JP2014026798A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2014026798A
JP2014026798A JP2012165244A JP2012165244A JP2014026798A JP 2014026798 A JP2014026798 A JP 2014026798A JP 2012165244 A JP2012165244 A JP 2012165244A JP 2012165244 A JP2012165244 A JP 2012165244A JP 2014026798 A JP2014026798 A JP 2014026798A
Authority
JP
Japan
Prior art keywords
unit cell
negative electrode
positive electrode
exterior body
electrode terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012165244A
Other languages
Japanese (ja)
Other versions
JP6045835B2 (en
Inventor
Shunpei Nishinaka
俊平 西中
Naoto Nishimura
直人 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2012165244A priority Critical patent/JP6045835B2/en
Publication of JP2014026798A publication Critical patent/JP2014026798A/en
Application granted granted Critical
Publication of JP6045835B2 publication Critical patent/JP6045835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a large secondary battery in which disconnection between an output/input terminal and a unit cell is prevented.SOLUTION: A battery includes a thin plate 17 which holds a unit cell 11 at a position where the unit cell 11 is not brought into contact with an inner wall of an outer packaging body 12 even when the unit cell 11 is moved in a state where the unit cell 11 is closest to the inner wall of the outer packaging body 12, and holds the unit cell 11 at a position where electrical connection by electrode tabs 13 and 14 can be maintained even when the unit cell 11 is in a state where the unit cell 11 is most apart from the inner wall of the outer packaging body 12.

Description

本発明は非水電解液二次電池等の電池の構造に関する。   The present invention relates to the structure of a battery such as a non-aqueous electrolyte secondary battery.

非水電解液二次電池の分野では、近年のエネルギーデバイスの大容量化、低コスト化に伴い、単電池の大型化がなされてきている。   In the field of non-aqueous electrolyte secondary batteries, the size of single cells has been increased with the recent increase in capacity and cost of energy devices.

非水電解液二次電池でも大型の場合、信頼性を向上させるため、樹脂フィルム等を主体とするラミネートシートで構成された外装体に代えて、金属缶を外装体として用いることが一般的である。   In the case of a large non-aqueous electrolyte secondary battery, in order to improve reliability, it is common to use a metal can as an exterior body instead of an exterior body composed of a laminate sheet mainly composed of a resin film or the like. is there.

セパレータを挟んで対向する正極板と負極板とから成る積層構造の素電池を外装体内に収容した電池において、電池が強い衝撃や振動を受けると、素電池が外装体内を移動し、出入力端子と素電池の電極端子との接続部分が切断されることがある。   When a battery having a laminated structure composed of a positive electrode plate and a negative electrode plate facing each other with a separator in between is accommodated in the exterior body, when the battery is subjected to strong impact or vibration, the unit cell moves inside the exterior body, and the input / output terminal In some cases, the connection between the electrode terminal of the unit cell and the unit cell is cut off.

すなわち、素電池の移動が原因となって、素電池の電極端子と出入力端子との接続部分に屈伸や折り曲げ応力が働き、当該接続部分が切断されるのである。   That is, due to the movement of the unit cell, bending or bending stress acts on the connection part between the electrode terminal and the input / output terminal of the unit cell, and the connection part is cut.

出入力端子と素電池の電極端子との接続部分の切断を防ぐための技術として、例えば、下掲の特許文献1に開示されている技術がある。   As a technique for preventing disconnection of the connection portion between the input / output terminal and the electrode terminal of the unit cell, for example, there is a technique disclosed in Patent Document 1 listed below.

特許文献1の技術は、ラミネート型電池について、正極、セパレータおよび負極を積層一体化した素電池の正、負極端子部にそれぞれ一端が溶接されたリード端子に略S字状折り曲げ部を設け、この略S字状折り曲げ部の屈伸変形で衝撃、振動による素電池の移動に起因した応力を吸収解消し、リード端子の切断を防止する。   In the technique of Patent Document 1, a laminated battery is provided with a substantially S-shaped bent portion on a lead terminal having one end welded to each of positive and negative electrode terminal portions of a unit cell in which a positive electrode, a separator, and a negative electrode are laminated and integrated. By bending and stretching the substantially S-shaped bent portion, the stress caused by the movement of the unit cell due to impact and vibration is absorbed and the cutting of the lead terminal is prevented.

特開2000−215877号公報(2000年8月4日公開)JP 2000-215877 A (published August 4, 2000)

しかしながら、上述の従来技術を大型電池にそのまま適用した場合、S字状に折り曲げられたリード端子の構造のみによって、出入力端子と素電池の電極端子との接続部分の切断を防止することは困難であるという問題がある。   However, when the above-described conventional technology is applied to a large battery as it is, it is difficult to prevent the connection portion between the input / output terminal and the electrode terminal of the unit cell from being cut only by the structure of the lead terminal bent into an S shape. There is a problem that.

上記問題の原因は、下記の2つの理由による。   The cause of the above problem is due to the following two reasons.

第1に、単電池の大型化により素電池が大重量化し、従って、大型単電池の場合、小型電池の場合に比べ、外装体内での素電池の移動は激しいものとなりやすいという理由である。   The first reason is that the unit cell becomes heavier due to the increase in the size of the unit cell. Therefore, in the case of the large unit cell, the movement of the unit cell in the exterior body tends to be intense as compared with the case of the small unit cell.

素電池の重量が大きくなった分、リード端子に設けた略S字状折り曲げ部の屈伸あるいは変形のみによって、素電池の移動による応力を吸収することは困難となり、つまり、素電池の移動に伴うリード端子の切断や溶接剥離を防止することは困難になった。   As the weight of the unit cell increases, it becomes difficult to absorb the stress due to the movement of the unit cell only by bending or stretching of the substantially S-shaped bent portion provided on the lead terminal. It has become difficult to prevent lead terminals from being cut or welded.

また当然、素電池の外装体内での移動を制御していたリード端子が切断され、または、リード端子の溶接が剥離することによって、外装体内の素電池の移動を制御できなくなる結果、素電池と外装体とが接触し、内部短絡が発生する虞がある。   Naturally, the lead terminal that controlled the movement of the unit cell in the exterior body is cut or the welding of the lead terminal is peeled off, so that the movement of the unit cell in the exterior unit cannot be controlled. There is a risk that an internal short circuit may occur due to contact with the exterior body.

第2に、大型電池においては、一般に、ラミネートシートで構成された外装体ではなく、金属缶を外装体として用いるため、外装体内での素電池の移動が激しいものとなりやすいという理由である。   Secondly, in a large battery, since a metal can is generally used as an exterior body, not an exterior body composed of a laminate sheet, the movement of the unit cell within the exterior body tends to be intense.

ラミネートシートは樹脂フィルム主体の柔らかな素材であるため、電池に加わる外力全体のうち、ラミネートシートによって吸収される外力の割合は大きかった。   Since the laminate sheet is a soft material mainly composed of a resin film, the ratio of the external force absorbed by the laminate sheet is large in the entire external force applied to the battery.

これに対して、ラミネートシートに比べて硬い金属缶を外装体として用いる場合、外装体内の素電池には、外装体がラミネートシートで構成されている場合に比べて、電池に加わる外力全体のうち、より多くの割合の外力が加わる。   On the other hand, when using a metal can that is harder than the laminate sheet as the exterior body, the unit cell in the exterior body is out of the total external force applied to the battery as compared with the case where the exterior body is composed of the laminate sheet. A greater proportion of external force is applied.

また、樹脂フィルムに比べ金属板は滑りやすいため、特に金属缶の内面を樹脂等によってコーティングしていない場合、金属缶の内面に接触するのがセパレータであったとしても、金属缶内での素電池の移動は激しいものとなりやすい。   In addition, since the metal plate is more slippery than the resin film, even when the inner surface of the metal can is not coated with resin or the like, even if the separator contacts the inner surface of the metal can, the element in the metal can Battery movement tends to be intense.

本発明は、上記の問題点に鑑みてなされたものであり、その目的は、大型電池であって、出入力端子と素電池との断線を防ぎ、併せて、素電池と外装体との接触による内部短絡を防止する電池を提供することにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is a large-sized battery, which prevents disconnection between an input / output terminal and a unit cell, and at the same time, contacts between the unit cell and an exterior body. An object of the present invention is to provide a battery that prevents an internal short circuit due to the above.

上記の課題を解決するために、本発明に係る電池は、
(A)正極および負極の電極板がセパレータを挟んで積層されて成る素電池を、一軸に沿って移動可能に外装体に収容し、上記移動によって上記素電池が離接する上記外装体の内壁に設けられた電極端子と上記電極板とが電極タブによって電気的に接続されている電池であって、
(B)上記移動によって上記素電池が上記外装体の内壁に最も接近した状態でも、上記素電池が上記外装体の内壁と接触しない位置に上記素電池を保持するとともに、上記移動によって上記素電池が上記外装体の内壁から最も離間した状態でも、上記電極タブによる電気的な接続を維持できる位置に上記素電池を保持する移動制御体を備える
ことを特徴としている。
In order to solve the above problems, a battery according to the present invention is
(A) A unit cell in which positive and negative electrode plates are stacked with a separator sandwiched between them is accommodated in an exterior body so as to be movable along one axis, and on the inner wall of the exterior body to which the unit cell is separated from and connected by the movement. A battery in which the provided electrode terminal and the electrode plate are electrically connected by an electrode tab,
(B) Even when the unit cell is closest to the inner wall of the exterior body by the movement, the unit cell is held at a position where the unit cell is not in contact with the inner wall of the exterior body, and the unit cell is moved by the movement. Is provided with a movement control body that holds the unit cell at a position where electrical connection by the electrode tab can be maintained even in a state of being most separated from the inner wall of the exterior body.

上記の構成によれば、素電池は外装体内を動くことができるので、素電池は、電池に加えられた衝撃を、外装体内を移動することによって、緩やかに吸収し、素電池自体が直接、電池に加えられた衝撃を全て受けてしまうことがない。これにより、素電池に大きな力が加わることによって、素電池内で積層ずれが発生し、正極板と負極板とが短絡を起こしてしまうという事態を回避することができる。   According to the above configuration, since the unit cell can move within the exterior body, the unit cell gently absorbs the impact applied to the battery by moving within the exterior body, and the unit cell itself directly You won't get all the impact on the battery. As a result, it is possible to avoid a situation in which a large displacement is applied to the unit cell to cause a stacking deviation in the unit cell, causing a short circuit between the positive electrode plate and the negative electrode plate.

また、上記の構成によれば、移動制御体によって、素電池が、外装体の内壁に最も接近した位置に移動した状態でも、外装体の内壁と接触しない位置に保持され、また、外装体の内壁から最も離間した位置に移動した状態でも、電極タブによる電気的な接続を維持できる位置に保持される。これにより、素電池と外装体との接触、つまり電池内部での短絡を防止することができる。   Further, according to the above configuration, even when the unit cell is moved to a position closest to the inner wall of the exterior body by the movement control body, the unit is held at a position that does not contact the inner wall of the exterior body. Even in a state where it is moved to a position farthest from the inner wall, it is held at a position where electrical connection by the electrode tab can be maintained. Thereby, the contact with a unit cell and an exterior body, ie, the short circuit inside a battery, can be prevented.

さらに、上記の構成によれば、移動制御体が、外装体内の素電池の移動を制御するので、外装体内の素電池の移動を原因とする、正極タブおよび負極タブの切断を防ぐことができ、つまり、素電池と出入力端子との断線を防止することができる。   Furthermore, according to the above configuration, since the movement control body controls the movement of the unit cells in the exterior body, it is possible to prevent the positive electrode tab and the negative electrode tab from being disconnected due to the movement of the unit cells in the exterior body. That is, disconnection between the unit cell and the input / output terminal can be prevented.

また、外装体内には、素電池が移動することのできる空間が設けられているため、電池の電解液保液量が増加し、電池の長寿命化を期待することができる。   In addition, since a space in which the unit cell can move is provided in the exterior body, the amount of electrolyte solution retained in the battery is increased, and the battery life can be expected to be extended.

さらに、本発明に係る電池は、上記移動制御体が、上記素電池に固定され、上記素電池と共に上記外装体内を移動することが好ましい。   Furthermore, in the battery according to the present invention, it is preferable that the movement control body is fixed to the unit cell and moves in the exterior body together with the unit cell.

上記の構成によれば、さらに、素電池に固定された移動制御体が、電池内の断線および短絡を防止するとともに、外装体内を移動できることによって、素電池は、電池に加わる衝撃を穏やかに吸収することができる。   According to the above configuration, further, the movement control body fixed to the unit cell can prevent the disconnection and short circuit in the cell and can move inside the exterior body, so that the unit cell gently absorbs the impact applied to the cell. can do.

さらに、上記の構成によれば、例えば薄板を移動制御体として素電池の表面に固定することによって、素電池が外装体の内面に接触して摩耗したり破損したりするのを防ぐことができるようになる。   Furthermore, according to said structure, it can prevent that a unit cell contacts with the inner surface of an exterior body, and is damaged by fixing a thin plate to the surface of a unit cell as a movement control body, for example. It becomes like this.

さらに、本発明に係る電池は、上記移動制御体が上記外装体に固定されていることが好ましい。   Furthermore, in the battery according to the present invention, it is preferable that the movement control body is fixed to the exterior body.

上記の構成によれば、さらに、外装体に固定された移動制御体が、電池内の断線および短絡を防止するとともに、外装体内を移動できることによって、素電池は、電池に加わる衝撃を穏やかに吸収することができる。また、上記移動制御体を上記素電池に固定する場合に比べて、外装体内の容積を小さくできる。   According to the above configuration, further, the movement control body fixed to the exterior body prevents disconnection and short circuit in the battery and can move within the exterior body, so that the unit cell gently absorbs the impact applied to the battery. can do. Moreover, the volume in the exterior body can be reduced as compared with the case where the movement control body is fixed to the unit cell.

さらに、本発明に係る電池は、上記電極端子が、正極および負極がそれぞれ、上記移動によって上記素電池が離接する、対向する上記外装体の内壁の一方ずつに配設されていることが好ましい。   Furthermore, in the battery according to the present invention, it is preferable that the electrode terminal is disposed on each of the opposing inner walls of the outer casing, in which the positive electrode and the negative electrode are separated from and connected to each other by the movement.

上記の構成によれば、さらに、正極端子と負極端子とが、異なる2つの平面に配設されている電池において、電池に加えられた衝撃による素電池の破壊と、内部短絡および内部断線とを回避することができる。   According to the above configuration, in the battery in which the positive electrode terminal and the negative electrode terminal are arranged on two different planes, the destruction of the unit cell due to the impact applied to the battery, the internal short circuit, and the internal disconnection It can be avoided.

さらに、本発明に係る電池は、上記電極端子は、正極および負極の両方が、上記移動によって上記素電池が離接する、対向する上記外装体の内壁の一方に配設されていることが好ましい。   Furthermore, in the battery according to the present invention, it is preferable that both the positive electrode and the negative electrode of the battery terminal are disposed on one of the opposing inner walls of the exterior body where the unit cell is separated from and contacting by the movement.

上記の構成によれば、さらに、正極端子と負極端子とが1つの平面に配設されている電池において、電池に加えられた衝撃による素電池の破壊と、内部短絡および内部断線とを回避することができる。また、電極端子の正極および負極がそれぞれ対向する外装体の内壁の一方ずつに配設される場合に比べて、外装体内の容積を小さくできる。   According to the above configuration, furthermore, in the battery in which the positive electrode terminal and the negative electrode terminal are arranged on one plane, the destruction of the unit cell due to the impact applied to the battery, the internal short circuit, and the internal disconnection are avoided. be able to. In addition, the volume in the outer package can be reduced as compared with the case where the positive electrode and the negative electrode of the electrode terminal are arranged on one of the inner walls of the outer package facing each other.

さらに、本発明に係る電池は上記外装体が金属製であることが好ましい。   Furthermore, in the battery according to the present invention, the outer package is preferably made of metal.

上記の構成によれば、さらに、電池に加えられた衝撃が素電池へと伝わりやすく、さらに、外装体内を素電池が激しく移動する傾向のある、金属缶を外装体として用いた電池においても、外装体内での素電池の移動を確保することによって、素電池が緩やかに衝撃を吸収し、素電池自体が破壊されてしまう可能性を軽減することができる。   According to the above configuration, the impact applied to the battery is easily transmitted to the unit cell, and further, in the battery using the metal can as the exterior body, in which the unit cell tends to move violently in the exterior body, By ensuring the movement of the unit cell within the exterior body, it is possible to reduce the possibility that the unit cell gently absorbs the impact and the unit cell itself is destroyed.

また、上記の構成によれば、移動制御体によって、電池内での切断および短絡を防止することができる。   Moreover, according to said structure, the cutting | disconnection and short circuit within a battery can be prevented with a movement control body.

以上のように、本発明に係る電池は、移動によって素電池が外装体の内壁に最も接近した状態でも、上記素電池が上記外装体の内壁と接触しない位置に上記素電池を保持するとともに、上記移動によって上記素電池が上記外装体の内壁から最も離間した状態でも、電極タブによる電気的な接続を維持できる位置に上記素電池を保持する移動制御体を備える構成である。   As described above, the battery according to the present invention holds the unit cell in a position where the unit cell does not contact the inner wall of the exterior body, even when the unit cell is closest to the inner wall of the exterior body by movement, Even when the unit cell is farthest from the inner wall of the exterior body due to the movement, a movement control body that holds the unit cell at a position where the electrical connection by the electrode tab can be maintained is provided.

それゆえ、素電池と外装体との接触、つまり電池内部での短絡を防止することができるという効果を奏する。また、外装体内の素電池の移動を原因とする、正極タブおよび負極タブの切断、つまり、素電池と出入力端子との断線を防止することができるという効果を奏する。また、外装体内には、素電池が移動することのできる空間が設けられているため、電池の電解液保液量が増加し、電池の長寿命化を期待することができる。   Therefore, there is an effect that it is possible to prevent contact between the unit cell and the exterior body, that is, a short circuit inside the battery. Further, there is an effect that it is possible to prevent the disconnection of the positive electrode tab and the negative electrode tab, that is, the disconnection between the unit cell and the input / output terminal due to the movement of the unit cell in the exterior body. In addition, since a space in which the unit cell can move is provided in the exterior body, the amount of electrolyte solution retained in the battery is increased, and the battery life can be expected to be extended.

本発明の一実施の形態に係る二次電池の構造を示す、素電池の積層方向に沿って切断した断面図である。It is sectional drawing cut | disconnected along the lamination direction of a unit cell which shows the structure of the secondary battery which concerns on one embodiment of this invention. 図1に示した二次電池を、電極板と電極端子との接続が分かるように、素電池の積層方向から見下ろした時の概要図である。It is a schematic diagram when the secondary battery shown in FIG. 1 is looked down from the lamination direction of a unit cell so that the connection of an electrode plate and an electrode terminal can be understood. 衝撃耐性実験を行った二次電池のサイズを整理した表である。It is the table | surface which arranged the size of the secondary battery which conducted the impact tolerance experiment. 衝撃耐性実験結果をまとめた表である。It is the table | surface which put together the impact-resistant experiment result. 比較例1の実験結果を示す図である。FIG. 6 is a diagram showing experimental results of Comparative Example 1. 比較例2の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 2. 比較例3の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 3. 比較例4の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 4. 比較例5の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 5. 比較例6の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 6. 比較例7の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 7. 比較例8の実験結果を示す図である。It is a figure which shows the experimental result of the comparative example 8. 本発明の別の実施の形態に係る二次電池の構造を示す、素電池の積層方向に沿って切断した断面図である。It is sectional drawing cut | disconnected along the lamination direction of a unit cell which shows the structure of the secondary battery which concerns on another embodiment of this invention. 図13に示した二次電池を、電極板と電極端子との接続が分かるように、素電池の積層方向から見下ろした時の概要図である。It is a schematic diagram when the secondary battery shown in FIG. 13 is looked down from the lamination direction of a unit cell so that the connection of an electrode plate and an electrode terminal can be understood. 本発明のさらに別の実施の形態に係る二次電池の構造を示す、素電池の積層方向に沿って切断した断面図である。It is sectional drawing cut | disconnected along the lamination direction of the unit cell which shows the structure of the secondary battery which concerns on another embodiment of this invention. 図15に示した二次電池を、電極板と電極端子との接続が分かるように、素電池の積層方向から見下ろした時の概要図である。It is a schematic diagram when the secondary battery shown in FIG. 15 is looked down from the lamination direction of a unit cell so that the connection of an electrode plate and an electrode terminal can be understood. 図15に示した二次電池の衝撃耐性を確認するための実験に用いた、二次電池のサイズを整理した表である。16 is a table in which sizes of secondary batteries used in experiments for confirming impact resistance of the secondary battery shown in FIG. 15 are arranged. 図17に示した二次電池の衝撃耐性実験の結果をまとめた表である。It is the table | surface which put together the result of the impact tolerance experiment of the secondary battery shown in FIG. 図15に示した二次電池の実験結果を示す図である。It is a figure which shows the experimental result of the secondary battery shown in FIG. 図15に示した二次電池の比較例の実験結果を示す図である。FIG. 16 is a diagram showing an experimental result of a comparative example of the secondary battery shown in FIG. 15.

図1〜図20に基づいて、本発明の実施の形態について詳細に説明する。なお説明の便宜のため、各図において、二次電池1の形状等を誇張して描くとともに、各辺の長さをa、b、c、d1、d2、e、f、g、hを用いて表し、単位はそれぞれ「ミリメートル」である。a、b、c、d1、d2、e、f、g、hがそれぞれ、どの辺の長さに該当するかについては後述する。   The embodiment of the present invention will be described in detail with reference to FIGS. For convenience of explanation, in each drawing, the shape and the like of the secondary battery 1 are exaggerated and the length of each side is a, b, c, d1, d2, e, f, g, h. Each unit is “millimeter”. Which side lengths a, b, c, d1, d2, e, f, g, and h correspond to will be described later.

(1)二次電池の概要
図1は、本発明の一実施の形態に係るリチウムイオン二次電池1の構造を示す、素電池の積層方向に沿って切断した断面図であり、図2は、二次電池1を素電池の積層方向から見下ろした時の概要図である。
(1) Outline of Secondary Battery FIG. 1 is a sectional view showing the structure of a lithium ion secondary battery 1 according to an embodiment of the present invention, cut along the stacking direction of the unit cells, and FIG. It is a schematic diagram when the secondary battery 1 is looked down from the lamination direction of a unit cell.

なお図2は、素電池1において、正極タブ(電極タブ)13および負極タブ(電極タブ)14が、それぞれ正極板(電極板)111と負極板(電極板)112とに接続していることを示している。なお、セパレータ110、正極板111および負極板112について、積層面の長辺および短辺の長さは同じである。   2 shows that in the unit cell 1, a positive electrode tab (electrode tab) 13 and a negative electrode tab (electrode tab) 14 are connected to a positive electrode plate (electrode plate) 111 and a negative electrode plate (electrode plate) 112, respectively. Is shown. Note that the separator 110, the positive electrode plate 111, and the negative electrode plate 112 have the same long side and short side length on the laminated surface.

図1に示すように、二次電池1は、正極板111と負極板112との間にセパレータ110を挟んだ積層構造の素電池11と、素電池11の積層方向に垂直な2つの面にカプトンテープ18によって固定された薄板17・17´と、外装体12とを含む。ここで、素電池11は、外装体12内に、一軸に沿って移動可能に収容されている。そして、図1において素電池11の下方に設けられた薄板17(移動制御体)は、上記移動によって素電池11が外装体12の内壁に最も接近した状態でも、素電池11が外装体12の内壁と接触しない位置に素電池11を保持するとともに、上記移動によって素電池11が外装体12の内壁から最も離間した状態でも、電極タブ13・14による電気的な接続を維持できる位置に素電池11を保持する。   As shown in FIG. 1, the secondary battery 1 includes a unit cell 11 having a stacked structure in which a separator 110 is sandwiched between a positive electrode plate 111 and a negative electrode plate 112, and two surfaces perpendicular to the stacking direction of the unit cells 11. The thin plates 17 and 17 ′ fixed by the Kapton tape 18 and the exterior body 12 are included. Here, the unit cell 11 is accommodated in the exterior body 12 so as to be movable along one axis. In addition, the thin plate 17 (movement control body) provided below the unit cell 11 in FIG. 1 is configured so that the unit cell 11 remains in the exterior body 12 even when the unit cell 11 is closest to the inner wall of the exterior body 12 by the above movement. The unit cell 11 is held at a position not in contact with the inner wall, and the unit cell is maintained at a position where the electrical connection by the electrode tabs 13 and 14 can be maintained even when the unit cell 11 is farthest from the inner wall of the exterior body 12 by the above movement. 11 is held.

正極板111は、外装体12の一方の側壁に形成されている正極端子(電極端子)15に、正極タブ13を介して接続されており、負極板112は、外装体12の他方の側壁に形成されている負極端子(電極端子)16に、負極タブ14を介して接続されている。   The positive electrode plate 111 is connected to the positive electrode terminal (electrode terminal) 15 formed on one side wall of the outer package 12 via the positive electrode tab 13, and the negative electrode plate 112 is connected to the other side wall of the outer package 12. The negative electrode terminal (electrode terminal) 16 that is formed is connected via a negative electrode tab 14.

以下、素電池11の各部について、サイズの一例を挙げながら説明する。積層面の長辺の長さaは335mmであり、短辺の長さは154mm、積層方向の厚さは5mmである。   Hereinafter, each part of the unit cell 11 will be described with an example of the size. The length a of the long side of the lamination surface is 335 mm, the length of the short side is 154 mm, and the thickness in the lamination direction is 5 mm.

薄板17について、素電池11の上記長辺に対応する薄板17の長辺の長さbは365mmであり、短辺の長さは154mm、厚さは1mmである。   Regarding the thin plate 17, the length b of the long side of the thin plate 17 corresponding to the long side of the unit cell 11 is 365 mm, the length of the short side is 154 mm, and the thickness is 1 mm.

薄板17´の、素電池11の積層面と平行な面のサイズは、素電池11の積層面のサイズと同じであり、長辺の長さは335mmであり、短辺の長さは154mmである。また、薄板17´の厚さは1mmである。   The size of the plane of the thin plate 17 ′ parallel to the laminated surface of the unit cells 11 is the same as the size of the laminated surface of the unit cells 11, the long side is 335 mm, and the short side is 154 mm. is there. Further, the thickness of the thin plate 17 ′ is 1 mm.

同様に外装体12について、素電池11の上記長辺に対応する外装体12の長辺の長さcは375mmであり、短辺の長さは155mm、素電池11の積層方向に該当する、外装体12の高さは8mmである。   Similarly, for the exterior body 12, the length c of the long side of the exterior body 12 corresponding to the long side of the unit cell 11 is 375 mm, the length of the short side is 155 mm, and corresponds to the stacking direction of the unit cells 11. The height of the exterior body 12 is 8 mm.

素電池11の、積層面の長辺が、薄板17および外装体12の長辺に対応し、素電池11の短辺は薄板17および外装体12の短辺に対応し、素電池11の積層方向の厚さは薄板17および外装体12の厚さに対応している。   The long side of the stacked surface of the unit cell 11 corresponds to the long side of the thin plate 17 and the outer package 12, the short side of the unit cell 11 corresponds to the short side of the thin plate 17 and the package 12, and the unit cell 11 is stacked. The thickness in the direction corresponds to the thickness of the thin plate 17 and the outer package 12.

素電池11にはカプトンテープ18によって薄板17・17´が固定されており、薄板17は、正極端子15側には、素電池11より15mm長く、負極端子16側には、素電池11より15mm長い。なお、素電池11と比べた正極端子15側の薄板17長さの差をeとし、負極端子16側の差をfとする。なお、図1に示すように、薄板17´は、素電池1の積層面の上側に、素電池1の積層面からはみ出す部分が無いように固定され、薄板17は、素電池1の積層面の下側に固定されている。   The thin plates 17 and 17 ′ are fixed to the unit cell 11 by Kapton tape 18. The thin plate 17 is 15 mm longer than the unit cell 11 on the positive electrode terminal 15 side and 15 mm from the unit cell 11 on the negative electrode terminal 16 side. long. In addition, the difference of the thin plate 17 length by the side of the positive electrode terminal 15 compared with the unit cell 11 is set to e, and the difference by the side of the negative electrode terminal 16 is set to f. As shown in FIG. 1, the thin plate 17 ′ is fixed on the upper side of the stacked surface of the unit cell 1 so that there is no portion protruding from the stacked surface of the unit cell 1, and the thin plate 17 is the stacked surface of the unit cell 1. It is fixed to the lower side.

素電池11の下面にカプトンテープ18によって固定された薄板17によって、素電池11は、薄板17が外装体12内を動ける範囲で、外装体12内を動くことができる。   With the thin plate 17 fixed to the lower surface of the unit cell 11 with the Kapton tape 18, the unit cell 11 can move in the outer package 12 within a range in which the thin plate 17 can move in the outer package 12.

具体的には、素電池11は、積層面の長手方向に、「外装体12の長辺の長さ−薄板17の長辺の長さ」の分、つまり10mmの範囲で、外装体12内を動くことができる。   Specifically, the unit cell 11 has a length of 10 mm in the longitudinal direction of the laminated surface, ie, the length of the long side of the outer package 12 minus the length of the long side of the thin plate 17. Can move.

また、上記のように、薄板17は、素電池11に対し、正極端子15側と負極端子16側とに、それぞれ15mm長いため、薄板17は、素電池11が外装体12の内壁に接触するのを防いでいる。   Further, as described above, since the thin plate 17 is 15 mm longer than the unit cell 11 on the positive electrode terminal 15 side and the negative electrode terminal 16 side, the thin plate 17 is in contact with the inner wall of the exterior body 12. Is prevented.

なお、上記サイズ設定から明らかなように、素電池11の、積層方向での外装体12内の移動可能距離は、1mmであり、実質的に、外装体12内の積層方向での素電池11の移動は無視することができる。   As is clear from the above size setting, the movable distance of the unit cell 11 in the outer package 12 in the stacking direction is 1 mm, and substantially the unit cell 11 in the stacking direction in the outer package 12. The movement of can be ignored.

正極タブ13の長辺の長さd1は60mm、短辺の長さは30mm、厚さは100μmであり、負極タブ14の長辺の長さd2は60mm、短辺の長さは30mm、厚さは100μmである。   The length d1 of the long side of the positive electrode tab 13 is 60 mm, the length of the short side is 30 mm, the thickness is 100 μm, the length d2 of the long side of the negative electrode tab 14 is 60 mm, the length of the short side is 30 mm, and the thickness The thickness is 100 μm.

正極板111の長手方向の一端に、正極タブ13の長手方向の一端が溶接され、正極タブ13の他端は、正極端子15に溶接されている。   One end in the longitudinal direction of the positive electrode tab 13 is welded to one end in the longitudinal direction of the positive electrode plate 111, and the other end of the positive electrode tab 13 is welded to the positive electrode terminal 15.

同様に、負極板112の長手方向の一端に、負極タブ14の長手方向の一端が溶接され、負極タブ14の他端は、負極端子16に溶接されている。   Similarly, one end in the longitudinal direction of the negative electrode tab 14 is welded to one end in the longitudinal direction of the negative electrode plate 112, and the other end of the negative electrode tab 14 is welded to the negative electrode terminal 16.

ここで、上記のように、素電池11の長辺の長さは335mmであり、外装体12の長辺の長さは375mmであり、また、薄板17は、正極端子15側には、素電池11より15mm長く、負極端子16側には、素電池11より15mm長い。   Here, as described above, the length of the long side of the unit cell 11 is 335 mm, the length of the long side of the exterior body 12 is 375 mm, and the thin plate 17 is disposed on the positive electrode terminal 15 side on the element side. 15 mm longer than the battery 11 and 15 mm longer than the unit cell 11 on the negative electrode terminal 16 side.

素電池11が外装体12内を最も負極端子16側に移動した場合、正極板111と正極端子15との距離は、最も離れ、その長さは、「外装体12の長辺−薄板17の長辺+正極端子15側の薄板17と素電池11との距離の差」であり、25mmである。   When the unit cell 11 moves to the most negative electrode terminal 16 side in the outer package 12, the distance between the positive electrode plate 111 and the positive electrode terminal 15 is the longest, and the length is “the long side of the outer package 12 minus the thin plate 17. The difference in the distance between the long side + the thin plate 17 on the positive electrode terminal 15 side and the unit cell 11 ”is 25 mm.

正極タブ13の、正極端子15と正極板111とを結ぶ方向の長さは60mmであるため、素電池11が最も負極端子16側に移動した場合であっても、正極タブ13がこの移動によって切断されることはない。   Since the length of the positive electrode tab 13 in the direction connecting the positive electrode terminal 15 and the positive electrode plate 111 is 60 mm, the positive electrode tab 13 is moved by this movement even when the unit cell 11 is moved to the most negative electrode terminal 16 side. It will not be cut.

同様に、負極タブ14は、素電池11が最も正極端子15側に移動した場合であっても、この移動によって切断されることはない。   Similarly, the negative electrode tab 14 is not cut by this movement even when the unit cell 11 has moved most to the positive electrode terminal 15 side.

なお、素電池11が外装体12のほぼ中央に位置している時、図1に示すように、正極タブ13および負極タブ14は略N字型に歪んでいる。   In addition, when the unit cell 11 is located in the approximate center of the exterior body 12, as shown in FIG. 1, the positive electrode tab 13 and the negative electrode tab 14 are distorted in a substantially N shape.

これまで述べてきた内容をまとめると、二次電池1は下記の構造を有している。   To summarize the contents described so far, the secondary battery 1 has the following structure.

すなわち、第1に、素電池11は、正極端子15と正極板111とを結ぶ方向と、負極端子16と負極板112とを結ぶ方向とについて、素電池11よりも長く、外装体12よりも短い薄板17と固定されている。従って、素電池11は、薄板17と共に、正極端子15と正極板111とを結ぶ方向、または負極端子16と負極板112とを結ぶ方向に、外装体12内を移動することができる。   That is, first, the unit cell 11 is longer than the unit cell 11 in the direction connecting the positive electrode terminal 15 and the positive electrode plate 111 and the direction connecting the negative electrode terminal 16 and the negative electrode plate 112 and is longer than the outer package 12. It is fixed to a short thin plate 17. Accordingly, the unit cell 11 can move in the outer package 12 together with the thin plate 17 in a direction connecting the positive electrode terminal 15 and the positive electrode plate 111 or in a direction connecting the negative electrode terminal 16 and the negative electrode plate 112.

つまり、端子接続方向に素電池11が、外装ケース12内を移動することができ、素電池11は電池1に加えられた衝撃を緩やかに吸収し、素電池11自体が直接、電池1に加えられた衝撃を受けることがない。これにより、素電池11に大きな力が加わることで、素電池11内で、積層ずれが発生し、正極板111と負極板112とが短絡を起こしてしまうという事態を回避することができる。   That is, the unit cell 11 can move in the exterior case 12 in the terminal connection direction, the unit cell 11 gently absorbs the impact applied to the cell 1, and the unit cell 11 itself directly adds to the cell 1. Will not receive the impact. As a result, it is possible to avoid a situation in which stacking deviation occurs in the unit cell 11 due to a large force applied to the unit cell 11 and the positive electrode plate 111 and the negative electrode plate 112 cause a short circuit.

第2に、正極端子15と正極板111とを結ぶ方向と、負極端子16と負極板112とを結ぶ方向とに、薄板17は素電池11よりも長い。従って、正極端子15と正極板111とを結ぶ方向と、負極端子16と負極板112とを結ぶ方向とについて、素電池11が外装体12内を移動しても、素電池11と外装体12とは接触することがなく、短絡の可能性を抑制することができる。   Secondly, the thin plate 17 is longer than the unit cell 11 in the direction connecting the positive electrode terminal 15 and the positive electrode plate 111 and in the direction connecting the negative electrode terminal 16 and the negative electrode plate 112. Therefore, even if the unit cell 11 moves in the outer package 12 in the direction connecting the positive electrode terminal 15 and the positive electrode plate 111 and the direction connecting the negative electrode terminal 16 and the negative electrode plate 112, the unit cell 11 and the outer package 12. And the possibility of a short circuit can be suppressed.

第3に、正極タブ13は、「正極端子15と正極板111とを結ぶ方向における、外装体12の長さ−薄板17の長さ−正極端子15側の薄板17と素電池11との距離の差」以上の長さを、正極端子15と正極板111とを結ぶ方向に、有している。また、負極タブ14は、「負極端子16と負極板112とを結ぶ方向における、外装体12の長さ−薄板17の長さ−負極端子16側の薄板17と素電池11との距離の差」以上の長さを、負極端子16と負極板112とを結ぶ方向に、有している。   Thirdly, the positive electrode tab 13 indicates that “the length of the outer package 12 in the direction connecting the positive electrode terminal 15 and the positive electrode plate 111−the length of the thin plate 17−the distance between the thin plate 17 on the positive electrode terminal 15 side and the unit cell 11. In the direction connecting the positive electrode terminal 15 and the positive electrode plate 111, a length equal to or greater than “the difference” is provided. Further, the negative electrode tab 14 indicates that “the length of the outer package 12 in the direction connecting the negative electrode terminal 16 and the negative electrode plate 112−the length of the thin plate 17−the difference in the distance between the thin plate 17 on the negative electrode terminal 16 side and the unit cell 11. ”In the direction connecting the negative electrode terminal 16 and the negative electrode plate 112.

従って、正極端子15と正極板111とを結ぶ方向、または負極端子16と負極板112とを結ぶ方向に、素電池11が、外装体12内を移動しても、この移動によって、正極タブ13および負極タブ14が切断されることはない。つまり、電池1において、外装体12内での素電池11の移動を原因とする内部断線を防止することができる。   Therefore, even if the unit cell 11 moves in the exterior body 12 in the direction connecting the positive electrode terminal 15 and the positive electrode plate 111 or in the direction connecting the negative electrode terminal 16 and the negative electrode plate 112, the positive electrode tab 13 is moved by this movement. The negative electrode tab 14 is not cut. That is, in the battery 1, internal disconnection caused by the movement of the unit cell 11 within the outer package 12 can be prevented.

第4に、外部からの衝撃や振動により素電池11が外装体12内を動く際にも、薄板17は、素電池11が外装体12の内面に接触して摩耗したり破損したりするのを防ぐことができる。   Fourth, even when the unit cell 11 moves in the exterior body 12 due to external impact or vibration, the thin plate 17 is worn or damaged when the unit cell 11 contacts the inner surface of the exterior body 12. Can be prevented.

第5に、素電池11と外装体12との間に空間が設けられているため、二次電池1の電解液保液量が増加し、二次電池1の長寿命化を期待することができる。   Fifth, since a space is provided between the unit cell 11 and the exterior body 12, the amount of electrolyte solution retained in the secondary battery 1 is increased, and a longer life of the secondary battery 1 can be expected. it can.

なお、a,b,c,d1,d2,e,fのそれぞれについて、再度整理しておくと、aとは、素電池11の長辺の長さであり、bとは、薄板17の長辺の長さであり、cとは、外装体12の長辺の長さである。また、d1とは、正極タブ13の正極端子15と正極板111とを接続する方向の長さであり、d2とは、負極タブ14の負極端子16と負極板112とを接続する方向の長さである。さらに、eとは、正極端子15側の、素電池11と薄板17との長辺の長さの差の大きさであり、fとは、負極端子16側の、素電池11と薄板17との長辺の長さの差の大きさである。   In addition, about each of a, b, c, d1, d2, e, and f again, a is the length of the long side of the unit cell 11, and b is the length of the thin plate 17. C is the length of the long side of the outer package 12. D1 is the length in the direction connecting the positive electrode terminal 15 of the positive electrode tab 13 and the positive electrode plate 111, and d2 is the length in the direction connecting the negative electrode terminal 16 of the negative electrode tab 14 and the negative electrode plate 112. That's it. Furthermore, e is the magnitude of the difference in length between the long sides of the unit cell 11 and the thin plate 17 on the positive electrode terminal 15 side, and f is the size of the unit cell 11 and the thin plate 17 on the negative electrode terminal 16 side. This is the size of the difference between the lengths of the long sides.

(2)二次電池の製造方法
二次電池1は、例えば、以下の手順で作製することができる。
(2) Manufacturing method of secondary battery The secondary battery 1 can be manufactured in the following procedures, for example.

(正極)
まず、正極活物質粉末を導電材、バインダー、増粘材、イオン交換水と攪拌しペーストを得る。なお、正極活物質粉末としては、住友大阪セメント製の鉄リン酸リチウム(LiFePO4)を、導電材としては、電気化学工業製の商品名「デンカブラック」を用い、バインダーはJSR製、増粘材は第一工業製薬製のものを用いることができる。
(Positive electrode)
First, the positive electrode active material powder is stirred with a conductive material, a binder, a thickener, and ion-exchanged water to obtain a paste. As the positive electrode active material powder, lithium iron phosphate (LiFePO4) manufactured by Sumitomo Osaka Cement was used. As the conductive material, the trade name “Denka Black” manufactured by Denki Kagaku Kogyo Co., Ltd. was used. Can be made by Daiichi Kogyo Seiyaku.

その後、上記ペーストを圧延アルミニウム箔(厚さ:20μm)上にダイコーターを用いて両面に塗布し(乾燥電極厚:290μm)、空気中100℃で30分間乾燥し、プレス加工して正極板111(塗工面サイズ:300mm(縦)×150mm(横)、未塗工部:9mm(縦)×150mm(横))を得る。   Thereafter, the paste was applied on both sides of a rolled aluminum foil (thickness: 20 μm) using a die coater (dry electrode thickness: 290 μm), dried in air at 100 ° C. for 30 minutes, pressed and processed into a positive electrode plate 111. (Coated surface size: 300 mm (vertical) × 150 mm (horizontal), uncoated part: 9 mm (vertical) × 150 mm (horizontal)) is obtained.

(負極)
まず、日立化成製の負極活物質粉末を、日本ゼオン製のバインダーと、ダイセル製の増粘材と、イオン交換水と攪拌しペーストを得る。
(Negative electrode)
First, a negative electrode active material powder made by Hitachi Chemical Co., Ltd. is stirred with a binder made by ZEON, a thickener made by Daicel, and ion-exchanged water to obtain a paste.

その後、上記ペーストを、圧延銅箔(厚さ:10μm)上にダイコーターを用いて両面に塗布し(乾燥電極厚:180μm)、空気中100℃で30分間乾燥し、プレス加工して負極板112(塗工面サイズ:304mm(縦)×154mm(横)、未塗工部:9mm(縦)×154mm(横))を得る。   Thereafter, the paste was applied on both sides using a die coater on a rolled copper foil (thickness: 10 μm) (dry electrode thickness: 180 μm), dried in air at 100 ° C. for 30 minutes, and pressed to form a negative electrode plate 112 (coating surface size: 304 mm (vertical) × 154 mm (horizontal), uncoated part: 9 mm (vertical) × 154 mm (horizontal)) is obtained.

(セパレータ)
セパレータ110には、セルガード社製の商品名「セルガード2500」を用いることができる。
(Separator)
As the separator 110, a trade name “Celguard 2500” manufactured by Celgard Inc. can be used.

(タブ部)
アルミニウム箔(厚さ:100μm 幅:30mm)を60mmの長さにカットし、正極タブ13とする。ニッケル箔(厚さ:100μm 幅:30mm)を60mmの長さにカットし、負極タブ14とする。それぞれについて、外装体12と素電池11との間に収まり、かつ伸縮できるよう、略N字型に加工する。
(Tab part)
An aluminum foil (thickness: 100 μm, width: 30 mm) is cut to a length of 60 mm to form a positive electrode tab 13. A nickel foil (thickness: 100 μm, width: 30 mm) is cut to a length of 60 mm to form a negative electrode tab 14. About each, it processes between the exterior body 12 and the unit cell 11, and it processes into a substantially N shape so that it can expand-contract.

(薄板)
素電池11に固定する薄板17・17´として、厚み1mmのポリプロピレン製の板(以下、PP板と略記する)を用いることができる。薄板17・17´は、それぞれ、素電池11の上面と下面とに設置し、カプトンテープを用いて素電池11に固定する。
(Thin plate)
As the thin plates 17 and 17 ′ fixed to the unit cell 11, a 1 mm-thick polypropylene plate (hereinafter abbreviated as PP plate) can be used. The thin plates 17 and 17 ′ are respectively installed on the upper surface and the lower surface of the unit cell 11 and fixed to the unit cell 11 using Kapton tape.

(二次電池)
上記正極板111および負極板112を130℃で24時間減圧乾燥し、アルゴン雰囲気下のグローブボックス中に入れる。以下の電池組み立ては全て、上記グローブボックス内で、室温下で行う。
(Secondary battery)
The positive electrode plate 111 and the negative electrode plate 112 are dried under reduced pressure at 130 ° C. for 24 hours and placed in a glove box under an argon atmosphere. All battery assembly below is performed at room temperature in the glove box.

9枚の正極板111と、10枚の負極板112と、セパレータ110とを用い、図1のように、一番外側にセパレータ110が来るようにし、次に負極板112を、さらにセパレータ110を介して正極板111を、という順序で積層させ、素電池11を形成する。   Using nine positive plates 111, ten negative plates 112, and separators 110, as shown in FIG. 1, the separators 110 come to the outermost side, and then the negative plates 112 and the separators 110 are placed further. The unit cell 11 is formed by stacking the positive electrode plates 111 in this order.

正極板111の短辺の未塗工部に、上記アルミニウム製正極タブ13を、負極板112の短辺の未塗工部に、上記ニッケル製負極タブ14を、超音波溶接する。   The positive electrode tab 13 made of aluminum is ultrasonically welded to the uncoated portion on the short side of the positive electrode plate 111, and the negative electrode tab 14 made of nickel is ultrasonically welded to the uncoated portion on the short side of the negative electrode plate 112.

薄板17・17´の中心と素電池11の中心とが揃うようにして、素電池11の上面と下面とを薄板17・17´で挟みこみ、カプトンテープ18によって固定する。   The upper and lower surfaces of the unit cell 11 are sandwiched between the thin plates 17 and 17 ′ so that the center of the thin plates 17 and 17 ′ and the center of the unit cell 11 are aligned, and are fixed by the Kapton tape 18.

薄板17の固定された素電池11を、外装体12内に挿入する。   The unit cell 11 to which the thin plate 17 is fixed is inserted into the exterior body 12.

その後、予め外装体12と絶縁するように外装体12の側壁に取り付けた正極端子15および負極端子16に、それぞれ、正極タブ13および負極タブ14の端を溶接し、最後に別途準備したアルミニウム缶用の蓋を用いて、外装体12を封止する。   Thereafter, the ends of the positive electrode tab 13 and the negative electrode tab 14 are welded to the positive electrode terminal 15 and the negative electrode terminal 16 which are attached to the side wall of the outer package body 12 in advance so as to be insulated from the outer package body 12, respectively. The exterior body 12 is sealed with a lid for use.

さらにエチレンカーボネート(EC、Ethylene Carbonate)とジエチルカーボネート(DEC、Diethyl Carbonate)を、体積比1:2で混合した溶媒に、1モル濃度のヘキサフルオロリン酸リチウム(LiPF6)を溶解させた電解液を外装体12内へ真空注液し、図1のような20アンペア時の容量を有する大型蓄電池1を作製する。   Furthermore, an electrolytic solution in which 1 mol of lithium hexafluorophosphate (LiPF6) is dissolved in a solvent in which ethylene carbonate (EC, Ethylene Carbonate) and diethyl carbonate (DEC, Diethyl Carbonate) are mixed at a volume ratio of 1: 2 is prepared. A large-sized storage battery 1 having a capacity of 20 ampere hours as shown in FIG.

(3)比較例を用いた検証
本実施の形態に係る二次電池1の衝撃耐性を確認するため、実施例1、および比較例1から8に対し、正極端子15と正極板111とを結ぶ方向、または負極端子16と負極板112とを結ぶ方向から衝撃を加える実験を行った。
(3) Verification Using Comparative Example In order to confirm the impact resistance of the secondary battery 1 according to the present embodiment, the positive electrode terminal 15 and the positive electrode plate 111 are connected to Example 1 and Comparative Examples 1 to 8. An experiment was performed in which an impact was applied from the direction or the direction connecting the negative electrode terminal 16 and the negative electrode plate 112.

図3は、衝撃耐性実験を行った、実施例1、および比較例1から8までの二次電池のサイズを整理した図であり、図4は、衝撃耐性実験結果をまとめた図である。   FIG. 3 is a diagram summarizing the sizes of the secondary batteries of Example 1 and Comparative Examples 1 to 8 in which the impact resistance experiment was performed, and FIG. 4 is a table summarizing the results of the impact resistance experiment.

図5〜12は、それぞれ、比較例1〜8の実験結果を示す図である。   5-12 is a figure which shows the experimental result of Comparative Examples 1-8, respectively.

なお、実施例1とは、二次電池11を指すものであり、上記までの説明、および図4に示す衝撃耐性実験の結果からも明らかなように、実施例1は、内部断線および内部短絡の発生がなかった。   In addition, Example 1 refers to the secondary battery 11, and as is clear from the above description and the results of the impact resistance experiment shown in FIG. 4, Example 1 is an internal disconnection and an internal short circuit. There was no outbreak.

また、比較例1から8は、それぞれ、薄板17の長辺の長さb、正極タブ13の長辺の長さd1、負極タブ14の長辺の長さd2、正極端子15側の、素電池11と薄板17との長辺の長さの差の大きさe、負極端子16側の、素電池11と薄板17との長辺の長さの差の大きさf、の少なくとも1つが、二次電池1とは異なる二次電池である。   In Comparative Examples 1 to 8, the long side length b of the thin plate 17, the long side length d1 of the positive electrode tab 13, the long side length d2 of the negative electrode tab 14, the element on the positive electrode terminal 15 side, respectively. At least one of the magnitude e of the long side length difference between the battery 11 and the thin plate 17 and the magnitude f of the long side length difference between the unit cell 11 and the thin plate 17 on the negative electrode terminal 16 side is: The secondary battery is different from the secondary battery 1.

(比較例の内容)
図3に示すように、比較例1〜3は、それぞれ、正極タブ13、負極タブ14の少なくとも一方が、二次電池1、つまり実施例1の場合と比べて短く、20mmであるが、その他のサイズについては、実施例1と同じである。
(Content of comparative example)
As shown in FIG. 3, in Comparative Examples 1 to 3, at least one of the positive electrode tab 13 and the negative electrode tab 14 is 20 mm shorter than the case of the secondary battery 1, that is, Example 1, Is the same as that of the first embodiment.

従って、比較例1〜3の素電池11が外装体12内を最も負極端子16側に移動した場合、正極板111と正極端子15との距離は、最も離れ、その長さは、「外装体12の長辺−薄板17の長辺+正極端子15側の薄板17と素電池11との距離の差」であり、25mmである。   Therefore, when the unit cell 11 of Comparative Examples 1 to 3 moves to the negative electrode terminal 16 side most in the outer package 12, the distance between the positive electrode plate 111 and the positive electrode terminal 15 is the longest, and the length is “the outer package” 12 long sides—the long side of the thin plate 17 + the difference in the distance between the thin plate 17 on the positive electrode terminal 15 side and the unit cell 11 ”, which is 25 mm.

同様に、比較例1〜3の素電池11が外装体12内を最も正極端子15側に移動した場合、負極板112と負極端子16との距離は、最も離れ、その長さは、「外装体12の長辺−薄板17の長辺+負極端子16側の薄板17と素電池11との距離の差」であり、25mmである。   Similarly, when the unit cells 11 of Comparative Examples 1 to 3 are moved to the positive electrode terminal 15 side most in the outer package 12, the distance between the negative electrode plate 112 and the negative electrode terminal 16 is farthest and the length is “exterior The long side of the body 12 minus the long side of the thin plate 17 + the distance difference between the thin plate 17 on the negative electrode terminal 16 side and the unit cell 11 ”is 25 mm.

比較例1の二次電池は、正極板111と正極端子15とを接続する正極タブ13の長さと、負極板112と負極端子16とを接続する負極タブ14の長さとが、ともに20mmである。   In the secondary battery of Comparative Example 1, the length of the positive electrode tab 13 that connects the positive electrode plate 111 and the positive electrode terminal 15 and the length of the negative electrode tab 14 that connects the negative electrode plate 112 and the negative electrode terminal 16 are both 20 mm. .

比較例2の二次電池は正極タブ13のみが短く、比較例3の二次電池は負極タブ14のみが短い。   In the secondary battery of Comparative Example 2, only the positive electrode tab 13 is short, and in the secondary battery of Comparative Example 3, only the negative electrode tab 14 is short.

図5の(A)に示すように、比較例1の二次電池は、素電池11が外装体12内の中央に位置する時には、正極タブ13と負極タブ14とはともに切断されておらず、正極板111と正極端子15との接続、および負極板112と負極端子16との接続に問題はない。   As shown in FIG. 5A, in the secondary battery of Comparative Example 1, the positive electrode tab 13 and the negative electrode tab 14 are not cut when the unit cell 11 is located in the center of the outer package 12. There is no problem in the connection between the positive electrode plate 111 and the positive electrode terminal 15 and the connection between the negative electrode plate 112 and the negative electrode terminal 16.

しかし、(B)に示すように、素電池11が、外装体12内を正極端子15側に、つまり図の左側にずれた場合、上記のように、負極板112と負極端子16との距離は25mmとなり、20mmの長さの負極タブ14は切断される。   However, as shown in (B), when the unit cell 11 is displaced in the exterior body 12 toward the positive electrode terminal 15 side, that is, to the left side in the figure, the distance between the negative electrode plate 112 and the negative electrode terminal 16 as described above. Is 25 mm, and the negative electrode tab 14 having a length of 20 mm is cut.

同様に、(C)に示すように、素電池11が、外装体12内を負極端子16側に、つまり図の右側にずれた場合、上記のように、正極板111と正極端子15との距離は25mmとなり、20mmの長さの正極タブ13は切断される。   Similarly, as shown in (C), when the unit cell 11 is shifted to the negative electrode terminal 16 side in the outer package 12, that is, to the right side of the drawing, as described above, the positive electrode plate 111 and the positive electrode terminal 15 The distance is 25 mm, and the positive electrode tab 13 having a length of 20 mm is cut.

なお、図5〜12において、(A)、(B)、(C)は、それぞれ、比較例1〜7の素電池11が、外装体12の「中央に位置する場合」、「正極端子15側(図の左側)にずれた場合」、「負極端子16側(図の右側)にずれた場合」を示している。   5 to 12, (A), (B), and (C) are respectively “when the unit cell 11 of Comparative Examples 1 to 7 is positioned at the center” of the exterior body 12, and “positive electrode terminal 15. "When shifted to the side (left side of the figure)" and "when shifted to the negative electrode terminal 16 side (right side of the figure)".

正極タブ13の長さが20mmであり、負極タブ14は60mmである比較例2の二次電池は、図6に示すように、素電池11が、外装体12内の「中央に位置する場合」、「正極端子15側(図の左側)にずれた場合」には問題ない。   In the secondary battery of Comparative Example 2 in which the length of the positive electrode tab 13 is 20 mm and the negative electrode tab 14 is 60 mm, as shown in FIG. 6, the unit cell 11 is located in the “center” of the outer package 12. ”And“ when shifted to the positive electrode terminal 15 side (left side in the figure) ”.

しかし、「負極端子16側(図の右側)にずれた場合」、正極板111と正極端子15との距離は25mmとなり、20mmの長さの正極タブ13は切断される。   However, when “shifted to the negative electrode terminal 16 side (right side in the figure)”, the distance between the positive electrode plate 111 and the positive electrode terminal 15 is 25 mm, and the positive electrode tab 13 having a length of 20 mm is cut.

同様に、正極タブ13の長さが60mmであり、負極タブ14は20mmである比較例3の二次電池は、図7に示すように、素電池11が、外装体12内の「中央に位置する場合」、「負極端子16側(図の右側)にずれた場合」には問題ない。   Similarly, in the secondary battery of Comparative Example 3 in which the length of the positive electrode tab 13 is 60 mm and the negative electrode tab 14 is 20 mm, the unit cell 11 is placed in the “center” of the outer package 12 as shown in FIG. There is no problem in “when it is positioned” and “when it is shifted to the negative electrode terminal 16 side (right side in the drawing)”.

しかし、「正極端子15側(図の左側)にずれた場合」、負極板112と負極端子16との距離は25mmとなり、20mmの長さの負極タブ14は切断される。   However, when “shifted to the positive electrode terminal 15 side (left side in the figure)”, the distance between the negative electrode plate 112 and the negative electrode terminal 16 is 25 mm, and the negative electrode tab 14 having a length of 20 mm is cut.

なお、衝撃耐性実験の結果をまとめた図4に示すように、比較例1〜3の二次電池は、素電池11の積層面の長手方向について、素電池11よりも長い薄板17が素電池11に固定されているため、素電池11と外装体12との接触に伴う短絡は防止することができている。   In addition, as shown in FIG. 4 that summarizes the results of the impact resistance experiment, the secondary batteries of Comparative Examples 1 to 3 have a thin plate 17 longer than the unit cell 11 in the longitudinal direction of the stacked surface of the unit cell 11. 11, the short circuit accompanying the contact between the unit cell 11 and the exterior body 12 can be prevented.

比較例4〜7は、実施例1に比べ、薄板17が、素電池11の積層面の長手方向に、素電池11よりも短い点が共通している。   Compared with Example 1, Comparative Examples 4 to 7 have a common point that the thin plate 17 is shorter than the unit cell 11 in the longitudinal direction of the laminated surface of the unit cell 11.

実施例1との違いについて、比較例4は、薄板17が素電池11よりも短く、比較例5は、さらに正極タブ13と負極タブ14とがともに短く、比較例6は、正極タブ13のみが短く、比較例7は、負極タブ14のみが短い。   Regarding the difference from Example 1, in Comparative Example 4, the thin plate 17 is shorter than the unit cell 11, in Comparative Example 5, both the positive electrode tab 13 and the negative electrode tab 14 are both shorter, and in Comparative Example 6, only the positive electrode tab 13 is used. In Comparative Example 7, only the negative electrode tab 14 is short.

比較例4の二次電池について、正極タブ13および負極タブ14は、二次電池1と同様に60mmであり、従って、図8に示すように、素電池11が、外装体12の「中央に位置する場合」、「正極端子15側(図の左側)にずれた場合」、「負極端子16側(図の右側)にずれた場合」のいずれにおいても、切断されることはない。   Regarding the secondary battery of Comparative Example 4, the positive electrode tab 13 and the negative electrode tab 14 are 60 mm as in the secondary battery 1, and therefore, the unit cell 11 is placed in the “center” of the outer package 12 as shown in FIG. It is not cut off in any of “when it is positioned”, “when it is shifted to the positive electrode terminal 15 side (left side in the figure)”, and “when it is shifted to the negative electrode terminal 16 side (right side in the figure)”.

しかし、比較例4の二次電池について、薄板17は、素電池11の積層面の長手方向について、素電池11よりも短い。   However, in the secondary battery of Comparative Example 4, the thin plate 17 is shorter than the unit cell 11 in the longitudinal direction of the stacked surface of the unit cells 11.

従って、比較例4において、素電池11が、素電池11の積層面の長手方向に、外装体12内を移動する場合、素電池11は外装体12の内壁と接触してしまい、短絡が発生した。   Therefore, in the comparative example 4, when the unit cell 11 moves in the exterior body 12 in the longitudinal direction of the stacked surface of the unit cells 11, the unit cell 11 comes into contact with the inner wall of the exterior unit 12, and a short circuit occurs. did.

比較例5の二次電池について、正極タブ13および負極タブ14は、比較例1と同様に、20mmである。従って、比較例1の場合と同様に、比較例5の二次電池は、素電池11が、外装体12の「正極端子15側(図の左側)」、または「負極端子16側(図の右側)」にずれた場合、負極タブ14または正極タブ13が切断される。   As for the secondary battery of Comparative Example 5, the positive electrode tab 13 and the negative electrode tab 14 are 20 mm as in Comparative Example 1. Therefore, as in the case of the comparative example 1, the secondary battery of the comparative example 5 has the unit cell 11 in the “positive electrode terminal 15 side (left side in the figure)” or “negative electrode terminal 16 side (in the figure) of the outer package 12. When it is shifted to “right side”, the negative electrode tab 14 or the positive electrode tab 13 is cut.

また、比較例5の二次電池は、比較例4の場合と同様に、薄板17が、素電池11の積層面の長手方向について、素電池11よりも短い。   Further, in the secondary battery of Comparative Example 5, as in Comparative Example 4, the thin plate 17 is shorter than the unit cell 11 in the longitudinal direction of the stacked surface of the unit cells 11.

従って、比較例5においても、素電池11が、素電池11の積層面の長手方向に、外装体12内を移動する場合、素電池11は外装体12の内壁と接触してしまい、短絡が発生する。   Therefore, also in the comparative example 5, when the unit cell 11 moves in the exterior body 12 in the longitudinal direction of the laminated surface of the unit cells 11, the unit cell 11 comes into contact with the inner wall of the exterior unit 12, and a short circuit occurs. Occur.

比較例6の二次電池は、比較例2の場合と同様に、正極タブ13の長さが20mmであり、負極タブ14は60mmであり、また、比較例4の場合と同様に、薄板17が、素電池11の積層面の長手方向について、素電池11よりも短い。   In the secondary battery of Comparative Example 6, the length of the positive electrode tab 13 is 20 mm and the length of the negative electrode tab 14 is 60 mm as in the case of Comparative Example 2. Also, as in the case of Comparative Example 4, the thin plate 17 However, the length of the laminated surface of the unit cells 11 is shorter than that of the unit cells 11.

従って、比較例6の二次電池は、「負極端子16側(図の右側)にずれた場合」、正極板111と正極端子15との距離は25mmとなり、20mmの長さの正極タブ13は切断される。   Accordingly, in the secondary battery of Comparative Example 6, the distance between the positive electrode plate 111 and the positive electrode terminal 15 is 25 mm “when the electrode is shifted to the negative electrode terminal 16 side (right side in the figure)”, and the positive electrode tab 13 having a length of 20 mm is Disconnected.

また、比較例6においても、素電池11が、素電池11の積層面の長手方向に、外装体12内を移動する場合、素電池11は外装体12の内壁と接触してしまい、短絡が発生する。   Also in Comparative Example 6, when the unit cell 11 moves in the exterior body 12 in the longitudinal direction of the laminated surface of the unit cells 11, the unit cell 11 comes into contact with the inner wall of the exterior body 12, causing a short circuit. Occur.

比較例7の二次電池は、比較例3の場合と同様に、正極タブ13の長さが60mmであり、負極タブ14は20mmであり、また、比較例4の場合と同様に、薄板17が、素電池11の積層面の長手方向について、素電池11よりも短い。   In the secondary battery of Comparative Example 7, the length of the positive electrode tab 13 is 60 mm and the length of the negative electrode tab 14 is 20 mm as in the case of Comparative Example 3. Also, as in the case of Comparative Example 4, the thin plate 17 However, the length of the laminated surface of the unit cells 11 is shorter than that of the unit cells 11.

従って、比較例7の二次電池は、「正極端子15側(図の左側)にずれた場合」、負極板112と負極端子16との距離は25mmとなり、20mmの長さの負極タブ14は切断される。   Therefore, in the secondary battery of Comparative Example 7, the distance between the negative electrode plate 112 and the negative electrode terminal 16 is 25 mm “when the electrode is shifted to the positive electrode terminal 15 side (left side in the figure)”, and the negative electrode tab 14 having a length of 20 mm is Disconnected.

また、比較例7においても、素電池11が、素電池11の積層面の長手方向に、外装体12内を移動する場合、素電池11は外装体12の内壁と接触してしまい、短絡が発生する。   Also in Comparative Example 7, when the unit cell 11 moves in the exterior body 12 in the longitudinal direction of the laminated surface of the unit cells 11, the unit cell 11 comes into contact with the inner wall of the exterior body 12 and short circuit occurs. Occur.

比較例8の電池は、二次電池1に比べ、薄板17が、素電池11の積層面の長手方向に長く、比較例8の薄板17と外装体12とは、素電池11の積層面の長手方向について、同じ長さである。   In the battery of Comparative Example 8, the thin plate 17 is longer in the longitudinal direction of the laminated surface of the unit cells 11 than the secondary battery 1, and the thin plate 17 and the outer package 12 of Comparative Example 8 are of the laminated surface of the unit cells 11. It is the same length in the longitudinal direction.

従って、薄板17に固定されている素電池11は、外装体12内を、素電池11の積層面の長手方向に移動することはなく、正極タブ13と負極タブ14の少なくとも一方が切断されることも、素電池11が外装ケース12に接触することもなかった。   Accordingly, the unit cell 11 fixed to the thin plate 17 does not move in the exterior body 12 in the longitudinal direction of the laminated surface of the unit cell 11, and at least one of the positive electrode tab 13 and the negative electrode tab 14 is cut. In addition, the unit cell 11 did not contact the outer case 12.

しかし、比較例8の電池に衝撃を与えた場合、素電池11は、外装体12内を移動することによって衝撃を緩やかに受け止めることができないため、素電池11自体が破損してしまうケースが観測された。具体的には、素電池11内で積層ずれが発生し、正極板111と負極板112との短絡が発生するケースが観測された。   However, when an impact is applied to the battery of Comparative Example 8, the case where the unit cell 11 itself is damaged is observed because the unit cell 11 cannot gently receive the impact by moving in the exterior body 12. It was done. Specifically, a case was observed in which stacking deviation occurred in the unit cell 11 and a short circuit between the positive electrode plate 111 and the negative electrode plate 112 occurred.

〔変形例1〕
(4)変形例の概要
二次電池1は、正極端子15と負極端子16とが、外装体12の対向する2つの平行面のそれぞれに設けていたが、本発明に係る二次電池は、正極端子と負極端子とが、外装体の1つの面に設けられていてもよい。
[Modification 1]
(4) Summary of Modification The secondary battery 1 has the positive electrode terminal 15 and the negative electrode terminal 16 provided on each of the two parallel surfaces facing the exterior body 12, but the secondary battery according to the present invention is The positive electrode terminal and the negative electrode terminal may be provided on one surface of the exterior body.

本発明の別の実施の形態に係るリチウムイオン二次電池2は、正極端子15と負極端子16とが、外装体12の同じ側壁に設けられている。   In a lithium ion secondary battery 2 according to another embodiment of the present invention, a positive electrode terminal 15 and a negative electrode terminal 16 are provided on the same side wall of the outer package 12.

図13は、二次電池2の構造を示す、素電池の積層方向に沿って切断した断面図であり、図14は、二次電池2の構造を示す、素電池の積層方向から見下ろした時の概要図である。   FIG. 13 is a cross-sectional view showing the structure of the secondary battery 2 cut along the cell stacking direction, and FIG. 14 shows the structure of the secondary battery 2 when looking down from the cell stacking direction. FIG.

なお、図13において、正極端子15と負極端子とは上下の位置関係に立っているかのように描かれているが、実際には、正極端子15と負極端子とは同じ高さにあってもよく、図示のために上下の差を設けているに過ぎない。   In FIG. 13, the positive electrode terminal 15 and the negative electrode terminal are depicted as if standing in a vertical relationship, but in reality, the positive electrode terminal 15 and the negative electrode terminal may be at the same height. For the sake of illustration, there is merely a difference between the upper and lower sides.

また、図14において、正極板111と負極板112とは、同一平面上で並置しているかのように見えるが、実際には、正極板111と負極板112とは、セパレータを介した積層構造を成している。   In FIG. 14, the positive electrode plate 111 and the negative electrode plate 112 seem to be juxtaposed on the same plane, but in actuality, the positive electrode plate 111 and the negative electrode plate 112 have a laminated structure with a separator interposed therebetween. Is made.

二次電池2は、図13および図14に示すように、正極端子15と負極端子16とが、外装体12の1つの側壁に設けられているが、この点を除けば、二次電池1とに違いはない。   As shown in FIG. 13 and FIG. 14, the secondary battery 2 is provided with a positive electrode terminal 15 and a negative electrode terminal 16 on one side wall of the exterior body 12. There is no difference.

〔変形例2〕
(5)変形例の概要
図15は、本発明のさらに別の実施の形態に係るリチウムイオン二次電池3の構造を示す、素電池の積層方向に沿って切断した断面図であり、図16は、二次電池3の構造を示す、素電池の積層方向から見下ろした時の概要図である。
[Modification 2]
(5) Overview of Modification FIG. 15 is a cross-sectional view taken along the stacking direction of the unit cells, showing the structure of a lithium ion secondary battery 3 according to still another embodiment of the present invention. These are schematic diagrams when looking down from the stacking direction of the unit cells, showing the structure of the secondary battery 3.

二次電池3は、素電池11の外装体12内での移動を制御するために、薄板17の代わりに、樹脂製のストッパー(移動制御体)19を外装体12内に備えている。   The secondary battery 3 includes a resin stopper (movement control body) 19 in the exterior body 12 in place of the thin plate 17 in order to control the movement of the unit cell 11 in the exterior body 12.

ストッパー19と正極端子15の配置されている外装体12の側壁と間の距離gは5mmであり、ストッパー19と負極端子16の配置されている外装体12の側壁と間の距離hは5mmである。   The distance g between the stopper 19 and the side wall of the exterior body 12 where the positive electrode terminal 15 is disposed is 5 mm, and the distance h between the stopper 19 and the side wall of the exterior body 12 where the negative electrode terminal 16 is disposed is 5 mm. is there.

素電池11および外装体12のサイズは、二次電池1と同じである。つまり、素電池11の積層面の長手方向について、外装体12の長さcは375mmであり、素電池11の長さbは335mmである。   The size of the unit cell 11 and the outer package 12 is the same as that of the secondary battery 1. That is, in the longitudinal direction of the stacked surface of the unit cells 11, the length c of the outer package 12 is 375 mm, and the length b of the unit cells 11 is 335 mm.

従って、素電池11の積層面の長手方向について、「外装体12の長さc−素電池11の長さb−正極端子15側のストッパー19と正極端子15の配置されている外装体12の側壁と間の距離g」は、35mmである。   Therefore, with respect to the longitudinal direction of the laminated surface of the unit cells 11, “the length c of the outer package 12−the length b of the unit cell 11−the stopper 19 on the positive electrode terminal 15 side and the outer package 12 on which the positive electrode terminal 15 is arranged. The distance “g” between the side walls is 35 mm.

つまり、素電池11が外装体12内を最も負極端子16側に移動した場合、正極端子15と正極板111との距離は最大となり、35mmとなる。   That is, when the unit cell 11 moves to the most negative electrode terminal 16 side in the exterior body 12, the distance between the positive electrode terminal 15 and the positive electrode plate 111 becomes the maximum and becomes 35 mm.

同様に、素電池11の積層面の長手方向について、「外装体12の長さc−素電池11の長さb−負極端子16側のストッパー19と負極端子16の配置されている外装体12の側壁と間の距離g」は、35mmである。   Similarly, with respect to the longitudinal direction of the laminated surface of the unit cells 11, “the length c of the outer package 12−the length b of the unit cell 11−the stopper 19 on the negative electrode terminal 16 side and the negative electrode terminal 16 are arranged. The distance “g” between the side wall and the side wall is 35 mm.

つまり、素電池11が外装体12内を最も正極端子15側に移動した場合、負極端子16と負極板112との距離は最大となり、35mmとなる。   That is, when the unit cell 11 moves to the positive electrode terminal 15 side most in the exterior body 12, the distance between the negative electrode terminal 16 and the negative electrode plate 112 becomes the maximum, and becomes 35 mm.

正極タブ13および負極タブ14は、素電池11が外装体12内を、素電池11の積層面の長手方向に移動しても切断されないように、それぞれ、素電池11の積層面の長手方向に、60mmの長さを有する。   The positive electrode tab 13 and the negative electrode tab 14 are arranged in the longitudinal direction of the laminated surface of the unit cells 11 so that the unit cell 11 is not cut even if it moves in the outer body 12 in the longitudinal direction of the laminated surface of the unit cells 11. , 60 mm in length.

(6)変形例の検証
二次電池3の衝撃耐性を確認するため、上記衝撃耐性実験と同様の、つまり、正極端子15と正極板111とを結ぶ方向、または負極端子16と負極板112とを結ぶ方向からの衝撃を、二次電池3および二次電3に類似する電池に加える実験を行った。
(6) Verification of Modification In order to confirm the impact resistance of the secondary battery 3, the same as in the impact resistance experiment, that is, the direction connecting the positive electrode terminal 15 and the positive electrode plate 111, or the negative electrode terminal 16 and the negative electrode plate 112, An experiment was conducted in which an impact from the direction connecting the secondary battery 3 and the secondary battery 3 was applied to a similar battery.

図17は、実験に用いた二次電池のサイズを整理した図であり、実施例2とは二次電池3を指す。また、比較例9は、二次電池3の正極タブ13および負極タブ14のサイズのみを変更し、30mmとした二次電池である。   FIG. 17 is a diagram in which the sizes of the secondary batteries used in the experiment are arranged, and Example 2 indicates the secondary battery 3. Comparative Example 9 is a secondary battery in which only the size of the positive electrode tab 13 and the negative electrode tab 14 of the secondary battery 3 is changed to 30 mm.

図18は、上記衝撃耐性実験の結果をまとめた図である。   FIG. 18 is a table summarizing the results of the impact resistance experiment.

図19は、実施例2の、つまり二次電池3の実験結果を示す図であり、図20は、比較例9の実験結果を示す図である。   FIG. 19 is a diagram showing an experimental result of Example 2, that is, the secondary battery 3, and FIG. 20 is a diagram showing an experimental result of Comparative Example 9.

上記のように、正極タブ13は、素電池11の積層面の長手方向に、60mmの長さを有し、正極端子15と正極板111との距離は、最大でも35mmである。   As described above, the positive electrode tab 13 has a length of 60 mm in the longitudinal direction of the laminated surface of the unit cells 11, and the distance between the positive electrode terminal 15 and the positive electrode plate 111 is 35 mm at the maximum.

従って、図19に示すように、素電池11の外装体12内の移動によって、正極タブ13が切断されることはない。   Accordingly, as shown in FIG. 19, the positive electrode tab 13 is not cut by the movement of the unit cell 11 in the exterior body 12.

同様に、負極タブ14は、素電池11の積層面の長手方向に、60mmの長さを有し、負極端子16と負極板112との距離は、最大でも35mmであるため、素電池11の外装体12内の移動によって、負極タブ14が切断されることはない。   Similarly, the negative electrode tab 14 has a length of 60 mm in the longitudinal direction of the laminated surface of the unit cells 11, and the distance between the negative electrode terminal 16 and the negative electrode plate 112 is 35 mm at the maximum. The negative electrode tab 14 is not cut by the movement in the outer package 12.

また、素電池11の積層面の長手方向について、素電池11と外装体12との間に存在するストッパー19によって、素電池11と外装体12とが接触することはない。   Moreover, the unit cell 11 and the exterior body 12 are not brought into contact with each other by the stopper 19 existing between the unit cell 11 and the exterior body 12 in the longitudinal direction of the laminated surface of the unit cells 11.

実施例9の電池について、正極タブ13は、素電池11の積層面の長手方向に、30mmの長さを有し、正極端子15と正極板111との距離は、最大で35mmである。   Regarding the battery of Example 9, the positive electrode tab 13 has a length of 30 mm in the longitudinal direction of the laminated surface of the unit cells 11, and the distance between the positive electrode terminal 15 and the positive electrode plate 111 is 35 mm at the maximum.

同様に、負極タブ14は、素電池11の積層面の長手方向に、30mmの長さを有し、負極端子16と負極板112との距離は、最大で35mmである。   Similarly, the negative electrode tab 14 has a length of 30 mm in the longitudinal direction of the laminated surface of the unit cells 11, and the distance between the negative electrode terminal 16 and the negative electrode plate 112 is 35 mm at the maximum.

従って、図20に示すように、素電池11が外装体12内を負極端子16側に移動するによって、正極タブ13は切断され、素電池11が外装体12内を正極端子15側に移動するによって、負極タブ14は切断される。   Accordingly, as shown in FIG. 20, when the unit cell 11 moves in the outer package 12 to the negative electrode terminal 16 side, the positive electrode tab 13 is cut, and the unit cell 11 moves in the package body 12 to the positive electrode terminal 15 side. Thus, the negative electrode tab 14 is cut.

ただし、素電池11の積層面の長手方向について、素電池11と外装体12との間に存在するストッパー19によって、素電池11と外装体12とが接触することはない。   However, the unit cell 11 and the exterior body 12 are not brought into contact with each other by the stopper 19 existing between the unit cell 11 and the exterior body 12 in the longitudinal direction of the laminated surface of the unit cells 11.

二次電池1および2について、薄板17・17´が、素電池11の上面と下面の両方に固定されているとしてきたが、薄板17によって、外装体12内での素電池11の移動を制御できればよく、素電池11の上面と下面のいずれかに一方にのみ、薄板17が固定され、薄板17´は固定されていないとしてもよい。   Regarding the secondary batteries 1 and 2, the thin plates 17 and 17 ′ have been fixed to both the upper surface and the lower surface of the unit cell 11, but the movement of the unit cell 11 within the exterior body 12 is controlled by the thin plate 17. The thin plate 17 may be fixed to only one of the upper surface and the lower surface of the unit cell 11 and the thin plate 17 ′ may not be fixed.

同様に、素電池11の上面と下面とに固定されている薄板17・17´は、同じ大きさであってもよい。その場合、薄板17と17´とが、外装体12内の素電池の移動を制御する。   Similarly, the thin plates 17 and 17 ′ fixed to the upper surface and the lower surface of the unit cell 11 may have the same size. In that case, the thin plates 17 and 17 ′ control the movement of the unit cells in the exterior body 12.

薄板17についてはさらに、エネルギー効率の観点から、薄板17は硬くて軽い材質のものであればよく、PP板に限られない。また、セパレータ110によって、素電池11と外装ケース12との絶縁は既に確保されているため、薄板17について、絶縁性は必須の性質ではない。しかし、薄板17は絶縁性を有していてもよい。   Further, the thin plate 17 may be made of a hard and light material from the viewpoint of energy efficiency, and is not limited to the PP plate. Further, since the insulation between the unit cell 11 and the outer case 12 has already been ensured by the separator 110, the insulation of the thin plate 17 is not an essential property. However, the thin plate 17 may have insulating properties.

薄板17と同様に、ストッパー19もまた、外装体12の上面と下面の両方に固定されている必要はなく、どちらか1つの面にだけ固定されているのでもよい。また、上面に固定されているストッパー19と下面に固定されているストッパー19とが、正極端子15の設けられている側壁および負極端子16の設けられている側壁から同じ距離で離れていなければならない訳ではない。   Similarly to the thin plate 17, the stopper 19 does not need to be fixed to both the upper surface and the lower surface of the exterior body 12, and may be fixed to only one of the surfaces. Further, the stopper 19 fixed to the upper surface and the stopper 19 fixed to the lower surface must be separated from the side wall provided with the positive electrode terminal 15 and the side wall provided with the negative electrode terminal 16 at the same distance. Not a translation.

以上に述べた本発明に係る二次電池の具体例について、下記に整理する。   Specific examples of the secondary battery according to the present invention described above are summarized below.

本発明に係る電池は、セパレータを挟んで対向する正極板と負極板とから成る積層構造の素電池と、素電池の積層面に固定された移動制御体としての薄板と、素電池および薄板を収容する外装体と、外装体の2つの平行する壁面のそれぞれに設けられた正極端子および負極端子と、素電池の正極板および負極板を正極端子および負極端子へとそれぞれ電気的に接続する正極タブおよび負極タブとを含み、正極端子および負極端子が設けられた、外装体の2つの平行する壁面は、素電池の積層面に平行せず、壁面に直交する方向について、薄板は、素電池よりも、正極端子側と負極端子側の両側において長く、さらに、薄板は外装体よりも短く、壁面に直交する方向について、正極タブは、壁面に直交する方向の「外装体の長さ−薄板の長さ+正極端子側における薄板と素電池との間の距離」以上の長さを有し、壁面に直交する方向について、負極タブは、壁面に直交する方向の「外装体の長さ−薄板の長さ+負極端子側における薄板と素電池との間の距離」以上の長さを有するものであってもよい。   A battery according to the present invention includes a unit cell having a laminated structure composed of a positive electrode plate and a negative electrode plate facing each other with a separator interposed therebetween, a thin plate as a movement control body fixed to a laminated surface of the unit cell, and the unit cell and the thin plate. A housing for housing, a positive electrode terminal and a negative electrode terminal provided on each of two parallel wall surfaces of the outer package, and a positive electrode for electrically connecting the positive electrode plate and the negative electrode plate of the unit cell to the positive electrode terminal and the negative electrode terminal, respectively. The two parallel wall surfaces of the exterior body including the tab and the negative electrode tab and provided with the positive electrode terminal and the negative electrode terminal are not parallel to the laminated surface of the unit cells, but in the direction perpendicular to the wall surface, Is longer on both sides of the positive electrode terminal side and the negative electrode terminal side, and further, the thin plate is shorter than the exterior body, and in the direction orthogonal to the wall surface, the positive electrode tab is in the direction orthogonal to the wall surface Length of + In the direction perpendicular to the wall surface, the negative electrode tab has a length equal to or greater than the “distance between the thin plate and the unit cell on the electrode terminal side”. It may have a length equal to or more than the “distance between the thin plate and the unit cell on the negative electrode terminal side”.

本発明に係る電池は、セパレータを挟んで対向する正極板と負極板とから成る積層構造の素電池と、素電池の積層面に固定された移動制御体としての薄板と、素電池および薄板を収容する外装体と、正極端子および負極端子と、正極板および負極板を正極端子および負極端子へとそれぞれ電気的に接続する正極タブおよび負極タブとを含み、正極端子および負極端子は、素電池の積層面と平行ではない、外装体の1つに壁面の設けられており、壁面に直交する方向について、薄板は、素電池よりも、壁面側と壁面と平行な外装体の他方の壁面側の両側において長く、さらに、薄板は外装体よりも短く、壁面に直交する方向について、正極タブおよび負極タブは、壁面に直交する方向の「外装体の長さ−薄板の長さ+壁面側における薄板と素電池との間の距離」以上の長さを有するものであってもよい。   A battery according to the present invention includes a unit cell having a laminated structure composed of a positive electrode plate and a negative electrode plate facing each other with a separator interposed therebetween, a thin plate as a movement control body fixed to a laminated surface of the unit cell, and the unit cell and the thin plate. An exterior body for housing, a positive electrode terminal and a negative electrode terminal, and a positive electrode tab and a negative electrode tab that electrically connect the positive electrode plate and the negative electrode plate to the positive electrode terminal and the negative electrode terminal, respectively. The wall surface is provided on one of the exterior bodies that is not parallel to the laminated surface, and in the direction perpendicular to the wall surface, the thin plate is closer to the other wall surface side of the exterior body than the unit cell. In the direction perpendicular to the wall surface, the positive electrode tab and the negative electrode tab are in the direction orthogonal to the wall surface “length of the outer body−length of the thin plate + on the wall surface side. Thin plate and element It may have a length of distance "or between.

本発明に係る電池は、セパレータを挟んで対向する正極板と負極板とから成る積層構造の素電池と、素電池を収容する外装体と、外装体の、素電池の積層面に平行な面の内側に移動制御体として固定されたストッパーと、外装体の2つの平行する壁面のそれぞれに設けられた正極端子および負極端子と、正極板および負極板を当該正極端子および負極端子へとそれぞれ電気的に接続する正極タブおよび負極タブとを含み、正極端子および負極端子が設けられた、外装体の2つの平行する壁面は素電池の積層面に平行せず、ストッパーは、正極端子が設けられている壁面の内側と素電池との間と、負極端子が設けられている壁面の内側と素電池との間とに固定されており、壁面に直交する方向について、正極タブは、壁面に直交する方向の「外装体の長さ−素電池の長さ−ストッパーの内、負極側にあるストッパーと負極端子が設けられている壁面との間の距離」以上の長さを有し、壁面に直交する方向について、負極タブは、壁面に直交する方向の「外装体の長さ−素電池の長さ−ストッパーの内、正極側にあるストッパーと負極端子が設けられている壁面との間の距離」以上の長さを有するものであってもよい。   The battery according to the present invention includes a unit cell having a laminated structure composed of a positive electrode plate and a negative electrode plate that are opposed to each other with a separator interposed therebetween, an exterior body that accommodates the unit cell, and a surface of the exterior body that is parallel to the stack surface of the unit cells A stopper fixed as a movement control body on the inside of the casing, a positive terminal and a negative terminal provided on each of two parallel wall surfaces of the exterior body, and a positive plate and a negative plate electrically connected to the positive terminal and the negative terminal, respectively. The two parallel wall surfaces of the outer package including the positive electrode tab and the negative electrode tab connected to each other, the positive electrode terminal and the negative electrode terminal being provided, are not parallel to the stacked surface of the unit cell, and the stopper is provided with the positive electrode terminal Are fixed between the inside of the wall surface and the unit cell, and between the inside of the wall surface where the negative electrode terminal is provided and the unit cell, and in the direction orthogonal to the wall surface, the positive electrode tab is orthogonal to the wall surface. Direction of "outside" The length of the body-the length of the unit cell-the length between the stopper on the negative electrode side and the wall surface on which the negative electrode terminal is provided is equal to or greater than the length of the stopper, and in the direction perpendicular to the wall surface, The negative electrode tab has a length equal to or greater than the “exterior body length−the length of the unit cell−the distance between the stopper on the positive electrode side and the wall surface on which the negative electrode terminal is provided” in the direction perpendicular to the wall surface. It may have a thickness.

本発明に係る電池は、セパレータを挟んで対向する正極板と負極板とから成る積層構造の素電池と、素電池を収容する外装体と、外装体の当該素電池の積層面に平行な面の内側に移動制御体として固定されたストッパーと、正極端子および負極端子と、正極板および負極板を正極端子および負極端子へとそれぞれ電気的に接続する正極タブおよび負極タブとを含み、正極端子および負極端子は、素電池の積層面と平行ではない、外装体の1つに壁面の設けられており、ストッパーは、正極端子および負極端子が設けられている壁面の内側と素電池との間と、正極端子および負極端子が設けられている壁面と平行である、外装体の他方の壁面の内側と素電池の間とに固定されており、正極端子および負極端子が設けられている壁面に直交する方向について、正極タブおよび負極タブは、正極端子および負極端子が設けられている壁面に直交する方向の「外装体の長さ−素電池の長さ−ストッパーの内、正極端子および負極端子が設けられている壁面側にあるストッパーと壁面との間の距離」以上の長さを有するものであってもよい。   A battery according to the present invention includes a unit cell having a laminated structure composed of a positive electrode plate and a negative electrode plate that are opposed to each other with a separator interposed therebetween, an exterior body that accommodates the unit cell, and a surface of the exterior body that is parallel to the laminate surface of the unit cell A positive electrode terminal and a negative electrode terminal, and a positive electrode tab and a negative electrode tab that electrically connect the positive electrode plate and the negative electrode plate to the positive electrode terminal and the negative electrode terminal, respectively. And the negative electrode terminal is not parallel to the laminated surface of the unit cells, and a wall surface is provided on one of the exterior bodies, and the stopper is provided between the inside of the wall surface on which the positive electrode terminal and the negative electrode terminal are provided and the unit cell. And is fixed between the inside of the other wall surface of the exterior body and the unit cell, and is parallel to the wall surface on which the positive electrode terminal and the negative electrode terminal are provided, and on the wall surface on which the positive electrode terminal and the negative electrode terminal are provided. Orthogonal The positive electrode tab and the negative electrode tab are provided in the direction orthogonal to the wall surface on which the positive electrode terminal and the negative electrode terminal are provided. It may have a length equal to or greater than the “distance between the stopper on the wall surface side and the wall surface”.

本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.

本発明は、出入力端子と素電池との断線を防ぎ、併せて、素電池と外装体との接触による内部短絡を防止する電池を実現するものであるため、電池全般に広く利用できるものであり、特に、外装体として金属缶を用いた大型のリチウムイオン二次電池に好適に利用できる。   The present invention realizes a battery that prevents disconnection between an input / output terminal and a unit cell, and also prevents an internal short circuit due to contact between the unit cell and an exterior body. Therefore, the present invention can be widely used for all batteries. In particular, it can be suitably used for a large-sized lithium ion secondary battery using a metal can as an exterior body.

1 電池
11 素電池
12 外装体
13 正極タブ(電極タブ)
14 負極タブ(電極タブ)
15 正極端子(電極端子)
16 負極端子(電極端子)
17 薄板(移動制御体)
19 ストッパー(移動制御体)
110 セパレータ
111 正極板(電極板)
112 負極板(電極板)
DESCRIPTION OF SYMBOLS 1 Battery 11 Unit cell 12 Exterior body 13 Positive electrode tab (electrode tab)
14 Negative electrode tab (electrode tab)
15 Positive terminal (electrode terminal)
16 Negative terminal (electrode terminal)
17 Thin plate (movement control body)
19 Stopper (movement control body)
110 Separator 111 Positive electrode plate (electrode plate)
112 Negative electrode plate (electrode plate)

Claims (6)

正極および負極の電極板がセパレータを挟んで積層されて成る素電池を、一軸に沿って移動可能に外装体に収容し、上記移動によって上記素電池が離接する上記外装体の内壁に設けられた電極端子と上記電極板とが電極タブによって電気的に接続されている電池であって、
上記移動によって上記素電池が上記外装体の内壁に最も接近した状態でも、上記素電池が上記外装体の内壁と接触しない位置に上記素電池を保持するとともに、上記移動によって上記素電池が上記外装体の内壁から最も離間した状態でも、上記電極タブによる電気的な接続を維持できる位置に上記素電池を保持する移動制御体を備えることを特徴とする電池。
A unit cell in which positive and negative electrode plates are stacked with a separator interposed therebetween is accommodated in an exterior body so as to be movable along one axis, and is provided on the inner wall of the exterior body where the unit cell is separated from and connected by the movement. A battery in which the electrode terminal and the electrode plate are electrically connected by an electrode tab,
Even when the unit cell is closest to the inner wall of the exterior body by the movement, the unit cell is held at a position where the unit cell is not in contact with the inner wall of the exterior body. A battery comprising a movement control body that holds the unit cell at a position where electrical connection by the electrode tab can be maintained even in a state of being most separated from an inner wall of the body.
上記移動制御体は、上記素電池に固定され、上記素電池と共に上記外装体内を移動することを特徴とする請求項1に記載の電池。   The battery according to claim 1, wherein the movement control body is fixed to the unit cell and moves in the exterior body together with the unit cell. 上記移動制御体は、上記外装体に固定されていることを特徴とする請求項1に記載の電池。   The battery according to claim 1, wherein the movement control body is fixed to the exterior body. 上記電極端子は、正極および負極がそれぞれ、上記移動によって上記素電池が離接する、対向する上記外装体の内壁の一方ずつに配設されていることを特徴とする請求項1から3のいずれか1項に記載の電池。   4. The electrode terminal according to claim 1, wherein the positive electrode and the negative electrode are respectively disposed on one of the opposing inner walls of the exterior body where the unit cell is separated from the moving body by the movement. 5. The battery according to item 1. 上記電極端子は、正極および負極の両方が、上記移動によって上記素電池が離接する、対向する上記外装体の内壁の一方に配設されていることを特徴とする請求項1から3のいずれか1項に記載の電池。   4. The electrode terminal according to claim 1, wherein both of the positive electrode and the negative electrode are disposed on one of the opposing inner walls of the outer package, to which the unit cell is separated from and coming into contact with the movement. 5. The battery according to item 1. 上記外装体は金属製であることを特徴とする請求項1から5のいずれか1項に記載の電池。   The battery according to claim 1, wherein the exterior body is made of metal.
JP2012165244A 2012-07-25 2012-07-25 battery Expired - Fee Related JP6045835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165244A JP6045835B2 (en) 2012-07-25 2012-07-25 battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165244A JP6045835B2 (en) 2012-07-25 2012-07-25 battery

Publications (2)

Publication Number Publication Date
JP2014026798A true JP2014026798A (en) 2014-02-06
JP6045835B2 JP6045835B2 (en) 2016-12-14

Family

ID=50200275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165244A Expired - Fee Related JP6045835B2 (en) 2012-07-25 2012-07-25 battery

Country Status (1)

Country Link
JP (1) JP6045835B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532235A (en) * 2015-10-16 2018-11-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrode stack restraint
CN110383536A (en) * 2017-03-06 2019-10-25 三星Sdi株式会社 Secondary cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523414U (en) * 1991-09-06 1993-03-26 旭化成工業株式会社 Battery structure
JPH10112332A (en) * 1996-10-08 1998-04-28 Shin Kobe Electric Mach Co Ltd Electrode plate group and its manufacture, and sealed lead-acid battery and its manufacture
JP2007227090A (en) * 2006-02-22 2007-09-06 Toshiba Corp Nonaqueous electrolyte battery, battery pack and automobile
JP2008192414A (en) * 2007-02-02 2008-08-21 Nec Tokin Corp Sealed battery
JP2010050111A (en) * 2009-12-03 2010-03-04 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2011108644A (en) * 2009-11-13 2011-06-02 Sb Limotive Co Ltd Battery
JP2012009308A (en) * 2010-06-25 2012-01-12 Hitachi Maxell Energy Ltd Non-aqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0523414U (en) * 1991-09-06 1993-03-26 旭化成工業株式会社 Battery structure
JPH10112332A (en) * 1996-10-08 1998-04-28 Shin Kobe Electric Mach Co Ltd Electrode plate group and its manufacture, and sealed lead-acid battery and its manufacture
JP2007227090A (en) * 2006-02-22 2007-09-06 Toshiba Corp Nonaqueous electrolyte battery, battery pack and automobile
JP2008192414A (en) * 2007-02-02 2008-08-21 Nec Tokin Corp Sealed battery
JP2011108644A (en) * 2009-11-13 2011-06-02 Sb Limotive Co Ltd Battery
JP2010050111A (en) * 2009-12-03 2010-03-04 Shin Kobe Electric Mach Co Ltd Secondary battery
JP2012009308A (en) * 2010-06-25 2012-01-12 Hitachi Maxell Energy Ltd Non-aqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018532235A (en) * 2015-10-16 2018-11-01 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Electrode stack restraint
US10797272B2 (en) 2015-10-16 2020-10-06 Robert Bosch Battery Systems Llc Electrode stack restraint
CN110383536A (en) * 2017-03-06 2019-10-25 三星Sdi株式会社 Secondary cell
US11489222B2 (en) 2017-03-06 2022-11-01 Samsung Sdi Co., Ltd. Secondary battery
CN110383536B (en) * 2017-03-06 2023-01-17 三星Sdi株式会社 Secondary battery

Also Published As

Publication number Publication date
JP6045835B2 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP5256589B2 (en) An assembled battery in which a plurality of film-clad batteries are arranged adjacent to each other
EP2500972B1 (en) Lithium secondary battery having multi-directional lead-tab structure
US10665836B2 (en) Pouch-type secondary battery including electrode lead having current limiting function
JP5505218B2 (en) Sealed storage battery
EP2038942B1 (en) Safety kit for secondary battery
US10741822B2 (en) Pouch-type secondary battery including electrode lead having electrical current limiting function
KR101578794B1 (en) Battery Cell Having Lead-Tap Joint of Improved Coupling Force
WO2018190016A1 (en) Laminated secondary battery
JP6613082B2 (en) Lithium ion secondary battery
US20130122355A1 (en) Rechargeable battery
KR20130097881A (en) Method for manufacturing a secondary battery and the secondary battery manufactured thereby
KR20180058370A (en) Electrode Assembly Comprising Separator Having Insulation-enhancing Part Formed on Edge Portion of Electrode
WO2013018551A1 (en) Battery
KR20200055680A (en) Pouch case and the method of manufacturing the pouch type secondary battery including the same
JP2016162755A (en) Rechargeable battery having cover
KR20150043093A (en) Electrode lead and secondary battery comprising the same
JP2008016263A (en) Electric storage apparatus
JP6045835B2 (en) battery
KR102207296B1 (en) Pouch-typed Battery Cell Comprising Shape-keeping Member
JP5472284B2 (en) Film outer battery and battery pack
KR101577186B1 (en) Battery Cell Having Position-changeable Electrode Lead
KR20170050445A (en) Pouch type secondary battery
JP2017098207A (en) Secondary battery having electrode body
WO2019077922A1 (en) Secondary battery module
JP6360305B2 (en) Prismatic secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161116

R150 Certificate of patent or registration of utility model

Ref document number: 6045835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees