JP2014028385A - Temperature estimation method for cast piece - Google Patents

Temperature estimation method for cast piece Download PDF

Info

Publication number
JP2014028385A
JP2014028385A JP2012169854A JP2012169854A JP2014028385A JP 2014028385 A JP2014028385 A JP 2014028385A JP 2012169854 A JP2012169854 A JP 2012169854A JP 2012169854 A JP2012169854 A JP 2012169854A JP 2014028385 A JP2014028385 A JP 2014028385A
Authority
JP
Japan
Prior art keywords
slab
temperature
heating furnace
value
estimation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169854A
Other languages
Japanese (ja)
Other versions
JP5803838B2 (en
Inventor
Hajime Hashimoto
肇 橋本
Toshiaki Saito
俊明 齋藤
Takanori Kiyosue
考範 清末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012169854A priority Critical patent/JP5803838B2/en
Publication of JP2014028385A publication Critical patent/JP2014028385A/en
Application granted granted Critical
Publication of JP5803838B2 publication Critical patent/JP5803838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature estimation method for a cast metal in which longer-direction temperature difference of the cast metal and recuperation of the surface of the cast metal are taken into account.SOLUTION: There is provided the temperature estimation method for a cast metal, for deriving a temperature of a cast metal 10 charged into a heating furnace 14 after being cast by a continuous casting, cut into a predetermined dimension, and housed in a thermal insulation cover 13. The temperature estimation method comprises the steps of: obtaining a three-dimensional computational model in which a plurality of calculation grids in a longer direction, a width direction, and a thickness direction on the cast metal 10 are arranged; calculating temperature of each calculation grid based on operation result of the continuous casting; correcting the temperature of each calculation grid based on a correction value obtained by multiplying a temperature difference between a temperature measurement value at a measurement part of the surface of the cast metal 10 when the cast metal 10 is moved to the heating furnace 14 and the temperature of the calculation grid by an adjustment value; obtaining a temperature change of each calculation grid with respect to the cast metal 10 traveling within the heating furnace 14; and estimating a temperature distribution of the whole cast metal 10 when being extracted from the heating furnace 14. The adjustment value becomes large according to the length of time period when the measurement part is housed in the thermal insulation cover 13, and the adjustment value is a value more than 0 and less than 1.

Description

本発明は、連続鋳造を経て所定寸法に切断され加熱炉で加熱される鋳片の温度推定方法に
関する。
The present invention relates to a method for estimating the temperature of a slab that is cut into a predetermined size through continuous casting and heated in a heating furnace.

連続鋳造機から出片され所定寸法に切断された鋳片は、加熱炉で加熱された後に複数回の
サイジングプロセスを経て目標とする厚み及び幅にされる。
サイジングプロセス一回につき鋳片に掛ける荷重は、主として鋳片の温度に応じて決定さ
れ、鋳片の温度に適した荷重より大きい荷重を鋳片に掛けた場合には圧延機に生じる負荷
が設計値を超え、場合によっては圧延機が破損する。一方、鋳片に与える荷重が小さいと
、必要となるサイジングプロセスの回数が増し生産効率低下を招く。
The slab that has been removed from the continuous casting machine and cut to a predetermined size is heated in a heating furnace, and then subjected to a plurality of sizing processes to obtain a target thickness and width.
The load applied to the slab for each sizing process is determined mainly according to the temperature of the slab, and when a load larger than the load suitable for the slab temperature is applied to the slab, the load generated in the rolling mill is designed. If the value is exceeded, the rolling mill may be damaged in some cases. On the other hand, if the load applied to the slab is small, the number of necessary sizing processes increases and the production efficiency decreases.

鋳片の温度は計算機によって推定され、計算機は、鋳片の推定温度を基にして一回のサイ
ジングプロセスで鋳片に掛ける荷重を算出する。
鋳片の温度を推定する方法としては、伝熱の偏微分方程式を用いる方法があり、その具体
例が特許文献1に記載されている。
特許文献1の方法は、伝熱の偏微分方程式によって、スキッドに接触するスキッド部と、
スキッドに非接触なスキッド間それぞれについて鋳片の温度を算出し、鋳片全体の温度を
推定する。
The temperature of the slab is estimated by a computer, and the computer calculates the load applied to the slab in one sizing process based on the estimated temperature of the slab.
As a method for estimating the temperature of the slab, there is a method using a partial differential equation of heat transfer, and a specific example is described in Patent Document 1.
The method of Patent Document 1 includes a skid portion that contacts the skid by a partial differential equation of heat transfer,
The temperature of the slab is calculated for each skid that is not in contact with the skid, and the temperature of the entire slab is estimated.

ところで、鋳片の温度を算出する方法がどのようなものであっても、計算機によって推定
する鋳片の温度は実際の温度と差がある。従って、この差を考慮することなく鋳片の推定
温度から直接的に鋳片に掛ける荷重を求めると、求められた荷重が鋳片に掛けるべき適切
な範囲を超えることがあり、圧延機が破損する恐れがある。
そのため、鋳片の推定温度と実際の温度の差、即ち鋳片の温度推定精度を考慮して鋳片に
掛ける荷重を算出する必要がある。そして、鋳片の温度推定精度が低い(温度の差が大き
い)と、鋳片に掛ける荷重として小さい値が算出され、結果として生産効率が低下する。
By the way, whatever the method of calculating the slab temperature, the slab temperature estimated by the computer is different from the actual temperature. Therefore, when the load applied directly to the slab is calculated from the estimated temperature of the slab without considering this difference, the calculated load may exceed the appropriate range to be applied to the slab, and the rolling mill may be damaged. There is a fear.
Therefore, it is necessary to calculate the load applied to the slab in consideration of the difference between the estimated temperature of the slab and the actual temperature, that is, the temperature estimation accuracy of the slab. If the temperature estimation accuracy of the slab is low (the temperature difference is large), a small value is calculated as the load applied to the slab, resulting in a decrease in production efficiency.

特開平3−140415号公報JP-A-3-140415

鋳片は、長手方向の異なる位置で、鋳造条件や放熱条件が相違し、加熱炉へ装入された鋳
片は、長手方向で温度が異なった状態になっている。これに対し、特許文献1では、スキ
ッド部とスキッド間の2断面の温度を基に鋳片全体の温度を推定しており、鋳片の長手方
向で温度が異なる点が考慮されていない。このため、鋳片の温度推定精度が低くなり、生
産効率が低下するという問題があった。
The slab has different casting conditions and heat dissipation conditions at different positions in the longitudinal direction, and the slab charged into the heating furnace has a different temperature in the longitudinal direction. On the other hand, in patent document 1, the temperature of the whole slab is estimated based on the temperature of the two cross sections between a skid part and a skid, and the point from which temperature differs in the longitudinal direction of a slab is not considered. For this reason, there existed a problem that the temperature estimation precision of a slab became low and production efficiency fell.

また、加熱炉の手前には、鋳片の放熱を抑制する保温カバーを設置することが良く知られ
ている。鋳片は保温カバーに収容されると全体の温度が下がるのに対して表面温度は復熱
によって上昇する。
従って、鋳片の温度推定精度を高めるには、鋳片の表面温度を実測し、この実測結果を基
に鋳片の推定温度を補正することが考えられるが、加熱炉に装入される直前で鋳片の表面
温度を実測する場合には、この復熱した鋳片の表面を温度計測することになる。
しかしながら、復熱した鋳片の表面を温度計測した結果を基にどのように鋳片の推定温度
を補正すればよいかについて、その補正方法は確立されていなかった。
In addition, it is well known that a heat insulating cover that suppresses heat dissipation of the slab is installed in front of the heating furnace. When the slab is accommodated in the heat insulating cover, the overall temperature decreases, whereas the surface temperature increases due to recuperation.
Therefore, to increase the temperature estimation accuracy of the slab, it is conceivable to measure the surface temperature of the slab and correct the estimated temperature of the slab based on the actual measurement result. When actually measuring the surface temperature of the slab, the temperature of the reheated slab surface is measured.
However, a correction method has not been established as to how to correct the estimated temperature of the slab based on the result of temperature measurement of the surface of the reheated slab.

一方、加熱炉内の温度調整は加熱炉に装入される鋳片の温度を基準に決定される。このた
め、加熱炉に鋳片を装入する直前で鋳片の表面温度を計測することは、加熱炉内の温度調
整を適切に行う上で大きな意義がある。そして、この鋳片の表面温度の実測値を、鋳片の
推定温度を補正する目的でも利用できれば、1つの実測値を2つの目的(加熱炉内の温度
調整と鋳片の推定温度の補正)を達成するために用いることができ、システム設計上、有
効である。
本発明は、かかる事情に鑑みてなされるもので、鋳片の長手方向の温度差と鋳片表面の復
熱を考慮した鋳片の温度推定方法を提供することを目的とする。
On the other hand, the temperature adjustment in the heating furnace is determined based on the temperature of the slab charged into the heating furnace. For this reason, measuring the surface temperature of the slab immediately before charging the slab into the heating furnace has great significance in appropriately adjusting the temperature in the heating furnace. If the actual measured value of the surface temperature of the slab can be used for the purpose of correcting the estimated temperature of the slab, one actual value can be used for two purposes (temperature adjustment in the heating furnace and correction of the estimated temperature of the slab). Can be used to achieve the above, and is effective in system design.
This invention is made | formed in view of this situation, and it aims at providing the temperature estimation method of the slab which considered the temperature difference of the longitudinal direction of a slab, and the recuperation of the surface of a slab.

前記目的に沿う本発明に係る鋳片の温度推定方法は、連続鋳造を経て所定寸法に切断され
保温カバーに収容された後に加熱炉内に装入される鋳片の温度を導出する鋳片の温度推定
方法において、前記鋳片について長手方向、幅方向及び厚み方向に複数の計算格子を配列
した三次元計算モデルを得、連続鋳造の操業実績から該各計算格子の温度を算出して前記
鋳片全体の温度分布を求める第1の工程と、前記鋳片が前記保温カバーから前記加熱炉へ
移動する際に該鋳片の表面の測定部を温度計測して得た温度と該測定部に対応する前記計
算格子の温度の差に調整値を乗算して補正値を算出する第2の工程と、前記補正値を基に
前記各計算格子の温度を補正する第3の工程と、前記加熱炉内を進行中の前記鋳片につい
て、該鋳片に対する入熱量を該加熱炉内の温度から算出して、前記各計算格子の温度変化
を求め、前記加熱炉から抽出される際の前記鋳片全体の温度分布を推定する第4の工程と
を有し、前記調整値は、温度計測をした前記測定部が前記保温カバー内に収容されていた
時間の長さに応じて大きくなり、しかも、0を超え1未満の値である。
A method for estimating the temperature of a slab according to the present invention that meets the above-described object is a method of deriving a temperature of a slab that is cut into a predetermined dimension through continuous casting and then inserted into a heating furnace after being stored in a heat insulating cover. In the temperature estimation method, a three-dimensional calculation model in which a plurality of calculation grids are arranged in the longitudinal direction, the width direction, and the thickness direction is obtained for the slab, and the temperature of each calculation grid is calculated from the operation results of continuous casting. A first step for obtaining a temperature distribution of the entire piece, and a temperature obtained by measuring the temperature of the measurement part of the surface of the slab when the slab moves from the heat insulation cover to the heating furnace, and the measurement part A second step of calculating a correction value by multiplying a corresponding difference in temperature of the calculation grid by an adjustment value; a third step of correcting the temperature of each calculation grid based on the correction value; and the heating About the slab in progress in the furnace, the heat input to the slab A fourth step of calculating from the temperature in the heating furnace, obtaining a temperature change of each calculation grid, and estimating a temperature distribution of the entire slab when extracted from the heating furnace, and adjusting The value increases according to the length of time that the measuring unit that has measured the temperature is accommodated in the heat insulating cover, and is a value that exceeds 0 and is less than 1.

本発明に係る鋳片の温度推定方法において、前記調整値をrとすると、rは以下の式1で
算出されるのが好ましい。
r=1−exp(a×t^b) ・・・式1
ここで、tは、前記測定部が前記保温カバー内に収容されていた時間、aは、(−6.7
7e−3)×1.1以上(−6.77e−3)×0.9以下の値、bは、0.66×0.
9以上0.66×1.1以下の値である。
In the slab temperature estimation method according to the present invention, when the adjustment value is r, r is preferably calculated by the following equation (1).
r = 1−exp (a × t ^ b) Equation 1
Here, t is the time during which the measurement unit is accommodated in the heat insulation cover, and a is (−6.7).
7e-3) × 1.1 or more and (−6.77e-3) × 0.9 or less, b is 0.66 × 0.
The value is 9 or more and 0.66 × 1.1 or less.

本発明に係る鋳片の温度推定方法において、前記測定部は前記鋳片の長手方向の異なる位
置に複数あって、該各測定部について前記調整値を算出して複数の前記補正値を得、該複
数の補正値を基に前記各計算格子の温度を補正するのが好ましい。
In the slab temperature estimation method according to the present invention, there are a plurality of the measurement units at different positions in the longitudinal direction of the slab, and the adjustment value is calculated for each measurement unit to obtain a plurality of correction values, It is preferable to correct the temperature of each calculation grid based on the plurality of correction values.

本発明に係る鋳片の温度推定方法において、前記加熱炉内で前記鋳片を長手方向が該加熱
炉の幅方向に沿った状態で進行させ、該加熱炉を前記鋳片の進行方向に沿って複数の炉帯
に分けると共に、該複数の炉帯に前記加熱炉の幅方向の異なる位置に複数の温度計をそれ
ぞれ配置して、該複数の温度計の計測温度を基に前記鋳片への入熱量を算出するのが好ま
しい。
In the temperature estimation method for a slab according to the present invention, the slab is advanced in a state where the longitudinal direction is along the width direction of the heating furnace in the heating furnace, and the heating furnace is moved along the traveling direction of the slab. Are divided into a plurality of furnace zones, and a plurality of thermometers are disposed in the plurality of furnace zones at different positions in the width direction of the heating furnace, respectively, and the slab is measured based on the measured temperatures of the plurality of thermometers. It is preferable to calculate the amount of heat input.

本発明に係る鋳片の温度推定方法において、前記測定部の温度は放射温度計によって計測
されるのが好ましい。
In the slab temperature estimation method according to the present invention, the temperature of the measurement unit is preferably measured by a radiation thermometer.

本発明に係る鋳片の温度推定方法は、鋳片について長手方向、幅方向及び厚み方向に複数
の計算格子を配列した三次元計算モデルを得て、各計算格子について、操業実績から温度
を算出し、補正を行い、加熱炉内の温度変化を求めて加熱炉から抽出される際の鋳片全体
の温度分布を算出する。従って、鋳片の長手方向で温度差が生じるのを考慮して鋳片全体
の温度分布を求めることができる。
また、鋳片表面の実測温度と鋳片表面の推定温度の温度差に、保温カバー内に収容されて
いた時間に応じて大きくなり、しかも、0を超え1未満の調整値を乗算して補正値を算出
するので、保温カバーに収容されている時間に応じて進行する鋳片表面の復熱を加味して
補正値が算出され、鋳片全体の温度分布の推定精度を高めることができ、結果として生産
効率の向上を図ることが可能である。
The temperature estimation method for a slab according to the present invention obtains a three-dimensional calculation model in which a plurality of calculation grids are arranged in the longitudinal direction, the width direction, and the thickness direction for the slab, and calculates the temperature from the operation results for each calculation grid. Then, correction is performed, the temperature change in the heating furnace is obtained, and the temperature distribution of the entire slab when being extracted from the heating furnace is calculated. Accordingly, the temperature distribution of the entire slab can be obtained in consideration of the occurrence of a temperature difference in the longitudinal direction of the slab.
In addition, the temperature difference between the measured temperature of the slab surface and the estimated temperature of the slab surface increases with the time stored in the heat insulation cover, and is corrected by multiplying an adjustment value greater than 0 and less than 1. Since the value is calculated, a correction value is calculated taking into account the recuperation of the slab surface that progresses according to the time accommodated in the heat insulating cover, and the estimation accuracy of the temperature distribution of the entire slab can be increased, As a result, it is possible to improve production efficiency.

本発明に係る鋳片の温度推定方法において、r=1−exp(a×t^b)によって調整
値を算出する場合、測定部の保温カバー内の収容時間に応じて調整値をどのような値にす
るかについての基準を設けることができ、鋳片全体の温度分布の推定精度を安定的に向上
させる指針を確立することが可能である。
In the slab temperature estimation method according to the present invention, when the adjustment value is calculated by r = 1−exp (a × t ^ b), the adjustment value is determined according to the accommodation time in the heat insulation cover of the measurement unit. It is possible to establish a standard for determining the value, and to establish a guideline for stably improving the estimation accuracy of the temperature distribution of the entire slab.

本発明に係る鋳片の温度推定方法において、測定部が鋳片の長手方向の異なる位置に複数
あって、各測定部について調整値を算出して複数の補正値を得、複数の補正値を基に鋳片
全体の温度分布を補正する場合、鋳片の長手方向の異なる位置で保温カバーに収容されて
いた時間が異なっても、鋳片全体の温度分布の推定精度を確実に上げるための補正を行う
ことができる。
In the temperature estimation method for a slab according to the present invention, there are a plurality of measurement parts at different positions in the longitudinal direction of the slab, and a plurality of correction values are obtained by calculating adjustment values for each measurement part. When correcting the temperature distribution of the entire slab, the accuracy of the estimated temperature distribution of the entire slab can be reliably increased even if the time stored in the heat insulating cover is different at different positions in the longitudinal direction of the slab. Correction can be performed.

本発明に係る鋳片の温度推定方法において、加熱炉内で鋳片を長手方向が加熱炉の幅方向
に沿った状態で進行させ、加熱炉を鋳片の進行方向に沿って複数の炉帯に分けると共に、
複数の炉帯に加熱炉の幅方向の異なる位置に複数の温度計をそれぞれ配置して、複数の温
度計の計測温度を基に鋳片への入熱量を算出する場合、長手方向に温度が異なる鋳片が加
熱炉内を移動する際に鋳片の長手方向の入熱量を正確に計算することができ、鋳片全体の
温度分布の変化を安定的に求めることができる。
In the temperature estimation method for a slab according to the present invention, the slab is advanced in a heating furnace in a state where the longitudinal direction is along the width direction of the heating furnace, and the heating furnace is a plurality of furnace zones along the traveling direction of the slab. Divided into
When a plurality of thermometers are arranged at different positions in the width direction of the heating furnace in a plurality of furnace zones and the amount of heat input to the slab is calculated based on the measured temperatures of the plurality of thermometers, the temperature in the longitudinal direction is When different slabs move in the heating furnace, the heat input in the longitudinal direction of the slab can be accurately calculated, and changes in the temperature distribution of the entire slab can be obtained stably.

本発明に係る鋳片の温度推定方法において、測定部の温度が放射温度計によって計測され
る場合、測定部の温度を遠隔から効率的に計測することができる。
In the slab temperature estimation method according to the present invention, when the temperature of the measurement unit is measured by a radiation thermometer, the temperature of the measurement unit can be efficiently measured remotely.

本発明の一実施の形態に係る鋳片の温度推定方法が適用される鋳片の移動の様子を示す説明図である。It is explanatory drawing which shows the mode of the movement of the slab to which the temperature estimation method of the slab which concerns on one embodiment of this invention is applied. 鋳片の移動の様子を示す説明図である。It is explanatory drawing which shows the mode of movement of a slab. (A)は加熱炉の説明図であり、(B)は加熱炉内の温度計の配置を示す説明図である。(A) is explanatory drawing of a heating furnace, (B) is explanatory drawing which shows arrangement | positioning of the thermometer in a heating furnace. 計算機の信号接続を示すブロック図である。It is a block diagram which shows the signal connection of a computer. 鋳片の温度計算方法を示す説明図である。It is explanatory drawing which shows the temperature calculation method of slab. (A)、(B)は、鋳片の温度計算方法を示す説明図である。(A), (B) is explanatory drawing which shows the temperature calculation method of slab. 鋳片の断面平均温度の分布を示すグラフである。It is a graph which shows distribution of the cross-sectional average temperature of slab. 鋳片の表面温度差と断面平均温度差の関係を示すグラフである。It is a graph which shows the relationship between the surface temperature difference of a slab, and a cross-sectional average temperature difference. 鋳片の表面温度差に対する断面平均温度差の感度と保温カバー内の収容時間との関係を示すグラフである。It is a graph which shows the relationship between the sensitivity of the cross-sectional average temperature difference with respect to the surface temperature difference of slab, and the accommodation time in a heat insulation cover. (A)、(B)は、サイジングプレスにおいて鋳片に掛ける荷重を算出した結果を示すグラフである。(A), (B) is a graph which shows the result of having calculated the load applied to a slab in a sizing press. (A)、(B)は、サイジングミルにおいて鋳片に掛ける荷重を算出した結果を示すグラフである。(A), (B) is a graph which shows the result of having calculated the load applied to a slab in a sizing mill.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発
明の理解に供する。
本発明の一実施の形態に係る鋳片の温度推定方法が適用される鋳片10は、図1に示すよ
うに、連続鋳造機11による連続鋳造を経てCCカッター12によって所定寸法に切断さ
れる。本実施の形態では、CCカッター12によって切断された鋳片10は、断面長方形
で、厚みが100〜400mm、幅が650〜3000mm、長さが3〜30mであるが
、この範囲に属さない大きさの鋳片に対しても本発明を適用することができる。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a slab 10 to which a slab temperature estimation method according to an embodiment of the present invention is applied is cut into a predetermined dimension by a CC cutter 12 through continuous casting by a continuous casting machine 11. . In this embodiment, the slab 10 cut by the CC cutter 12 has a rectangular cross section, a thickness of 100 to 400 mm, a width of 650 to 3000 mm, and a length of 3 to 30 m, but does not belong to this range. The present invention can also be applied to other slabs.

CCカッター12によって切断された鋳片10は、図1、図2に示すように、保温カバー
13に収容された後に加熱炉14内に装入され、加熱炉14内で予め定められた目標温度
まで加熱される。加熱炉14内の温度は、加熱炉14内に設けられた図3(A)に示す複
数の燃焼バーナ15の燃焼レベルを変えることによって調製される。
加熱炉14から抽出された鋳片10は、複数回のサイジングプロセスを経て目標とする幅
及び厚みに加工される。ここで、一回のサイジングプロセスとは、サイジングプレスにお
いては鋳片10を幅方向に押圧する一回の動作を示し、サイジングミルにおいては鋳片1
0が圧延機を一回通過することを示す。なお、サイジングプレスとは、鋳片10の長手方
向両端に予成形圧下を加え、サイジングミルで鋳片10に発生するクロップを抑制するも
のである。
また、図2には、1つの保温カバーを記載しているが、実際の現場においては、加熱炉の
鋳片の装入側に複数の保温カバーが並列配置されている。
As shown in FIG. 1 and FIG. 2, the slab 10 cut by the CC cutter 12 is inserted into the heating furnace 14 after being accommodated in the heat insulating cover 13, and a target temperature set in advance in the heating furnace 14. Until heated. The temperature in the heating furnace 14 is adjusted by changing the combustion level of the plurality of combustion burners 15 shown in FIG. 3A provided in the heating furnace 14.
The slab 10 extracted from the heating furnace 14 is processed to a target width and thickness through a plurality of sizing processes. Here, the one-time sizing process indicates one operation of pressing the slab 10 in the width direction in the sizing press, and the slab 1 in the sizing mill.
0 indicates a single pass through the rolling mill. Note that the sizing press applies pre-forming pressure to both ends of the slab 10 in the longitudinal direction, and suppresses cropping generated on the slab 10 by a sizing mill.
Further, FIG. 2 shows one heat insulating cover, but in an actual site, a plurality of heat insulating covers are arranged in parallel on the charging side of the slab of the heating furnace.

加熱炉14内に装入された鋳片10は、図2に示すように、長手方向を加熱炉14の幅方
向に沿って配置した状態で、加熱炉14内を加熱炉14の抽出側に向かって移動し、加熱
炉14から抽出される。
加熱炉14は、図2、図3(A)、(B)に示すように、鋳片10の進行方向に沿って複
数の炉帯に分けられ、本実施の形態では、鋳片10の進行方向に沿って上流側が加熱帯1
6であり、下流側が均熱帯17である。各炉帯は、炉帯を進行する鋳片10の温度変化の
様子が異なり、加熱帯16は均熱帯17に比べ鋳片10の温度上昇率が大きい。
As shown in FIG. 2, the slab 10 charged in the heating furnace 14 has the longitudinal direction arranged along the width direction of the heating furnace 14 and the inside of the heating furnace 14 is placed on the extraction side of the heating furnace 14. It moves toward and is extracted from the heating furnace 14.
The heating furnace 14 is divided into a plurality of furnace zones along the traveling direction of the slab 10, as shown in FIGS. 2, 3A, and 3B. In this embodiment, the slab 10 proceeds. Heating zone 1 on the upstream side along the direction
6 and the downstream side is the soaking zone 17. Each furnace zone has a different temperature change state of the slab 10 traveling through the furnace zone, and the heating zone 16 has a higher rate of temperature rise of the slab 10 than the soaking zone 17.

加熱炉14内には、図3(B)に示すように、加熱炉14内の温度を計測する複数の温度
計18(本実施の形態では熱電対)が設けられている。
加熱炉14内には、複数の温度計18を鋳片10の進行方向に沿って配置してなる第1の
列19と、加熱炉14の幅方向の異なる位置に配置された複数の温度計18からなる第2
の列20が設けられている。第1の列19は2列あって、共に一端が加熱帯16に配置さ
れ他端が均熱帯17に配置されている。第2の列20は加熱帯16及び均熱帯17にそれ
ぞれ1列ずつ配置されている。
In the heating furnace 14, as shown in FIG. 3B, a plurality of thermometers 18 (thermocouples in the present embodiment) for measuring the temperature in the heating furnace 14 are provided.
In the heating furnace 14, a plurality of thermometers 18 arranged at different positions in the width direction of the heating furnace 14 and a first row 19 in which a plurality of thermometers 18 are arranged along the traveling direction of the slab 10. Second consisting of 18
Column 20 is provided. The first row 19 has two rows, one end of which is disposed in the heating zone 16 and the other end is disposed in the soaking zone 17. The second row 20 is arranged in each of the heating zone 16 and the soaking zone 17.

連続鋳造機11によって鋳造される鋳片10は、全体の温度分布が、図4に示す計算機2
1によって算出される。
計算機21は、図5に示すように、鋳片10について長手方向(鋳造方向)、幅方向及び
厚み方向に複数の計算格子(メッシュ)22を配列した三次元計算モデル23を生成し、
各計算格子22の温度を算出して鋳片10全体の温度分布を求める。各計算格子22の温
度は、鋳片10が連続鋳造機11から出片される際に、鋳造速度、冷却水の水量、タンデ
ィッシュでの連続測温をはじめとする操業実績から算出される。
The slab 10 cast by the continuous casting machine 11 has an overall temperature distribution of the computer 2 shown in FIG.
1 is calculated.
As shown in FIG. 5, the computer 21 generates a three-dimensional calculation model 23 in which a plurality of calculation grids (mesh) 22 are arranged in the longitudinal direction (casting direction), the width direction, and the thickness direction of the slab 10,
The temperature of each calculation grid 22 is calculated to obtain the temperature distribution of the entire slab 10. The temperature of each calculation grid 22 is calculated from the operation results including the casting speed, the amount of cooling water, and the continuous temperature measurement in the tundish when the slab 10 is removed from the continuous casting machine 11.

連続鋳造機11から出片された鋳片10は、図1、図6(A)、(B)に示すように、ノ
ズル24から冷却水を吹き付けられながらロール25に支持された状態で搬送される。な
お、図1ではノズル24の記載を省略している。
本実施の形態では、連続鋳造機11から出片された鋳片10について、ロール25の接触
状態と冷却水の吹き付け状態から、鋳片10を複数の領域に分けて温度変化を算出してい
る。
具体的には、図6(A)、(B)に示すように、領域Iをロール25に接触する領域、領
域II〜IVをロール25に非接触な領域にし、更に、領域II〜IVについては、領域IIを冷却
水が触れない領域、領域IIIを冷却水が直接吹き付けられる領域、領域IVを領域IIIに吹き
付けられた冷却水が流れる領域で区別している。
The slab 10 taken out from the continuous casting machine 11 is conveyed in a state where it is supported by a roll 25 while cooling water is sprayed from the nozzle 24 as shown in FIGS. The In FIG. 1, the description of the nozzle 24 is omitted.
In this Embodiment, about the slab 10 extracted from the continuous casting machine 11, the slab 10 is divided into a some area | region from the contact state of the roll 25, and the blowing state of cooling water, and a temperature change is calculated. .
Specifically, as shown in FIGS. 6A and 6B, the region I is a region in contact with the roll 25, the regions II to IV are non-contact regions with the roll 25, and the regions II to IV The region II is distinguished from the region where the cooling water is not touched, the region III is the region where the cooling water is directly sprayed, and the region IV is the region where the cooling water sprayed onto the region III flows.

鋳片10が、図6(A)に示すように、例えば湾曲部で下向きに移動しているとき、領域
IIIの上隣に領域IIが存在し、領域IIIの下隣に領域IVが存在する。鋳片10が、図6(B
)に示すように、水平方向に移動しているとき、領域IIIの両隣に領域IVが存在する。
そして、領域I〜IVに対して鋳片10から奪われる熱をそれぞれ異なる算出式で計算し、
これを三次元計算モデル23に反映することによって、三次元計算モデル23の各計算格
子22の温度を求めることにしている。
計算機21は、各計算格子22の温度の算出を連続的に行い、鋳片10が加熱炉14から
抽出される際の鋳片10全体の温度分布を推定する。
As shown in FIG. 6A, for example, when the slab 10 is moving downward at the curved portion, the region
Region II exists above III, and region IV exists below region III. The slab 10 is shown in FIG.
As shown in (), when moving in the horizontal direction, the region IV exists on both sides of the region III.
And the heat deprived from the slab 10 with respect to the regions I to IV is calculated with different calculation formulas,
By reflecting this in the three-dimensional calculation model 23, the temperature of each calculation grid 22 of the three-dimensional calculation model 23 is obtained.
The computer 21 continuously calculates the temperature of each calculation grid 22 and estimates the temperature distribution of the entire slab 10 when the slab 10 is extracted from the heating furnace 14.

ここで、計算機21によって算出される鋳片10全体の温度分布は、操業実績に基づいて
計算しているが、それはあくまで理論値であるため、計算機21が算出する鋳片10全体
の温度分布と実際の鋳片10全体の温度分布の間には当然ながら差異が存在する。
そこで、図1に示すように、保温カバー13の出側に温度計の一例である放射温度計26
を設け、この放射温度計26で計測した鋳片10の温度を基に計算機21が、保温カバー
13から出る鋳片10の温度として算出した鋳片10全体の温度分布を補正する。具体的
には、保温カバー13に全体が収容された状態の鋳片10が加熱炉14へ移動する際に、
放射温度計26によって鋳片10表面の測定部を温度計測し、この計測値と測定部に対応
する計算格子22の温度の温度差を基に計算機21が算出した鋳片10全体の温度分布を
補正する。
Here, the temperature distribution of the entire slab 10 calculated by the computer 21 is calculated based on the operation results, but since it is a theoretical value to the last, the temperature distribution of the entire slab 10 calculated by the computer 21 and Of course, there is a difference between the actual temperature distribution of the entire slab 10.
Therefore, as shown in FIG. 1, a radiation thermometer 26 as an example of a thermometer is provided on the exit side of the heat insulating cover 13.
The computer 21 corrects the temperature distribution of the entire slab 10 calculated as the temperature of the slab 10 coming out of the heat insulating cover 13 based on the temperature of the slab 10 measured by the radiation thermometer 26. Specifically, when the slab 10 in a state where the entirety is accommodated in the heat insulating cover 13 moves to the heating furnace 14,
The temperature of the measurement part on the surface of the slab 10 is measured by the radiation thermometer 26, and the temperature distribution of the entire slab 10 calculated by the computer 21 is calculated based on the temperature difference between the measured value and the temperature of the calculation grid 22 corresponding to the measurement part. to correct.

そして、計算機21は、補正後の鋳片10全体の温度分布を基にして、加熱炉14から抽
出される際の鋳片10が、予め定められた目標温度になるように複数の燃焼バーナ15の
各燃焼レベルを決定する。
なお、計算機21は、図4に示すように、インターフェース27を介して、複数の燃焼バ
ーナ15、複数の温度計18及び放射温度計26に信号接続されている。
And the computer 21 is based on the temperature distribution of the slab 10 whole after correction | amendment, and the several combustion burner 15 is set so that the slab 10 at the time of extracting from the heating furnace 14 may become predetermined target temperature. Determine each combustion level.
As shown in FIG. 4, the computer 21 is signal-connected to the plurality of combustion burners 15, the plurality of thermometers 18, and the radiation thermometer 26 via the interface 27.

鋳片10が加熱炉14内を移動している間、計算機21は、各温度計18で計測した加熱
炉14内の温度を連続的にあるいは所定の時間間隔で取得し、これらの温度から鋳片10
への入熱量を算出して、各計算格子22の温度変化を求める。ここで、従来、加熱炉14
内の温度そのものを鋳片10に熱を与える熱源とみなして鋳片10への入熱量を算出して
いたが、本実施の形態では、燃焼バーナ15の燃焼ガスの温度や加熱炉14の炉壁温度を
熱源として扱って鋳片10への入熱量を算出するという、従来とは異なる考えを採用して
いる。
While the slab 10 is moving in the heating furnace 14, the computer 21 obtains the temperature in the heating furnace 14 measured by each thermometer 18 continuously or at predetermined time intervals, and casts from these temperatures. Piece 10
The amount of heat input to is calculated, and the temperature change of each calculation grid 22 is obtained. Here, conventionally, the heating furnace 14
However, in this embodiment, the temperature of the combustion gas in the combustion burner 15 and the furnace of the heating furnace 14 are calculated. The idea different from the conventional method of calculating the amount of heat input to the slab 10 by using the wall temperature as a heat source is adopted.

加熱炉14内は、同じ炉帯であっても場所によって温度が異なっている。加熱炉14に装
入される際の鋳片10は、連続鋳造されてからの時間が鋳片10の長手方向一端と他端で
異なり、連続鋳造されてからの時間が短い側から長い側に掛けて温度が低くなる傾向があ
る。そのため、各炉帯では、鋳片10の長手方向中心を基準にして温度の低い側を温度の
高い側より鋳片10への入熱量が多くなるように温度が調整され、加熱炉14の幅方向で
炉内の温度が異なっている。
The temperature in the heating furnace 14 varies depending on the location even in the same furnace zone. The slab 10 when charged in the heating furnace 14 is different in time from one end to the other end in the longitudinal direction of the slab 10 after continuous casting, and from the short side to the long side after continuous casting. The temperature tends to be lowered. Therefore, in each furnace zone, the temperature is adjusted so that the amount of heat input to the slab 10 is greater on the low temperature side than on the high temperature side with respect to the longitudinal center of the slab 10, and the width of the heating furnace 14 is increased. The temperature in the furnace differs depending on the direction.

本実施の形態においては、加熱帯16及び均熱帯17で、加熱炉14の幅方向の異なる位
置に配置した温度計18で計測した温度を、鋳片10の入熱量を算出する基データとして
採用している。従って、加熱帯16及び均熱帯17それぞれにおいて、加熱炉14内を移
動する鋳片10の長手方向の異なる位置について正確な入熱量を算出することができる。
また、計算機21は、鋳片10が連続鋳造されてから鋳片10が加熱炉14から抽出され
るまで、三次元計算モデル23の各計算格子22の温度を連続的に算出し、鋳片10全体
の温度分布の推移を求め、鋳片10の長手方向の異なる位置で温度差がある鋳片10の温
度を正確に算出できるようにしている。
In the present embodiment, the temperatures measured by the thermometers 18 arranged at different positions in the width direction of the heating furnace 14 in the heating zone 16 and the soaking zone 17 are adopted as basic data for calculating the heat input amount of the slab 10. doing. Accordingly, in each of the heating zone 16 and the soaking zone 17, it is possible to calculate an accurate amount of heat input for different positions in the longitudinal direction of the slab 10 moving in the heating furnace 14.
The computer 21 continuously calculates the temperature of each calculation grid 22 of the three-dimensional calculation model 23 until the slab 10 is extracted from the heating furnace 14 after the slab 10 is continuously cast. The transition of the entire temperature distribution is obtained, and the temperature of the slab 10 having a temperature difference at different positions in the longitudinal direction of the slab 10 can be accurately calculated.

計算機21は、各計算格子22の温度変化を基にして、鋳片10が加熱炉14から抽出さ
れる際の鋳片10全体の温度分布を得、鋳片10の長手方向にとった所定ピッチ(例えば
100〜300mmピッチ)の各位置における断面平均温度を求める。次に、計算機21
は、この断面平均温度を基にして一回のサイジングプロセスによって鋳片10に掛ける荷
重を算出する。
加熱炉14から抽出される際の鋳片10の断面平均温度は、図7に示すように、鋳片10
の長手方向両側の端面で高くなる。これは、長手方向両側が他の部分より吸熱量が多いこ
とによる。また、鋳片10の搬送手段であるスキッドに接触する部分で鋳片10の断面平
均温度が低くなっているのは、スキッドが水冷されているためである。
The computer 21 obtains the temperature distribution of the entire slab 10 when the slab 10 is extracted from the heating furnace 14 based on the temperature change of each calculation grid 22, and a predetermined pitch taken in the longitudinal direction of the slab 10. The cross-sectional average temperature at each position (for example, 100 to 300 mm pitch) is obtained. Next, the computer 21
Calculates the load applied to the slab 10 by a single sizing process based on the cross-sectional average temperature.
The average cross-sectional temperature of the slab 10 when extracted from the heating furnace 14 is as shown in FIG.
It becomes high at the end faces on both sides in the longitudinal direction. This is because both sides in the longitudinal direction have a larger amount of heat absorption than the other parts. In addition, the reason why the average cross-sectional temperature of the slab 10 is lowered at the portion in contact with the skid, which is a conveying means for the slab 10, is because the skid is water-cooled.

ここで、サイジングプレスにおいては、鋳片10の長手方向両側の領域に対して幅方向か
ら内側に向けて力が加えられるため、サイジングプレスの際に鋳片10に掛ける荷重は、
サイジングプレスを行う領域の断面平均温度から決定される。具体的には、図7において
破線で囲んだP1の領域内にある断面平均温度を基に、計算機21による鋳片10の温度
推定精度を加味して、鋳片10に掛ける荷重が決定される。そして、この決定した荷重を
基にして、サイジングプレス機の設定が行われる。
Here, in the sizing press, since a force is applied inward from the width direction to the regions on both sides in the longitudinal direction of the slab 10, the load applied to the slab 10 during the sizing press is as follows:
It is determined from the cross-sectional average temperature of the area where the sizing press is performed. Specifically, the load applied to the slab 10 is determined in consideration of the temperature estimation accuracy of the slab 10 by the computer 21 based on the cross-sectional average temperature in the region P1 surrounded by the broken line in FIG. . Based on the determined load, the sizing press is set.

サイジングミルにおいては、鋳片10の長手方向全体に対して厚み方向及び幅方向から力
が加えられるため、サイジングミルの際に鋳片10に掛ける荷重は、鋳片10の長手方向
全体において断面平均温度が最も低い値から決定される。具体的には、スキッドに接触す
る部分で最も温度が低い図7において破線で囲んだP2の領域内にある断面平均温度を基
に、計算機21による鋳片10の温度推定精度を加味して、鋳片10に掛ける荷重が決定
される。そして、この決定した荷重を基にして、サイジングミル機の設定が行われる。
In the sizing mill, force is applied from the thickness direction and the width direction to the entire longitudinal direction of the slab 10, so that the load applied to the slab 10 during the sizing mill is a cross-sectional average over the entire longitudinal direction of the slab 10. The temperature is determined from the lowest value. Specifically, taking into account the temperature estimation accuracy of the slab 10 by the computer 21, based on the cross-sectional average temperature in the region P2 surrounded by the broken line in FIG. The load applied to the slab 10 is determined. And based on this determined load, the setting of a sizing mill machine is performed.

仮に、鋳片10の断面平均温度が、計算機21で算出される温度と実際の温度で差がない
場合、サイジングプレス機及びサイジングミル機の設定を行う際に、計算機21による鋳
片10の温度推定精度を加味する必要はない。
しかしながら、実際には、計算機21で推定する温度と実際の温度には差がある。従って
、計算機21による鋳片10の温度推定精度を加味することなくサイジングプレス機及び
サイジングミル機の設定を行うと、サイジングプレス機及びサイジングミル機に対して、
設計値を超える負荷が掛かる恐れがある。
If the average cross-sectional temperature of the slab 10 is not different from the temperature calculated by the computer 21 and the actual temperature, the temperature of the slab 10 by the computer 21 is set when setting the sizing press machine and the sizing mill machine. There is no need to consider the estimation accuracy.
However, there is actually a difference between the temperature estimated by the computer 21 and the actual temperature. Therefore, when setting the sizing press machine and the sizing mill machine without taking into account the temperature estimation accuracy of the slab 10 by the computer 21, the sizing press machine and the sizing mill machine are
There is a risk of applying a load exceeding the design value.

そのため、計算機21による鋳片10の温度推定精度を加味し、鋳片10の断面平均の推
定温度から直接的に求めた荷重より小さい荷重を設定目標値にして、サイジングプレス機
及びサイジングミル機の設定が行われる。
鋳片10の断面平均の推定温度から直接的に求めた荷重と設定目標値にする荷重の差は、
計算機21による鋳片10の温度推定精度を高くすることによって縮小でき、設定目標値
にする荷重に大きな値を採用することが可能となる。
そして、設定目標値の値が大きくなるとサイジングプレス及びサイジングミルの効率が上
がるので、計算機21による鋳片10の温度推定精度を高くすることで、サイジングプレ
ス及びサイジングミルの効率を向上できる。
Therefore, taking into account the temperature estimation accuracy of the slab 10 by the computer 21, a load smaller than the load obtained directly from the estimated average temperature of the cross section of the slab 10 is set as a set target value, and the sizing press machine and the sizing mill machine Settings are made.
The difference between the load obtained directly from the estimated temperature of the cross-sectional average of the slab 10 and the load to be the set target value is as follows:
It can be reduced by increasing the temperature estimation accuracy of the slab 10 by the computer 21, and a large value can be adopted as a load to be a set target value.
And since the efficiency of a sizing press and a sizing mill will go up if the value of a setting target value becomes large, the efficiency of the sizing press and a sizing mill can be improved by making the temperature estimation accuracy of the slab 10 by the computer 21 high.

そこで、計算機21による鋳片10の温度推定精度を高めて、生産効率を向上させるため
に、放射温度計26による実測値を基に計算機21が算出する鋳片10全体の温度分布を
補正して精度を上げることを試みた。
まず、放射温度計26で計測した鋳片10表面の測定部の温度とその測定部に対応する三
次元計算モデル23の計算格子22の温度の差をそのまま補正値として採用して、計算機
21が算出した鋳片10の温度分布を補正した。以下、放射温度計26で計測した鋳片1
0の温度を「実測温度」、計算機21が算出する鋳片10の温度を「推定温度」ともいう

具体的には、鋳片10表面の測定部の実測温度が1050℃、その測定部に対応する計算
格子22の推定温度が1000℃の場合、1050℃と1000℃の温度差である50℃
を補正値とし、鋳片10の各計算格子22の推定温度に補正値である50℃を加算して鋳
片10全体の温度分布を補正する。
Therefore, in order to improve the temperature estimation accuracy of the slab 10 by the computer 21 and improve the production efficiency, the temperature distribution of the entire slab 10 calculated by the computer 21 is corrected based on the actually measured value by the radiation thermometer 26. Tried to increase accuracy.
First, the difference between the temperature of the measurement part on the surface of the slab 10 measured by the radiation thermometer 26 and the temperature of the calculation grid 22 of the three-dimensional calculation model 23 corresponding to the measurement part is directly adopted as a correction value, and the computer 21 The calculated temperature distribution of the slab 10 was corrected. Hereinafter, the slab 1 measured with the radiation thermometer 26
The temperature of 0 is also referred to as “measured temperature”, and the temperature of the slab 10 calculated by the computer 21 is also referred to as “estimated temperature”.
Specifically, when the measured temperature of the measurement part on the surface of the slab 10 is 1050 ° C. and the estimated temperature of the calculation grid 22 corresponding to the measurement part is 1000 ° C., the temperature difference between 1050 ° C. and 1000 ° C. is 50 ° C.
Is added to the estimated temperature of each calculation grid 22 of the slab 10 as a correction value, and the temperature distribution of the entire slab 10 is corrected.

しかしながら、鋳片10表面の実測温度とこれに対応する計算格子22の推定温度の差を
そのまま補正値にした場合、三次元計算モデル23全体に対する補正が過剰になり、結果
として計算機21による鋳片10の温度推定精度が低くなるという事象が確認された。
そして、三次元計算モデル23全体に対する補正が過剰となる原因を究明するために実験
的検討及び論理的検討を行い、保温カバー13内に収容された状態の鋳片10は表面温度
が復熱(上昇)し、表面温度と内部の温度の差が時間の経過と共に縮小することが主な原
因であることを知見した。
However, if the difference between the actually measured temperature on the surface of the slab 10 and the estimated temperature of the calculation grid 22 corresponding thereto is used as it is as a correction value, the correction for the entire three-dimensional calculation model 23 becomes excessive, resulting in the slab by the computer 21 The event that the temperature estimation accuracy of 10 became low was confirmed.
Then, experimental investigation and logical examination are performed in order to find out the reason why the correction to the entire three-dimensional calculation model 23 is excessive, and the surface temperature of the slab 10 accommodated in the heat insulating cover 13 is reheated ( It was found that the main cause is that the difference between the surface temperature and the internal temperature decreases with time.

この検討結果を受けて、鋳片10表面の実測温度と鋳片10表面の推定温度の差(以下、
「表面温度差」ともいう)に対する鋳片10の断面平均の実測温度と鋳片10の断面平均
の推定温度の差(以下、「断面平均温度差」ともいう)の関係が、鋳片10の保温カバー
13内の収容時間に応じてどのように推移するかを調査した。なお、鋳片10の断面平均
の実測温度は、鋳片10を表面及び内部の温度が一様となるまで断熱容器内に放置した後
に鋳片10の温度を計測することによって検出できる。
その調査結果は、図8に示すようになり、鋳片10が保温カバー13内に収容されている
時間が900秒では、表面温度差に対する断面平均温度差の感度(断面平均温度差を表面
温度差で割った値)は約0.46であり、鋳片10を保温カバー13に収容している時間
が3600秒では、表面温度差に対する断面平均温度差の感度は約0.79となった。
この結果は、鋳片10とは異なる鋳片及び保温カバー13とは異なる保温カバーについて
も同様であった。
In response to this examination result, the difference between the measured temperature of the slab 10 surface and the estimated temperature of the slab 10 surface (hereinafter,
The relationship between the actually measured cross-sectional average temperature of the slab 10 and the estimated average cross-sectional temperature of the slab 10 (hereinafter also referred to as “cross-section average temperature difference”) It investigated how it changed according to the accommodation time in the heat insulation cover 13. FIG. The actually measured temperature of the cross-sectional average of the slab 10 can be detected by measuring the temperature of the slab 10 after the slab 10 is left in the heat insulating container until the temperature of the surface and inside becomes uniform.
The result of the investigation is as shown in FIG. 8. When the slab 10 is accommodated in the heat insulating cover 13 for 900 seconds, the sensitivity of the cross-sectional average temperature difference to the surface temperature difference (the cross-sectional average temperature difference is expressed as the surface temperature). The value divided by the difference) is about 0.46, and the sensitivity of the cross-sectional average temperature difference to the surface temperature difference is about 0.79 when the slab 10 is accommodated in the heat insulating cover 13 for 3600 seconds. .
This result was the same for the slab different from the slab 10 and the heat insulation cover different from the heat insulation cover 13.

次に、図8に示す結果から、鋳片10を保温カバー13に収容していた時間を横軸にとり
、表面温度差に対する断面平均温度差の感度を縦軸にとって、鋳片10を保温カバー13
に収容していた時間と表面温度差に対する断面平均温度差の感度の関係を整理すると、図
9に示すようになった。
図9のグラフ中に記されている5つの点(収容時間0秒、900秒、1800秒、270
0秒、3600秒)を参照すると、鋳片10を保温カバー13に収容していた時間が10
分(600秒)の場合では、表面温度差に対する断面平均温度差の感度は約0.35であ
ることが見積もられる。このことから、鋳片10を保温カバー13に収容していた時間が
10分の場合、鋳片10表面の実測温度と鋳片10表面の推定温度の差をそのまま補正値
として用いると、適正な補正の約3倍にあたる過剰な補正になることが分かる。
Next, from the results shown in FIG. 8, the horizontal axis represents the time during which the slab 10 was accommodated in the heat insulation cover 13, the vertical axis represents the sensitivity of the cross-sectional average temperature difference with respect to the surface temperature difference, and the slab 10 was retained by the heat insulation cover 13.
FIG. 9 shows the relationship between the sensitivity of the cross-sectional average temperature difference with respect to the time spent in the container and the surface temperature difference.
Five points shown in the graph of FIG. 9 (accommodating time 0 second, 900 seconds, 1800 seconds, 270
0 seconds, 3600 seconds), the time that the slab 10 has been accommodated in the heat insulating cover 13 is 10
In the case of minutes (600 seconds), the sensitivity of the cross-sectional average temperature difference to the surface temperature difference is estimated to be about 0.35. Therefore, when the time during which the slab 10 is accommodated in the heat insulating cover 13 is 10 minutes, the difference between the measured temperature on the surface of the slab 10 and the estimated temperature on the surface of the slab 10 is used as a correction value as it is. It turns out that it becomes an excessive correction | amendment equivalent to about 3 times of correction | amendment.

また、図9のグラフより、表面温度差に対する断面平均温度差の感度は、鋳片10が保温
カバー13内に収容されていた時間の長さに応じて大きくなることが見受けられる。
従って、鋳片10表面の実測温度から鋳片10全体の温度分布を適正に補正するためには
、鋳片10の保温カバー13内の収容時間に応じ、補正値の値を大きくする必要がある。
Moreover, it can be seen from the graph of FIG. 9 that the sensitivity of the cross-sectional average temperature difference with respect to the surface temperature difference increases with the length of time that the slab 10 has been accommodated in the heat insulating cover 13.
Therefore, in order to appropriately correct the temperature distribution of the entire slab 10 from the actually measured temperature on the surface of the slab 10, it is necessary to increase the value of the correction value according to the accommodation time of the slab 10 in the heat insulating cover 13. .

ところで、鋳片10は、鋳片10の長手方向に移動しながら、CCカッター12によって
切断され保温カバー13に装入されるが、鋳片10の移動速度はCCカッター12によっ
て切断される前後で異なっている。具体的には、鋳片10は、CCカッター12に切断さ
れるまで鋳造速度で移動し、CCカッター12に切断された後の移動速度はCCカッター
12に切断される前より速くなる。
そして、鋳片10がCCカッター12によって切断される際には、鋳片10の一部が保温
カバー13内に装入された状態となる。
そのため、鋳片10の長手方向の異なる位置で、保温カバー13内に収容されていた時間
が異なり鋳片10の表面温度と断面平均温度の差が相違する。
By the way, the slab 10 is cut by the CC cutter 12 and inserted into the heat insulating cover 13 while moving in the longitudinal direction of the slab 10, but the moving speed of the slab 10 is before and after being cut by the CC cutter 12. Is different. Specifically, the slab 10 moves at a casting speed until it is cut by the CC cutter 12, and the moving speed after being cut by the CC cutter 12 is faster than that before being cut by the CC cutter 12.
When the slab 10 is cut by the CC cutter 12, a part of the slab 10 is inserted into the heat insulating cover 13.
Therefore, the time accommodated in the heat insulation cover 13 differs in the position where the longitudinal direction of the slab 10 differs, and the difference of the surface temperature and cross-section average temperature of the slab 10 differs.

本実施の形態では、鋳片10の表面温度と断面平均温度の差が鋳片10の長手方向で異な
る点を考慮して、鋳片10の長手方向の異なる位置に放射温度計26によって表面温度を
計測する測定部を設けることにしている。
そして、鋳片10が保温カバー13から加熱炉14に移動する際に、鋳片10の複数の測
定部に対して放射温度計26による表面温度の実測を行い、各実測値について算出して得
た複数の補正値を基に各計算格子の温度を補正(即ち、鋳片10全体の温度分布を補正)
する。従って、各測定部に対して補正値を調整する調整値(即ち表面温度差に対する断面
平均温度差の感度)を求める必要がある。
In the present embodiment, in consideration of the difference between the surface temperature of the slab 10 and the average cross-sectional temperature in the longitudinal direction of the slab 10, the surface temperature is changed by the radiation thermometer 26 at different positions in the longitudinal direction of the slab 10. It is decided to provide a measurement unit that measures
Then, when the slab 10 moves from the heat insulating cover 13 to the heating furnace 14, the surface temperature is actually measured by the radiation thermometer 26 with respect to a plurality of measurement parts of the slab 10, and each measured value is calculated and obtained. The temperature of each calculation grid is corrected based on a plurality of correction values (that is, the temperature distribution of the entire slab 10 is corrected).
To do. Therefore, it is necessary to obtain an adjustment value for adjusting the correction value for each measurement unit (that is, the sensitivity of the cross-sectional average temperature difference with respect to the surface temperature difference).

本願の発明者は、図9のグラフ中に記されている5つの点から、表面温度差に対する断面
平均温度差の感度が、鋳片10が保温カバー13内に収容されていた時間の長さに応じて
指数関数的に1に近づいていることに着目した。
そして、調整値が、測定部の保温カバー13内の収容時間に応じて大きくなり、0より大
きく1未満の値であるという条件を抽出し、この2条件を満たす調整値の採用により鋳片
10の温度推定精度を高めることができるか否かを検証した。なお、調整値が0を含んで
いないのは、測定部は保温カバー13内に必ず収容されることを前提にしているからであ
る。
以下に、その検証について説明する。
From the five points indicated in the graph of FIG. 9, the inventor of the present application shows that the sensitivity of the cross-sectional average temperature difference with respect to the surface temperature difference is the length of time that the slab 10 is accommodated in the heat insulating cover 13. We noticed that it is approaching 1 exponentially depending on.
Then, the condition that the adjustment value becomes larger in accordance with the accommodation time in the heat insulating cover 13 of the measurement unit, is a value greater than 0 and less than 1, and the slab 10 is adopted by adopting the adjustment value that satisfies these two conditions. It was verified whether the temperature estimation accuracy could be improved. The reason why the adjustment value does not include 0 is because it is assumed that the measurement unit is necessarily accommodated in the heat insulating cover 13.
The verification will be described below.

下記の(1)〜(4)の工程を経て鋳片10全体の温度分布を補正した。
(1)連続鋳造を経て所定寸法に切断され保温カバー13に収容された鋳片10が加熱炉
14内へ移動する際に、鋳片10の各測定部について鋳片10表面の温度を放射温度計2
6によって計測して各測定部の実測温度を得る
(2)鋳片10が保温カバー13から加熱炉14内に移動するタイミングで、計算機21
が算出した三次元計算モデル23について、各測定部に対応する(配置された)計算格子
22の温度を得る
The temperature distribution of the entire slab 10 was corrected through the following steps (1) to (4).
(1) When the slab 10 cut into a predetermined dimension through continuous casting and accommodated in the heat insulating cover 13 moves into the heating furnace 14, the temperature of the surface of the slab 10 is measured for each measurement part of the slab 10 as a radiation temperature. Total 2
(2) At the timing when the slab 10 moves from the heat insulating cover 13 into the heating furnace 14, the computer 21
For the three-dimensional calculation model 23 calculated by (1), the temperature of the calculation grid 22 corresponding (arranged) to each measurement unit is obtained.

(3)各測定部について、鋳片10表面の実測温度とこれに対応する計算格子22の温度
の差に調整値を乗算して補正値を算出する
(4)算出した複数の補正値を基に、各計算格子22の温度を補正するための値(即ち鋳
片10の長手方向で計算格子22に加算あるいは減算する値)を求め、補正された鋳片1
0全体の温度分布を得る
(3) For each measurement part, a correction value is calculated by multiplying the difference between the measured temperature of the surface of the slab 10 and the temperature of the calculation grid 22 corresponding to the measured temperature. (4) Based on the calculated plurality of correction values. Then, a value for correcting the temperature of each calculation grid 22 (that is, a value to be added to or subtracted from the calculation grid 22 in the longitudinal direction of the slab 10) is obtained, and the corrected slab 1 is corrected.
Get the temperature distribution of the entire zero

但し、上記(3)の調整値は、測定部が保温カバー13に収容されていた時間の長さに応
じて大きくなり、しかも、0を超え1未満の値である。
この結果得られた補正後の鋳片10全体の温度分布は、調整値を導入しない場合(即ち、
調整値を1にする場合)に比べて鋳片10の温度推定精度が高くなることが確認できた。
However, the adjustment value of the above (3) increases according to the length of time that the measurement unit has been accommodated in the heat insulating cover 13, and is a value exceeding 0 and less than 1.
The temperature distribution of the entire slab 10 after correction obtained as a result is a case where no adjustment value is introduced (that is,
It was confirmed that the temperature estimation accuracy of the slab 10 is higher than that in the case where the adjustment value is 1.

また、調整値を0を超え1未満の特定の値とする場合と、調整値を0を超え1未満の範囲
で、測定部が保温カバー13に収容されていた時間の長さに応じて変える場合では、測定
部の保温カバー13内の収容時間に応じて調整値を変える方が、鋳片10の温度推定精度
が高くなるということも確認した。
従って、調整値が測定部の保温カバー13内の収容時間に応じて大きくなる点及び調整値
が0を超え1未満の値である点を満たすことで、鋳片10の温度推定精度を確実に向上さ
せることが実証された。
Further, when the adjustment value is set to a specific value exceeding 0 and less than 1, and within a range where the adjustment value exceeds 0 and less than 1, the measurement unit is changed according to the length of time that the measurement cover is accommodated in the heat insulating cover 13. In some cases, it was also confirmed that the accuracy of estimating the temperature of the slab 10 is higher when the adjustment value is changed according to the housing time in the heat insulating cover 13 of the measurement unit.
Therefore, the temperature estimation accuracy of the slab 10 is reliably ensured by satisfying the point that the adjustment value becomes larger according to the housing time in the heat insulating cover 13 of the measurement unit and the adjustment value is a value exceeding 0 and less than 1. It has been proven to improve.

次に、図9のグラフ中に記されている各収容時間に対する感度(断面平均温度差/表面温
度差)の5つの点を基にして、これら5つの点を結ぶ曲線を表す方程式を算出して、調整
値を求めることを試みた。
一定熱伝達係数で温度変化が生じる集中熱容量系の時間経過に対する温度変化を算出する
方程式が、図9のグラフ中にある5つの点を結ぶ曲線を表す方程式、即ち調整値の理論解
を得る式に近似していることから、集中熱容量系の方程式を基に調整値の理論解を得る式
の導出を行った。
Next, based on the five points of sensitivity (cross-sectional average temperature difference / surface temperature difference) with respect to each accommodation time shown in the graph of FIG. 9, an equation representing a curve connecting these five points is calculated. Attempted to obtain an adjustment value.
An equation for calculating a temperature change with time in a concentrated heat capacity system in which a temperature change occurs at a constant heat transfer coefficient is an equation representing a curve connecting five points in the graph of FIG. 9, that is, an equation for obtaining a theoretical solution of an adjustment value. Therefore, an equation to obtain the theoretical solution of the adjustment value was derived based on the equation of the concentrated heat capacity system.

具体的には、集中熱容量系の方程式を変形した以下の式1が図9のグラフ中にある5つの
点を結ぶ曲線となるように、式1中のフィッティングパラメーターであるa及びbを求め
た。
r=1−exp(a×t^b) ・・・式1
但し、rは調整値、tは測定部が保温カバー13内に収容されていた時間である。
Specifically, the fitting parameters a and b in Equation 1 were determined so that the following Equation 1 obtained by modifying the equation of the concentrated heat capacity system becomes a curve connecting five points in the graph of FIG. .
r = 1−exp (a × t ^ b) Equation 1
However, r is an adjustment value, and t is the time during which the measurement unit is accommodated in the heat insulating cover 13.

そして、a=−6.77e−3、b=0.66とすることで、式1が図9のグラフ中にあ
る5つの点を結ぶ曲線と一致することが判明した。
これを受けて、鋳片10表面の実測温度とこれに対応する計算格子22の温度の差に、以
下の式2から求められる調整値を乗算することによって、計算機21による鋳片10の温
度推定精度を高める補正値を算出できるかについての実験を行ったところ、調整値を採用
しない場合に比べて鋳片10の温度推定精度の向上が顕著になることが確認できた。
r=1−exp((−6.77e−3)×t^0.66) ・・・式2
Then, by setting a = −6.77e−3 and b = 0.66, it has been found that Equation 1 matches a curve connecting five points in the graph of FIG.
In response to this, the temperature difference of the slab 10 by the computer 21 is estimated by multiplying the difference between the actually measured temperature of the surface of the slab 10 and the temperature of the calculation grid 22 corresponding thereto by an adjustment value obtained from the following equation (2). An experiment was conducted as to whether a correction value that increases the accuracy can be calculated. As a result, it was confirmed that the temperature estimation accuracy of the slab 10 was significantly improved as compared with the case where the adjustment value was not adopted.
r = 1−exp ((− 6.77e−3) × t ^ 0.66) Equation 2

また、実験により、aが(−6.77e−3)×1.1以上(−6.77e−3)×0.
9以下の範囲の値であり、bが0.66×0.9以上0.66×1.1以下の範囲の値で
あれば、鋳片10の温度推定精度の向上が顕著になることができることを知見した。この
a及びbのばらつきは、放射温度計26による計測精度や鋳片10表層のスケール状況等
による放熱率のばらつきに起因するものと考えられる。
以上の論理的検討及び実験的検討により、aを(−6.77e−3)×1.1以上(−6
.77e−3)×0.9以下の値、bを0.66×0.9以上0.66×1.1以下の値
とし、1−exp(a×t^b)を調整値とすることにより、調整値を採用しない場合に
比べて鋳片10の温度推定精度を確実に高くすることができることが判明した。
In addition, a is (−6.77e−3) × 1.1 or more (−6.77e−3) × 0.
If the value is in the range of 9 or less and b is a value in the range of 0.66 × 0.9 or more and 0.66 × 1.1 or less, the temperature estimation accuracy of the slab 10 may be significantly improved. I found out that I can do it. This variation in a and b is considered to be caused by variation in the heat dissipation rate due to the measurement accuracy by the radiation thermometer 26 and the scale condition of the surface layer of the cast slab 10.
From the above logical examination and experimental examination, a is (−6.77e−3) × 1.1 or more (−6
. 77e-3) x 0.9 or less, b is 0.66 x 0.9 or more and 0.66 x 1.1 or less, and 1-exp (a x t ^ b) is an adjustment value. Thus, it was found that the temperature estimation accuracy of the slab 10 can be reliably increased as compared with the case where the adjustment value is not adopted.

次に、本発明の作用効果を確認するために行った実施例について説明する。
以下に記す条件下で、保温カバー13から加熱炉14に移動する際の鋳片10について、
サイジングプロセスで鋳片10に掛ける荷重を求めた。
条件1)計算機21が算出した鋳片10の断面平均温度と実測温度の差をそのまま補正値
にする(即ち、調整値を導入しない)
条件2)調整値の概念を導入して補正値を求める
なお、調整値(r)は、r=1−exp(a×t^b)の算出式において、a=−6.7
7e−3、b=0.66として算出した。
Next, examples carried out for confirming the effects of the present invention will be described.
About the slab 10 when moving from the heat insulating cover 13 to the heating furnace 14 under the conditions described below,
The load applied to the slab 10 in the sizing process was determined.
Condition 1) The difference between the cross-sectional average temperature of the slab 10 calculated by the computer 21 and the actually measured temperature is used as a correction value as it is (that is, no adjustment value is introduced).
Condition 2) The correction value is obtained by introducing the concept of the adjustment value. Note that the adjustment value (r) is a = −6.7 in the calculation formula of r = 1−exp (a × t ^ b).
7e-3, b = 0.66.

それぞれの条件下において、加熱炉14から抽出された鋳片10について計算機21が算
出した鋳片10の断面平均の推定温度を基にサイジングプロセスにおいて鋳片10に掛か
る荷重を予測した値(以下、「予測荷重」ともいう)と、サイジングプロセスにおいて実
際に鋳片10に掛かった荷重の値(以下、「実測荷重」ともいう)を比較した。
ここで、サイジングプレス機及びサイジングミル機は、鋳片10の断面平均の推定温度を
基にして設定が行われている。
その結果を、図10(A)、(B)、図11(A)、(B)に示す。
Under each condition, a value (hereinafter, referred to as a load) applied to the slab 10 in the sizing process based on the estimated average cross-sectional temperature of the slab 10 calculated by the computer 21 for the slab 10 extracted from the heating furnace 14 The value of the load actually applied to the slab 10 in the sizing process (hereinafter also referred to as “measured load”) was compared.
Here, the sizing press machine and the sizing mill machine are set based on the estimated average temperature of the cross section of the slab 10.
The results are shown in FIGS. 10A, 10B, 11A, and 11B.

図10(A)、(B)、図11(A)、(B)では、横軸が予測荷重を示し、縦軸が実測
荷重を示している。予測荷重が10MNであった鋳片10の実測荷重が9MNの場合、そ
の鋳片10は、図10(A)、(B)、図11(A)、(B)のグラフ上で、(10MN
、9MN)の位置にプロットされる。
なお、実測荷重は、サイジングプレス機及びサイジングミル機に掛かる負荷を計測して求
めたものである。
In FIGS. 10A, 10B, 11A, and 11B, the horizontal axis indicates the predicted load, and the vertical axis indicates the actually measured load. When the actual load of the slab 10 with the predicted load of 10MN is 9MN, the slab 10 is (10MN) on the graphs of FIGS. 10A, 10B, 11A, and 11B.
, 9MN).
The actual load is obtained by measuring the load applied to the sizing press machine and the sizing mill machine.

図10(A)、(B)はサイジングプレスにおける予測荷重と実測荷重のばらつきを示し
、図11(A)、(B)はサイジングミルにおける予測荷重と実測荷重のばらつきを示し
ている。
また、図10(A)、図11(A)は条件1についての結果を示し、図10(B)、図1
1(B)は条件2についての結果を示している。
10A and 10B show variations in predicted load and actual load in the sizing press, and FIGS. 11A and 11B show variations in predicted load and actual load in the sizing mill.
FIG. 10A and FIG. 11A show the results for Condition 1, and FIG. 10B and FIG.
1 (B) shows the result for Condition 2.

図10(A)及び図11(A)より、調整値を導入しない場合、予測荷重と実測荷重のば
らつきは最大で約±30%であった。
これに対し、調整値を導入した場合、図10(B)及び図11(B)に示すように、予測
荷重と実測荷重のばらつきは最大で約±20%に縮小した。
予測荷重と実測荷重のばらつきの縮小は、計算機21による鋳片10の温度推定精度の向
上を意味するので、調整値を導入することによって、サイジングプレス機及びサイジング
ミル機を設定する際の基準となる設定目標値に大きな値を採用でき、生産効率を上げられ
ることが分かった。
10A and 11A, when the adjustment value was not introduced, the variation between the predicted load and the actually measured load was about ± 30% at the maximum.
On the other hand, when the adjustment value was introduced, as shown in FIGS. 10B and 11B, the variation between the predicted load and the actual load was reduced to about ± 20% at the maximum.
The reduction in the variation between the predicted load and the actually measured load means an improvement in the temperature estimation accuracy of the slab 10 by the computer 21. Therefore, by introducing an adjustment value, a standard for setting the sizing press machine and the sizing mill machine It was found that a large value can be adopted as the set target value and the production efficiency can be increased.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでな
く、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、鋳片の長手方向で、鋳造条件及び放熱条件が一様であれば、鋳片に設ける測定部
は1つでもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.
For example, if the casting conditions and the heat dissipation conditions are uniform in the longitudinal direction of the slab, one measuring unit may be provided on the slab.

10:鋳片、11:連続鋳造機、12:CCカッター、13:保温カバー、14:加熱炉
、15:燃焼バーナ、16:加熱帯、17:均熱帯、18:温度計、19:第1の列、2
0:第2の列、21:計算機、22:計算格子、23:三次元計算モデル、24:ノズル
、25:ロール、26:放射温度計、27:インターフェース
10: slab, 11: continuous casting machine, 12: CC cutter, 13: heat insulation cover, 14: heating furnace, 15: combustion burner, 16: heating zone, 17: soaking zone, 18: thermometer, 19: first Row of 2
0: second row, 21: calculator, 22: calculation grid, 23: three-dimensional calculation model, 24: nozzle, 25: roll, 26: radiation thermometer, 27: interface

Claims (5)

連続鋳造を経て所定寸法に切断され保温カバーに収容された後に加熱炉内に装入される鋳
片の温度を導出する鋳片の温度推定方法において、
前記鋳片について長手方向、幅方向及び厚み方向に複数の計算格子を配列した三次元計算
モデルを得、連続鋳造の操業実績から該各計算格子の温度を算出して前記鋳片全体の温度
分布を求める第1の工程と、
前記鋳片が前記保温カバーから前記加熱炉へ移動する際に該鋳片の表面の測定部を温度計
測して得た温度と該測定部に対応する前記計算格子の温度の差に調整値を乗算して補正値
を算出する第2の工程と、
前記補正値を基に前記各計算格子の温度を補正する第3の工程と、
前記加熱炉内を進行中の前記鋳片について、該鋳片に対する入熱量を該加熱炉内の温度か
ら算出して、前記各計算格子の温度変化を求め、前記加熱炉から抽出される際の前記鋳片
全体の温度分布を推定する第4の工程とを有し、
前記調整値は、温度計測をした前記測定部が前記保温カバー内に収容されていた時間の長
さに応じて大きくなり、しかも、0を超え1未満の値であることを特徴とする鋳片の温度
推定方法。
In the slab temperature estimation method for deriving the temperature of the slab inserted into the heating furnace after being cut into a predetermined dimension through continuous casting and housed in a heat insulation cover,
Obtain a three-dimensional calculation model in which a plurality of calculation grids are arranged in the longitudinal direction, the width direction and the thickness direction for the slab, and calculate the temperature of each calculation grid from the operation results of continuous casting to obtain the temperature distribution of the entire slab A first step for obtaining
When the slab moves from the heat insulation cover to the heating furnace, an adjustment value is set for the difference between the temperature obtained by measuring the temperature of the measurement part on the surface of the slab and the temperature of the calculation grid corresponding to the measurement part. A second step of multiplying to calculate a correction value;
A third step of correcting the temperature of each calculation grid based on the correction value;
For the slab in progress in the heating furnace, the amount of heat input to the slab is calculated from the temperature in the heating furnace, the temperature change of each calculation grid is obtained, and when extracted from the heating furnace A fourth step of estimating the temperature distribution of the entire slab,
The slab characterized in that the adjustment value increases according to the length of time during which the measuring unit that has measured the temperature is accommodated in the heat insulating cover, and is a value that is greater than 0 and less than 1. Temperature estimation method.
請求項1記載の鋳片の温度推定方法において、前記調整値をrとすると、rは以下の式1
で算出されることを特徴とする鋳片の温度推定方法。
r=1−exp(a×t^b) ・・・式1
ここで、
tは、前記測定部が前記保温カバー内に収容されていた時間、
aは、(−6.77e−3)×1.1以上(−6.77e−3)×0.9以下の値、
bは、0.66×0.9以上0.66×1.1以下の値である。
2. The temperature estimation method for a slab according to claim 1, wherein r is the adjustment value, and r is the following equation (1).
The temperature estimation method of the slab characterized by being calculated by the following.
r = 1−exp (a × t ^ b) Equation 1
here,
t is the time during which the measurement unit is accommodated in the heat insulation cover,
a is a value of (−6.77e−3) × 1.1 or more and (−6.77e−3) × 0.9 or less,
b is a value of 0.66 × 0.9 or more and 0.66 × 1.1 or less.
請求項1又は2記載の鋳片の温度推定方法において、前記測定部は前記鋳片の長手方向の
異なる位置に複数あって、該各測定部について前記調整値を算出して複数の前記補正値を
得、該複数の補正値を基に前記各計算格子の温度を補正することを特徴とする鋳片の温度
推定方法。
3. The temperature estimation method for a slab according to claim 1, wherein a plurality of the measurement units are provided at different positions in the longitudinal direction of the slab, and the adjustment value is calculated for each of the measurement units to calculate a plurality of the correction values. And correcting the temperature of each calculation grid based on the plurality of correction values.
請求項1〜3のいずれか1項に記載の鋳片の温度推定方法において、前記加熱炉内で前記
鋳片を長手方向が該加熱炉の幅方向に沿った状態で進行させ、該加熱炉を前記鋳片の進行
方向に沿って複数の炉帯に分けると共に、該複数の炉帯に前記加熱炉の幅方向の異なる位
置に複数の温度計をそれぞれ配置して、該複数の温度計の計測温度を基に前記鋳片への入
熱量を算出することを特徴とする鋳片の温度推定方法。
The temperature estimation method of the slab of any one of Claims 1-3 WHEREIN: The said slab is advanced in the state in which the longitudinal direction followed the width direction of this heating furnace in the said heating furnace, This heating furnace Is divided into a plurality of furnace zones along the direction of travel of the slab, and a plurality of thermometers are respectively disposed at different positions in the width direction of the heating furnace in the plurality of furnace zones. A method for estimating the temperature of a slab, comprising calculating a heat input to the slab based on a measured temperature.
請求項1〜4のいずれか1項に記載の鋳片の温度推定方法において、前記測定部の温度は
放射温度計によって計測されることを特徴とする鋳片の温度推定方法。
The slab temperature estimation method according to any one of claims 1 to 4, wherein the temperature of the measurement unit is measured by a radiation thermometer.
JP2012169854A 2012-07-31 2012-07-31 Method for estimating slab temperature Active JP5803838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169854A JP5803838B2 (en) 2012-07-31 2012-07-31 Method for estimating slab temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169854A JP5803838B2 (en) 2012-07-31 2012-07-31 Method for estimating slab temperature

Publications (2)

Publication Number Publication Date
JP2014028385A true JP2014028385A (en) 2014-02-13
JP5803838B2 JP5803838B2 (en) 2015-11-04

Family

ID=50201372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169854A Active JP5803838B2 (en) 2012-07-31 2012-07-31 Method for estimating slab temperature

Country Status (1)

Country Link
JP (1) JP5803838B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106513444A (en) * 2016-11-07 2017-03-22 南京钢铁股份有限公司 Method for preventing decarbonization through blank charging sequence control
JP2017104904A (en) * 2015-11-30 2017-06-15 Jfeスチール株式会社 Heating furnace slab charging temperature prediction system
CN109530646A (en) * 2018-12-27 2019-03-29 钢铁研究总院 For reducing the control method of head and tail temperature difference before direct rolling process continuous casting billet rolls
CN109848385A (en) * 2019-03-12 2019-06-07 上海大学 A kind of device and method based on electromagnetic induction heating continuous casting constant temperature ejection
CN111097885A (en) * 2018-10-26 2020-05-05 株式会社Posco Material heating device and continuous casting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017104904A (en) * 2015-11-30 2017-06-15 Jfeスチール株式会社 Heating furnace slab charging temperature prediction system
CN106513444A (en) * 2016-11-07 2017-03-22 南京钢铁股份有限公司 Method for preventing decarbonization through blank charging sequence control
CN111097885A (en) * 2018-10-26 2020-05-05 株式会社Posco Material heating device and continuous casting device
KR20200046873A (en) * 2018-10-26 2020-05-07 주식회사 포스코 Heating apparatus for material and continuous casting apparatus
KR102178713B1 (en) * 2018-10-26 2020-11-13 주식회사 포스코 Heating apparatus for material and continuous casting apparatus
CN111097885B (en) * 2018-10-26 2021-10-29 株式会社Posco Material heating device and continuous casting device
CN109530646A (en) * 2018-12-27 2019-03-29 钢铁研究总院 For reducing the control method of head and tail temperature difference before direct rolling process continuous casting billet rolls
CN109848385A (en) * 2019-03-12 2019-06-07 上海大学 A kind of device and method based on electromagnetic induction heating continuous casting constant temperature ejection

Also Published As

Publication number Publication date
JP5803838B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5803838B2 (en) Method for estimating slab temperature
KR101709623B1 (en) Method for controlling solidification completion position and device for controlling solidification completion position
KR20140101410A (en) Method for estimating slab temperature in continuous casting, method for estimating coagulation completion state of slab, and method for continuous casting
JP5565200B2 (en) Finishing temperature control device in hot rolling
JP5493993B2 (en) Thick steel plate cooling control device, cooling control method, and manufacturing method
JP5828309B2 (en) Method for estimating slab temperature
JP6021450B2 (en) Heating furnace operation support system
JP6558060B2 (en) Thick steel plate cooling control method, cooling control device, manufacturing method, and manufacturing device
JP5407987B2 (en) Method for detecting longitudinal cracks in slabs
JP6136544B2 (en) Temperature calculation method before finish rolling, temperature control method before finish rolling, temperature calculation device before finish rolling, and temperature control device before finish rolling
JP2010001548A (en) Method for deciding arrangement interval of steel in heating furnace
JP5884177B2 (en) Solidification completion position estimation method and solidification completion position estimation apparatus for continuous cast slab
KR101376567B1 (en) Method for cutting slab
JP5939002B2 (en) Solidification state estimation device, solidification state estimation method, and steel continuous casting method
JP6102818B2 (en) Method for determining furnace extraction interval in section rolling line
JP2014036997A5 (en) Method for judging quality of continuously cast slab and method for continuously casting steel
JP2023125248A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP5849937B2 (en) Slab cutting method and slab cutting device in continuous casting machine
KR101428305B1 (en) System and method of feedback control in minimill process
JP5768415B2 (en) Method for preventing warpage in hot rolling line of high Si steel
JP5757217B2 (en) Steel sheet cooling control method, steel sheet manufacturing equipment
JP2023125249A (en) Correction device and correction method for slab temperature model, furnace temperature control device and furnace temperature control method for heating furnace and manufacturing method of steel plate
JP6052023B2 (en) Heat treatment temperature control method for steel sheet
JP2016182625A (en) Steel material shearing method
JP6237492B2 (en) Heating furnace heating control device, combustion control method, rolled material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350