JP2014026991A - Secondary battery, and graphite material for secondary battery - Google Patents

Secondary battery, and graphite material for secondary battery Download PDF

Info

Publication number
JP2014026991A
JP2014026991A JP2013229089A JP2013229089A JP2014026991A JP 2014026991 A JP2014026991 A JP 2014026991A JP 2013229089 A JP2013229089 A JP 2013229089A JP 2013229089 A JP2013229089 A JP 2013229089A JP 2014026991 A JP2014026991 A JP 2014026991A
Authority
JP
Japan
Prior art keywords
secondary battery
graphite material
battery according
graphite
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013229089A
Other languages
Japanese (ja)
Inventor
Kotaro Satori
浩太郎 佐鳥
Akinori Kita
昭憲 北
Tokuo Komaru
篤雄 小丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2013229089A priority Critical patent/JP2014026991A/en
Publication of JP2014026991A publication Critical patent/JP2014026991A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a lithium ion secondary battery having high capacity and high reliability by suppressing deterioration of the inside of the battery caused by exposure to thermal history.SOLUTION: A ratio RG (=Gs/Gb) of graphitization degree Gs determined from surface-enhanced Raman spectral spectrum to graphitization degree Gb determined from Raman spectral spectrum using argon laser light, which are structural parameters of carbon material, is prescribed to 4.5 or higher, and a nonaqueous electrolyte secondary battery is constituted by using the carbon material having the RG as a negative electrode. In the surface-enhanced Raman spectral spectrum using the argon laser light, the nonaqueous electrolyte secondary battery is constituted by using material having a peak in a range of 1360 cmor more as the negative electrode.

Description

本発明は、二次電池と、二次電池用黒鉛材料とに関する。   The present invention relates to a secondary battery and a graphite material for a secondary battery.

近年、携帯電話やノート型パソコンに代表されるように、電子機器の小型化、ポータブル化が急激に進み、二次電池の高エネルギー化への要求が高まってきている。   In recent years, as represented by mobile phones and notebook personal computers, electronic devices are rapidly becoming smaller and more portable, and demands for higher energy secondary batteries are increasing.

従来の二次電池としては、鉛電池、Ni−Cd電池、Ni−MH電池が挙げられるが、放電電圧が低く、また、エネルギー密度も十分に高くない。一方、金属リチウムやリチウム合金、或いは電気化学的にリチウムイオンを吸蔵し放出できる炭素材料を負極活物質に用い、種々の正極と組み合わせたリチウム二次電池が開発され、実用化されている。この種の電池は電池電圧が高く、上述した従来の電池に比べ重量、或いは体積当たりのエネルギー密度が大きい二次電池として期待されている電池である。   Examples of conventional secondary batteries include lead batteries, Ni-Cd batteries, and Ni-MH batteries, but the discharge voltage is low and the energy density is not sufficiently high. On the other hand, lithium secondary batteries in which metallic lithium, lithium alloy, or a carbon material capable of electrochemically absorbing and releasing lithium ions are used as a negative electrode active material and combined with various positive electrodes have been developed and put into practical use. This type of battery has a high battery voltage and is expected as a secondary battery having a higher energy density per weight or volume than the above-described conventional battery.

この種の二次電池は当初、負極に金属リチウム、或いはリチウム合金を用いた系で検討されていたが、金属リチウム、或いはリチウム合金を用いた負極は、充放電効率、デントライト等に問題があり、一部を除き、実用化に至ってないのが現状である。   This type of secondary battery was originally studied in a system using metallic lithium or a lithium alloy for the negative electrode, but the negative electrode using metallic lithium or a lithium alloy has problems in charge / discharge efficiency, dent light, and the like. Yes, with some exceptions, it has not been put into practical use.

そこで現在、リチウムイオンを電気化学的に吸蔵、放出できる炭素材料を負極に用いることが有力視され、且つ、実現されてきた。この種の材料を用いた負極は金属リチウム、或いはリチウム合金を用いた負極と比較し、充放電時に金属リチウムのデンドライト生成や合金の微紛化が起こらず、クーロン効率が高いため、充放電可逆性に優れたリチウム二次電池が構成できる。   Therefore, it has now been considered promising and realized to use a carbon material capable of electrochemically occluding and releasing lithium ions for the negative electrode. Compared with negative electrodes using metallic lithium or lithium alloys, negative electrodes using this type of material do not generate metal lithium dendrites or alloy fines during charging / discharging, and have high coulomb efficiency. A lithium secondary battery excellent in performance can be configured.

また、この種の材料を負極活物質に用いた電池では、その電池内に金属リチウムが析出することがなく、安全性の高いリチウム二次電池が構成でき、現在、リチウム含有複合酸化物からなる正極と組み合わされ、商品化されるに至っている。この電池は、いわゆるリチウムイオン電池と呼ばれ、負極に炭素材料、正極にLiCoO2 、電解液に非水溶媒からなる非水電解液をそれぞれ用いている。 In addition, in a battery using this type of material as a negative electrode active material, lithium metal is not deposited in the battery, and a highly safe lithium secondary battery can be configured, and is currently made of a lithium-containing composite oxide. Combined with the positive electrode, it has been commercialized. This battery is referred to as a so-called lithium ion battery, and uses a carbon material for the negative electrode, LiCoO 2 for the positive electrode, and a non-aqueous electrolyte composed of a non-aqueous solvent for the electrolyte.

負極となる炭素材料は、次のように大別される。すなわち、鉱石などでも産出され、今日では人工的に作ることが可能になった黒鉛材料、人工的な黒鉛材料の前駆体となる易黒鉛化性炭素材料、黒鉛が人工的に生成するような高温にさらしても黒鉛にならない難黒鉛化性炭素材料である。現在では、負極容量の点から、黒鉛材料と難黒鉛化性炭素材料が用いられている。   The carbon material used as a negative electrode is roughly classified as follows. In other words, graphite materials that have been produced in ores and are now able to be artificially produced, graphitizable carbon materials that are precursors of artificial graphite materials, and high temperatures at which graphite is artificially produced It is a non-graphitizable carbon material that does not become graphite when exposed to. At present, graphite materials and non-graphitizable carbon materials are used from the viewpoint of negative electrode capacity.

電子機器の発達により、前記リチウムイオン電池はその電源として注目され、特に小型軽量、且つ、高容量という特徴を生かしてノート型パソコンへの搭載が急速に進んだ。ノート型パソコンはその携帯性に特徴があり、そのため小型化、高性能化が必要である。ところで高性能化には内蔵するCPUの動作周波数を上げる必要がある。しかしながら、これに伴って消費電力が増大し、動作中に発生する発熱量も増加するものである。また、小型になるほど、パソコン本体内の空間は減少する。これにより、使用中に発生する熱が逃げにくくなり、パソコン本体内の温度が上昇することになる。   Due to the development of electronic devices, the lithium ion battery has been attracting attention as a power source thereof, and has been rapidly installed in notebook personal computers by taking advantage of its small size, light weight and high capacity. Notebook PCs are characterized by their portability, so they must be smaller and have higher performance. By the way, for higher performance, it is necessary to increase the operating frequency of the built-in CPU. However, this increases power consumption and increases the amount of heat generated during operation. Also, the smaller the size, the smaller the space inside the PC body. This makes it difficult for heat generated during use to escape and the temperature inside the PC body to rise.

上述したように電子機器内部の温度が上昇すると、電池への影響も大きくなる。即ち、電池が充電された状態でこの熱履歴を受けると、電池内で劣化反応が起こり、これによる電池容量の低下は回復できないものである。従って本発明の課題は熱履歴にさらされることによって生じる電池内部の劣化を抑制し、高容量で高信頼性の二次電池を得ることを目的とし、さらにこのために、二次電池用黒鉛材料を提供することにある。   As described above, when the temperature inside the electronic device rises, the influence on the battery also increases. That is, when this thermal history is received while the battery is charged, a deterioration reaction occurs in the battery, and the decrease in battery capacity due to this reaction cannot be recovered. Accordingly, an object of the present invention is to suppress deterioration inside the battery caused by exposure to thermal history, and to obtain a high capacity and high reliability secondary battery. Is to provide.

上述の課題を達成するために、発明者らが鋭意検討したところ、負極用黒鉛材料において、その構造パラメータを規定することにより、この材料を負極に用いた電池を高温中で保存された場合でも、容量劣化が小さく、高容量で高信頼性の二次電池が得られることを見出すに至った。   In order to achieve the above-mentioned problems, the inventors have intensively studied, and in the graphite material for the negative electrode, by defining its structural parameters, even when a battery using this material for the negative electrode is stored at high temperature. As a result, it has been found that a secondary battery with high capacity and high reliability can be obtained with little capacity deterioration.

まず、請求項1に記載の発明は、波長514.5nmのアルゴンレーザ光と波数分解能4cm-1の分光器を用い、黒鉛材料に厚さ10nmの銀を蒸着した場合の表面増大ラマン分光スペクトルにおいて、黒鉛結晶質構造に由来する振動モード(Psa=1580cm-1〜1620cm-1)のピークを1581.22cm-1以上の範囲に有し、且つ、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)が4.16以上である黒鉛材料を負極に用いて二次電池を構成するものである。 First, the invention according to claim 1 is a surface-enhanced Raman spectroscopy spectrum in the case where silver having a thickness of 10 nm is deposited on a graphite material using an argon laser beam having a wavelength of 514.5 nm and a spectrometer having a wave number resolution of 4 cm −1 . The peak of the vibration mode (Psa = 1580 cm −1 to 1620 cm −1 ) derived from the graphite crystalline structure is in the range of 1581.22 cm −1 or more, and is obtained from the Raman spectroscopic spectrum using an argon laser beam. A secondary battery is formed by using, as a negative electrode, a graphite material having a ratio RG (= Gs / Gb) of a graphitization degree Gb and a graphitization degree Gs obtained from a surface-enhanced Raman spectroscopy spectrum of 4.16 or more. .

また、請求項10に記載の発明は、波長514.5nmのアルゴンレーザ光と波数分解能4cm-1の分光器を用い、銀を10nmの厚さで蒸着した場合の表面増大ラマン分光スペクトルにおいて、黒鉛結晶質構造に由来する振動モード(Psa=1580cm-1〜1620cm-1)のピークを1581.22cm-1以上の範囲に有し、且つ、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)が4.16以上である二次電池用黒鉛材料である。 The invention according to claim 10 is a surface-enhanced Raman spectroscopic spectrum obtained by depositing silver at a thickness of 10 nm using an argon laser beam having a wavelength of 514.5 nm and a spectrometer having a wave number resolution of 4 cm −1. Graphitization which has a peak of vibration mode (Psa = 1580 cm −1 to 1620 cm −1 ) derived from a crystalline structure in a range of 1581.22 cm −1 or more and is obtained from a Raman spectroscopic spectrum using an argon laser beam. It is a graphite material for a secondary battery in which the ratio RG (= Gs / Gb) between the degree Gb and the degree of graphitization Gs determined from the surface-enhanced Raman spectrum is 4.16 or more.

つぎに、本発明で用いる構造パラメータの測定する方法を説明する。
本発明で用いる構造パラメータはラマン分光法を応用して測定される。従来、黒鉛材料のラマンスペクトルは、黒鉛結晶質構造に由来する振動モードとして1580cm-1〜1620cm-1付近(Pba)と、非結晶質の乱層構造に由来する振動モードとして1350cm-1〜1400cm-1付近(Pbb)にピークを有する。黒鉛材料の構造の乱れが進行すると、ラマンスペクトル上では、Pba強度(高さHba)が低下し、Pbb強度(高さHbb)が増加する。Pba, Pbbの2つのピーク高さ比は、黒鉛化度を表わす。
Next, a method for measuring the structural parameters used in the present invention will be described.
The structural parameters used in the present invention are measured by applying Raman spectroscopy. Conventionally, Raman spectrum of the graphite material, the vicinity of 1580cm -1 ~1620cm -1 as a vibration mode derived from a graphite crystalline structure (Pba), 1350cm -1 ~1400cm as a vibration mode derived from the turbostratic structure of amorphous It has a peak in the vicinity of -1 (Pbb). When the disorder of the structure of the graphite material proceeds, on the Raman spectrum, the Pba intensity (height Hba) decreases and the Pbb intensity (height Hbb) increases. The ratio of the two peak heights of Pba and Pbb represents the degree of graphitization.

表面増大ラマン分光法(SERS)は、試料表面に銀、金などの金属薄膜を成膜して測定する方法で、1974年、Fleischmann らにより発明され、数nmオーダーの最表面分析とラマン感度の増大を得ることができることを特徴としている。この方法で得られる黒鉛材料のラマンスペクトルは、分析深さは異なるが、通常のラマン分光と同様の振動モードが得られる。黒鉛結晶質構造に由来する振動モードとして1580cm-1〜1620cm-1(Psa)付近と、非結晶質の乱層構造に由来する振動モードとして1350cm-1〜1400cm-1(Psb)付近にピークが得られ、Psa強度(高さHsa)とPsb強度(高さHsb)との比は粒子最表面層部分の黒鉛化度を表わす。 Surface-enhanced Raman spectroscopy (SERS) is a method of measuring a thin metal film such as silver or gold on the surface of a sample, and was invented by Fleischmann et al. In 1974. It is characterized by an increase. The Raman spectrum of the graphite material obtained by this method is different in analysis depth, but the same vibration mode as in normal Raman spectroscopy can be obtained. And around 1580cm -1 ~1620cm -1 (Psa) as a vibration mode derived from a graphite crystalline structure, peak near 1350cm -1 ~1400cm -1 (Psb) as a vibration mode derived from the turbostratic non crystalline The ratio of the obtained Psa strength (height Hsa) to Psb strength (height Hsb) represents the degree of graphitization of the outermost surface layer portion of the particle.

本発明の二次電池または二次電池用黒鉛材料は、黒鉛材料について表面増大ラマン分光スペクトルのピークを有する範囲を規定し、この規定に合致した黒鉛材料を負極に用いているので高温環境における保存での電池容量の劣化を抑制する。   The secondary battery or the secondary battery graphite material of the present invention defines a range having a surface-enhanced Raman spectroscopic spectrum peak for the graphite material, and uses a graphite material that meets this rule for the negative electrode, so it is stored in a high temperature environment. Suppresses battery capacity degradation.

本発明によると、黒鉛材料表面近傍の構造パラメータを規定することにより、高温保存しても劣化が少なくて信頼性が高く、且つ、容量の大きな二次電池または二次電池用黒鉛材料を提供することが可能となる。   According to the present invention, by defining structural parameters in the vicinity of the surface of the graphite material, there is provided a secondary battery or a graphite material for a secondary battery that has a high reliability with little deterioration even when stored at high temperatures. It becomes possible.

本発明に係わる、渦巻式電極を用いた円筒型二次電池の断面図である。1 is a cross-sectional view of a cylindrical secondary battery using a spiral electrode according to the present invention. 容量回復率とRGの関係を示す図である。It is a figure which shows the relationship between a capacity | capacitance recovery rate and RG. 容量回復率とPsbの関係を示す図である。It is a figure which shows the relationship between a capacity | capacitance recovery rate and Psb.

つぎに、発明の実施の形態について説明する。
本発明に使用する黒鉛材料は、上述した構造パラメータを満足すればいずれの材料も使用可能であるが、その中でも特に黒鉛材料が好ましい。黒鉛材料には鉱石などから産出される天然黒鉛と、有機物を原料とし、2000℃以上の高温で熱処理して得られる人造黒鉛とがある。
Next, embodiments of the invention will be described.
Any material can be used as the graphite material used in the present invention as long as the above-described structural parameters are satisfied. Among them, the graphite material is particularly preferable. Graphite materials include natural graphite produced from ores and the like, and artificial graphite obtained by heat treatment at a high temperature of 2000 ° C. or higher using organic materials as raw materials.

上記人造黒鉛を生成するに際して出発原料となる有機材料としては、石炭やピッチが代表的なものである。ピッチとしては、コールタール、エチレンボトム油、原油等の高温熱分解で得られるタール類、アスファルトなどより蒸留(真空蒸留、常圧蒸留、スチーム蒸留)、熱重縮合、抽出、化学重縮合等の操作によって得られるものや、その他木材乾留時に生成するピッチ等もある。さらにピッチとなる出発原料としてはポリ塩化ビニル樹脂、ポリビニルアセテート、ポリビニルブチラート、3,5−ジメチルフェノール樹脂等がある。これら石炭、ピッチは、炭素化の途中最高400℃程度で液状で存在し、その温度で保持することで芳香環同士が縮合、多環化して積層配向した状態となり、その後500℃程度以上の温度になると固体の炭素前駆体則ちセミコークスを形成する。このような過程を液相炭素化過程と呼び、易黒鉛化炭素の典型的な生成過程である。   Typical examples of the organic material used as a starting material for producing the artificial graphite include coal and pitch. As pitch, tars obtained by high-temperature pyrolysis of coal tar, ethylene bottom oil, crude oil, etc., asphalt, etc. (vacuum distillation, atmospheric distillation, steam distillation), thermal polycondensation, extraction, chemical polycondensation, etc. There are also those obtained by operation and other pitches generated during dry distillation of wood. Furthermore, examples of the starting material for forming a pitch include polyvinyl chloride resin, polyvinyl acetate, polyvinyl butyrate, and 3,5-dimethylphenol resin. These coals and pitches are present in a liquid state at a maximum of about 400 ° C. during carbonization, and by maintaining at that temperature, the aromatic rings are condensed and polycyclic to form a laminated orientation, and then a temperature of about 500 ° C. or higher. Then, a solid carbon precursor, that is, semi-coke is formed. Such a process is called a liquid-phase carbonization process and is a typical process for producing graphitizable carbon.

その他、ナフタレン、フェナントレン、アントラセン、トリフェニレン、ピレン、ペリレン、ペンタフェン、ペンタセン等の縮合多環炭化水素化合物、その他誘導体(例えばこれらのカルボン酸、カルボン酸無水物、カルボン酸イミド等)、あるいは混合物、アセナフチレン、インドール、イソインドール、キノリン、イソキノリン、キノキサリン、フタラジン、カルバゾール、アクリジン、フェナジン、フェナントリジン等の縮合複素環化合物、さらにはその誘導体も原料として使用可能である。   Other condensed polycyclic hydrocarbon compounds such as naphthalene, phenanthrene, anthracene, triphenylene, pyrene, perylene, pentaphen, and pentacene, other derivatives (for example, carboxylic acids, carboxylic acid anhydrides, carboxylic acid imides, etc.) or mixtures, acenaphthylene Indole, isoindole, quinoline, isoquinoline, quinoxaline, phthalazine, carbazole, acridine, phenazine, phenanthridine and other condensed heterocyclic compounds, and derivatives thereof can also be used as raw materials.

以上の有機材料を出発原料として所望の人造黒鉛を生成するには、例えば、上記有機材料を窒素等の不活性ガス気流中、300℃〜700℃で炭化した後、不活性ガス気流中、昇温速度毎分1℃〜100℃、到達温度900℃〜1500℃、到達温度での保持時間0時間〜30時間程度の条件で仮焼し、さらに2000℃以上、好ましくは2500℃以上で熱処理されることによって得られる。勿論、場合によっては炭化や仮焼操作を省略しても良い。高温で熱処理された炭素材料、あるいは黒鉛材料は粉砕、分級して負極材料に供されるが、この粉砕は炭化、仮焼、高温熱処理の前に行うことが好ましい。   In order to produce the desired artificial graphite using the above organic material as a starting material, for example, the organic material is carbonized at 300 ° C. to 700 ° C. in an inert gas stream such as nitrogen, and then is raised in an inert gas stream. It is calcined under the conditions of a temperature rate of 1 ° C to 100 ° C per minute, an ultimate temperature of 900 ° C to 1500 ° C, a holding time at the ultimate temperature of about 0 hours to 30 hours, and further heat treated at 2000 ° C or higher, preferably 2500 ° C or higher. Can be obtained. Of course, depending on the case, carbonization and calcination operations may be omitted. The carbon material or graphite material heat-treated at high temperature is pulverized and classified to be used as the negative electrode material. This pulverization is preferably performed before carbonization, calcination, and high-temperature heat treatment.

さらに、より実用的な性能を有する材料としては真密度2.1g/cm3 以上であり、且つ嵩比重が0.4g/cm3 以上の黒鉛材料を用いることが好ましい。黒鉛材料は真密度が高いので、これで負極を構成すると、電極充填性が高められ、電池のエネルギー密度が向上する。また、黒鉛材料のうち特に嵩比重が0.4g/cm3 以上の黒鉛材料を用いると、電極構造が良好なものとなって、サイクル特性が改善される。これは嵩比重が大きい黒鉛材料は負極合剤層中に比較的均一に分散されることができる等のためである。さらに、嵩比重が0.4g/cm3 以上であって、且つ平均形状パラメータxave が125以下である偏平度の低い材料を用いると、さらに電極構造が良好なものとなり、さらにサイクル特性が改善される。 Furthermore, as a material having more practical performance, it is preferable to use a graphite material having a true density of 2.1 g / cm 3 or more and a bulk specific gravity of 0.4 g / cm 3 or more. Since the graphite material has a high true density, when the negative electrode is formed with this, the electrode filling property is improved and the energy density of the battery is improved. In addition, when a graphite material having a bulk specific gravity of 0.4 g / cm 3 or more is used among the graphite materials, the electrode structure is improved and the cycle characteristics are improved. This is because the graphite material having a large bulk specific gravity can be relatively uniformly dispersed in the negative electrode mixture layer. Furthermore, when a material having a low specificity with a bulk specific gravity of 0.4 g / cm 3 or more and an average shape parameter xave of 125 or less is used, the electrode structure is further improved and the cycle characteristics are further improved. The

上述した黒鉛材料を得るには、炭素が成型体とされた状態で黒鉛化のための熱処理を行う方法が好ましく、この黒鉛化成型体を粉砕することによって、より嵩比重が高く、平均形状パラメータxave の小さい黒鉛材料が可能となる。また、黒鉛材料として嵩比重、平均形状パラメータxave が前記の範囲であって、比表面積が9m2 /g以下の黒鉛粉末を用いた場合、黒鉛粒子に付着したサブミクロンの微粒子が少なく、嵩比重が高くなり、電極構造が良好なものとなって、さらにサイクル特性が改善される。 In order to obtain the above-described graphite material, a method of performing a heat treatment for graphitization in a state where carbon is formed into a molded body is preferable. By crushing this graphitized molded body, the bulk specific gravity is higher, and the average shape parameter A graphite material with a small xave becomes possible. Further, when graphite powder having a bulk specific gravity and an average shape parameter xave within the above ranges and a specific surface area of 9 m 2 / g or less is used as the graphite material, there are few submicron fine particles adhering to the graphite particles, and the bulk specific gravity is low. Becomes higher, the electrode structure becomes better, and the cycle characteristics are further improved.

また、レーザ回折法により求められる粒度分布において、累積10%粒径が3μm以上であり、且つ累積50%粒径が10μm以上であり、且つ累積90%粒径が70μm以下である黒鉛粉末を用いることにより安全性、信頼性の高い二次電池が得られる。   Further, a graphite powder having a cumulative 10% particle size of 3 μm or more, a cumulative 50% particle size of 10 μm or more, and a cumulative 90% particle size of 70 μm or less is used in the particle size distribution obtained by the laser diffraction method. Thus, a secondary battery having high safety and reliability can be obtained.

粒度の小さい粒子は比表面積が大きくなるが、この含有率を制限することにより、比表面積の大きい粒子による過充電時などの異常発熱を抑制するとともに、粒度の大きい粒子の含有率を制限することにより、初充電時における粒子の膨張に伴う内部ショートを抑制することができ、高い安全性、信頼性を有する実用的な二次電池が可能となる。   Particles with a small particle size have a large specific surface area, but by restricting this content rate, it is possible to suppress abnormal heat generation during overcharging due to particles with a large specific surface area and to limit the content rate of particles with a large particle size. As a result, an internal short circuit due to particle expansion during initial charging can be suppressed, and a practical secondary battery having high safety and reliability can be obtained.

また、粒子の破壊強度の平均値が6.0kgf/mm2 以上である黒鉛粉末を用いることにより、電極中に電解液を含有させるための空孔を多く存在させることができ、負荷特性の良好な二次電池が可能となる。 In addition, by using graphite powder having an average value of the breaking strength of particles of 6.0 kgf / mm 2 or more, it is possible to have many pores for containing the electrolyte in the electrode, and the load characteristics are excellent. Secondary battery becomes possible.

つぎに、本発明で規定される黒鉛材料の製造方法を説明する。まず、人造黒鉛について説明する。前述したように、人造黒鉛の前駆体としては、石油や石炭から得られるピッチ類が原料として用いることができる。これを400℃〜500℃で熱処理し、得られた炭素前駆体を、不活性雰囲気中800℃〜1000℃で熱処理して得られる。この時点で、粉砕し粒度調整した後、反応性ガスを用いて適当な温度を選択し、粒子表面を僅かに酸化する。その後、さらに不活性雰囲気中で高温処理し黒鉛化することにより、本発明に規定される材料を得ることができる。   Below, the manufacturing method of the graphite material prescribed | regulated by this invention is demonstrated. First, artificial graphite will be described. As described above, pitches obtained from petroleum or coal can be used as a raw material as a precursor of artificial graphite. This is heat-treated at 400 ° C. to 500 ° C., and the obtained carbon precursor is heat-treated at 800 ° C. to 1000 ° C. in an inert atmosphere. At this point, after pulverization and particle size adjustment, an appropriate temperature is selected using a reactive gas, and the particle surface is slightly oxidized. Then, the material prescribed | regulated to this invention can be obtained by carrying out the high temperature process in an inert atmosphere, and graphitizing.

反応性ガスは炭素と反応するものであればいずれの化合物も使用可能であるが、その中でも酸素、オゾン、二酸化炭素、一酸化炭素、塩素、塩酸、二酸化硫黄、NOx 等が好ましい。反応温度は、使用するガスによって適宜選択可能であるが、室温〜500℃が好ましい。また、一度黒鉛化された粒子に対して、レーザ等の強力な光を照射し、その粒子表面の凹凸を取り去り、磨くことで本発明に規定される材料を得ることができる。 The reaction gas can be used any compound as long as it reacts with carbon, oxygen among them, ozone, carbon dioxide, monoxide, chlorine, hydrochloric acid, sulfur dioxide, NO x, etc. are preferable. The reaction temperature can be appropriately selected depending on the gas used, but is preferably room temperature to 500 ° C. Moreover, the material prescribed | regulated to this invention can be obtained by irradiating powerful light, such as a laser, to the once graphitized particle, removing the unevenness | corrugation of the particle | grain surface, and polishing.

つぎに、天然黒鉛について述べる。天然黒鉛を適当な条件で粉砕すると、結晶構造中に菱面体構造が出現する。これを2000℃以上で熱処理することで本発明に規定される材料を得ることができる。菱面体構造の含有率はX線回折によって求めることができるが、その含有率は、1%以上40%以下が好ましく、5%以上30%以下がより好ましい。   Next, natural graphite will be described. When natural graphite is pulverized under appropriate conditions, a rhombohedral structure appears in the crystal structure. The material prescribed | regulated to this invention can be obtained by heat-processing this at 2000 degreeC or more. The content of the rhombohedral structure can be determined by X-ray diffraction, and the content is preferably 1% to 40%, more preferably 5% to 30%.

一方、前記の負極材料からなる負極と組み合わせて用いられる正極材料は特に限定されないが、十分な量のLiを含んでいることが好ましく、例えば一般式LiMO2 (ただしMはCo、Ni、Mn、Fe、Al、V、Tiの中の少なくとも1種を表す。)で表されるリチウムと遷移金属からなる複合金属酸化物やLiを含んだ層間化合物等が好適である。 On the other hand, the positive electrode material used in combination with the negative electrode made of the negative electrode material is not particularly limited, but preferably contains a sufficient amount of Li. For example, the general formula LiMO 2 (where M is Co, Ni, Mn, A composite metal oxide composed of lithium and a transition metal represented by (1) represents at least one of Fe, Al, V, and Ti, and an intercalation compound containing Li are suitable.

本発明の二次電池に用いる非水電解液は電解質が非水溶媒に溶解されてなる非水電解液が用いられる。電解質を溶解する非水溶媒としては、エチレンカーボネート(EC)等の比較的誘電率の高いものを主溶媒に用いることが前提となるが、本発明を完成させるにはさらに複数成分の低粘度溶媒を添加する必要がある。   As the non-aqueous electrolyte used in the secondary battery of the present invention, a non-aqueous electrolyte obtained by dissolving an electrolyte in a non-aqueous solvent is used. As a non-aqueous solvent for dissolving the electrolyte, it is premised that a solvent having a relatively high dielectric constant such as ethylene carbonate (EC) is used as a main solvent. To complete the present invention, a multi-component low-viscosity solvent is used. Need to be added.

高誘電率溶媒としては、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート、スルホラン類、ブチロラクトン類、バレロラクトン類等が好適である。   As the high dielectric constant solvent, propylene carbonate (PC), butylene carbonate, vinylene carbonate, sulfolanes, butyrolactones, valerolactones and the like are suitable.

低粘度溶媒としては、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、メチルプロピルカーボネート等の対称、あるいは非対称の鎖状炭酸エステルが好適であり、さらに2種以上の低粘度溶媒を混合して用いても良好な結果が得られる。   As the low-viscosity solvent, a symmetric or asymmetric chain ester carbonate such as diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate or the like is preferable, and two or more kinds of low-viscosity solvents may be mixed and used. Good results are obtained.

特に負極に黒鉛材料を用いる場合、非水溶媒の主溶媒として好適なのはECがまず挙げられるが、ECの水素原子をハロゲン元素で置換した構造の化合物も好適である。また、PCのように黒鉛材料と反応性があるものの、主溶媒としてのECやECの水素原子をハロゲン元素で置換した構造の化合物等に対して、その一部を第2成分溶媒で置換することにより、良好な特性が得られる。   In particular, when a graphite material is used for the negative electrode, EC is first preferred as the main solvent of the nonaqueous solvent, but a compound having a structure in which the hydrogen atom of EC is substituted with a halogen element is also suitable. In addition, although it is reactive with graphite materials such as PC, a part of the EC or the compound having a structure in which the hydrogen atom of EC is substituted with a halogen element is substituted with a second component solvent. As a result, good characteristics can be obtained.

その第2成分溶媒としては、PC、ブチレンカーボネート, 1,2−ジメトキシエタン、1,2−ジエトキシメタン、γ−ブチロラクトン、バレロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、スルホラン、メチルスルホラン等が使用可能であり、その添加量としては10Vol %未満が好ましい。   As the second component solvent, PC, butylene carbonate, 1,2-dimethoxyethane, 1,2-diethoxymethane, γ-butyrolactone, valerolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4- Methyl-1,3-dioxolane, sulfolane, methylsulfolane and the like can be used, and the addition amount is preferably less than 10 Vol%.

さらに本発明を完成させるには主溶媒に対して、あるいは主溶媒と第2成分溶媒の混合溶媒に対して、第3の溶媒を添加し導電率の向上、ECの分解抑制、低温特性の改善を図るとともにリチウム金属との反応性を低め、安全性を改善するようにしても良い。第3成分の溶媒としては、まずDEC(ジエチルカーボネート)やDMC(ジメチルカーボネート)等の鎖状炭酸エステルが好適である。また、MEC(メチルエチルカーボネート)やMPC(メチルプロピルカーボネート)等の非対称鎖状炭酸エステルが好適である。   To complete the present invention, a third solvent is added to the main solvent or to the mixed solvent of the main solvent and the second component solvent to improve conductivity, suppress EC decomposition, and improve low-temperature characteristics. In addition to reducing the reactivity with lithium metal, safety may be improved. As the solvent for the third component, first, a chain carbonate such as DEC (diethyl carbonate) or DMC (dimethyl carbonate) is suitable. Further, asymmetric chain carbonates such as MEC (methyl ethyl carbonate) and MPC (methyl propyl carbonate) are suitable.

主溶媒あるいは主溶媒と第2成分溶媒の混合溶媒に対する第3成分となる鎖状炭酸エステルの混合比(主溶媒または、主溶媒と第2成分溶媒の混合溶媒:第3成分溶媒)は、容量比で15:85から40:60が好ましく、18:82から35:65がさらに好ましい。さらに、第3成分の溶媒としてはMECとDMCとの混合溶媒であってもよい。MEC−DMC混合比率は、MEC容量をm、DMC容量をdとしたときに、1/9≦d/m≦8/2 で示される範囲とすることが好ましい。   The mixing ratio of the chain carbonate ester as the third component to the main solvent or the mixed solvent of the main solvent and the second component solvent (the main solvent or the mixed solvent of the main solvent and the second component solvent: the third component solvent) is the capacity. The ratio is preferably 15:85 to 40:60, more preferably 18:82 to 35:65. Further, the third component solvent may be a mixed solvent of MEC and DMC. The MEC-DMC mixing ratio is preferably in a range represented by 1/9 ≦ d / m ≦ 8/2, where m is the MEC capacity and d is the DMC capacity.

また、主溶媒あるいは主溶媒と第2成分溶媒の混合溶媒と第3成分の溶媒となるMEC−DMCの混合比率は、MEC容量をm、DMC容量をd、溶媒全量をTとしたときに、3/10≦(m+d)/T≦9/10で示される範囲とすることが好ましく、5/10≦(m+d)/T≦8/10で示される範囲とすることがさらに好ましい。   The mixing ratio of the main solvent or the mixed solvent of the main solvent and the second component solvent and the third component solvent is MEC-DMC, where the MEC capacity is m, the DMC capacity is d, and the total amount of the solvent is T. A range represented by 3/10 ≦ (m + d) / T ≦ 9/10 is preferable, and a range represented by 5/10 ≦ (m + d) / T ≦ 8/10 is more preferable.

このような非水溶媒に溶解する電解質としては、この主の電池に用いられるものであればいずれも1種以上混合し使用可能である。例えばLiPF6 が好適であるが、その他LiClO4 、LiAsF6 、LiBF4 、LiB(C6 5 4 、CH3 SO3 Li、CF3 SO3 Li、LiN(CF3 SO2 2 、LiC(CF3 SO2 3 、LiCl、LiBr等も使用可能である。 As the electrolyte dissolved in such a non-aqueous solvent, any one used in this main battery can be mixed and used. For example, LiPF 6 is preferable, but LiClO 4 , LiAsF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiBr or the like can also be used.

以下に、本発明に係わる二次電池について、図1を参照し、その実験例1〜実験例5、および、これと比較するための比較例1〜比較例4について説明する。尚、本発明はこれらの例に限定されるものではない。   Below, the secondary battery concerning this invention is demonstrated with reference to FIG. 1 about the experimental example 1-experimental example 5 and the comparative example 1-comparative example 4 for comparing with this. The present invention is not limited to these examples.

<実験例1>
負極1はつぎのようにして作製した。石炭ピッチコークスに石油ピッチを添加して混合した後、加圧整形した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃にて熱処理し黒鉛前駆体を得た。この前駆体と酸素ガスを密閉し、200℃で20時間処理した。その後、これを不活性雰囲気中2950℃で1時間熱処理し、試料を得た。
<Experimental example 1>
The negative electrode 1 was produced as follows. Petroleum pitch was added to coal pitch coke and mixed, and then pressed and shaped. This was heat-treated at 500 ° C. in an inert atmosphere, then pulverized and classified, and then heat-treated at 1000 ° C. in an inert atmosphere to obtain a graphite precursor. The precursor and oxygen gas were sealed and treated at 200 ° C. for 20 hours. Then, this was heat-processed in inert atmosphere at 2950 degreeC for 1 hour, and the sample was obtained.

このようにして得た黒鉛材料粉末を90重量部、結着剤としてポリフッ化ビニリデン(PVDF)10重量部を混合し、負極合剤を調製した。この負極合剤を、溶剤であるN−メチルピロリドンに分散させてスラリー(ペースト状)にした。負極集電体として厚さ10μmの帯状の銅箔を用い、この集電体の両面に負極合剤スラリーを塗布し、乾燥させた後圧縮成型して帯状の負極1を作製した。   90 parts by weight of the graphite material powder thus obtained and 10 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed to prepare a negative electrode mixture. This negative electrode mixture was dispersed in N-methylpyrrolidone as a solvent to form a slurry (paste). A strip-shaped copper foil having a thickness of 10 μm was used as a negative electrode current collector. A negative electrode mixture slurry was applied to both surfaces of the current collector, dried, and then compression molded to prepare a strip-shaped negative electrode 1.

正極2はつぎのようにして作製した。
炭酸リチウム0.5モルと炭酸コバルト1モルを混合し、900℃の空気中で5時間焼成してLiCoO2 を得た。正極活物質としてこのLiCoO2 を91重量部、導電剤としてグラファイト6重量部、結着剤としてポリフッ化ビニリデン3重量部を混合し、正極合剤とした。この正極合剤をN−メチルピロリドンに分散させてスラリー(ペースト状)にした。正極集電体として厚さ20μmの帯状のアルミニウム箔を用い、この集電体の両面に均一に正極合剤スラリーを塗布し、乾燥させた後圧縮成型して帯状の正極2を作製した。
The positive electrode 2 was produced as follows.
Lithium carbonate 0.5 mol and cobalt carbonate 1 mol were mixed and calcined in air at 900 ° C. for 5 hours to obtain LiCoO 2 . 91 parts by weight of LiCoO 2 as a positive electrode active material, 6 parts by weight of graphite as a conductive agent, and 3 parts by weight of polyvinylidene fluoride as a binder were mixed to obtain a positive electrode mixture. This positive electrode mixture was dispersed in N-methylpyrrolidone to form a slurry (paste). A strip-shaped aluminum foil having a thickness of 20 μm was used as the positive electrode current collector, and the positive electrode mixture slurry was uniformly applied to both surfaces of the current collector, dried, and then compression molded to prepare a strip-shaped positive electrode 2.

上述したようにして作製した負極1および正極2を厚さ25μmの微多孔性ポリプロピレンフィルムからなるセパレータ3を負極1、セパレータ3、正極2、セパレータ3の順に積層し、これをセンターピン14を中心にして多数回巻回し、そのセパレータ3の最終端部をテープで固定して渦巻型の電極素子を作製した。   The negative electrode 1 and the positive electrode 2 produced as described above were laminated in the order of the negative electrode 1, the separator 3, the positive electrode 2, and the separator 3 in the order of the negative electrode 1, the separator 3, the positive electrode 2, and the separator 3. Then, the coil 3 was wound many times, and the final end portion of the separator 3 was fixed with a tape to produce a spiral electrode element.

このようにして作製した電極素子を電池缶5内に収納し、電極素子の上下両面には絶縁板4を配設する。絶縁テープを張った正極リード13を正極集電体11から導出して電池蓋7に導通する安全弁装置8に、また、負極リード12を負極集電体10から導出して電池缶5に溶接した。電池缶5は外径18mm(内径17.38mm、厚さ0.31mm)、高さ65mmの鉄製である。   The electrode element produced in this way is accommodated in the battery can 5, and insulating plates 4 are provided on both upper and lower surfaces of the electrode element. The positive electrode lead 13 with the insulating tape stretched out from the positive electrode current collector 11 and led to the safety valve device 8 which conducts to the battery lid 7, and the negative electrode lead 12 from the negative electrode current collector 10 and welded to the battery can 5. . The battery can 5 is made of iron having an outer diameter of 18 mm (inner diameter: 17.38 mm, thickness: 0.31 mm) and a height of 65 mm.

この電池缶5の中に、エチレンカーボネートとジメチルカーボネートとの等容量混合溶媒中にLiPF6 を1モル/リットルの割合で溶解した電解液を注入した。ついで、封口ガスケット6 を介して電池缶5をかしめることにより、電池蓋7を固定し、電池内の気密性を保持させて二次電池を作成した。 In the battery can 5, an electrolytic solution in which LiPF 6 was dissolved at a ratio of 1 mol / liter in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate was injected. Next, the battery can 5 was caulked through the sealing gasket 6 to fix the battery lid 7 and to maintain the airtightness in the battery, thereby producing a secondary battery.

<実験例2>
アセナフチレンピッチを原料に用い、400℃にて10kg/cm2 以上の高圧下で熱処理し、バルクメソフェースを成長させた。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この黒鉛前駆体を不活性雰囲気中3050℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Experimental example 2>
Using acenaphthylene pitch as a raw material, heat treatment was performed at 400 ° C. under a high pressure of 10 kg / cm 2 or more to grow a bulk mesoface. This was heat-treated at 500 ° C. in an inert atmosphere, then pulverized and classified, and then heat-treated at 1000 ° C. in an inert atmosphere to obtain a graphite precursor. This graphite precursor was heat-treated at 3050 ° C. for 1 hour in an inert atmosphere to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<実験例3>
アセナフチレンピッチに硫酸を少量添加して、これを400℃にて10kg/cm2 以上の高圧下で熱処理し、バルクメソフェースを成長させた。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃にて熱処理し黒鉛前駆体を得た。この前駆体を不活性雰囲気中3050℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Experimental example 3>
A small amount of sulfuric acid was added to acenaphthylene pitch, and this was heat-treated at 400 ° C. under a high pressure of 10 kg / cm 2 or more to grow a bulk mesophase. This was heat-treated at 500 ° C. in an inert atmosphere, then pulverized and classified, and then heat-treated at 1000 ° C. in an inert atmosphere to obtain a graphite precursor. This precursor was heat-treated at 3050 ° C. for 1 hour in an inert atmosphere to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<実験例4>
純度99%以上とした天然黒鉛を、ボールミルにて粉砕し、その後、分級した。これを流動させながら、大気中にてその表面にレーザ光を十分に照射し、その後、不活性雰囲気中2600℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Experimental example 4>
Natural graphite having a purity of 99% or more was pulverized with a ball mill and then classified. While flowing this, the surface was sufficiently irradiated with laser light in the air, and then heat-treated at 2600 ° C. for 1 hour in an inert atmosphere to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<実験例5>
純度99%以上とした天然黒鉛を、ジェットミルにて粉砕しながら風力分級した。X線回折で測定したところ、菱面体構造が20%含有していることが判明した。これを不活性雰囲気中2700℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Experimental example 5>
Natural graphite having a purity of 99% or more was subjected to air classification while being pulverized by a jet mill. Measurement by X-ray diffraction revealed that the rhombohedral structure contained 20%. This was heat-treated at 2700 ° C. for 1 hour in an inert atmosphere to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<比較例1>
石炭ピッチコークスに石油ピッチを添加して混合した後、加圧整形した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この黒鉛前駆体を不活性雰囲気中2950℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Comparative Example 1>
Petroleum pitch was added to coal pitch coke and mixed, and then pressed and shaped. This was heat-treated at 500 ° C. in an inert atmosphere, then pulverized and classified, and then heat-treated at 1000 ° C. in an inert atmosphere to obtain a graphite precursor. This graphite precursor was heat-treated at 2950 ° C. for 1 hour in an inert atmosphere to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<比較例2>
アセナフチレンピッチを原料に用いて、400℃にて熱処理し、メソフェース小球体の含有率が50%の時点で、マトリックスと小球体を分離させ、取り出した。これを不活性雰囲気中500℃で熱処理し、その後、粉砕分級したのち、不活性雰囲気中1000℃で熱処理し黒鉛前駆体を得た。この前駆体を不活性雰囲気中2900℃で1時間熱処理し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Comparative example 2>
Using acenaphthylene pitch as a raw material, heat treatment was performed at 400 ° C., and when the content of mesophase spherules was 50%, the matrix and the spherules were separated and taken out. This was heat-treated at 500 ° C. in an inert atmosphere, then pulverized and classified, and then heat-treated at 1000 ° C. in an inert atmosphere to obtain a graphite precursor. This precursor was heat-treated at 2900 ° C. for 1 hour in an inert atmosphere to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<比較例3>
純度99%以上とした天然黒鉛を、ボールミルにて粉砕し、その後、分級し、試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Comparative Example 3>
Natural graphite having a purity of 99% or more was pulverized with a ball mill and then classified to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

<比較例4>
純度99%以上の天然黒鉛を、ジェットミルにて粉砕しながら風力分級して試料を得た。これを負極材料に用いる以外は、実験例1と同様に二次電池を作成した。
<Comparative Example 4>
Natural graphite having a purity of 99% or more was subjected to air classification while being pulverized by a jet mill to obtain a sample. A secondary battery was prepared in the same manner as in Experimental Example 1 except that this was used as the negative electrode material.

上述したようにして作成した実験例1〜実験例5、および、比較例1〜比較例4の電池を、最大電圧4.2V、定電流1A、充電時間3時間の条件で充電し、これを用いて、45℃の雰囲気に1ヶ月間保存した。この45℃とは電子機器の内部温度を想定したものである。その後、放電して保存後の放電容量を測定し、再度前記条件で充電する。その後、1Aで放電してこの時の放電容量を測定し、回復容量を求めた。この回復容量を保存後の放電容量で除した値を容量回復率と定義する。これを表1に示す。   The batteries of Experimental Examples 1 to 5 and Comparative Examples 1 to 4 created as described above were charged under the conditions of a maximum voltage of 4.2 V, a constant current of 1 A, and a charging time of 3 hours. And stored in a 45 ° C. atmosphere for 1 month. This 45 ° C. assumes the internal temperature of the electronic device. Then, it discharges, the discharge capacity after a preservation | save is measured, and it charges again on the said conditions. Thereafter, the battery was discharged at 1 A, and the discharge capacity at this time was measured to obtain the recovery capacity. A value obtained by dividing the recovery capacity by the discharge capacity after storage is defined as a capacity recovery rate. This is shown in Table 1.

Figure 2014026991
Figure 2014026991

実験例1〜5、比較例1〜4の各試料について、波長514、5nmのアルゴンレーザを利用し、波数分解能4cm-1のラマン分光器で測定したラマンスペクトル、および、同様の測定条件で、銀を10nmの厚さに蒸着した試料のSERSスペクトルからRG、Pbb、Pba、Psb、Psaを求め、これも表1に示した。 For each sample of Experimental Examples 1 to 5 and Comparative Examples 1 to 4, using an argon laser with a wavelength of 514 and 5 nm, a Raman spectrum measured with a Raman spectrometer having a wave number resolution of 4 cm −1 , and similar measurement conditions, RG, Pbb, Pba, Psb, and Psa were determined from the SERS spectrum of a sample in which silver was deposited to a thickness of 10 nm, and these are also shown in Table 1.

これらのデータより、図2に容量回復率とRGの関係を示した。同図よりRGが高いほど容量回復率が高いことがわかる。特に、RG=4.5以上では、容量回復率は、85%以上に達しており、高温環境における保存時の容量劣化が低く抑えられることがわかる。   From these data, FIG. 2 shows the relationship between the capacity recovery rate and RG. It can be seen from the figure that the higher the RG, the higher the capacity recovery rate. In particular, when RG = 4.5 or more, the capacity recovery rate reaches 85% or more, and it can be seen that capacity degradation during storage in a high-temperature environment can be kept low.

また、図3に容量回復率とPsbの関係を示した。同図よりPsbが高いほど容量回復率が高いことがわかる。特に、Psb=1365cm-1以上では、容量回復率は85%以上に達しており、高温環境における保存時の容量劣化が低く抑えられることがわかる。 FIG. 3 shows the relationship between the capacity recovery rate and Psb. From the figure, it can be seen that the higher the Psb, the higher the capacity recovery rate. In particular, when Psb = 1365 cm −1 or more, the capacity recovery rate reaches 85% or more, and it can be seen that the capacity deterioration during storage in a high temperature environment can be kept low.

以上詳細に説明したように、黒鉛材料の構造パラメータである、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと、表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)を4.5以上に規定することで、これを負極に用いた二次電池の高温環境における保存時の容量劣化が抑制される。また、アルゴンレーザ光を用いた表面増大ラマン分光スペクトルにおいて、1365cm-1以上の範囲にピークを有する材料を負極に用いることで、同様に高温環境における保存時の容量劣化が抑制される。 As described above in detail, the ratio RG between the graphitization degree Gb obtained from the Raman spectroscopic spectrum using argon laser light and the graphitization degree Gs obtained from the surface enhanced Raman spectroscopic spectrum, which is a structural parameter of the graphite material. By defining (= Gs / Gb) to be 4.5 or more, capacity deterioration during storage in a high temperature environment of a secondary battery using this as a negative electrode is suppressed. Moreover, in the surface-enhanced Raman spectroscopic spectrum using argon laser light, a material having a peak in the range of 1365 cm −1 or more is used for the negative electrode, so that capacity degradation during storage in a high-temperature environment is similarly suppressed.

1…負極、2…正極、3…セパレータ、4…絶縁板、5…電池缶、6…封口ガスケット、7…電池蓋、8…安全弁装置、10…負極集電体、11…正極集電体、12…負極リード、13…正極リード。 DESCRIPTION OF SYMBOLS 1 ... Negative electrode, 2 ... Positive electrode, 3 ... Separator, 4 ... Insulation board, 5 ... Battery can, 6 ... Sealing gasket, 7 ... Battery cover, 8 ... Safety valve apparatus, 10 ... Negative electrode collector, 11 ... Positive electrode collector , 12 ... negative electrode lead, 13 ... positive electrode lead.

Claims (17)

波長514.5nmのアルゴンレーザ光と波数分解能4cm-1の分光器を用い、黒鉛材料に銀を10nmの厚さで蒸着した場合の表面増大ラマン分光スペクトルにおいて、黒鉛結晶質構造に由来する振動モード(Psa=1580cm-1〜1620cm-1)のピークを1581.22cm-1以上の範囲に有し、
且つ、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)が4.16以上である
黒鉛材料を負極に用いた、
二次電池。
A vibration mode derived from a graphite crystalline structure in a surface-enhanced Raman spectroscopic spectrum when silver is deposited on a graphite material with a thickness of 10 nm using an argon laser beam having a wavelength of 514.5 nm and a spectrometer having a wave number resolution of 4 cm −1. Having a peak of (Psa = 1580 cm −1 to 1620 cm −1 ) in the range of 1581.22 cm −1 or more,
Further, the ratio RG (= Gs / Gb) between the degree of graphitization Gb obtained from the Raman spectrum using argon laser light and the degree of graphitization Gs obtained from the surface-enhanced Raman spectrum is 4.16 or more. Graphite material Was used for the negative electrode,
Secondary battery.
LiMO2 (Mは、Co、Ni、Mn、Fe、Al、VおよびTiの中から選ばれた少なくとも一つの元素)で表わされるリチウム複合酸化物を正極材料に用いた、
請求項1記載の二次電池。
A lithium composite oxide represented by LiMO 2 (M is at least one element selected from Co, Ni, Mn, Fe, Al, V, and Ti) was used as the positive electrode material.
The secondary battery according to claim 1.
前記黒鉛材料は、炭素前駆体を、不活性雰囲気中において800℃〜1000℃で熱処理した後に、黒鉛化することによって得られた、
請求項1または請求項2に記載の二次電池。
The graphite material was obtained by graphitizing a carbon precursor after heat treatment at 800 ° C. to 1000 ° C. in an inert atmosphere.
The secondary battery according to claim 1 or 2.
前記黒鉛材料は、光を照射して表面を磨くことによって得られた、
請求項1ないし請求項3のいずれかに記載の二次電池。
The graphite material was obtained by polishing the surface with light irradiation,
The secondary battery according to claim 1.
前記黒鉛材料は、菱面体構造を有する天然黒鉛を2000℃以上で熱処理することによって得られた、
請求項1ないし請求項4のいずれかに記載の二次電池。
The graphite material was obtained by heat-treating natural graphite having a rhombohedral structure at 2000 ° C. or higher.
The secondary battery according to claim 1.
前記天然黒鉛における菱面体構造の含有率は、1%以上40%以下である、
請求項5記載の二次電池。
The content of rhombohedral structure in the natural graphite is 1% or more and 40% or less.
The secondary battery according to claim 5.
前記黒鉛材料は、真密度2.1g/cm3 以上であり、且つ嵩比重が0.4g/cm3 以上である、
請求項1ないし請求項6のいずれかに記載の二次電池。
The graphite material has a true density of 2.1 g / cm 3 or more and a bulk specific gravity of 0.4 g / cm 3 or more.
The secondary battery according to claim 1.
前記黒鉛材料は、レーザ回折法により求められる粒度分布において、累積10%粒径が3μm以上であり、且つ累積50%粒径が10μm以上であり、且つ累積90%粒径が70μm以下である、
請求項1ないし請求項7のいずれかに記載の二次電池。
The graphite material has a cumulative 10% particle size of 3 μm or more, a cumulative 50% particle size of 10 μm or more, and a cumulative 90% particle size of 70 μm or less in a particle size distribution determined by a laser diffraction method.
The secondary battery according to claim 1.
前記黒鉛材料の破壊強度の平均値が6.0kgf/mm2 以上である、
請求項1ないし請求項8のいずれかに記載の二次電池。
The average value of the fracture strength of the graphite material is 6.0 kgf / mm 2 or more.
The secondary battery according to claim 1.
波長514.5nmのアルゴンレーザ光と波数分解能4cm-1の分光器を用い、銀を10nmの厚さで蒸着した場合の表面増大ラマン分光スペクトルにおいて、黒鉛結晶質構造に由来する振動モード(Psa=1580cm-1〜1620cm-1)のピークを1581.22cm-1以上の範囲に有し、
且つ、アルゴンレーザ光を用いたラマン分光スペクトルから求められる黒鉛化度Gbと表面増大ラマン分光スペクトルから求められる黒鉛化度Gsとの比率RG(=Gs/Gb)が4.16以上である、
二次電池用黒鉛材料。
In a surface-enhanced Raman spectroscopic spectrum when silver is deposited with a thickness of 10 nm using an argon laser beam having a wavelength of 514.5 nm and a spectroscope with a wave number resolution of 4 cm −1 , a vibration mode (Psa = 1580 cm −1 to 1620 cm −1 ) in the range of 1581.22 cm −1 or more,
And the ratio RG (= Gs / Gb) of the graphitization degree Gb calculated | required from the surface-enhanced Raman spectroscopic spectrum Gb calculated | required from the Raman spectral spectrum using argon laser light is 4.16 or more.
Graphite material for secondary batteries.
炭素前駆体を、不活性雰囲気中において800℃〜1000℃で熱処理した後に、黒鉛化することによって得られた、
請求項10記載の二次電池用黒鉛材料。
Obtained by graphitizing the carbon precursor after heat treatment at 800 ° C. to 1000 ° C. in an inert atmosphere,
The graphite material for a secondary battery according to claim 10.
光を照射して表面を磨くことによって得られた、
請求項10または請求項11に記載の二次電池用黒鉛材料。
Obtained by shining light and polishing the surface,
The graphite material for a secondary battery according to claim 10 or 11.
菱面体構造を有する天然黒鉛を2000℃以上で熱処理することによって得られた、
請求項10ないし請求項12のいずれかに記載の二次電池用黒鉛材料。
Obtained by heat-treating natural graphite having a rhombohedral structure at 2000 ° C. or higher,
The graphite material for a secondary battery according to any one of claims 10 to 12.
前記天然黒鉛における菱面体構造の含有率は、1%以上40%以下である、
請求項13記載の二次電池用黒鉛材料。
The content of rhombohedral structure in the natural graphite is 1% or more and 40% or less.
The graphite material for a secondary battery according to claim 13.
真密度2.1g/cm3 以上であり、且つ嵩比重が0.4g/cm3 以上である、
請求項10ないし請求項14のいずれかに記載の二次電池用黒鉛材料。
The true density is 2.1 g / cm 3 or more and the bulk specific gravity is 0.4 g / cm 3 or more.
The graphite material for a secondary battery according to any one of claims 10 to 14.
レーザ回折法により求められる粒度分布において、累積10%粒径が3μm以上であり、且つ累積50%粒径が10μm以上であり、且つ累積90%粒径が70μm以下である、
請求項10ないし請求項15のいずれかに記載の二次電池用黒鉛材料。
In the particle size distribution determined by the laser diffraction method, the cumulative 10% particle size is 3 μm or more, the cumulative 50% particle size is 10 μm or more, and the cumulative 90% particle size is 70 μm or less.
The graphite material for a secondary battery according to any one of claims 10 to 15.
破壊強度の平均値が6.0kgf/mm2 以上である、
請求項10ないし請求項16のいずれかに記載の二次電池用黒鉛材料。
The average value of the breaking strength is 6.0 kgf / mm 2 or more,
The graphite material for a secondary battery according to any one of claims 10 to 16.
JP2013229089A 2013-11-05 2013-11-05 Secondary battery, and graphite material for secondary battery Pending JP2014026991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229089A JP2014026991A (en) 2013-11-05 2013-11-05 Secondary battery, and graphite material for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229089A JP2014026991A (en) 2013-11-05 2013-11-05 Secondary battery, and graphite material for secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012016172A Division JP5445797B2 (en) 2012-01-30 2012-01-30 Non-aqueous electrolyte secondary battery and graphite material for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014026991A true JP2014026991A (en) 2014-02-06

Family

ID=50200411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229089A Pending JP2014026991A (en) 2013-11-05 2013-11-05 Secondary battery, and graphite material for secondary battery

Country Status (1)

Country Link
JP (1) JP2014026991A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461964A (en) * 2017-09-06 2019-03-12 宁德时代新能源科技股份有限公司 Lithium ion secondary battery
CN113800511A (en) * 2020-06-11 2021-12-17 清华大学 Natural graphite powder for nuclear reactor fuel element and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139621A (en) * 1987-11-27 1989-06-01 Mitsubishi Gas Chem Co Inc Production of mesophase pitch for carbonaceous material
JPH0551205A (en) * 1991-08-23 1993-03-02 Kawasaki Steel Corp Method for controlling graphitization degree of carbon material surface layer and method for coating material surface
JPH05283060A (en) * 1992-03-30 1993-10-29 Osaka Gas Co Ltd Negative electrode for lithium secondary battery, manufacture of the negative electrode and lithium secondary battery using same negative electrode
WO1995028011A1 (en) * 1994-04-08 1995-10-19 Sony Corporation Nonaqueous-electrolyte secondary cell
JPH08162096A (en) * 1994-12-06 1996-06-21 Toshiba Battery Co Ltd Lithium secondary battery
JPH08213006A (en) * 1995-02-03 1996-08-20 Matsushita Electric Ind Co Ltd Electrode material for lithium secondary battery and manufacture thereof
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH10194713A (en) * 1997-01-10 1998-07-28 Mitsubishi Gas Chem Co Inc Production of granular graphite
JPH10326611A (en) * 1997-03-28 1998-12-08 Nippon Steel Corp Carbon material for negative electrode of lithium secondary battery
JPH1125981A (en) * 1997-07-03 1999-01-29 Nippon Carbon Co Ltd Negative electrode material for li ion secondary battery
JP2000090423A (en) * 1998-09-11 2000-03-31 Nec Corp Production of magnetic head slider

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139621A (en) * 1987-11-27 1989-06-01 Mitsubishi Gas Chem Co Inc Production of mesophase pitch for carbonaceous material
JPH0551205A (en) * 1991-08-23 1993-03-02 Kawasaki Steel Corp Method for controlling graphitization degree of carbon material surface layer and method for coating material surface
JPH05283060A (en) * 1992-03-30 1993-10-29 Osaka Gas Co Ltd Negative electrode for lithium secondary battery, manufacture of the negative electrode and lithium secondary battery using same negative electrode
WO1995028011A1 (en) * 1994-04-08 1995-10-19 Sony Corporation Nonaqueous-electrolyte secondary cell
JPH08162096A (en) * 1994-12-06 1996-06-21 Toshiba Battery Co Ltd Lithium secondary battery
JPH08213006A (en) * 1995-02-03 1996-08-20 Matsushita Electric Ind Co Ltd Electrode material for lithium secondary battery and manufacture thereof
JPH08287910A (en) * 1995-04-10 1996-11-01 Hitachi Ltd Nonaqueous secondary battery and manufacture of graphite powder
JPH10194713A (en) * 1997-01-10 1998-07-28 Mitsubishi Gas Chem Co Inc Production of granular graphite
JPH10326611A (en) * 1997-03-28 1998-12-08 Nippon Steel Corp Carbon material for negative electrode of lithium secondary battery
JPH1125981A (en) * 1997-07-03 1999-01-29 Nippon Carbon Co Ltd Negative electrode material for li ion secondary battery
JP2000090423A (en) * 1998-09-11 2000-03-31 Nec Corp Production of magnetic head slider

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109461964A (en) * 2017-09-06 2019-03-12 宁德时代新能源科技股份有限公司 Lithium ion secondary battery
US11417869B2 (en) 2017-09-06 2022-08-16 Contemporary Amperex Technology Co., Limited Lithium ion secondary battery
CN113800511A (en) * 2020-06-11 2021-12-17 清华大学 Natural graphite powder for nuclear reactor fuel element and preparation method thereof
CN113800511B (en) * 2020-06-11 2023-12-29 清华大学 Natural graphite powder for nuclear reactor fuel element and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5819148B2 (en) Secondary battery
JP3193342B2 (en) Non-aqueous electrolyte secondary battery
JP3844495B2 (en) Non-aqueous electrolyte secondary battery
JP2001332263A (en) Secondary battery and manufacturing method for negative electrode material of carbon
JP3436033B2 (en) Non-aqueous electrolyte secondary battery
US5932373A (en) Non-aqueous electrolyte secondary cell using carbonaceous material for negative electrode
JP2013258156A (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH07192724A (en) Nonaqueous electrolyte secondary battery
US7658775B2 (en) Method for making negative electrode component including a carbonaceous material for use in a nonaqueous secondary battery
JPH0785888A (en) Lithium secondary battery
US6656637B2 (en) Carbon-based active material for rechargeable lithium battery and method of preparing carbon-based active material
JPH11317229A (en) Negative active material for lithium secondary battery, lithium secondary battery and production of negative active material for lithium secondary battery
JP2003346804A (en) Negative electrode material, non-aqueous electrolyte battery, and method for manufacturing the negative electrode material
JP4150087B2 (en) Non-aqueous electrolyte secondary battery
JPH0927344A (en) Nonaqueous electrolyte secondary battery
JP3421877B2 (en) Non-aqueous electrolyte secondary battery
US6083646A (en) Non-aqueous electrolyte secondary battery and method for producing cathode material
JP2014026991A (en) Secondary battery, and graphite material for secondary battery
JPH09199087A (en) Secondary battery
JPH07335262A (en) Nonaqueous electrolyte secondary battery
JP2001148241A (en) Non-aqueous electrolyte battery
JP5445797B2 (en) Non-aqueous electrolyte secondary battery and graphite material for non-aqueous electrolyte secondary battery
JP3787943B2 (en) Non-aqueous electrolyte secondary battery
JPH07320785A (en) Nonaqueous electrolytic secondary battery
JP2008226854A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150331