JP2014026850A - Fuel cell power generation device and coolant recovery method of the same - Google Patents

Fuel cell power generation device and coolant recovery method of the same Download PDF

Info

Publication number
JP2014026850A
JP2014026850A JP2012166865A JP2012166865A JP2014026850A JP 2014026850 A JP2014026850 A JP 2014026850A JP 2012166865 A JP2012166865 A JP 2012166865A JP 2012166865 A JP2012166865 A JP 2012166865A JP 2014026850 A JP2014026850 A JP 2014026850A
Authority
JP
Japan
Prior art keywords
cooling water
tank
fuel cell
air
air blower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012166865A
Other languages
Japanese (ja)
Other versions
JP5946714B2 (en
Inventor
Yasuyuki Isobe
部 康 之 磯
Takayuki Kaneko
子 隆 之 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Fuel Cell Power Systems Corp
Priority to JP2012166865A priority Critical patent/JP5946714B2/en
Publication of JP2014026850A publication Critical patent/JP2014026850A/en
Application granted granted Critical
Publication of JP5946714B2 publication Critical patent/JP5946714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To easily recover a coolant of a fuel cell power generation device with a simple structure.SOLUTION: According to one embodiment, a coolant recovery method of a fuel cell power generation device is a method for recovering a coolant from the fuel cell power generation device including: an air blower which supplies air to a fuel cell; a heat exchanger which performs heat exchange between a coolant discharged from the fuel cell and exhaust heat recovery water; a tank which stores the coolant; a first pipe which supplies the coolant discharged from the heat exchanger to the tank and is removably connected with the tank; and a pump which suctions the coolant in the tank through the second pipe and supplies the coolant to the fuel cell. The first pipe removed from the tank is connected with a closed accumulation container, and an air suction port of the air blower is connected with the accumulation container. The air blower is driven to suction air in the accumulation container to recover the coolant in the accumulation container.

Description

本発明の実施形態は、燃料電池発電装置及び燃料電池発電装置の冷却水回収方法に関する。   Embodiments described herein relate generally to a fuel cell power generator and a cooling water recovery method for the fuel cell power generator.

家庭用燃料電池システムは、都市ガスやLPG等を用いて発電を行いながら、排熱を温水として回収するコジェネレーションシステムである。燃料電池が発電の際に発する熱エネルギーは冷却水によって回収される。熱エネルギーを回収した冷却水は、熱交換器で冷却された後、水タンクに供給される。水タンク内の冷却水は、ポンプによって燃料電池に供給される。熱交換器には冷却水と熱交換を行って冷却水から熱を回収するための排熱回収水が供給されており、熱交換後の排熱回収水(温水)が家庭に供給される。水タンクには、水抜きポートおよび閉止弁が設けられており、閉止弁を開けることで冷却水を抜くことができるようになっている。   A household fuel cell system is a cogeneration system that collects exhaust heat as hot water while generating power using city gas, LPG, or the like. Thermal energy generated by the fuel cell during power generation is recovered by cooling water. The cooling water from which the thermal energy has been recovered is supplied to a water tank after being cooled by a heat exchanger. The cooling water in the water tank is supplied to the fuel cell by a pump. The heat exchanger is supplied with exhaust heat recovery water for exchanging heat with the cooling water and recovering heat from the cooling water, and the exhaust heat recovery water (hot water) after the heat exchange is supplied to the home. The water tank is provided with a drain port and a shut-off valve, and the coolant can be drained by opening the shut-off valve.

このような家庭用燃料電池システムが、入居者の決まっていない新築の家屋に設置される場合、設置時に試運転等を行った後、無電源の状態で長期間保管されることとなる。このような状態で冬期になると、システム内の水が凍結し、装置の故障原因となる。したがって、試運転等を行った後は冷却水を除去しておくことが一般的である。   When such a household fuel cell system is installed in a newly built house in which no resident has been determined, it is stored for a long time in a state of no power supply after performing a test run at the time of installation. When it is winter in such a state, water in the system freezes, causing a failure of the apparatus. Therefore, it is common to remove the cooling water after a trial run or the like.

冷却水を除去する方法として、空気パージにより冷却水を水タンクに回収するものが知られている。しかし、このような手法は空気を導入するための遮断弁が必要となり、システムが複雑化し、装置コストが増加するという問題があった。   As a method for removing the cooling water, a method of collecting the cooling water in a water tank by air purge is known. However, such a method requires a shut-off valve for introducing air, which complicates the system and increases the device cost.

特開2005−302497号公報JP 2005-302497 A

本発明が解決しようとする課題は、簡易な構成で冷却水を容易に回収できる燃料電池発電装置及び燃料電池発電装置の冷却水回収方法を提供することである。   The problem to be solved by the present invention is to provide a fuel cell power generation device and a cooling water recovery method for the fuel cell power generation device that can easily recover the cooling water with a simple configuration.

本実施形態によれば、燃料電池発電装置の冷却水回収方法は、燃料電池に空気を供給する空気ブロワと、前記燃料電池から排出された冷却水と排熱回収水との熱交換を行う熱交換器と、冷却水を貯留するタンクと、前記熱交換器から排出された冷却水を前記タンクへ供給する、前記タンクに取り外し可能に接続された第1配管と、前記タンク内の冷却水を第2配管を介して吸引し、前記燃料電池に供給するポンプと、を備える燃料電池発電装置から冷却水を回収する方法である。前記タンクから取り外した前記第1配管を閉止された貯留容器に接続し、前記空気ブロワの空気吸引口を前記貯留容器に接続し、前記空気ブロワを駆動して前記貯留容器内の空気を吸引し、冷却水を前記貯留容器に回収する。   According to the present embodiment, the cooling water recovery method of the fuel cell power generator includes an air blower that supplies air to the fuel cell, and heat that exchanges heat between the cooling water discharged from the fuel cell and the exhaust heat recovery water. An exchanger, a tank for storing cooling water, a first pipe removably connected to the tank for supplying cooling water discharged from the heat exchanger to the tank, and cooling water in the tank. And a pump that sucks through a second pipe and supplies the fuel cell with the pump. The first pipe removed from the tank is connected to a closed storage container, the air suction port of the air blower is connected to the storage container, and the air blower is driven to suck the air in the storage container. The cooling water is collected in the storage container.

第1の実施形態に係る燃料電池発電装置の運転時の概略構成図である。It is a schematic block diagram at the time of the driving | operation of the fuel cell electric power generating apparatus which concerns on 1st Embodiment. 第1の実施形態に係る燃料電池発電装置の冷却水回収時の概略構成図である。It is a schematic block diagram at the time of the cooling water collection | recovery of the fuel cell electric power generating apparatus which concerns on 1st Embodiment. 第1の実施形態に係る冷却水回収時に用いる貯留容器の概略構成図である。It is a schematic block diagram of the storage container used at the time of the cooling water recovery which concerns on 1st Embodiment. 第2の実施形態に係る燃料電池発電装置の冷却水回収時の概略構成図である。It is a schematic block diagram at the time of the cooling water collection | recovery of the fuel cell electric power generating apparatus which concerns on 2nd Embodiment. 第2の実施形態に係る冷却水回収時の水タンクの概略構成図である。It is a schematic block diagram of the water tank at the time of the cooling water collection | recovery which concerns on 2nd Embodiment. 変形例による燃料電池発電装置の冷却水回収時の概略構成図である。It is a schematic block diagram at the time of the cooling water collection | recovery of the fuel cell electric power generating apparatus by a modification. 変形例による燃料電池発電装置の冷却水回収時の概略構成図である。It is a schematic block diagram at the time of the cooling water collection | recovery of the fuel cell electric power generating apparatus by a modification.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(第1の実施形態)図1及び図2に第1の実施形態に係る燃料電池発電装置の概略構成を示す。図1は燃料電池発電装置の運転時の構成を示し、図2は燃料電池発電装置から冷却水を回収する時の構成を示している。   (First Embodiment) FIGS. 1 and 2 show a schematic configuration of a fuel cell power generator according to a first embodiment. FIG. 1 shows a configuration during operation of the fuel cell power generator, and FIG. 2 shows a configuration when cooling water is recovered from the fuel cell power generator.

図1に示すように、燃料電池発電装置は、燃料電池103と、燃料ブロワ101から供給された燃料(例えばLPG)を触媒に接触させて水素リッチな改質ガスを生成し、この改質ガスを燃料電池103に供給する改質器102と、燃料電池103に空気を供給する空気ブロワ106とを備えている。空気ブロワ106の空気流路上流側には空気流量計105が設けられており、空気流量計105の測定結果に基づいて、空気ブロワ106から一定量の空気が燃料電池103に供給されるようになっている。また、燃料電池103には、空気やガスを排気する排気部(図示せず)が設けられている。   As shown in FIG. 1, the fuel cell power generator generates a hydrogen-rich reformed gas by bringing a fuel (for example, LPG) supplied from the fuel cell 103 and the fuel blower 101 into contact with a catalyst to generate the reformed gas. Is supplied to the fuel cell 103, and an air blower 106 is provided to supply air to the fuel cell 103. An air flow meter 105 is provided on the upstream side of the air flow path of the air blower 106 so that a certain amount of air is supplied from the air blower 106 to the fuel cell 103 based on the measurement result of the air flow meter 105. It has become. Further, the fuel cell 103 is provided with an exhaust part (not shown) for exhausting air or gas.

改質器102にける燃料の改質反応は吸熱反応であるため、改質器102にはバーナ(図示せず)が設置され、バーナの燃焼熱によって改質反応が行われる。空気ブロワ107は、改質器102のバーナに空気を供給する。   Since the reforming reaction of the fuel in the reformer 102 is an endothermic reaction, a burner (not shown) is installed in the reformer 102, and the reforming reaction is performed by the combustion heat of the burner. The air blower 107 supplies air to the burner of the reformer 102.

燃料電池103は、図示しない電解質膜と、電解質膜を挟んで対向して設けられた燃料極(アノード極)及び酸化剤極(カソード極)とを有している。酸化剤極に空気ブロワ106からの空気が導入され、燃料極に改質器102からの改質ガスが導入されると、両極における電気化学反応によって電気(直流電力)と熱エネルギーが発生する。   The fuel cell 103 includes an electrolyte membrane (not shown), and a fuel electrode (anode electrode) and an oxidant electrode (cathode electrode) provided to face each other with the electrolyte membrane interposed therebetween. When air from the air blower 106 is introduced into the oxidizer electrode and reformed gas from the reformer 102 is introduced into the fuel electrode, electricity (DC power) and thermal energy are generated by an electrochemical reaction at both electrodes.

インバータ104は、燃料電池103から出力される直流電力を交流電力に変換し、電気機器等の電力負荷109に供給する。   The inverter 104 converts the DC power output from the fuel cell 103 into AC power and supplies the AC power to a power load 109 such as an electric device.

燃料電池103が発電の際に発する熱エネルギーは冷却水によって回収される。熱エネルギーを回収した冷却水は、熱交換器201において排熱回収水と熱交換を行って冷却されると、配管204を介して水タンク202に供給される。ポンプ203が、配管205を介して水タンク202に貯留されている冷却水を吸引し、燃料電池103に供給することで、冷却水が循環するようになっている。配管204と水タンク202との連結箇所は切り離すことができるように構成されている。   The thermal energy generated when the fuel cell 103 generates power is recovered by the cooling water. When the cooling water recovered from the heat energy is cooled by exchanging heat with the exhaust heat recovery water in the heat exchanger 201, the cooling water is supplied to the water tank 202 via the pipe 204. The pump 203 sucks the cooling water stored in the water tank 202 through the pipe 205 and supplies it to the fuel cell 103 so that the cooling water circulates. The connection location between the pipe 204 and the water tank 202 is configured to be disconnected.

ポンプ301は、熱交換器201に排熱回収水を供給する。熱交換器201における熱交換により昇温した排熱回収水は、お湯として家屋等に供給される。   The pump 301 supplies exhaust heat recovery water to the heat exchanger 201. The exhaust heat recovery water raised in temperature by heat exchange in the heat exchanger 201 is supplied as hot water to a house or the like.

次に、燃料電池発電装置から冷却水を回収する方法を、図2を用いて説明する。図2に示すように、冷却水の回収にあたり、まず、回収する冷却水を貯留する貯留容器108を準備する。貯留容器108は密閉(閉止)可能になっている。また、貯留容器108からは2本の配管109a、109bが延びている。   Next, a method for recovering the cooling water from the fuel cell power generator will be described with reference to FIG. As shown in FIG. 2, when collecting the cooling water, first, a storage container 108 for storing the recovered cooling water is prepared. The storage container 108 can be sealed (closed). Further, two pipes 109 a and 109 b extend from the storage container 108.

そして、配管204と水タンク202との連結箇所は切り離し、配管204と配管109aとを連結する。水タンク202は大気解放となる。また、配管109bと空気ブロワ106の入口(空気吸引口)とを接続する。   And the connection location of the piping 204 and the water tank 202 is cut off, and the piping 204 and the piping 109a are connected. The water tank 202 is open to the atmosphere. Further, the pipe 109b and the inlet (air suction port) of the air blower 106 are connected.

そして、空気ブロワ106を駆動させ、空気ブロワ106が貯留容器108内の空気を吸引すると、冷却水が水タンク202→ポンプ203→燃料電池103→熱交換器201→貯留容器108の経路で移動し、図3に示すように、冷却水が貯留容器108に回収される。   Then, when the air blower 106 is driven and the air blower 106 sucks the air in the storage container 108, the cooling water moves along the path of the water tank 202 → pump 203 → fuel cell 103 → heat exchanger 201 → storage container 108. As shown in FIG. 3, the cooling water is collected in the storage container 108.

これにより、燃料電池103だけでなく、水タンク202、ポンプ203、熱交換器201内の冷却水も回収(除去)できるため、冷却水凍結によって装置に不具合が発生することを防止できる。   Thereby, since not only the fuel cell 103 but also the cooling water in the water tank 202, the pump 203, and the heat exchanger 201 can be collected (removed), it is possible to prevent a malfunction from occurring in the apparatus due to the cooling water freezing.

また、冷却水の回収にあたり、貯留容器108から延びた2つの配管の一方を熱交換器201の出口に接続し、他方を空気ブロワ106に接続するといった簡易な作業を行えばよく、装置構成の複雑化及び装置コストの増加を防止することができる。   Further, in collecting the cooling water, a simple operation of connecting one of the two pipes extending from the storage container 108 to the outlet of the heat exchanger 201 and connecting the other to the air blower 106 may be performed. It is possible to prevent complication and increase in apparatus cost.

このように、本実施形態によれば、簡易な構成で冷却水を容易に回収することができる。   Thus, according to the present embodiment, the cooling water can be easily recovered with a simple configuration.

上記実施形態において、冷却水の回収経路に上り勾配の経路が存在する場合、当該経路の配管径が大き過ぎると、水が移動し難くなるため、上り経路の配管の断面積は400mm以内にすることが好ましい。 In the above embodiment, when there is an upward gradient path in the cooling water recovery path, if the pipe diameter of the path is too large, it becomes difficult for water to move, so the cross-sectional area of the upward path pipe is within 400 mm 2 . It is preferable to do.

(第2の実施形態)図4に第2の実施形態に係る燃料電池発電装置の冷却水回収時の概略構成を示す。本実施形態は、図2に示す第1の実施形態と比較して、回収する冷却水を水タンク202に集める点が異なる。図4において、図2に示す第1の実施形態と同一部分には同一符号を付して説明を省略する。なお、本実施形態に係る燃料電池発電装置の運転時の構成は図1と同様である。   (Second Embodiment) FIG. 4 shows a schematic configuration of a fuel cell power generator according to a second embodiment when cooling water is recovered. The present embodiment is different from the first embodiment shown in FIG. 2 in that the recovered cooling water is collected in the water tank 202. In FIG. 4, the same parts as those of the first embodiment shown in FIG. The configuration of the fuel cell power generator according to this embodiment during operation is the same as that shown in FIG.

図4に示すように、冷却水の回収にあたり、まず、水タンク202の底部とポンプ203とを接続する配管205を、水タンク202から切り離す。配管205を切り離した後、水タンク203側の取り合いは閉止処置する。   As shown in FIG. 4, when collecting the cooling water, first, the pipe 205 connecting the bottom of the water tank 202 and the pump 203 is disconnected from the water tank 202. After disconnecting the pipe 205, the water tank 203 side is closed.

そして、水タンク202の上部と空気ブロワ106の入口とを配管206で接続する。水タンク202が大気解放されている場合は、解放部分に閉止処置を施す。   Then, the upper part of the water tank 202 and the inlet of the air blower 106 are connected by a pipe 206. When the water tank 202 is released to the atmosphere, the release portion is closed.

そして、空気ブロワ106を駆動させ、空気ブロワ106が水タンク202内の空気を吸引すると、冷却水がポンプ203→燃料電池103→熱交換器201→水タンク202の経路で移動し、図5に示すように、冷却水が水タンク202に回収される。   Then, when the air blower 106 is driven and the air blower 106 sucks the air in the water tank 202, the cooling water moves along the path of the pump 203 → the fuel cell 103 → the heat exchanger 201 → the water tank 202, and FIG. As shown, cooling water is collected in the water tank 202.

冷却水の回収後、水タンク202内の冷却水は水抜きポート207を介して燃料電池発電装置の外部の排水口に排出される。   After the cooling water is collected, the cooling water in the water tank 202 is discharged to the drain outlet outside the fuel cell power generation device via the drain port 207.

これにより、燃料電池103だけでなく、水タンク202、ポンプ203、熱交換器201内の冷却水も回収(除去)できるため、冷却水凍結によって装置に不具合が発生することを防止できる。   Thereby, since not only the fuel cell 103 but also the cooling water in the water tank 202, the pump 203, and the heat exchanger 201 can be collected (removed), it is possible to prevent a malfunction from occurring in the apparatus due to the cooling water freezing.

また、冷却水の回収にあたり、配管205を水タンク202から切り離し、水タンク202と空気ブロワ106を配管206で接続するといった簡易な作業を行えばよく、装置構成の複雑化及び装置コストの増加を防止することができる。   Further, when collecting the cooling water, it is only necessary to perform simple operations such as disconnecting the pipe 205 from the water tank 202 and connecting the water tank 202 and the air blower 106 with the pipe 206, thereby complicating the apparatus configuration and increasing the apparatus cost. Can be prevented.

このように、本実施形態によれば、簡易な構成で冷却水を容易に回収することができる。   Thus, according to the present embodiment, the cooling water can be easily recovered with a simple configuration.

上記第1及び第2の実施形態において、冷却水回収にあたり空気ブロワ106を駆動する時間は、冷却水の総量に基づいて予め定めておいてもよい。また、上記第1の実施形態において、水タンク202に水位計を設け、水タンク202の水位が所定値以下になってから所定時間経過するまで空気ブロワ106を駆動するようにしてもよい。   In the first and second embodiments, the time for driving the air blower 106 for cooling water recovery may be determined in advance based on the total amount of cooling water. In the first embodiment, a water level meter may be provided in the water tank 202, and the air blower 106 may be driven until a predetermined time elapses after the water level in the water tank 202 becomes a predetermined value or less.

また、上記第1及び第2の実施形態では、冷却水回収時に、配管109b、配管206を空気ブロワ106の入口に直接接続していたが、図6及び図7に示すように、空気流量計105を介して空気ブロワ106に接続してもよい。そして、冷却水の回収を開始してから、空気流量計105で測定した空気ブロワ106の吐出量の積算値が所定値になるまで、空気ブロワ106を駆動するようにしてもよい。   In the first and second embodiments, the pipe 109b and the pipe 206 are directly connected to the inlet of the air blower 106 at the time of cooling water recovery. However, as shown in FIGS. It may be connected to the air blower 106 via 105. Then, the air blower 106 may be driven until the integrated value of the discharge amount of the air blower 106 measured by the air flow meter 105 reaches a predetermined value after the collection of the cooling water is started.

上記第1及び第2の実施形態では、冷却水回収時に、貯留容器108内の空気、水タンク202内の空気を空気ブロワ106で吸引していたが、吸引機能を有する他の装置で行ってもよい。   In the first and second embodiments, the air in the storage container 108 and the air in the water tank 202 are sucked by the air blower 106 at the time of cooling water recovery, but this is performed by another device having a suction function. Also good.

上記第1及び第2の実施形態では、燃料電池発電装置を例に説明を行ったが、発熱を伴う発電部と、発電部で発生した熱を回収する冷却剤を有する他のシステム、例えば車載用燃料電池や一般のコジェネレーションシステムにも適用することができる。   In the first and second embodiments, the fuel cell power generation device has been described as an example. However, another system having a power generation unit that generates heat and a coolant that recovers heat generated in the power generation unit, for example, in-vehicle It can also be applied to fuel cells for general use and general cogeneration systems.

以上説明したように、少なくとも一つの実施形態のよれば、簡易な構成で冷却水を容易に回収できる。   As described above, according to at least one embodiment, the cooling water can be easily recovered with a simple configuration.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

101 燃料ブロワ
102 改質器
103 燃料電池
104 インバータ
105 空気流量計
106、107 空気ブロワ
108 貯留容器
109 電力負荷
201 熱交換器
202 水タンク
203、301 ポンプ
204〜206 配管
207 水抜きポート
DESCRIPTION OF SYMBOLS 101 Fuel blower 102 Reformer 103 Fuel cell 104 Inverter 105 Air flowmeter 106, 107 Air blower 108 Storage container 109 Electric load 201 Heat exchanger 202 Water tank 203, 301 Pump 204-206 Pipe 207 Drain port

Claims (5)

燃料電池に空気を供給する空気ブロワと、
前記燃料電池から排出された冷却水と排熱回収水との熱交換を行う熱交換器と、
冷却水を貯留するタンクと、
前記熱交換器から排出された冷却水を前記タンクへ供給する、前記タンクに取り外し可能に接続された第1配管と、
前記タンク内の冷却水を第2配管を介して吸引し、前記燃料電池に供給するポンプと、
を備える燃料電池発電装置から冷却水を回収する方法であって、
前記タンクから取り外した前記第1配管を閉止された貯留容器に接続し、
前記空気ブロワの空気吸引口を前記貯留容器に接続し、
前記空気ブロワを駆動して前記貯留容器内の空気を吸引し、冷却水を前記貯留容器に回収することを特徴とする燃料電池発電装置の冷却水回収方法。
An air blower for supplying air to the fuel cell;
A heat exchanger for exchanging heat between the cooling water discharged from the fuel cell and the exhaust heat recovery water;
A tank for storing cooling water;
A first pipe removably connected to the tank for supplying cooling water discharged from the heat exchanger to the tank;
A pump that sucks the cooling water in the tank through a second pipe and supplies the cooling water to the fuel cell;
A method of recovering cooling water from a fuel cell power generator comprising:
Connecting the first pipe removed from the tank to a closed storage container;
Connecting the air suction port of the air blower to the storage container;
A cooling water recovery method for a fuel cell power generator, wherein the air blower is driven to suck air in the storage container and recover cooling water to the storage container.
燃料電池に空気を供給する空気ブロワと、
前記燃料電池から排出された冷却水と排熱回収水との熱交換を行う熱交換器と、
前記熱交換器から排出された冷却水が第1配管を介して供給されるタンクと、
前記タンク内の冷却水を前記燃料電池に供給するポンプと、
前記タンク内の冷却水を前記ポンプに導き、前記タンクに取り外し可能に接続された第2配管と、
を備える燃料電池発電装置から冷却水を回収する方法であって、
前記タンクから前記第2配管を取り外し、
前記タンクと前記空気ブロワの空気吸引口とを接続し、
前記空気ブロワを駆動して前記タンク内の空気を吸引し、冷却水を前記タンクに回収し、
回収した冷却水を前記タンクから排出することを特徴とする燃料電池発電装置の冷却水回収方法。
An air blower for supplying air to the fuel cell;
A heat exchanger for exchanging heat between the cooling water discharged from the fuel cell and the exhaust heat recovery water;
A tank to which the cooling water discharged from the heat exchanger is supplied via the first pipe;
A pump for supplying cooling water in the tank to the fuel cell;
A second pipe connected to the tank so that the cooling water in the tank is led to the pump, and removably connected to the tank;
A method of recovering cooling water from a fuel cell power generator comprising:
Removing the second pipe from the tank;
Connecting the tank and the air suction port of the air blower;
Drive the air blower to suck air in the tank and collect cooling water in the tank;
A method for recovering cooling water of a fuel cell power generator, wherein the recovered cooling water is discharged from the tank.
前記空気ブロワの駆動を開始してからの前記空気ブロワの吐出量の積算値が所定値に達したら前記空気ブロワを停止することを特徴とする請求項1又は2に記載の燃料電池発電装置の冷却水回収方法。   3. The fuel cell power generator according to claim 1, wherein the air blower is stopped when an integrated value of the discharge amount of the air blower after the start of driving of the air blower reaches a predetermined value. 4. Cooling water recovery method. 燃料電池に空気を供給する空気ブロワと、
前記燃料電池から排出された冷却水と排熱回収水との熱交換を行う熱交換器と、
冷却水を貯留するタンクと、
前記熱交換器から排出された冷却水を前記タンクへ供給する、前記タンクに取り外し可能に接続された第1配管と、
前記タンク内の冷却水を第2配管を介して吸引し、前記燃料電池に供給するポンプと、
を備え、
前記タンクから外された前記第1配管が貯留容器に接続され、前記空気ブロワが前記貯留容器内の空気を吸引し、冷却水を前記貯留容器に回収することを特徴とする燃料電池発電装置。
An air blower for supplying air to the fuel cell;
A heat exchanger for exchanging heat between the cooling water discharged from the fuel cell and the exhaust heat recovery water;
A tank for storing cooling water;
A first pipe removably connected to the tank for supplying cooling water discharged from the heat exchanger to the tank;
A pump that sucks the cooling water in the tank through a second pipe and supplies the cooling water to the fuel cell;
With
The fuel cell power generator, wherein the first pipe removed from the tank is connected to a storage container, the air blower sucks air in the storage container, and collects cooling water in the storage container.
燃料電池に空気を供給する空気ブロワと、
前記燃料電池から排出された冷却水と排熱回収水との熱交換を行う熱交換器と、
前記熱交換器から排出された冷却水が第1配管を介して供給されるタンクと、
前記タンク内の冷却水を前記燃料電池に供給するポンプと、
前記タンク内の冷却水を前記ポンプに導き、前記タンクに取り外し可能に接続された第2配管と、
を備え、
前記空気ブロワが、前記第2配管が外された前記タンクから空気を吸引し、冷却水を前記タンクに回収することを特徴とする燃料電池発電装置。
An air blower for supplying air to the fuel cell;
A heat exchanger for exchanging heat between the cooling water discharged from the fuel cell and the exhaust heat recovery water;
A tank to which the cooling water discharged from the heat exchanger is supplied via the first pipe;
A pump for supplying cooling water in the tank to the fuel cell;
A second pipe connected to the tank so that the cooling water in the tank is led to the pump and detachably connected;
With
The fuel cell power generator, wherein the air blower sucks air from the tank from which the second pipe is removed, and collects cooling water in the tank.
JP2012166865A 2012-07-27 2012-07-27 Fuel cell power generator and cooling water recovery method for fuel cell power generator Active JP5946714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012166865A JP5946714B2 (en) 2012-07-27 2012-07-27 Fuel cell power generator and cooling water recovery method for fuel cell power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012166865A JP5946714B2 (en) 2012-07-27 2012-07-27 Fuel cell power generator and cooling water recovery method for fuel cell power generator

Publications (2)

Publication Number Publication Date
JP2014026850A true JP2014026850A (en) 2014-02-06
JP5946714B2 JP5946714B2 (en) 2016-07-06

Family

ID=50200313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012166865A Active JP5946714B2 (en) 2012-07-27 2012-07-27 Fuel cell power generator and cooling water recovery method for fuel cell power generator

Country Status (1)

Country Link
JP (1) JP5946714B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205090B3 (en) 2018-04-05 2019-07-25 Audi Ag Apparatus and method for handling a fuel cell coolant

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018846A (en) * 1996-07-01 1998-01-20 Nissan Altia Co Ltd Apparatus for replacing cooling liquid in vehicle and method therefor
US20020146608A1 (en) * 2001-04-05 2002-10-10 Deliang Yang Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
JP2005166404A (en) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd Fuel cell system
JP2006164670A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Fuel cell system
JP2006168507A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Fuel cell automobile
JP2006286488A (en) * 2005-04-01 2006-10-19 Nissan Motor Co Ltd Fuel cell system
JP2007242328A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Fuel cell system
US20090151903A1 (en) * 2007-12-13 2009-06-18 Hyundai Motor Company Coolant reservoir tank for fuel cell vehicle
JP2009301723A (en) * 2008-06-10 2009-12-24 Panasonic Corp Humidifier device of fuel cell gas
US20100047629A1 (en) * 2006-12-16 2010-02-25 Darling Robert M Pem fuel cell system with a porous hydrophobic gas venting member with gas flow blockage prevention
JP2010170824A (en) * 2009-01-22 2010-08-05 Honda Motor Co Ltd Refrigerant recovery apparatus
JP2011076728A (en) * 2009-09-29 2011-04-14 Toshiba Corp Fuel cell and drainage method thereof
JP4913262B2 (en) * 2009-04-28 2012-04-11 パナソニック株式会社 Fuel cell system and draining method of fuel cell system

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018846A (en) * 1996-07-01 1998-01-20 Nissan Altia Co Ltd Apparatus for replacing cooling liquid in vehicle and method therefor
US20020146608A1 (en) * 2001-04-05 2002-10-10 Deliang Yang Method and apparatus for the operation of a cell stack assembly during subfreezing temperatures
JP2005166404A (en) * 2003-12-02 2005-06-23 Nissan Motor Co Ltd Fuel cell system
JP2006164670A (en) * 2004-12-06 2006-06-22 Nissan Motor Co Ltd Fuel cell system
JP2006168507A (en) * 2004-12-15 2006-06-29 Nissan Motor Co Ltd Fuel cell automobile
JP2006286488A (en) * 2005-04-01 2006-10-19 Nissan Motor Co Ltd Fuel cell system
JP2007242328A (en) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd Fuel cell system
US20100047629A1 (en) * 2006-12-16 2010-02-25 Darling Robert M Pem fuel cell system with a porous hydrophobic gas venting member with gas flow blockage prevention
US20090151903A1 (en) * 2007-12-13 2009-06-18 Hyundai Motor Company Coolant reservoir tank for fuel cell vehicle
JP2009301723A (en) * 2008-06-10 2009-12-24 Panasonic Corp Humidifier device of fuel cell gas
JP2010170824A (en) * 2009-01-22 2010-08-05 Honda Motor Co Ltd Refrigerant recovery apparatus
JP4913262B2 (en) * 2009-04-28 2012-04-11 パナソニック株式会社 Fuel cell system and draining method of fuel cell system
JP2011076728A (en) * 2009-09-29 2011-04-14 Toshiba Corp Fuel cell and drainage method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018205090B3 (en) 2018-04-05 2019-07-25 Audi Ag Apparatus and method for handling a fuel cell coolant

Also Published As

Publication number Publication date
JP5946714B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
CN206282930U (en) Thermal control system and application in a kind of hydrogen energy-storage system
JP2012256606A (en) Fuel cell system
JP6068202B2 (en) Fuel cell system
JPWO2013122124A1 (en) Fuel cell system
CN110931829A (en) Fuel cell cold start system with purging device and control method
US9515339B2 (en) Fuel cell system ion exchanger
KR101553446B1 (en) Fuel cell system with excellent eliminating effect on freezing material throughout air purging and method of controlling the same
JP2014207061A (en) Fuel cell system and control method therefor
KR101362444B1 (en) Fuel cell system for easy heat emission
JP2012221903A (en) Fuel cell system
JP5057295B2 (en) Fuel cell device
JP5946714B2 (en) Fuel cell power generator and cooling water recovery method for fuel cell power generator
JP2008522367A (en) Water removal by a reactive air pump powered by a fuel cell system operable during the shutdown process
KR100916393B1 (en) Water trap for fuel cell vehicle
JP2009110684A (en) Fuel cell system
JP5342763B2 (en) Fuel cell device
JP2012233637A (en) Exhaust heat recovery device
JP5593808B2 (en) Fuel cell hot water supply system
JP2009181700A (en) Fuel battery device
JP2014063713A (en) Energy management system
KR101362445B1 (en) Fuel cell system for using waste heat of fuel reformer and operating method of the same
JP2011076728A (en) Fuel cell and drainage method thereof
KR101080311B1 (en) Fuel cell system having separate type auxiliary burner and driving method threrof
WO2013145761A1 (en) Electricity generation system and operating method therefor
JP2014192075A (en) Fuel cell power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5946714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350