition coating sample is not particularly limited and is intended for metal materials in general, but is particularly suitable for steel plates that have many application examples of electrodeposition coating. Furthermore, in the electrodeposition coating method using the electrode and the electrolysis apparatus of the present invention, the bath temperature can be easily controlled even when the number of processed steel sheets to be electrolyzed is increased, and stable film thickness control is possible. Therefore, the present invention can be applied to a production line for automobile members such as door panels.

本発明の電解装置を用いて、鋼板(冷延鋼板)に電着塗装を行った。   Using the electrolytic apparatus of the present invention, electrodeposition coating was performed on a steel sheet (cold rolled steel sheet).

電着塗装の前処理として、まず冷延鋼板試験片に40℃のアルカリ脱脂液:FC−E2001(日本パーカライジング(株)製、アルカリ度:18.3ptまたは18.5pt)に120秒間浸漬する脱脂処理を施した。その後、表面調整処理およびりん酸亜鉛処理を順次施し、片面当たりの付着量が3g/mとなる化成皮膜を形成した。表面調整処理は、前記脱脂処理後の試験片を、室温の表面調整剤:PL−ZTH(日本パーカライジング(株)製)に20秒間浸漬することにより行った。また、りん酸亜鉛処理は、35℃のPB−SX35(日本パーカライジング(株)製、全酸度21.5pt、遊離酸度0.7pt、促進剤濃度4.0pt)に120秒間浸漬することにより行った。 As pretreatment for electrodeposition coating, degreasing is first performed by immersing in a cold-rolled steel sheet specimen at 40 ° C. in an alkaline degreasing solution: FC-E2001 (manufactured by Nihon Parkerizing Co., Ltd., alkalinity: 18.3 pt or 18.5 pt) for 120 seconds. Treated. Thereafter, a surface conditioning treatment and a zinc phosphate treatment were sequentially performed to form a chemical conversion film having an adhesion amount per side of 3 g / m 2 . The surface conditioning treatment was performed by immersing the test piece after the degreasing treatment in a room temperature surface conditioning agent: PL-ZTH (manufactured by Nippon Parkerizing Co., Ltd.) for 20 seconds. Further, the zinc phosphate treatment was performed by immersing in PB-SX35 (manufactured by Nippon Parkerizing Co., Ltd., total acidity 21.5pt, free acidity 0.7pt, accelerator concentration 4.0pt) for 120 seconds. .

上記前処理を施した後、図1に示す電解装置と、電解液としてカチオン電着塗料を用いて、電着塗装を行った。対極(電極)5には直流電源4の陽極側が接続し、化成皮膜が形成された冷延鋼板試験片を作用電極2とし、作用電極2には陰極側が接続し、両極間に電圧が印加される。上記のように電圧が印加されることで、電気泳動により作用電極2にカチオン電着塗料中のカチオン塗料粒子が引き寄せられ、電着塗膜が鋼板上に形成される。なお、各条件は以下の通りである。
電着塗装条件
電着塗料:商品名GT−100(関西ペイント(株)製)
初期の電着塗料の温度(浴温):30℃
負荷電圧:100V、160V、220V
通電方法:30秒スロースタート+2分30秒定電圧通電
通電時間:3分(スロースタート30秒を含む)
極比:(冷延鋼板試験片(作用電極)の面積:対極の面積)は(1:2)
極間距離:15cm
焼付け温度:170℃(到達鋼板温度)×20分
対極の冷却条件
冷媒:水(30℃)
冷媒の流量:0.1L/s
冷媒の流速:0.88m/s
なお、比較例1として図4の従来の電解装置を用いて、他の条件は上記実施例と同様に電着塗装を行った。なお、図4の従来の電解装置では、電解槽3の外側に冷却槽を設け、冷媒を用いて冷却した。また、比較例2として、図1の装置を用いて、対極(電極)5内部に冷媒を流さず、他の条件は上記実施例と同様に行い、電着塗膜を形成した。
After the above pretreatment, electrodeposition coating was performed using the electrolytic apparatus shown in FIG. 1 and a cationic electrodeposition paint as the electrolyte. The counter electrode (electrode) 5 is connected to the anode side of the DC power source 4, and a cold-rolled steel sheet test piece on which a chemical conversion film is formed is used as the working electrode 2. The working electrode 2 is connected to the cathode side, and a voltage is applied between both electrodes. The By applying a voltage as described above, the cationic paint particles in the cationic electrodeposition paint are attracted to the working electrode 2 by electrophoresis, and an electrodeposition coating film is formed on the steel sheet. Each condition is as follows.
Electrodeposition conditions Electrodeposition paint: Trade name GT-100 (manufactured by Kansai Paint Co., Ltd.)
Initial electrodeposition paint temperature (bath temperature): 30 ° C
Load voltage: 100V, 160V, 220V
Energization method: 30 seconds slow start + 2 minutes 30 seconds Constant voltage energization energization time: 3 minutes (including slow start 30 seconds)
Pole ratio: (Cold rolled steel plate specimen (working electrode) area: counter electrode area) is (1: 2)
Distance between electrodes: 15cm
Baking temperature: 170 ° C. (steel plate temperature) × 20 minutes Counter electrode cooling condition Refrigerant: Water (30 ° C.)
Refrigerant flow rate: 0.1 L / s
Refrigerant flow rate: 0.88 m / s
In addition, using the conventional electrolysis apparatus of FIG. 4 as Comparative Example 1, electrodeposition coating was performed in the same manner as in the above example under other conditions. In addition, in the conventional electrolysis apparatus of FIG. 4, the cooling tank was provided in the outer side of the electrolytic cell 3, and it cooled using the refrigerant | coolant. Further, as Comparative Example 2, an electrodeposition coating film was formed using the apparatus of FIG. 1 except that no coolant was allowed to flow inside the counter electrode (electrode) 5 and other conditions were the same as in the above example.

試験は10回行い、浴温の温度変化率を調べた。温度変動率は(10回目の浴温−1回目の浴温)÷初期浴温(30℃)×100(%)で算出した。   The test was performed 10 times, and the temperature change rate of the bath temperature was examined. The temperature fluctuation rate was calculated by (10th bath temperature-1st bath temperature) ÷ initial bath temperature (30 ° C.) × 100 (%).

また、浴温が変化すると電着塗膜厚も変化するため、1回目と10回目の電着塗膜厚を測定した。電着塗膜厚の測定は、電磁式膜厚計(LZ−200、(株)ケット科学研究所製)を用いて行い、試験片中央部の1箇所を測定した。   Moreover, since the electrodeposition coating film thickness also changes when bath temperature changes, the electrodeposition coating film thickness of the 1st time and the 10th time was measured. The electrodeposition coating thickness was measured using an electromagnetic film thickness meter (LZ-200, manufactured by Kett Scientific Laboratory), and one location at the center of the test piece was measured.

以上により得られた結果を表1に示す。   The results obtained as described above are shown in Table 1.

Figure 2014028988
Figure 2014028988

表1より、本発明例では、浴温が安定し、その結果、均一な電着塗装膜厚が得られた。一方、比較例では、浴温が安定せず、電着塗装膜厚がばらついた。   From Table 1, in the present invention example, the bath temperature was stabilized, and as a result, a uniform electrodeposition coating film thickness was obtained. On the other hand, in the comparative example, the bath temperature was not stable, and the electrodeposition coating film thickness varied.

1:電解液
2:作用電極(被電解試料)
3:電解槽
4:直流電源
5:対極(電極)
6:攪拌手段
7:冷媒入側
8:冷媒出側
1: Electrolytic solution 2: Working electrode (electrolyzed sample)
3: Electrolytic cell 4: DC power supply 5: Counter electrode (electrode)
6: Stirring means 7: Refrigerant inlet side 8: Refrigerant outlet side

Claims (6)

内部に冷却手段を有することを特徴とする電極。   An electrode having cooling means inside. 前記冷却手段は、冷媒として水を用いて冷却することを特徴とする請求項1に記載の電極。   The electrode according to claim 1, wherein the cooling means cools using water as a coolant. 前記冷却手段が下部から上部へ通水する経路を有することを特徴とする請求項2に記載の電極。   The electrode according to claim 2, wherein the cooling means has a path through which water flows from the lower part to the upper part. 請求項1〜3のいずれか一項に記載の電極からなる対極と、作用電極を有することを特徴とする電解装置。   An electrolysis apparatus comprising: a counter electrode comprising the electrode according to claim 1; and a working electrode. 前記対極と前記作用電極の間の距離が変更可能であることを特徴とする請求項4に記載の電解装置。   The electrolysis apparatus according to claim 4, wherein a distance between the counter electrode and the working electrode is changeable. 請求項4または5に記載の電解装置を用い、前記対極を陽極、前記作用電極を金属材からなる陰極とし、電着塗料を電解液として、金属材に電着塗装することを特徴とする電着塗装方法。   An electrolysis apparatus according to claim 4 or 5, wherein the counter electrode is an anode, the working electrode is a cathode made of a metal material, and an electrodeposition paint is used as an electrolytic solution, and the electrode material is electrodeposited on the metal material. Dressing method.
JP2012169280A 2012-07-31 2012-07-31 Electrode, electrolysis apparatus, electrodeposition coating method using them, and cooling method of electrolyte Active JP6015208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169280A JP6015208B2 (en) 2012-07-31 2012-07-31 Electrode, electrolysis apparatus, electrodeposition coating method using them, and cooling method of electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169280A JP6015208B2 (en) 2012-07-31 2012-07-31 Electrode, electrolysis apparatus, electrodeposition coating method using them, and cooling method of electrolyte

Publications (2)

Publication Number Publication Date
JP2014028988A true JP2014028988A (en) 2014-02-13
JP6015208B2 JP6015208B2 (en) 2016-10-26

Family

ID=50201732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169280A Active JP6015208B2 (en) 2012-07-31 2012-07-31 Electrode, electrolysis apparatus, electrodeposition coating method using them, and cooling method of electrolyte

Country Status (1)

Country Link
JP (1) JP6015208B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224113A (en) * 1974-10-31 1977-02-23 Diamond Shamrock Techn Electrolytic production and cells therefor
JPS5776193A (en) * 1980-10-27 1982-05-13 Conradty Nuernberg Electrode for electrolyzing molten substance
JPS6149905A (en) * 1984-05-30 1986-03-12 フラマト−ム エ コムパニ− Method and device for preventing corrosion of tube steam generator
JPH03264691A (en) * 1990-03-14 1991-11-25 Trinity Ind Corp Structure of membrane electrode
JPH0474879A (en) * 1990-07-16 1992-03-10 Permelec Electrode Ltd Electrolytic device for producing hypochlorite
JPH08144097A (en) * 1994-11-21 1996-06-04 Ricoh Co Ltd Anodic oxidation
JP2002069697A (en) * 2000-08-29 2002-03-08 Daihatsu Motor Co Ltd Electrophoretic coating apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5224113A (en) * 1974-10-31 1977-02-23 Diamond Shamrock Techn Electrolytic production and cells therefor
JPS5776193A (en) * 1980-10-27 1982-05-13 Conradty Nuernberg Electrode for electrolyzing molten substance
JPS6149905A (en) * 1984-05-30 1986-03-12 フラマト−ム エ コムパニ− Method and device for preventing corrosion of tube steam generator
JPH03264691A (en) * 1990-03-14 1991-11-25 Trinity Ind Corp Structure of membrane electrode
JPH0474879A (en) * 1990-07-16 1992-03-10 Permelec Electrode Ltd Electrolytic device for producing hypochlorite
JPH08144097A (en) * 1994-11-21 1996-06-04 Ricoh Co Ltd Anodic oxidation
JP2002069697A (en) * 2000-08-29 2002-03-08 Daihatsu Motor Co Ltd Electrophoretic coating apparatus

Also Published As

Publication number Publication date
JP6015208B2 (en) 2016-10-26

Similar Documents

Publication Publication Date Title
Isakhani-Zakaria et al. Evaluation of corrosion behaviour of Pb-Co3O4 electrodeposited coating using EIS method
Tran et al. Electrochemical treatment of wastewater: Selectivity of the heavy metals removal process
JP4269318B2 (en) Vibration agitator, treatment apparatus and treatment method using the same
Mohan et al. Role of magnetic forces in pulse electrochemical deposition of NinanoAl2O3 composites
Rezaei-Sameti et al. The effects of pulse electrodeposition parameters on morphology, hardness and wear behavior of nano-structure Cr–WC composite coatings
CN106637354A (en) Preparation method of micro-arc oxidation film layer on surface of beryllium and beryllium-aluminum alloy
CN110724993A (en) Aluminum alloy hard anodic oxidation device and method
Poroch-Seritan et al. Experimental design for modelling and multi-response optimization of Fe–Ni electroplating process
De Radigues et al. On the use of 3-D electrodes and pulsed voltage for the process intensification of alkaline water electrolysis
JP6015208B2 (en) Electrode, electrolysis apparatus, electrodeposition coating method using them, and cooling method of electrolyte
CN108588803B (en) Electro-deposition device
US3359190A (en) One-side anodizing of aluminum sheet
KR19980033150A (en) Method and apparatus for electrolytic acid washing of metal strip
SE444585B (en) MATERIALS FOR SELECTIVE ABSORPTION OF SOLAR ENERGY AS WELL AS MANUFACTURING THE MATERIAL
Wang et al. Effect of jet flow between electrodes on power consumption and the apparent density of electrolytic copper powders
Dou et al. Preparation and characterisation of black ceramic coating on AZ91D magnesium alloy by plasma electrolytic oxidation with reduced energy consumption
CN205313690U (en) Integrative processing equipment of titanium alloy micro -arc oxidation and anodic oxidation
CN206986302U (en) A kind of aluminium alloy anode oxide system
CN101889107A (en) System and method of plating metal alloys by using galvanic technology
Guo et al. Influence of processing factors on properties of anodic coatings obtained on Mg–1.0 Ca alloy
CN207047347U (en) Electrochemical anodic oxidation experimental teaching unit
CN103108995B (en) Nickel pH adjustment method and equipment
CN107208298B (en) Sn-plated steel sheet, chemical conversion-treated steel sheet, and methods for producing these
CN203429271U (en) Ceramic treatment device for surface of aluminum-silicon alloy
WO2021215962A1 (en) Method for applying a coating to items made from valve metal and alloy thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160912

R150 Certificate of patent or registration of utility model

Ref document number: 6015208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250