JP2014025316A - Building structure - Google Patents

Building structure Download PDF

Info

Publication number
JP2014025316A
JP2014025316A JP2012168707A JP2012168707A JP2014025316A JP 2014025316 A JP2014025316 A JP 2014025316A JP 2012168707 A JP2012168707 A JP 2012168707A JP 2012168707 A JP2012168707 A JP 2012168707A JP 2014025316 A JP2014025316 A JP 2014025316A
Authority
JP
Japan
Prior art keywords
underfloor space
heat
heat conduction
underground
conduction part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168707A
Other languages
Japanese (ja)
Other versions
JP5969851B2 (en
Inventor
Hiroshi Nakagawa
中川  浩
Kazunori Nishio
和典 西尾
Soji Tadokoro
創史 田所
Hiroshi Sato
佐藤  寛
Daisuke Umemoto
大輔 梅本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Homes Co Ltd
Original Assignee
Panahome Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panahome Corp filed Critical Panahome Corp
Priority to JP2012168707A priority Critical patent/JP5969851B2/en
Publication of JP2014025316A publication Critical patent/JP2014025316A/en
Application granted granted Critical
Publication of JP5969851B2 publication Critical patent/JP5969851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Building Environments (AREA)
  • Central Air Conditioning (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce a temperature change in an underfloor space by effectively using heat in the ground.SOLUTION: A building structure includes an underfloor space 5 enclosed by a foundation 2 and a floor 3. The foundation 2 is provided with a heat insulating material 8 which blocks heat transmitted from the outside of a building to the underfloor space 5. The underfloor space 5 is provided with a heat exchange part 21. The heat exchange part 21 includes an underground heat transmission part 23 formed of a material having excellent thermal conductivity. The underground heat transmission part 23 includes an outer underground heat transmission part 24 arranged on the foundation 2 side of the underfloor space 5, and an inner underground heat transmission part 25 arranged on the center side of the underfloor space 5. The lower end 24b of the outer underground heat transmission part 24 is located deeper in the ground than the lower end 25b of the inner underground heat transmission part 25.

Description

本発明は、地中の熱を有効に活用して床下空間の温度変化を小さくすることができる建物の構造に関する。   The present invention relates to a structure of a building that can effectively use underground heat to reduce a temperature change in an underfloor space.

従来、床下空間を囲む基礎に、断熱材が添設された建物の構造が提案されている(例えば、特許文献1参照)。このような断熱材は、建物外部から床下空間に伝達される熱を遮断することができるため、床下空間の温度変化を小さくすることができる。従って、床下空間には、夏は外気よりも涼しく、冬は外気よりも暖かい床下空気を蓄えることができる。   Conventionally, a building structure in which a heat insulating material is attached to a foundation surrounding an underfloor space has been proposed (see, for example, Patent Document 1). Such a heat insulating material can block the heat transmitted from the outside of the building to the underfloor space, so that the temperature change of the underfloor space can be reduced. Accordingly, the underfloor space can store underfloor air that is cooler than the outside air in summer and warmer than the outside air in winter.

また、床下空間に蓄えられた空気は、例えば、居室へと供給され、換気や初期冷暖房として使用される。このように、床下空間の空気を居室に利用するには、床下空間の温度変化をより小さくすることが望まれている。   Moreover, the air stored in the underfloor space is supplied to a living room, for example, and used as ventilation or initial cooling / heating. Thus, in order to use the air in the underfloor space for the living room, it is desired to make the temperature change in the underfloor space smaller.

特開2005−42958号公報JP 2005-42958 A

本発明は、以上のような実状に鑑み案出されたもので、床下空間の基礎側に配置される外側地中熱伝導部の下端を、床下空間の中心側に配置される内側地中熱伝導部の下端よりも地中深くに位置させることを基本として、地中の熱を有効に活用して床下空間の温度変化をより一層小さくすることができる建物の構造を提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and the lower end of the outer ground heat conduction portion disposed on the foundation side of the underfloor space is arranged on the inner ground heat disposed on the center side of the underfloor space. The main purpose is to provide a building structure that can effectively utilize the underground heat and further reduce the temperature change of the underfloor space, based on being located deeper in the ground than the lower end of the conductive part. It is said.

本発明のうち請求項1記載の発明は、基礎と床とで囲まれる床下空間を有する建物の構造であって、前記基礎は、建物外部から前記床下空間に伝達される熱を遮断する断熱材が設けられ、前記床下空間は、熱交換部が設けられ、前記熱交換部は、上端側が前記床下空間の空気と熱交換可能に配置され、かつ、下端側が前記床下空間の下方の地中の熱と熱交換可能に配置され、しかも良熱伝導性を有する材料からなる地中熱伝導部を含み、前記地中熱伝導部は、前記床下空間の前記基礎側に配置される外側地中熱伝導部と、前記外側地中熱伝導部よりも前記床下空間の中心側に配置される内側地中熱伝導部とを含み、前記外側地中熱伝導部の前記下端は、前記内側地中熱伝導部の前記下端よりも地中深くに位置することを特徴とする。   The invention according to claim 1 of the present invention is a structure of a building having an underfloor space surrounded by a foundation and a floor, and the foundation is a heat insulating material that blocks heat transmitted from the outside of the building to the underfloor space. The underfloor space is provided with a heat exchanging portion, the heat exchanging portion is arranged such that the upper end side can exchange heat with the air in the underfloor space, and the lower end side is in the ground below the underfloor space. Including an underground heat conduction portion that is arranged to be capable of exchanging heat with heat and that has good thermal conductivity, and the underground heat conduction portion is an outer ground heat that is arranged on the base side of the underfloor space. A conduction part and an inner ground heat conduction part disposed closer to the center side of the underfloor space than the outer ground heat conduction part, and the lower end of the outer ground heat conduction part is the inner ground heat It is characterized by being located deeper in the ground than the lower end of the conductive portion.

また、請求項2記載の発明は、前記床下空間は、前記底面が地盤面よりも下方に位置した地下構造である請求項1に記載の建物の構造である。   The invention according to claim 2 is the building structure according to claim 1, wherein the underfloor space is an underground structure in which the bottom surface is located below the ground surface.

また、請求項3記載の発明は、前記外側地中熱伝導部及び前記内側地中熱伝導部は、前記上端と前記下端との間をのびる棒状体である請求項1又は2に記載の建物の構造である。   The invention according to claim 3 is the building according to claim 1 or 2, wherein the outer ground heat conduction part and the inner ground heat conduction part are rod-like bodies extending between the upper end and the lower end. This is the structure.

また、請求項4記載の発明は、前記外側地中熱伝導部の前記下端の地中温度が、前記内側地中熱伝導部の前記下端の地中温度よりも低くなる冬季にのみ、該外側地中熱伝導部と前記床下空間の空気との熱交換を防ぐ外側遮熱手段と、前記内側地中熱伝導部の前記下端の地中温度が、前記外側地中熱伝導部の前記下端の地中温度よりも高くなる夏季にのみ、該内側地中熱伝導部と前記床下空間の空気との熱交換を防ぐ内側遮熱手段とが設けられる請求項1乃至3のいずれかに記載の建物の構造である。   In the invention according to claim 4, the outside temperature of the lower side of the outer ground heat conduction part is outside only in the winter when the ground temperature of the lower side of the inner side ground heat conduction part is lower. Outer heat shield means for preventing heat exchange between the underground heat conduction part and the air in the underfloor space, and the underground temperature at the lower end of the inner underground heat conduction part is set at the lower end of the outer underground heat conduction part. The building according to any one of claims 1 to 3, wherein an inner heat shield means for preventing heat exchange between the inner underground heat conduction portion and the air in the underfloor space is provided only in summer when the temperature is higher than the underground temperature. This is the structure.

本発明の建物の構造は、建物外部から床下空間に伝達される熱を遮断する基礎断熱材が設けられる。このような断熱材は、床下空間の温度変化を小さくすることができる。   The building structure of the present invention is provided with a basic heat insulating material that blocks heat transmitted from the outside of the building to the underfloor space. Such a heat insulating material can make the temperature change of underfloor space small.

さらに、床下空間は、熱交換部が設けられる。この熱交換部は、上端側が床下空間の空気と熱交換可能に配置され、かつ、下端側が床下空間の下方の地中の熱と熱交換可能に配置された地中熱伝導部を含む。しかも、地中熱伝導部は、良熱伝導性を有する材料からなる。このような地中熱伝導部は、床下空間の空気と、一年を通して温度変化が小さい地中の熱とを熱交換することができ、床下空間の温度変化をより小さくすることができる。   Furthermore, the heat exchange part is provided in the underfloor space. This heat exchanging portion includes an underground heat conduction portion whose upper end side is arranged so as to be able to exchange heat with the air in the underfloor space, and whose lower end side is arranged so as to be able to exchange heat with the underground heat below the underfloor space. Moreover, the underground heat conduction part is made of a material having good heat conductivity. Such an underground heat conduction part can exchange heat between the air in the underfloor space and the underground heat having a small temperature change throughout the year, and can further reduce the temperature change in the underfloor space.

また、地中熱伝導部は、床下空間の基礎側に配置される外側地中熱伝導部と、外側地中熱伝導部よりも床下空間の中心側に配置される内側地中熱伝導部とを含む。地中には、外気条件や、その上の建物の温度変化の影響を受けるものの、一年を通して温度が略一定(例えば、±1.0℃程度)となる不易層が存在する。建物の下方の該不易層は、外気条件の影響を受けやすい床下空間の基礎側が、床下空間の中心側に比べて地中深くに位置する傾向がある。このため、本発明では、外側地中熱伝導部の下端を、内側地中熱伝導部の下端よりも地中深くに位置させて、不易層に接近させている。これにより、内側地中熱伝導部及び外側地中熱伝導部の双方で、床下空間の空気と不易層近傍とを効果的に熱交換することができ、床下空間の温度変化をより一層小さくすることができる。   The underground heat conduction part includes an outer ground heat conduction part disposed on the foundation side of the underfloor space, and an inner ground heat conduction part disposed on the center side of the underfloor space with respect to the outer ground heat conduction part. including. In the ground, there is a hard layer where the temperature is almost constant (for example, about ± 1.0 ° C.) throughout the year, although it is affected by outside air conditions and temperature changes of the building above it. In the non-facilitated layer below the building, the foundation side of the underfloor space that is easily affected by outside air conditions tends to be located deeper in the ground than the center side of the underfloor space. For this reason, in the present invention, the lower end of the outer ground heat conduction portion is positioned deeper in the ground than the lower end of the inner ground heat conduction portion, and is brought closer to the non-prone layer. As a result, both the inner underground heat conduction part and the outer underground heat conduction part can effectively exchange heat between the air in the underfloor space and the vicinity of the non-prone layer, and further reduce the temperature change in the underfloor space. be able to.

本発明の実施形態の建物の構造を示す断面図である。It is sectional drawing which shows the structure of the building of embodiment of this invention. 図1の床下空間の部分拡大図である。It is the elements on larger scale of the underfloor space of FIG. 床下空間の平面図である。It is a top view of underfloor space. 遮熱手段を示す断面図である。It is sectional drawing which shows a heat-shielding means. (a)は、冬季の床下空間を示す断面図、(b)は、夏季の床下空間を示す断面図である。(A) is sectional drawing which shows underfloor space in winter, (b) is sectional drawing which shows underfloor space in summer.

以下、本発明の実施の一形態が図面に基づき説明される。
図1に示されるように、本実施形態の建物の構造は、例えば、住宅やビル等の建物Bに適用することができる。本実施形態の建物Bは、土台や外壁等を支持する基礎2、該基礎2で支持される1階の床3、及び、基礎2と床3とで囲まれる床下空間5を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, the building structure of this embodiment can be applied to a building B such as a house or a building, for example. The building B of the present embodiment has a foundation 2 that supports a base, an outer wall, and the like, a floor 3 on the first floor that is supported by the foundation 2, and an underfloor space 5 that is surrounded by the foundation 2 and the floor 3. .

図2及び図3に示されるように、基礎2は、建物Bの外周に連続して配置されている。本実施形態の基礎2は、鉄筋コンクリート製である。また、基礎2は、地中G内で水平にのびるベース部2Aと、該ベース部2Aの幅方向の略中央から上方へのびる立上がり部2Bとを含んでいる。即ち、この実施形態の基礎2は、断面T字状に形成された布基礎である。   As shown in FIGS. 2 and 3, the foundation 2 is continuously arranged on the outer periphery of the building B. The foundation 2 of this embodiment is made of reinforced concrete. The base 2 includes a base portion 2A extending horizontally in the ground G and a rising portion 2B extending upward from a substantially center in the width direction of the base portion 2A. That is, the foundation 2 of this embodiment is a cloth foundation formed in a T-shaped cross section.

立上がり部2Bは、建物Bの垂直高さの基準となるグランドラインである地盤面GLから小高さで突出している。また、立上がり部2Bは、床下空間5を囲むように配置されている。立上がり部2Bの上面側には、土台6が固定されている。さらに、土台6には、外壁7が固定されている。   The rising portion 2B protrudes at a small height from the ground surface GL, which is a ground line serving as a reference for the vertical height of the building B. The rising portion 2B is arranged so as to surround the underfloor space 5. A base 6 is fixed to the upper surface side of the rising portion 2B. Further, an outer wall 7 is fixed to the base 6.

本実施形態の基礎2の立上がり部2Bには、断熱材8が設けられる。この断熱材8は、立上がり部2Bに沿って上下にのびる縦部8Aと、立上がり部2Bの上面に沿って水平にのびる上側部8Bと、該縦部8Aの下端側から床下空間5側に水平にのびる水平部8Cとを含んでいる。   A heat insulating material 8 is provided on the rising portion 2B of the foundation 2 of the present embodiment. The heat insulating material 8 includes a vertical portion 8A extending vertically along the rising portion 2B, an upper portion 8B extending horizontally along the upper surface of the rising portion 2B, and horizontally extending from the lower end side of the vertical portion 8A toward the underfloor space 5 side. And a horizontal portion 8C that extends.

縦部8Aは、立上がり部2Bの床下空間5側の側面に沿ってのびている。また、縦部8Aの上端は、上側部8Bの下面に当接している。一方、縦部8Aの下端は、床下空間5の底面5bに当接している。このように、縦部8Aは、立上がり部2Bの側面に隙間なく配置されている。   The vertical portion 8A extends along the side surface of the rising portion 2B on the underfloor space 5 side. The upper end of the vertical portion 8A is in contact with the lower surface of the upper portion 8B. On the other hand, the lower end of the vertical portion 8 </ b> A is in contact with the bottom surface 5 b of the underfloor space 5. Thus, the vertical portion 8A is disposed on the side surface of the rising portion 2B without any gap.

上側部8Bは、立上がり部2Bの上面に沿って、床下空間5側から屋外側Soにのびている。また、上側部8Bの上端は、床3の下面に当接している。このように、上側部8Bは、床3と立上がり部2Bとの間で隙間なく配置されている。   The upper portion 8B extends from the underfloor space 5 side to the outdoor side So along the upper surface of the rising portion 2B. Further, the upper end of the upper portion 8B is in contact with the lower surface of the floor 3. As described above, the upper portion 8B is disposed between the floor 3 and the rising portion 2B without any gap.

水平部8Cは、縦部8Aから床下空間5側に向かって、床下空間5の底面5bに沿ってのびている。また、水平部8Cは、底面5bから取り外し可能に配置されている。従って、水平部8Cは、底面5bから取り外されることにより、該底面5b等に防蟻剤等を散布するのに役立つ。   The horizontal portion 8C extends along the bottom surface 5b of the underfloor space 5 from the vertical portion 8A toward the underfloor space 5 side. Moreover, the horizontal part 8C is arrange | positioned so that removal from the bottom face 5b is possible. Accordingly, the horizontal portion 8C is useful for spraying the termite-proofing agent and the like on the bottom surface 5b and the like by being removed from the bottom surface 5b.

このような断熱材8は、基礎2を介して建物外部から床下空間5に伝達される熱を遮断することができる。これにより、断熱材8は、床下空間5の温度変化を小さくすることができる。従って、床下空間5は、夏は涼しく、冬は暖かい空気を安定的に保持することができる。なお、断熱材8には、例えば、耐熱性及び耐衝撃性に優れるポリスチレンフォーム、ウレタンフォーム、又はフェノールフォーム等の板状材が好適に採用される。また、断熱材8の厚さT1は、例えば、40〜60mm程度に設定されるのが望ましい。   Such a heat insulating material 8 can block heat transmitted from the outside of the building to the underfloor space 5 via the foundation 2. Thereby, the heat insulating material 8 can make the temperature change of the underfloor space 5 small. Accordingly, the underfloor space 5 can stably hold warm air in summer and warm air in winter. In addition, for the heat insulating material 8, for example, a plate-like material such as polystyrene foam, urethane foam, or phenol foam having excellent heat resistance and impact resistance is suitably employed. The thickness T1 of the heat insulating material 8 is desirably set to about 40 to 60 mm, for example.

本実施形態の建物の構造には、温度変化の小さい床下空間5の空気を、居室へと供給する送風手段(図示省略)が設けられている。これにより、居室のエアコン等の空調機器の負荷が効果的に低減される。なお、基礎2の立ち上がり部2B等には、外気が導入される換気口(図示省略)が設けられている。この換気口の開口面積は、床下空間5の温度変化を最小限に抑える程度に設定されている。   The building structure of the present embodiment is provided with blower means (not shown) for supplying the air in the underfloor space 5 with a small temperature change to the living room. Thereby, the load of air-conditioning equipment, such as an air conditioner of a living room, is reduced effectively. In addition, the rising part 2B of the foundation 2 is provided with a ventilation port (not shown) through which outside air is introduced. The opening area of this ventilation port is set to such an extent that the temperature change of the underfloor space 5 is minimized.

断熱材8は、床下空間5を効果的に断熱することができるため、床下空間5の下方の地中Gの温度変化も小さくすることができる。図1にグレーで着色されているように、地中Gには、外気条件や、その上の建物Bの温度変化の影響を受けるものの、一年を通して温度が略一定(例えば、±1.0℃程度)となる不易層26が存在している。本実施形態では、床下空間5の高い断熱性により、従来の建物の下方の不易層26(等温線26aで囲まれる領域)に比べて、不易層26(等温線26bで囲まれる領域)を、床下空間5側へ上昇させることができる。このような不易層26の上昇は、後述する熱交換部21において、地中Gの熱と効率的に熱交換するのに役立つ。   Since the heat insulating material 8 can insulate the underfloor space 5 effectively, the temperature change of the underground G below the underfloor space 5 can also be reduced. As shown in gray in FIG. 1, the underground G is affected by the outside air condition and the temperature change of the building B above, but the temperature is substantially constant throughout the year (for example, ± 1.0). There is a non-facilitating layer 26 that is approximately (° C.). In the present embodiment, due to the high thermal insulation of the underfloor space 5, the non-facilitated layer 26 (region surrounded by the isothermal line 26b) is compared with the non-problem layer 26 (region surrounded by the isothermal line 26a) below the conventional building. It can be raised to the underfloor space 5 side. Such a rise of the non-facilitating layer 26 is useful for efficiently exchanging heat with the heat of the underground G in the heat exchanging section 21 described later.

図2に示されるように、床下空間5には、その下方に、例えば、下地用の砕石9、防蟻防湿シート10及び土間コンクリート11が敷設されている。床下空間5の底面5bは、土間コンクリート11の上面で形成されている。   As shown in FIG. 2, under the floor space 5, for example, a ground crushed stone 9, an ant-proof moisture-proof sheet 10, and dirt concrete 11 are laid. The bottom surface 5 b of the underfloor space 5 is formed on the upper surface of the soil concrete 11.

また、床下空間5には、例えば、底面5bから上方に突出する複数の束15と、該束15に支持される大引16とが設けられている。このような束15及び大引16により、床3が支持されている。   The underfloor space 5 is provided with, for example, a plurality of bundles 15 protruding upward from the bottom surface 5 b and a large pull 16 supported by the bundle 15. The floor 3 is supported by the bundle 15 and the large pull 16.

本実施形態の床下空間5は、地中Gの熱と床下空間5の空気との熱交換可能な熱交換部21が設けられている。本実施形態の熱交換部21は、床下空間5の底面5bで熱交換する底面熱交換部22と、底面5bよりも下方の地中Gに埋設された地中熱伝導部23とが含まれる。   The underfloor space 5 of the present embodiment is provided with a heat exchanging portion 21 capable of exchanging heat between the heat of the underground G and the air of the underfloor space 5. The heat exchanging portion 21 of the present embodiment includes a bottom heat exchanging portion 22 that exchanges heat at the bottom surface 5b of the underfloor space 5, and an underground heat conduction portion 23 embedded in the underground G below the bottom surface 5b. .

底面熱交換部22は、前記断熱材8で覆われていない床下空間5の底面5b(土間コンクリート11)で構成されている。このような底面熱交換部22は、床下空間5の底面5bを介して地中Gの熱を広範囲に、床下空間5に伝えることができる。従って、底面熱交換部22は、床下空間5の温度変化を小さくするのに役立つ。   The bottom surface heat exchanging portion 22 is composed of a bottom surface 5 b (underground concrete 11) of the underfloor space 5 that is not covered with the heat insulating material 8. Such a bottom surface heat exchanging unit 22 can transmit the heat of the underground G to the underfloor space 5 over a wide range via the bottom surface 5 b of the underfloor space 5. Therefore, the bottom surface heat exchange unit 22 is useful for reducing the temperature change of the underfloor space 5.

図1に示したように、本実施形態では、不易層26を床下空間5側に上昇させることができるため、底面熱交換部22も、不易層26の近くで熱交換することができる。従って、底面熱交換部22は、床下空間5の温度変化をより小さくすることができる。   As shown in FIG. 1, in the present embodiment, the non-problem layer 26 can be raised toward the underfloor space 5, so that the bottom heat exchanging unit 22 can also perform heat exchange near the non-problem layer 26. Therefore, the bottom surface heat exchange unit 22 can further reduce the temperature change of the underfloor space 5.

図2に示されるように、床下空間5は、その底面5bが、地盤面GLよりも下方に位置した地下構造とされるのが望ましい。これにより、底面熱交換部22は、不易層26(図1に示す)により接近することができるため、床下空間5の温度変化をさらに小さくすることができる。なお、地盤面GLと底面5bとの間の深さDは、例えば、200〜500mmが望ましい。   As shown in FIG. 2, the underfloor space 5 preferably has an underground structure in which the bottom surface 5b is located below the ground surface GL. Thereby, since the bottom face heat exchange part 22 can approach the non-promoting layer 26 (shown in FIG. 1), the temperature change of the underfloor space 5 can be further reduced. In addition, as for the depth D between the ground surface GL and the bottom face 5b, 200-500 mm is desirable, for example.

地中熱伝導部23は、本実施形態では、棒状体からなり、上端23aと下端23bとの間を直線状にのびている。本実施形態の棒状体は、断面略円形である。また、地中熱伝導部23の表面積を増すために、その上端23a、下端23b及び側面23sに、凹凸やフィン等が設けられてもよい。さらに、地中熱伝導部23は、良熱伝導性を有する材料からなる。地中熱伝導部23の材料としては、特に限定されないが、例えば、スチール、アルミニウム、又は銅等の金属が採用されるのが望ましい。さらに、地中熱伝導部23の熱伝導率は、例えば、50〜370W/(m・K)程度が望ましい。   In the present embodiment, the underground heat conduction unit 23 is formed of a rod-like body, and linearly extends between the upper end 23a and the lower end 23b. The rod-shaped body of the present embodiment has a substantially circular cross section. Moreover, in order to increase the surface area of the underground heat conduction part 23, unevenness | corrugation, a fin, etc. may be provided in the upper end 23a, the lower end 23b, and the side surface 23s. Furthermore, the underground heat conduction part 23 is made of a material having good heat conductivity. The material of the underground heat conduction part 23 is not particularly limited, but for example, it is desirable to employ a metal such as steel, aluminum, or copper. Furthermore, as for the heat conductivity of the underground heat conduction part 23, about 50-370 W / (m * K) is desirable, for example.

本実施形態では、地中熱伝導部23の上端23aは、床下空間5に位置している。一方、地中熱伝導部23の下端23b側は、底面5bよりも下方の地中Gに埋設されている。これにより、床下空間5は、底面熱交換部22のみならず、地中熱伝導部23を介しても、床下空間5の下方の地中Gの熱と熱交換することができる。従って、地中熱伝導部23は、床下空間5の温度変化をさらに小さくすることができる。   In the present embodiment, the upper end 23 a of the underground heat conduction unit 23 is located in the underfloor space 5. On the other hand, the lower end 23b side of the underground heat conduction part 23 is buried in the underground G below the bottom surface 5b. Thereby, the underfloor space 5 can exchange heat with the heat of the underground G below the underfloor space 5 not only through the bottom surface heat exchanging portion 22 but also through the underground heat conduction portion 23. Therefore, the underground heat conduction part 23 can further reduce the temperature change of the underfloor space 5.

このような作用を効果的に発揮させるために、地中熱伝導部23の外径E1は、50〜300mmが望ましい。なお、外径E1が200mm未満であると、地中熱伝導部23が、床下空間5の空気と地中Gの熱とを十分に熱交換できないおそれがある。逆に、前記外径E1が300mmを超えても、地中熱伝導部23の製造コストが増大するおそれがある。   In order to effectively exhibit such an action, the outer diameter E1 of the underground heat conduction part 23 is desirably 50 to 300 mm. If the outer diameter E1 is less than 200 mm, the underground heat conduction unit 23 may not be able to sufficiently exchange heat between the air in the underfloor space 5 and the heat of the underground G. Conversely, even if the outer diameter E1 exceeds 300 mm, the manufacturing cost of the underground heat conduction part 23 may increase.

また、地中熱伝導部23の上端23aから底面5bまでの長さL1は、100〜200mmが望ましい。なお、前記長さL1が100mm未満であると、地中熱伝導部23の上端23a側と床下空間5の空気とが十分に熱交換できないおそれがある。逆に、前記長さL1が200mmを超えても、地中熱伝導部23が底面5bから上方に大きく突出し、床下空間5のメンテナンス性が低下するおそれがある。   Moreover, as for the length L1 from the upper end 23a of the underground heat conduction part 23 to the bottom face 5b, 100-200 mm is desirable. When the length L1 is less than 100 mm, there is a possibility that heat cannot be sufficiently exchanged between the upper end 23a side of the underground heat conduction portion 23 and the air in the underfloor space 5. On the contrary, even if the length L1 exceeds 200 mm, the underground heat conduction part 23 protrudes greatly upward from the bottom surface 5b, and the maintainability of the underfloor space 5 may be deteriorated.

さらに、地中熱伝導部23の下端23bから底面5bまでの長さL2は、施工される土地の地質や、不易層26の位置等を考慮して適宜設定されるのが望ましい。本実施形態では、不易層26(図1に示す)を床下空間5側に上昇させることができるため、地中熱伝導部23の長さL2を小さくすることができる。従って、地中熱伝導部23の製造コストを抑えることができる。なお、本実施形態の長さL2は、例えば、1m〜10m程度に設定されている。   Furthermore, it is desirable that the length L2 from the lower end 23b to the bottom surface 5b of the underground heat conduction portion 23 is appropriately set in consideration of the geology of the land to be constructed, the position of the non-facilitated layer 26, and the like. In the present embodiment, since the non-promoting layer 26 (shown in FIG. 1) can be raised to the underfloor space 5 side, the length L2 of the underground heat conduction portion 23 can be reduced. Therefore, the manufacturing cost of the underground heat conduction part 23 can be suppressed. In addition, length L2 of this embodiment is set to about 1m-10m, for example.

図2及び図3に示されるように、平面視において、複数個の地中熱伝導部23が、例えば、床下空間5の底面5bに、碁盤目状に配置されている。これにより、地中熱伝導部23は、床下空間5の空気と、地中Gの熱との熱交換をバランス良く行うことができる。さらに、複数本の地中熱伝導部23が、床下空間5の下方の地中Gに埋設されているため、該地中Gの締め固めにも役立つ。   As shown in FIGS. 2 and 3, the plurality of underground heat conduction parts 23 are arranged in a grid pattern on the bottom surface 5 b of the underfloor space 5 in a plan view, for example. Thereby, the underground heat conduction part 23 can perform heat exchange between the air in the underfloor space 5 and the heat of the underground G with a good balance. Further, since the plurality of underground heat conduction portions 23 are embedded in the underground G below the underfloor space 5, it is useful for compacting the underground G.

本実施形態の地中熱伝導部23は、床下空間5の基礎2側に配置される外側地中熱伝導部24と、外側地中熱伝導部24よりも床下空間5の中心側に配置される内側地中熱伝導部25とが含まれている。図3に示される平面視において、外側地中熱伝導部24は、内側地中熱伝導部25の基礎2側を囲むように配置されている。   The underground heat conduction part 23 of the present embodiment is arranged on the center side of the underfloor space 5 with respect to the outer underground heat conduction part 24 arranged on the foundation 2 side of the underfloor space 5 and the outer underground heat conduction part 24. And an inner underground heat conduction portion 25. In the plan view shown in FIG. 3, the outer ground heat conduction part 24 is disposed so as to surround the base 2 side of the inner ground heat conduction part 25.

図1に示されるように、不易層26の境界面は、外気条件の影響を受けやすい基礎2側が、断熱性の高い床下空間5の中心側に比べて、地中深くに位置する傾向がある。このため、本実施形態では、外側地中熱伝導部24の下端24bを、内側地中熱伝導部25の下端25bよりも地中深くに位置させている。これにより、外側地中熱伝導部24は、不易層26の近くで地中Gの熱と熱交換することができる。一方、図2に示されるように、内側地中熱伝導部25の下端25bと床下空間5の底面5bとの長さL2bは、外側地中熱伝導部24の下端24bと底面5bとの長さL2aよりも小さい。これにより、内側地中熱伝導部25は、その材料の使用量を少なくしつつ、不易層26の近くで地中Gの熱と熱交換することができる。   As shown in FIG. 1, the boundary surface of the non-facilitated layer 26 tends to be located deeper in the ground on the foundation 2 side, which is easily affected by outside air conditions, as compared to the center side of the underfloor space 5 with high thermal insulation properties. . For this reason, in this embodiment, the lower end 24b of the outer side underground heat conductive part 24 is located deeper in the ground than the lower end 25b of the inner side underground heat conductive part 25. Thereby, the outer side underground heat conduction part 24 can heat-exchange with the heat | fever of underground G near the non-problem layer 26. FIG. On the other hand, as shown in FIG. 2, the length L2b between the lower end 25b of the inner underground heat conduction portion 25 and the bottom surface 5b of the underfloor space 5 is the length between the lower end 24b and the bottom surface 5b of the outer underground heat conduction portion 24. Is smaller than L2a. Thereby, the inner side underground heat conductive part 25 can heat-exchange with the heat | fever of underground G near the non-easy layer 26, reducing the usage-amount of the material.

なお、外側地中熱伝導部24の長さL2aについては、施工される土地の不易層26を、シミュレーション計算等によって推定して適宜設定されるのが望ましい。本実施形態の外側地中熱伝導部24の長さL2aは、例えば、5〜10m程度に設定されている。また、内側地中熱伝導部25の長さL2bは、例えば、1〜2m程度に設定されている。   In addition, about the length L2a of the outer side underground heat conduction part 24, it is desirable to estimate the improper layer 26 of the land to construct by simulation calculation etc., and to set suitably. The length L2a of the outer ground heat conduction part 24 of this embodiment is set to about 5 to 10 m, for example. Moreover, the length L2b of the inner underground heat conduction part 25 is set to about 1-2 m, for example.

図1に示されるように、地中Gには、不易層26が存在するものの、外気条件や、その上の建物Bの温度変化によって地中Gの温度が変化しやすい。このため、地中熱伝導部23は、地中Gの温度に応じて、床下空間5の空気と熱交換させる状態と、床下空間5の空気と熱交換させない状態とに、切り替えて使用されるのが望ましい。図4に示されるように、本実施形態では、地中熱伝導部23と床下空間5の空気との熱交換を防ぐ遮熱手段30が設けられる。   As shown in FIG. 1, the underground G has a non-prone layer 26, but the temperature of the underground G is likely to change due to the outside air condition and the temperature change of the building B above it. For this reason, the underground heat conduction part 23 is used by switching between a state in which heat is exchanged with the air in the underfloor space 5 and a state in which heat is not exchanged with the air in the underfloor space 5 according to the temperature of the underground G. Is desirable. As shown in FIG. 4, in the present embodiment, a heat shield means 30 that prevents heat exchange between the underground heat conduction unit 23 and the air in the underfloor space 5 is provided.

遮熱手段30は、断熱材からなる。また、地中熱伝導部23の上端23aを覆う上面部35と、側面23sを覆う側面部36とを含んでいる。このような遮熱手段30は、床下空間5側において、地中熱伝導部23の上端23a側を完全に覆うことができる。これにより、遮熱手段30は、地中熱伝導部23と床下空間5の空気との熱交換を防ぐことができるため、地中熱伝導部23を使い分けるのに役立つ。   The heat shield means 30 is made of a heat insulating material. Moreover, the upper surface part 35 which covers the upper end 23a of the underground heat conduction part 23, and the side part 36 which covers the side surface 23s are included. Such a heat shield means 30 can completely cover the upper end 23a side of the underground heat conduction part 23 on the underfloor space 5 side. Thereby, since the heat shield means 30 can prevent heat exchange between the underground heat conduction part 23 and the air in the underfloor space 5, it is useful for properly using the underground heat conduction part 23.

遮熱手段30の断熱材としては、特に限定されないが、基礎2に配置される断熱材8と同様のものが望ましい。また、遮熱手段30の地中熱伝導部23への着脱は、駆動手段等によって行われるのが望ましいが、手動により行われてもよい。   Although it does not specifically limit as a heat insulating material of the heat shield means 30, The thing similar to the heat insulating material 8 arrange | positioned at the foundation 2 is desirable. Moreover, it is desirable that the heat shield means 30 is attached to and detached from the underground heat conduction section 23 by a driving means or the like, but may be manually performed.

図5(a)、(b)に示されるように、この実施形態の遮熱手段30は、外側地中熱伝導部24を覆う外側遮熱手段31と、内側地中熱伝導部25を覆う内側遮熱手段32とが含まれる。このような外側遮熱手段31及び内側遮熱手段32は、外側地中熱伝導部24及び内側地中熱伝導部25を使い分けるのに役立つ。   As shown in FIGS. 5 (a) and 5 (b), the heat shield means 30 of this embodiment covers the outer heat shield means 31 that covers the outer ground heat conduction section 24 and the inner ground heat conduction section 25. An inner heat shield 32. Such outer heat shield means 31 and inner heat shield means 32 are useful for properly using the outer ground heat conduction portion 24 and the inner ground heat conduction portion 25.

図5(a)に示されるように、床暖房等が使用される冬季においては、床下空間5側の地中Gが暖められるため、外側地中熱伝導部24の下端24b側の地中温度が、内側地中熱伝導部25の下端25b側の地中温度よりも低くなる。   As shown in FIG. 5 (a), in the winter season when floor heating or the like is used, the underground G on the underfloor space 5 side is warmed, so the underground temperature on the lower end 24b side of the outer underground heat conduction section 24 is increased. However, it becomes lower than the underground temperature on the lower end 25 b side of the inner underground heat conduction part 25.

このため、外側遮熱手段31は、冬季にのみ、外側地中熱伝導部24の上端23a側を覆うのが望ましい。これにより、外側遮熱手段31は、相対的に低い地中温度が伝達される外側地中熱伝導部24と、床下空間5の空気との熱交換を防ぐことができる。従って、外側遮熱手段31は、冬季において、床下空間5の温度の低下を防ぐことができる。   For this reason, it is desirable that the outer heat shielding means 31 cover the upper end 23a side of the outer underground heat conduction section 24 only in winter. Thereby, the outer side heat shielding means 31 can prevent heat exchange between the outer underground heat conduction part 24 to which a relatively low underground temperature is transmitted and the air in the underfloor space 5. Therefore, the outer heat shielding means 31 can prevent the temperature of the underfloor space 5 from decreasing in winter.

一方、地盤面GL(図1に示す)への日射が強くなる夏季においては、内側地中熱伝導部25の下端25b側の地中温度が、外側地中熱伝導部24の下端24b側の地中温度よりも高くなる。   On the other hand, in the summer when the solar radiation to the ground surface GL (shown in FIG. 1) is strong, the underground temperature on the lower end 25b side of the inner underground heat conduction portion 25 is lower than that on the lower end 24b side of the outer underground heat conduction portion 24. It becomes higher than the underground temperature.

このため、内側遮熱手段32は、夏季にのみ、内側地中熱伝導部25の上端25a側を覆うのが望ましい。これにより、内側遮熱手段32は、相対的に高い地中温度が伝達される内側地中熱伝導部25と、床下空間5の空気との熱交換を防ぐことができる。従って、内側遮熱手段32は、夏季において、床下空間5の温度の上昇を防ぐことができる。   For this reason, it is desirable that the inner heat shielding means 32 cover the upper end 25a side of the inner underground heat conduction section 25 only in summer. Thereby, the inner side heat shielding means 32 can prevent heat exchange between the inner underground heat conduction part 25 to which a relatively high underground temperature is transmitted and the air in the underfloor space 5. Therefore, the inner heat shield means 32 can prevent the temperature of the underfloor space 5 from rising in summer.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

2 基礎
3 床
5 床下空間
8 断熱材
21 熱交換部
23 地中熱伝導部
24 外側地中熱伝導部
25 内側地中熱伝導部
2 Foundation 3 Floor 5 Underfloor space 8 Insulating material 21 Heat exchange part 23 Ground heat conduction part 24 Outer ground heat conduction part 25 Inner ground heat conduction part

Claims (4)

基礎と床とで囲まれる床下空間を有する建物の構造であって、
前記基礎は、建物外部から前記床下空間に伝達される熱を遮断する断熱材が設けられ、
前記床下空間は、熱交換部が設けられ、
前記熱交換部は、上端側が前記床下空間の空気と熱交換可能に配置され、かつ、下端側が前記床下空間の下方の地中の熱と熱交換可能に配置され、しかも良熱伝導性を有する材料からなる地中熱伝導部を含み、
前記地中熱伝導部は、前記床下空間の前記基礎側に配置される外側地中熱伝導部と、
前記外側地中熱伝導部よりも前記床下空間の中心側に配置される内側地中熱伝導部とを含み、
前記外側地中熱伝導部の前記下端は、前記内側地中熱伝導部の前記下端よりも地中深くに位置することを特徴とする建物の構造。
A building structure having an underfloor space surrounded by a foundation and a floor,
The foundation is provided with a heat insulating material that blocks heat transmitted from outside the building to the underfloor space,
The underfloor space is provided with a heat exchange part,
The heat exchanging portion is arranged such that the upper end side can exchange heat with the air in the underfloor space, and the lower end side is arranged to exchange heat with the underground heat below the underfloor space, and has good heat conductivity. Including underground heat conduction parts made of materials,
The underground heat conduction part is an outer ground heat conduction part disposed on the foundation side of the underfloor space;
An inner ground heat conduction part disposed on the center side of the underfloor space than the outer ground heat conduction part,
The building structure characterized in that the lower end of the outer ground heat conduction part is located deeper in the ground than the lower end of the inner ground heat conduction part.
前記床下空間は、前記底面が地盤面よりも下方に位置した地下構造である請求項1に記載の建物の構造。   The building structure according to claim 1, wherein the underfloor space is an underground structure in which the bottom surface is located below the ground surface. 前記外側地中熱伝導部及び前記内側地中熱伝導部は、前記上端と前記下端との間をのびる棒状体である請求項1又は2に記載の建物の構造。   The building structure according to claim 1 or 2, wherein the outer ground heat conduction part and the inner ground heat conduction part are rod-like bodies extending between the upper end and the lower end. 前記外側地中熱伝導部の前記下端の地中温度が、前記内側地中熱伝導部の前記下端の地中温度よりも低くなる冬季にのみ、該外側地中熱伝導部と前記床下空間の空気との熱交換を防ぐ外側遮熱手段と、
前記内側地中熱伝導部の前記下端の地中温度が、前記外側地中熱伝導部の前記下端の地中温度よりも高くなる夏季にのみ、該内側地中熱伝導部と前記床下空間の空気との熱交換を防ぐ内側遮熱手段とが設けられる請求項1乃至3のいずれかに記載の建物の構造。
Only in the winter when the ground temperature at the lower end of the outer ground heat conduction part is lower than the ground temperature at the lower end of the inner ground heat conduction part, the outer ground heat conduction part and the underfloor space An outer heat shield that prevents heat exchange with air;
Only in the summer when the underground temperature at the lower end of the inner underground heat conduction part is higher than the underground temperature at the lower end of the outer underground heat conduction part, the inner underground heat conduction part and the underfloor space The building structure according to any one of claims 1 to 3, further comprising an inner heat shielding means for preventing heat exchange with air.
JP2012168707A 2012-07-30 2012-07-30 Building structure Active JP5969851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168707A JP5969851B2 (en) 2012-07-30 2012-07-30 Building structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168707A JP5969851B2 (en) 2012-07-30 2012-07-30 Building structure

Publications (2)

Publication Number Publication Date
JP2014025316A true JP2014025316A (en) 2014-02-06
JP5969851B2 JP5969851B2 (en) 2016-08-17

Family

ID=50199195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168707A Active JP5969851B2 (en) 2012-07-30 2012-07-30 Building structure

Country Status (1)

Country Link
JP (1) JP5969851B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146205A (en) * 2017-03-08 2018-09-20 トヨタホーム株式会社 Underfloor ventilation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826965A (en) * 1981-08-09 1983-02-17 Tsuneo Kurachi Room cooling and heating ornaments of heat conductive metal
JPS59122854A (en) * 1982-12-29 1984-07-16 Misawa Homes Co Ltd Heat exchanger
GB2442803A (en) * 2006-10-12 2008-04-16 Cannon Piling Ltd Multiple depth subterranean heat exchanger and installation method
JP2009221758A (en) * 2008-03-17 2009-10-01 Nippon Aaku Kaihatsu Kk Wooden house
JP2011153764A (en) * 2010-01-27 2011-08-11 Fujitsu Ltd Air conditioning control system, air conditioning control method and air conditioning control program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5826965A (en) * 1981-08-09 1983-02-17 Tsuneo Kurachi Room cooling and heating ornaments of heat conductive metal
JPS59122854A (en) * 1982-12-29 1984-07-16 Misawa Homes Co Ltd Heat exchanger
GB2442803A (en) * 2006-10-12 2008-04-16 Cannon Piling Ltd Multiple depth subterranean heat exchanger and installation method
JP2009221758A (en) * 2008-03-17 2009-10-01 Nippon Aaku Kaihatsu Kk Wooden house
JP2011153764A (en) * 2010-01-27 2011-08-11 Fujitsu Ltd Air conditioning control system, air conditioning control method and air conditioning control program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018146205A (en) * 2017-03-08 2018-09-20 トヨタホーム株式会社 Underfloor ventilation system

Also Published As

Publication number Publication date
JP5969851B2 (en) 2016-08-17

Similar Documents

Publication Publication Date Title
JP5961199B2 (en) Plant cultivation system in agricultural house using geothermal heat
JP5912924B2 (en) Basic insulation structure
JP2011149690A (en) Underground heat exchanger burying structure
JP5969851B2 (en) Building structure
JP2013249634A (en) Building structure
CN203628909U (en) Graphite-type radiant cooling and heating board
JP3156275U (en) House with comfortable living space using air conditioner
JP6085431B2 (en) building
JP2013130032A (en) Underfloor structure of construction with at least one of refrigerating facility and freezing facility
JP2013148247A (en) Geothermal air conditioning device and construction method of the same
JP5922380B2 (en) Underfloor structure of building
JP2015124940A (en) Heat storage structure and house using the same
JP2011179738A (en) Air conditioner and air conditioning panel
JP2007139236A (en) Underfloor air-conditioning device and method
JP5932551B2 (en) Building design method
JP2009085553A (en) Geothermal system for building
JP6103494B2 (en) Underfloor heat storage structure
JP6196542B2 (en) Thermal storage structure and housing using the same
CN219175364U (en) Fire control water supply system suitable for severe cold district
JP2016133237A (en) Air conditioning system
JP6017245B2 (en) Outside air introduction air conditioning system
JP2007057215A (en) Device for using geothermal heat
JP6219232B2 (en) Housing structure
JP3191381U (en) Existing concrete heating device
JP4137823B2 (en) Concrete building

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160708

R150 Certificate of patent or registration of utility model

Ref document number: 5969851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350