JP2014024434A - Carrier - Google Patents

Carrier Download PDF

Info

Publication number
JP2014024434A
JP2014024434A JP2012165684A JP2012165684A JP2014024434A JP 2014024434 A JP2014024434 A JP 2014024434A JP 2012165684 A JP2012165684 A JP 2012165684A JP 2012165684 A JP2012165684 A JP 2012165684A JP 2014024434 A JP2014024434 A JP 2014024434A
Authority
JP
Japan
Prior art keywords
wheel
wheels
maximum
drive torque
chassis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012165684A
Other languages
Japanese (ja)
Other versions
JP5762367B2 (en
Inventor
Hideki Torita
秀樹 取田
Hideyuki Sasaki
秀幸 佐々木
Kazuyoshi Sato
和良 佐藤
Fumiaki Oikawa
文明 及川
Shinji Kawabe
慎二 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Original Assignee
Toyota Motor East Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor East Japan Inc filed Critical Toyota Motor East Japan Inc
Priority to JP2012165684A priority Critical patent/JP5762367B2/en
Publication of JP2014024434A publication Critical patent/JP2014024434A/en
Application granted granted Critical
Publication of JP5762367B2 publication Critical patent/JP5762367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To improve travel stability, by preventing a situation of disturbing a route when turning for traveling in a curve such as particularly cornering, with a simple constitution having no steering mechanism.SOLUTION: A pair of front wheels Wf, a pair of intermediate wheels Wc, and a pair of rear wheels Wr are provided in a longitudinal direction of a chassis 1, and the respective wheels are provided so that its wheel shaft 2 is orthogonal to the longitudinal direction of the chassis 1, and the intermediate wheels Wc comprise: a rubber tire 4; and the front wheels Wf and the rear wheels Wr are constituted of an omnidirectional wheel of annularly arranging a plurality of laterally rotating rollers 6 for freely rotating in a lateral direction, and a driving part 7 is respectively provided in the respective wheels, and a control part 20 is provided with maximum driving torque command means 21 for distributing maximum driving torque of the intermediate wheels Wc by reducing more than maximum driving torque of the front wheels and the rear wheels in the front wheels Wf, the intermediate wheels Wc and the rear wheels Wr on the outside in a turning radius direction when turning for traveling in a curve of the chassis 1.

Description

本発明は、主に種々の物品を搬送するための無人で操作可能な搬送車に関し、特に、車輪を6輪以上有し重量物の搬送にも適した搬送車に関する。   The present invention relates to an unmanned transport vehicle mainly for transporting various articles, and more particularly to a transport vehicle having six or more wheels and suitable for transporting heavy objects.

従来、この種の搬送車としては、例えば、特開2003−34262号公報(特許文献1)に掲載されたものがある。この搬送車は、シャシの前後方向に夫々トレッドを同じにする一対の前輪,一対の中間輪及び一対の後輪を設けた6輪車であり、各車輪は、夫々、独立して旋回運動可能になっており、電気式ステアリングにより操舵できるようにしている。しかしながら、この搬送車にあっては、各車輪を夫々独立して旋回可能にして舵角調整する操舵機構があるので、それだけ、構造が複雑になるという欠点がある。   Conventionally, as this type of transport vehicle, for example, there is one disclosed in Japanese Patent Laid-Open No. 2003-34262 (Patent Document 1). This transport vehicle is a six-wheeled vehicle provided with a pair of front wheels, a pair of intermediate wheels and a pair of rear wheels, each having the same tread in the front-rear direction of the chassis, and each wheel can independently turn. It can be steered by electric steering. However, this transport vehicle has a drawback that the structure is complicated because there is a steering mechanism that adjusts the steering angle by allowing each wheel to turn independently.

そのため、操舵機構のないシンプルな構成として、例えば、各種作業を行うロボットを移動させる車両の技術であるが、米国特許第5323867号公報(特許文献2)に掲載された技術を用いることが考えられる。これは、図9に示すように、シャシ100の前後方向に夫々トレッドを同じにする一対の前輪Wf,一対の中間輪Wc及び一対の後輪Wrを所定間隔で設けるとともに、これらの車輪軸101をシャシ100の前後方向Rに直交するように設けている。そして、中間輪Wcをゴムタイヤ103を備えて構成し、中間輪Wc以外の前輪Wf及び後輪Wrを、車輪の直進方向に対して直交する横方向へ自在に回転する複数個の横転ローラ104を環状に配列した全方向車輪で構成している。また、シャシ100に一対のモータ105を搭載し、減速機構106,チェーン伝動機構107及びベルト伝動機構108を介して左右の各車輪群を各々同期させて駆動できるようにしている。これにより、図示外の制御部により、モータ105を制御してシャシ100を前後進及び旋回させるようにする。   Therefore, as a simple configuration without a steering mechanism, for example, it is a vehicle technology that moves a robot that performs various operations, but it is conceivable to use the technology described in US Pat. No. 5,323,867 (Patent Document 2). . As shown in FIG. 9, a pair of front wheels Wf, a pair of intermediate wheels Wc, and a pair of rear wheels Wr having the same tread in the front-rear direction of the chassis 100 are provided at predetermined intervals, and the wheel shafts 101 are provided. Are provided so as to be orthogonal to the front-rear direction R of the chassis 100. The intermediate wheel Wc includes a rubber tire 103, and a plurality of roll rollers 104 that freely rotate the front wheels Wf and the rear wheels Wr other than the intermediate wheel Wc in a lateral direction perpendicular to the straight traveling direction of the wheels are provided. It consists of omnidirectional wheels arranged in a ring. A pair of motors 105 is mounted on the chassis 100 so that the left and right wheel groups can be driven in synchronization via the speed reduction mechanism 106, the chain transmission mechanism 107 and the belt transmission mechanism 108. Thereby, the motor 105 is controlled by a control unit (not shown) so that the chassis 100 moves forward and backward.

特開2003−34262号公報JP 2003-34262 A 米国特許第5323867号公報US Pat. No. 5,323,867

しかしながら、搬送車として上記後者の操舵機構のない車両の構成とした場合、特に、この搬送車を屋外で用いると、路面状況の変化により、走行安定性に劣るという問題があった。それは、例えば、路面が雨で濡れ、あるいは、積雪やアイスバーンにより滑りやすくなっている場合に、コーナリング等のカーブ走行する旋回時に進路が乱れやすくなるからである。即ち、図10に示すように、この旋回時には、モータ105を制御して旋回半径方向外側の車輪群(図の左側)に対して旋回半径方向内側の車輪群(図の右側)よりも回転数を増加させるが、旋回半径方向外側の各車輪は同期して回転するので、最大駆動トルクが均等になり、そのため、旋回半径方向外側の中間輪Wcの最大駆動トルクTcと横方向のコーナリングフォースFaの合成力Ttがタイヤのグリップ限界(図10では積雪路面のタイヤ摩擦円)を超えてしまい車体の横方向グリップを失うことで進路を乱すからである。   However, when the transport vehicle has a configuration without the latter steering mechanism, particularly when the transport vehicle is used outdoors, there is a problem that traveling stability is poor due to a change in road surface conditions. This is because, for example, when the road surface is wet with rain, or when it is slippery due to snow or ice burn, the course is likely to be disturbed during cornering and other cornering turns. That is, as shown in FIG. 10, at the time of this turning, the motor 105 is controlled so that the number of rotations is larger than that of the inner wheel group (right side) in the turning radius direction with respect to the outer wheel group (left side). However, since the wheels on the outer side in the turning radius direction rotate synchronously, the maximum driving torque becomes uniform, so that the maximum driving torque Tc of the intermediate wheel Wc on the outer side in the turning radius direction and the cornering force Fa in the lateral direction are increased. This is because the resultant force Tt exceeds the grip limit of the tire (the tire friction circle on the snowy road surface in FIG. 10) and the course is disturbed by losing the lateral grip of the vehicle body.

本発明は、上記の点に鑑みてなされたもので、操舵機構のないシンプルな構成にするとともに、特にコーナリング等のカーブ走行する旋回時に進路が乱れる事態を防止し、走行安定性の向上を図った搬送車を提供することを目的とする。   The present invention has been made in view of the above points, and has a simple structure without a steering mechanism, and prevents a situation in which the course is disturbed particularly during cornering and turning, thereby improving running stability. The purpose is to provide a transport vehicle.

このような目的を達成するため、本発明の搬送車は、シャシの前後方向に少なくとも一対の前輪,一対の中間輪及び一対の後輪を設けた搬送車であって、上記各車輪をその車輪軸が上記シャシの前後方向に直交するように設け、上記中間輪をゴムタイヤを備えて構成し、上記中間輪以外の前輪及び後輪を、該車輪の直進方向に対して直交する横方向へ自在に回転する複数個の横転ローラを環状に配列した全方向車輪で構成し、上記各車輪に夫々指令された最大駆動トルクを独立して出力可能な駆動部を設け、該各駆動部を制御してシャシを前後進及び旋回させる制御部を設け、該制御部に各駆動部に対し最大駆動トルクを配分して指令する最大駆動トルク指令手段を備えた構成としている。   In order to achieve such an object, the transport vehicle of the present invention is a transport vehicle provided with at least a pair of front wheels, a pair of intermediate wheels, and a pair of rear wheels in the front-rear direction of the chassis. The shaft is provided so as to be orthogonal to the front-rear direction of the chassis, the intermediate wheel is provided with rubber tires, and the front and rear wheels other than the intermediate wheel can be freely moved in the lateral direction perpendicular to the straight direction of the wheel. A plurality of roll rollers that rotate in a circular pattern are arranged in an omnidirectional wheel, each of the wheels is provided with a drive unit that can independently output the commanded maximum drive torque, and each drive unit is controlled. The control unit for moving the chassis forward and backward and turning is provided, and the control unit is provided with maximum drive torque command means for allocating and commanding the maximum drive torque to each drive unit.

これにより、シャシを走行させるときは、制御部により各駆動部に対して、各車輪の所要の回転数及び回転方向を指令するとともに、最大駆動トルク指令手段から最大駆動トルクを配分して指令してシャシを前後進及び旋回させる。このため、操舵機構のないシンプルな構成にして走行を可能にする。この場合、例えば、前後進時には、左右の各車輪群に対して回転数を均等配分する。また、一対の中間輪間の中央を旋回中心とする所謂その場旋回においては、左右の車輪群に対し回転数を均等配分するとともに互いに左右の車輪群の回転方向を逆転させる。また、その場旋回以外の旋回であるカーブ走行する旋回時、例えば、右折,左折のコーナリングにおいては、旋回半径方向外側の車輪群に対して旋回半径方向内側の車輪群よりも回転数を増加させて配分する。そのため、回転半径を自在に変えることができるようになる。この旋回の際には、個々の駆動部に対して、夫々、最大駆動トルク指令手段から個別の最大駆動トルクを指令することができるので、従来に比較して、制御の組合せが増加する。そのため、例えば、旋回半径方向外側においてその中間輪の最大駆動トルクを前輪及び後輪の最大駆動トルクより減少させて配分すれば、旋回半径方向外側の前後輪のトルクリミットを増加させ中間輪のトルクリミットを抑えることができ、中間輪の横方向グリップを増大させることができ、進路の乱れを防止して走行安定性の向上を図ることができる。この旋回においては、前輪,後輪は、車輪の直進方向に対して直交する横方向へ自在に回転する複数個の横転ローラが環状に配列されているので、この横ローラが横方向に自在に回転することから、回転差に追従することができ、円滑な走行を得ることができる。   Thus, when the chassis is driven, the control unit instructs each drive unit about the required rotation speed and rotation direction of each wheel, and distributes the maximum drive torque from the maximum drive torque command means. To move the chassis forward and backward. For this reason, it is possible to travel with a simple configuration without a steering mechanism. In this case, for example, when moving forward and backward, the rotational speed is equally distributed to the left and right wheel groups. Further, in so-called in-situ turning with the center between the pair of intermediate wheels as the turning center, the rotational speed is equally distributed to the left and right wheel groups and the rotation directions of the left and right wheel groups are reversed. In addition, when turning on a curve that is a turn other than the turn on the spot, for example, in cornering of a right turn or a left turn, the number of rotations is increased with respect to the wheel group on the outer side in the turn radius direction than the wheel group on the inner side in the turn radius direction. To distribute. Therefore, the radius of rotation can be changed freely. In this turning, since individual maximum drive torque can be commanded from the maximum drive torque command means to each drive unit, the number of control combinations is increased as compared with the conventional case. Therefore, for example, if the maximum driving torque of the intermediate wheel is reduced and distributed below the maximum driving torque of the front and rear wheels on the outer side in the turning radius direction, the torque limit of the front and rear wheels on the outer side in the turning radius is increased. The limit can be suppressed, the lateral grip of the intermediate wheel can be increased, the course can be prevented from being disturbed, and the running stability can be improved. In this turning, the front and rear wheels have a plurality of roll rollers that rotate freely in the lateral direction perpendicular to the straight direction of the wheels. Since it rotates, it can follow a rotation difference and can obtain smooth running.

そして、必要に応じ、上記最大駆動トルク指令手段は、シャシの少なくともカーブ走行する旋回時に、旋回半径方向外側の前輪,中間輪及び後輪において、該中間輪の最大駆動トルクを前輪及び後輪の最大駆動トルクより減少させて配分する構成としている。これにより、例えば、路面が雨で濡れ、あるいは、積雪やアイスバーンにより滑りやすくなっている場合に、カーブ走行する旋回時の所謂コーナリングの際に進路が乱れやすくなるが、この旋回時には、中間輪の最大駆動トルクを前輪及び後輪の最大駆動トルクより減少させて配分するので、旋回半径方向外側の前後輪のトルクリミットを増加させ中間輪のトルクリミットを抑えることができ、中間輪の横方向グリップを増大させることができ、シャシの横方向グリップを確保できるようになり、そのため、進路の乱れを防止して走行安定性の向上を図ることができる。   Then, if necessary, the maximum drive torque command means is configured to set the maximum drive torque of the intermediate wheel at the front wheel, the intermediate wheel, and the rear wheel on the outer side in the turning radial direction at the time of turning at least a curve of the chassis. It is configured to be distributed by being reduced from the maximum driving torque. As a result, for example, when the road surface is wet with rain or is slippery due to snow or ice burn, the course is likely to be disturbed during cornering when turning on a curve. The maximum drive torque of the front wheel and the rear wheel is reduced and distributed, so the torque limit of the front and rear wheels on the outside in the turning radius direction can be increased to suppress the torque limit of the intermediate wheel, and the lateral direction of the intermediate wheel The grip can be increased, and the lateral grip of the chassis can be secured. Therefore, the disturbance of the course can be prevented and the running stability can be improved.

また、必要に応じ、上記旋回半径方向外側の中間輪の最大駆動トルクは、該中間輪の最大駆動トルクとコーナリングフォースの合成トルクが、路面の滑りやすさに対応して定められた摩擦円の内側に収まるように設定される構成としている。
ここで、摩擦円とは、路面の滑りやすさに対応して中間輪に発生する前後方向及び左右方向の力の大きさの境界値を各方向毎に真円若しくは楕円となる円グラフとしたものである。この摩擦円の内側においては、中間輪は路面に対してスリップを起こさないが、この摩擦円の外側では、中間輪は路面の摩擦が限界を超え中間輪はスリップを起こす。
これにより、中間輪の最大駆動トルクと横方向のコーナリングフォースの合成力を中間輪の摩擦円(グリップ限界)内にすることができ、車体の横方向グリップを確保できる。そのため、確実に進路の乱れを防止して走行安定性の向上を図ることができる。
Further, if necessary, the maximum driving torque of the intermediate wheel on the outer side in the turning radius direction is the friction circle determined by the combined torque of the maximum driving torque of the intermediate wheel and the cornering force corresponding to the slipperiness of the road surface. The configuration is set so as to fit inside.
Here, the friction circle is a pie chart in which the boundary value of the magnitude of the force in the front-rear direction and the left-right direction generated in the intermediate wheel corresponding to the slipperiness of the road surface is a perfect circle or an ellipse in each direction. Is. Inside this friction circle, the intermediate wheel does not slip against the road surface, but outside this friction circle, the intermediate wheel exceeds the limit of the road surface friction and the intermediate wheel slips.
As a result, the combined force of the maximum driving torque of the intermediate wheel and the cornering force in the lateral direction can be within the friction circle (grip limit) of the intermediate wheel, and the lateral grip of the vehicle body can be secured. Therefore, it is possible to reliably prevent the course from being disturbed and improve the running stability.

更に、必要に応じ、上記制御部は、上記旋回半径方向外側の中間輪の最大駆動トルクを路面の滑りやすさ及びシャシ速度に対応して予め定められた関係に基づいて算出する中間輪最大駆動トルク算出手段と、該中間輪最大駆動トルク算出手段が算出した中間輪の最大駆動トルクに基づいて旋回半径方向外側の前輪及び後輪の最大駆動トルクを算出する前後輪最大駆動トルク算出手段とを備え、上記最大駆動トルク指令手段は、上記中間輪最大駆動トルク算出手段及び前後輪最大駆動トルク算出手段が算出した最大駆動トルクを配分して指令する構成としている。
これにより、シャシの速度に応じて、旋回半径方向外側の前輪,中間輪及び後輪の最大駆動トルクが自動的に算出される。
Further, if necessary, the control unit calculates the maximum driving torque of the intermediate wheel on the outer side in the turning radius direction based on a predetermined relationship corresponding to the slipperiness of the road surface and the chassis speed. Torque calculating means; and front and rear wheel maximum driving torque calculating means for calculating the maximum driving torque of the front and rear wheels on the outer side in the turning radius based on the maximum driving torque of the intermediate wheel calculated by the intermediate wheel maximum driving torque calculating means. And the maximum drive torque command means distributes and commands the maximum drive torque calculated by the intermediate wheel maximum drive torque calculation means and the front and rear wheel maximum drive torque calculation means.
As a result, the maximum driving torque of the front wheels, intermediate wheels, and rear wheels on the outer side in the turning radius direction is automatically calculated according to the speed of the chassis.

更にまた、必要に応じ、上記旋回半径方向外側の前輪,中間輪及び後輪に配分される最大駆動トルクを夫々Tf,Tc,Trとし、該中間輪の最大駆動トルクを減少させないで該前輪,中間輪及び後輪に対して配分される標準最大駆動トルクを夫々Tfs,Tcs,Trsとし、該中間輪の標準最大駆動トルクに対する最大駆動トルクの値減少値をTcdとしたとき、
Tcd=Tcs−Tc
Tf=Tfs+(1/2)Tcd
Tr=Trs+(1/2)Tcd
に設定する構成としている。
中間輪の最大駆動トルクの減少値Tcdを、前後輪に(1/2)ずつ均等配分するので、それだけ、軌道が滑らかになり、より一層、走行安定性の向上を図ることができる。
Furthermore, if necessary, the maximum drive torques distributed to the front, intermediate, and rear wheels on the outer side in the turning radius direction are Tf, Tc, Tr, respectively, and the front wheels, When the standard maximum driving torque distributed to the intermediate wheel and the rear wheel is Tfs, Tcs, Trs, respectively, and the value reduction value of the maximum driving torque with respect to the standard maximum driving torque of the intermediate wheel is Tcd,
Tcd = Tcs−Tc
Tf = Tfs + (1/2) Tcd
Tr = Trs + (1/2) Tcd
The configuration is set to
Since the decrease value Tcd of the maximum driving torque of the intermediate wheel is equally distributed to the front and rear wheels by (½), the track becomes smoother and the travel stability can be further improved.

また、必要に応じ、上記前輪,中間輪及び後輪をシャシに対してサスペンション機構を介して支持した構成としている。
これにより、路面が、凸凹していても、これに追従することができ、即ち、路面の凸凹によりシャシが浮き上がっても、サスペンション機構が作動して車輪が走行面に追従し、車輪の浮き上がりを防止することができ、駆動力を確実に走行面に伝達することができる。特に、雪道などでは、上記の滑りに対応することに加えて、雪による凸凹にも対応できるので、より一層、走行安定性の向上を図ることができる。
If necessary, the front wheel, the intermediate wheel, and the rear wheel are supported on the chassis via a suspension mechanism.
As a result, even if the road surface is uneven, it is possible to follow this, that is, even if the chassis is lifted by the unevenness of the road surface, the suspension mechanism operates and the wheel follows the running surface, and the wheel is lifted. Therefore, the driving force can be reliably transmitted to the traveling surface. In particular, on snowy roads, it is possible to cope with unevenness due to snow in addition to dealing with the above-mentioned slipping, so that the running stability can be further improved.

本発明によれば、各車輪の車輪軸をシャシの前後方向に直交するように設け、中間輪以外の車輪を、車輪の直進方向に対して直交する横方向へ自在に回転する複数個の横転ローラを環状に配列した全方向車輪で構成したので、シャシを走行させるときは、制御部により、車輪の回転数及び回転方向を決め、最大駆動トルク指令手段から最大駆動トルクを配分して指令して各駆動部を制御し、シャシを前後進及び旋回させる。このため、操舵機構のないシンプルな構成にして走行させることができる。この場合、コーナリング等のカーブ走行する旋回時においては、旋回半径方向外側の車輪群に対して旋回半径方向内側の車輪群よりも回転数を増加させて配分するとともに、旋回半径方向外側の各車輪の最大駆動トルクの配分率を適宜変えることにより、例えば、旋回半径方向外側においてその中間輪の最大駆動トルクを前輪及び後輪の最大駆動トルクより減少させて配分すれば、旋回半径方向外側の前後輪のトルクリミットを増加させ中間輪のトルクリミットを抑えることができ、中間輪の横方向グリップを増大させることができ、進路の乱れを防止して走行安定性の向上を図ることができる。   According to the present invention, the wheel shafts of the respective wheels are provided so as to be orthogonal to the front-rear direction of the chassis, and a plurality of rollovers that freely rotate the wheels other than the intermediate wheels in the lateral direction orthogonal to the straight traveling direction of the wheels. Since the rollers are composed of omnidirectional wheels arranged in an annular shape, when the chassis is driven, the controller determines the number of rotations and the direction of rotation of the wheels, and allocates and commands the maximum drive torque from the maximum drive torque command means. Control each drive unit to move the chassis forward and backward. For this reason, it can be made to drive | work by a simple structure without a steering mechanism. In this case, at the time of turning such as cornering, the rotation is distributed to the outer wheel group in the turning radius direction while increasing the number of rotations compared to the inner wheel group in the turning radius direction, and each wheel on the outer side in the turning radius direction. By appropriately changing the distribution ratio of the maximum drive torque of the vehicle, for example, if the maximum drive torque of the intermediate wheel is reduced and distributed from the maximum drive torque of the front and rear wheels on the outer side in the turning radius direction, The torque limit of the intermediate wheel can be suppressed by increasing the torque limit of the wheel, the lateral grip of the intermediate wheel can be increased, and the running stability can be improved by preventing the disturbance of the course.

本発明の実施の形態に係る搬送車を示す斜視図である。It is a perspective view which shows the conveyance vehicle which concerns on embodiment of this invention. 本発明の実施の形態に係る搬送車を示す平面図である。It is a top view which shows the conveyance vehicle which concerns on embodiment of this invention. 本発明の実施の形態に係る搬送車の中間輪の構成を示す斜視図である。It is a perspective view which shows the structure of the intermediate wheel of the conveyance vehicle which concerns on embodiment of this invention. 本発明の実施の形態に係る搬送車の前後輪の構成を示す斜視図である。It is a perspective view which shows the structure of the front-and-rear wheel of the conveyance vehicle which concerns on embodiment of this invention. 本発明の実施の形態に係る搬送車の制御部の制御において用いる遠心力と速度との関係を示すグラフ図である。It is a graph which shows the relationship between the centrifugal force and speed used in control of the control part of the conveyance vehicle which concerns on embodiment of this invention. 本発明の実施の形態に係る搬送車の制御部の制御において用いる中間輪の最大駆動トルクと速度との関係を示すグラフ図である。It is a graph which shows the relationship between the maximum drive torque and speed of an intermediate wheel used in control of the control part of the conveyance vehicle which concerns on embodiment of this invention. 本発明の実施の形態に係る搬送車の積雪路面における制御の一例を示し、(a)は中間輪の比較的速度が遅いとき(図6中A)の最大駆動トルクとコーナリングフォースの関係を示す図、(b)は中間輪の比較的速度が速いとき(図6中B)の最大駆動トルクとコーナリングフォースの関係を示す図である。An example of the control in the snowy road surface of the conveyance vehicle which concerns on embodiment of this invention is shown, (a) shows the relationship between the maximum drive torque and cornering force when the speed of an intermediate wheel is comparatively slow (A in FIG. 6). FIG. 4B is a diagram showing the relationship between the maximum driving torque and the cornering force when the intermediate wheel has a relatively high speed (B in FIG. 6). 本発明の実施の形態に係る搬送車のコーナリング時における各車輪の最大駆動トルクの配分状態を示す図である。It is a figure which shows the distribution state of the maximum drive torque of each wheel at the time of the cornering of the conveyance vehicle which concerns on embodiment of this invention. 従来の搬送車に用いることが可能な車両の一例を示す平面図である。It is a top view which shows an example of the vehicle which can be used for the conventional conveyance vehicle. 従来の車両のコーナリング時における欠点を示し、(a)は中間輪の最大駆動トルクとコーナリングフォースの関係を示す図、(b)は各車輪の最大駆動トルクの配分状態を示す図である。The conventional vehicle cornering disadvantages are shown, (a) is a diagram showing the relationship between the maximum driving torque of the intermediate wheel and the cornering force, (b) is a diagram showing the distribution state of the maximum driving torque of each wheel.

以下、添付図面に基づいて本発明の実施の形態に係る搬送車について詳細に説明する。尚、上記と同様のものには同一の符号を付して説明する。実施の形態に係る搬送車は、基地局との無線通信により走行する無人搬送車である。
図1乃至図4に示すように、本発明の実施の形態に係る搬送車Cは、金属製のフレームで形成されたシャシ1を備え、このシャシ1の前後方向に夫々トレッドを同じにする一対の前輪Wf,一対の中間輪Wc及び一対の後輪Wdを設けている。各車輪Wf,Wc,Wdは、シャシ1に対して後述のサスペンション機構10を介して支持され、各車輪Wf,Wc,Wdの車輪軸2は、シャシ1の前後方向Rに直交するように設けられている。
Hereinafter, a transport vehicle according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected and demonstrated to the same thing as the above. The transport vehicle according to the embodiment is an automatic guided vehicle that travels by wireless communication with a base station.
As shown in FIGS. 1 to 4, a transport vehicle C according to an embodiment of the present invention includes a chassis 1 formed of a metal frame, and a pair of treads that are the same in the front-rear direction of the chassis 1. A front wheel Wf, a pair of intermediate wheels Wc, and a pair of rear wheels Wd are provided. Each wheel Wf, Wc, Wd is supported to the chassis 1 via a suspension mechanism 10 described later, and the wheel shaft 2 of each wheel Wf, Wc, Wd is provided so as to be orthogonal to the front-rear direction R of the chassis 1. It has been.

中間輪Wcは、図3に示すように、車輪軸2を有したホイール3の外周にゴムタイヤ4を装着したものである。また、中間輪Wc以外の前輪Wf及び後輪Wdは、図4に示すように、全方向車輪で構成されている。これは、車輪軸2を有したホイール5に、車輪の直進方向に対して直交する横方向へ自在に回転する複数個のゴム製の横転ローラ6を複数環状に配列して形成されている。各横転ローラ6はホイール5の外周に設けた回転軸(図示せず)に回転自在に軸支されている。中間輪Wcにゴムタイヤ4を用いるのは、コーナリング等のカーブ走行する旋回時に、タイヤ4で路面をグリップし遠心力に対する反力を得るためである。各車輪Wf,Wc,Wdは、その直径が同一になる大きさに形成されている。   As shown in FIG. 3, the intermediate wheel Wc has a rubber tire 4 mounted on the outer periphery of a wheel 3 having a wheel shaft 2. Further, the front wheel Wf and the rear wheel Wd other than the intermediate wheel Wc are composed of omnidirectional wheels as shown in FIG. This is formed on a wheel 5 having a wheel shaft 2 by arranging a plurality of rubber roll rollers 6 that freely rotate in a lateral direction perpendicular to the straight traveling direction of the wheels in a ring shape. Each roll roller 6 is rotatably supported on a rotating shaft (not shown) provided on the outer periphery of the wheel 5. The rubber tire 4 is used for the intermediate wheel Wc in order to obtain a reaction force against the centrifugal force by gripping the road surface with the tire 4 during turning such as cornering. Each wheel Wf, Wc, Wd is formed in a size with the same diameter.

各車輪Wf,Wc,Wdには、各車輪Wf,Wc,Wdに対して夫々指令された最大駆動トルクを独立して出力可能な駆動部7が設けられている。駆動部7は、インホイールモータといわれる後述の制御部20の指令により機能するドライバを有した電動モータで構成され、その回転軸は車輪軸2に直結されている。   Each wheel Wf, Wc, Wd is provided with a drive unit 7 capable of independently outputting the maximum drive torque commanded to each wheel Wf, Wc, Wd. The drive unit 7 is constituted by an electric motor having a driver functioning according to a command of a control unit 20 described later, which is called an in-wheel motor, and the rotation shaft thereof is directly connected to the wheel shaft 2.

各車輪Wf,Wc,Wdを支持するサスペンション機構10は、図3及び図4に示すように、独立懸架機構で、所謂ダブルウィッシュボーン式サスペンション機構で構成される。詳しくは、サスペンション機構10は、駆動部7を保持する保持部11と、シャシ1に固定される支持部12と、保持部11と支持部12との間に両端が軸支されて架設され四辺形のリンク機構を構成する上下一対のリンク13(A),13(B)とを備えている。各リンク13は、夫々、両端が軸支された左右一対のアーム14を備えている。また、このサスペンション機構10には、支持部12と下側のリンク13間にコイルスプリング15を有した一対のダンパ16が設けられている。支持部12の上側の両側には取付部材17が突設されており、各ダンパ16はこの取付部材17と対応する下側リンク13(B)のアーム15との間に両端が軸支されて架設されている。   As shown in FIGS. 3 and 4, the suspension mechanism 10 that supports the wheels Wf, Wc, and Wd is an independent suspension mechanism, which is a so-called double wishbone suspension mechanism. Specifically, the suspension mechanism 10 includes a holding portion 11 that holds the driving portion 7, a support portion 12 that is fixed to the chassis 1, and both ends that are pivotally supported between the holding portion 11 and the support portion 12. And a pair of upper and lower links 13 (A) and 13 (B) that form a link mechanism. Each link 13 includes a pair of left and right arms 14 that are pivotally supported at both ends. In addition, the suspension mechanism 10 is provided with a pair of dampers 16 having a coil spring 15 between the support portion 12 and the lower link 13. Mounting members 17 are provided on both upper sides of the support portion 12, and each damper 16 is pivotally supported between the mounting member 17 and the corresponding arm 15 of the lower link 13 (B). It is erected.

また、本搬送車Cには、図2に示すように、各駆動部7を制御してシャシ1を前後進及び旋回させる制御部20が設けられている。制御部20は、CPUを備え、基地局との無線通信を行い、各駆動部7を個別に制御する等の制御等を行う。
制御部20は、各駆動部7に対して各車輪の回転数及び回転方向を指令する回転指令手段24と、各車輪の最大駆動トルクを配分して指令する最大駆動トルク指令手段21とを備えている。最大駆動トルク指令手段21は、シャシ1の少なくともカーブ走行する旋回時に、旋回半径方向外側の前輪Wf,中間輪Wc及び後輪Wdにおいて、中間輪Wcの最大駆動トルクTcを前輪Wf及び後輪Wdの最大駆動トルクTf,Trより減少させて配分する機能を備えている。図7に示すように、この旋回半径方向外側の中間輪Wcの最大駆動トルクTcは、中間輪Wcの最大駆動トルクTcとコーナリングフォースFaの合成トルクTtが、路面の滑りやすさに対応して定められた摩擦円(後述の図7の30,31,32)の内側に収まるように設定される。
Further, as shown in FIG. 2, the transport vehicle C is provided with a control unit 20 that controls each drive unit 7 to move the chassis 1 forward and backward. The control unit 20 includes a CPU, performs wireless communication with the base station, and performs control such as controlling each drive unit 7 individually.
The control unit 20 includes a rotation command unit 24 that commands each drive unit 7 to determine the rotation speed and rotation direction of each wheel, and a maximum drive torque command unit 21 that allocates and commands the maximum drive torque of each wheel. ing. The maximum drive torque command means 21 determines the maximum drive torque Tc of the intermediate wheel Wc at the front wheel Wf and the rear wheel Wd in the front wheel Wf, the intermediate wheel Wc, and the rear wheel Wd on the outer side in the turning radius when the vehicle turns at least in a curve. The maximum drive torques Tf and Tr are distributed to be reduced. As shown in FIG. 7, the maximum driving torque Tc of the intermediate wheel Wc on the outer side in the turning radial direction corresponds to the maximum driving torque Tc of the intermediate wheel Wc and the combined torque Tt of the cornering force Fa corresponding to the slipperiness of the road surface. It is set so as to be within a predetermined friction circle (30, 31, 32 in FIG. 7 described later).

詳しくは、制御部20は、旋回半径方向外側の中間輪Wcの最大駆動トルクTcを路面の滑りやすさ及びシャシ速度に対応して予め定められた関係に基づいて算出する中間輪最大駆動トルク算出手段22と、この中間輪最大駆動トルク算出手段22が算出した中間輪Wcの最大駆動トルクTcに基づいて旋回半径方向外側の前輪Wf及び後輪Wdの最大駆動トルクTf,Trを算出する前後輪最大駆動トルク算出手段23とを備え、最大駆動トルク指令手段21は、中間輪最大駆動トルク算出手段22及び前後輪最大駆動トルク算出手段23が算出した最大駆動トルクを配分して指令する。   Specifically, the control unit 20 calculates the maximum driving torque of the intermediate wheel that calculates the maximum driving torque Tc of the intermediate wheel Wc on the outer side in the turning radius direction based on a predetermined relationship corresponding to the slipperiness of the road surface and the chassis speed. Front and rear wheels for calculating the maximum drive torques Tf and Tr of the front wheel Wf and the rear wheel Wd on the outer side in the turning radius based on the means 22 and the maximum drive torque Tc of the intermediate wheel Wc calculated by the intermediate wheel maximum drive torque calculation means 22 A maximum driving torque calculating means 23, and the maximum driving torque commanding means 21 distributes and commands the maximum driving torque calculated by the intermediate wheel maximum driving torque calculating means 22 and the front and rear wheel maximum driving torque calculating means 23.

中間輪最大駆動トルク算出手段22において、中間輪Wcの最大駆動トルクTcは、例えば、以下のようにして決定される。
車体質量に荷の質量を加えた全質量をm、シャシ1の速度をv、シャシ1の角速度をω、回転半径をr、シャシ1に生じる遠心力をFとしたとき、r=v/ωであるから、
F=mrω2 =mvω2 /ω=mvω
の関係になる。この関係を図5のグラフに示す。尚、荷のないときをm(MIN)とし、荷の最大車載時をm(MAX)とした。
In the intermediate wheel maximum drive torque calculating means 22, the maximum drive torque Tc of the intermediate wheel Wc is determined, for example, as follows.
When the total mass of the vehicle body mass plus the load mass is m, the speed of the chassis 1 is v, the angular speed of the chassis 1 is ω, the radius of rotation is r, and the centrifugal force generated in the chassis 1 is F, r = v / ω Because
F = mrω 2 = mvω 2 / ω = mvω
It becomes a relationship. This relationship is shown in the graph of FIG. Note that m (MIN) was set when there was no load, and m (MAX) was set when the load was mounted on the vehicle.

そして、この遠心力Fに抗するように、中間輪Wcの最大駆動トルクTcが決定される。この場合、路面の滑りやすさを考慮する。図6に示すように、中間輪Wcの最大駆動トルクをTc、この中間輪Wcの最大駆動トルクを減少させないで配分される当該中間輪Wcの標準最大駆動トルクをTcs(100%)とし、この中間輪Wcの標準最大駆動トルクTcsに対する最大駆動トルクTcの出力比(%)を、路面の滑りやすさとシャシ1の速度(vω)に対応させた相関図を予め求めておく。中間輪最大駆動トルク算出手段22は、この相関図に基づいて中間輪Wcの最大駆動トルクTcを算出する。   Then, the maximum drive torque Tc of the intermediate wheel Wc is determined so as to resist this centrifugal force F. In this case, the slipperiness of the road surface is taken into consideration. As shown in FIG. 6, the maximum driving torque of the intermediate wheel Wc is Tc, and the standard maximum driving torque of the intermediate wheel Wc distributed without decreasing the maximum driving torque of the intermediate wheel Wc is Tcs (100%). A correlation diagram in which the output ratio (%) of the maximum drive torque Tc to the standard maximum drive torque Tcs of the intermediate wheel Wc is associated with the slipperiness of the road surface and the speed (vω) of the chassis 1 is obtained in advance. The intermediate wheel maximum drive torque calculating means 22 calculates the maximum drive torque Tc of the intermediate wheel Wc based on this correlation diagram.

路面の滑りやすさは、予め、路面状況を見て設定する。例えば、図6に示すように、ドライ路面,ウエット路面,積雪路面とする。あるいはまた、ABS装置のトラクションコントロールを用いて車輪の路面に対する滑りを検知し、この滑り検知に基づいて路面の滑りやすさをリアルタイムで付与するようにしてもよい。
図7(a)(b)には、積雪路面時において、シャシ1の速度(vω)のA点及びB点での中間輪Wcでの最大駆動トルクTcの出力比(%)例を示す。図中、30は積雪路面のタイヤ摩擦円、31はウエット路面のタイヤ摩擦円、32は舗装ドライ路面のタイヤ摩擦円を示す。
The slipperiness of the road surface is set in advance by checking the road surface condition. For example, as shown in FIG. 6, the road surface is a dry road surface, a wet road surface, or a snowy road surface. Alternatively, it is also possible to detect slipping of the wheels with respect to the road surface using the traction control of the ABS device, and to give the ease of slipping of the road surface in real time based on this slip detection.
7A and 7B show examples of the output ratio (%) of the maximum drive torque Tc at the intermediate wheel Wc at the points A and B of the speed (vω) of the chassis 1 on a snowy road surface. In the figure, 30 indicates a tire friction circle on a snowy road surface, 31 indicates a tire friction circle on a wet road surface, and 32 indicates a tire friction circle on a pavement dry road surface.

前後輪最大駆動トルク算出手段23は、旋回半径方向外側の前輪Wf,中間輪Wc及び後輪Wdに配分される最大駆動トルクを夫々Tf,Tc,Trとし、中間輪Wcの最大駆動トルクを減少させないで前輪Wf,中間輪Wc及び後輪Wdに対して配分される標準最大駆動トルクを夫々Tfs,Tcs,Trsとし、中間輪Wcの標準最大駆動トルクTcsに対する最大駆動トルクの値減少値をTcdとしたとき、
Tcd=Tcs−Tc
Tf=Tfs+(1/2)Tcd
Tr=Trs+(1/2)Tcd
の関係式により算出する。
The front and rear wheel maximum drive torque calculating means 23 sets the maximum drive torque distributed to the front wheel Wf, the intermediate wheel Wc and the rear wheel Wd on the outer side in the turning radius direction to Tf, Tc and Tr, respectively, and reduces the maximum drive torque of the intermediate wheel Wc. The standard maximum driving torque distributed to the front wheel Wf, the intermediate wheel Wc, and the rear wheel Wd without being made Tfs, Tcs, Trs, respectively, and the decrease value of the maximum driving torque with respect to the standard maximum driving torque Tcs of the intermediate wheel Wc is Tcd. When
Tcd = Tcs−Tc
Tf = Tfs + (1/2) Tcd
Tr = Trs + (1/2) Tcd
It is calculated by the relational expression.

従って、この実施の形態に係る搬送車Cによれば、以下のように走行させられる。搬送車Cは、基地局との無線通信により走行させられる。この走行においては、制御部20により、回転指令手段24から各車輪の所要の回転数及び回転方向を指令するとともに、最大駆動トルク指令手段21から最大駆動トルクを配分して指令して各駆動部7を制御し、シャシ1を前後進及び旋回させる。このため、操舵機構のないシンプルな構成にして走行を可能にする。この場合、例えば、前後進時には、左右の各車輪Wf,Wc,Wd群に対して回転数を均等配分する。また、一対の中間輪Wc間の中央P(図2)を旋回中心とする所謂その場旋回においては、左右の車輪群に対し夫々回転数を均等配分するとともに互いに左右の車輪群の回転方向を逆転させる。また、その場旋回以外の旋回であるカーブ走行する旋回時、例えば、右折,左折のコーナリングにおいては、旋回半径方向外側の車輪群に対して旋回半径方向内側の車輪群よりも回転数を増加させて配分する。   Therefore, according to the conveyance vehicle C which concerns on this embodiment, it is made to drive | work as follows. The transport vehicle C is driven by wireless communication with the base station. In this traveling, the control unit 20 commands the required rotation speed and rotation direction of each wheel from the rotation command unit 24, and distributes and commands the maximum drive torque from the maximum drive torque command unit 21 to command each drive unit. 7 is controlled to move the chassis 1 forward and backward. For this reason, it is possible to travel with a simple configuration without a steering mechanism. In this case, for example, when moving forward and backward, the rotational speed is equally distributed to the left and right wheels Wf, Wc, and Wd. Further, in the so-called in-situ turning with the center P (FIG. 2) between the pair of intermediate wheels Wc as the turning center, the rotational speeds are equally distributed to the left and right wheel groups, and the rotation directions of the left and right wheel groups are mutually determined. Reverse. In addition, when turning on a curve that is a turn other than the turn on the spot, for example, in cornering of a right turn or a left turn, the number of rotations is increased with respect to the wheel group on the outer side in the turn radius direction than the wheel group on the inner side in the turn radius direction. To distribute.

このカーブ走行の際には、制御部20において、中間輪最大駆動トルク算出手段22が、旋回半径方向外側の中間輪Wcの最大駆動トルクTcを路面の滑りやすさ及びシャシ速度に対応して予め定められた関係に基づいて算出し、前後輪最大駆動トルク算出手段23が、中間輪最大駆動トルク算出手段22が算出した中間輪Wcの最大駆動トルクTcに基づいて旋回半径方向外側の前輪Wf及び後輪Wdの最大駆動トルクTf,Trを算出し、最大駆動トルク指令手段21は、中間輪最大駆動トルク算出手段22及び前後輪最大駆動トルク算出手段23が算出した最大駆動トルクTf,Tc,Trを配分して指令する。   At the time of this curve traveling, in the control unit 20, the intermediate wheel maximum drive torque calculation means 22 determines the maximum drive torque Tc of the intermediate wheel Wc on the outer side in the turning radius direction in advance corresponding to the slipperiness of the road surface and the chassis speed. The front and rear wheel maximum drive torque calculation means 23 calculates based on the determined relationship, and the front wheel Wf on the outer side in the turning radius direction based on the maximum drive torque Tc of the intermediate wheel Wc calculated by the intermediate wheel maximum drive torque calculation means 22 and The maximum driving torque Tf, Tr of the rear wheel Wd is calculated, and the maximum driving torque command means 21 calculates the maximum driving torque Tf, Tc, Tr calculated by the intermediate wheel maximum driving torque calculating means 22 and the front and rear wheel maximum driving torque calculating means 23. To distribute and command.

これにより、図6乃至図8に示すように、旋回半径方向外側の中間輪Wcの最大駆動トルクTcは、中間輪Wcの最大駆動トルクTcとコーナリングフォースFaの合成トルクTtが、路面の滑りやすさに対応して定められた摩擦円の内側に収まるように設定される。また、旋回半径方向外側の前輪Wf,中間輪Wc及び後輪Wdにおいて、中間輪Wcの最大駆動トルクを前輪Wf及び後輪Wdの最大駆動トルクより減少させて配分される。
このため、図8に示すように、例えば、路面が雨で濡れ、あるいは、積雪やアイスバーンにより滑りやすくなっている場合に、カーブ走行する旋回時の所謂コーナリングの際に進路が乱れやすくなるが、旋回半径方向外側の中間輪Wcの最大駆動トルクTcと横方向のコーナリングフォースFaの合成力Ttを中間輪Wcの摩擦円(グリップ限界)内にし、旋回半径方向外側の前後輪Wdのトルクリミットを増加させ中間輪Wcのトルクリミットを抑えるので、中間輪Wcの横方向グリップを増大させることができ、シャシ1の横方向グリップを確保できるようになり、滑りが抑止され、進路の乱れを防止して走行安定性の向上を図ることができる。この旋回においては、前輪Wf,後輪Wdは、車輪の直進方向に対して直交する横方向へ自在に回転する複数個の横転ローラ6が環状に配列されているので、この横ローラ6が横方向に自在に回転することから、回転差に追従することができ、円滑な走行を得ることができる。
また、旋回半径方向外側において、中間輪Wcの最大駆動トルクTcの減少値Tcdを、前後輪Wdに(1/2)ずつ均等配分するので、それだけ、軌道が滑らかになり、より一層、走行安定性の向上を図ることができる。
As a result, as shown in FIGS. 6 to 8, the maximum driving torque Tc of the intermediate wheel Wc on the outer side in the turning radius direction is such that the maximum driving torque Tc of the intermediate wheel Wc and the combined torque Tt of the cornering force Fa are easy to slip on the road surface. It is set so as to be within the friction circle determined corresponding to the height. Further, in the front wheel Wf, the intermediate wheel Wc, and the rear wheel Wd on the outer side in the turning radius direction, the maximum drive torque of the intermediate wheel Wc is distributed to be smaller than the maximum drive torque of the front wheel Wf and the rear wheel Wd.
For this reason, as shown in FIG. 8, for example, when the road surface is wet with rain or is slippery due to snow or ice burn, the course is likely to be disturbed during so-called cornering at the time of cornering turning. Then, the maximum driving torque Tc of the intermediate wheel Wc on the outer side in the turning radius direction and the combined force Tt of the cornering force Fa in the lateral direction are within the friction circle (grip limit) of the intermediate wheel Wc, and the torque limit of the front and rear wheels Wd on the outer side in the turning radius direction. Since the torque limit of the intermediate wheel Wc is reduced and the lateral grip of the intermediate wheel Wc can be increased, the lateral grip of the chassis 1 can be secured, slippage is suppressed, and the course is prevented from being disturbed. Thus, the running stability can be improved. In this turning, the front wheel Wf and the rear wheel Wd are arranged in a plurality of roll rollers 6 that freely rotate in a lateral direction perpendicular to the straight traveling direction of the wheels. Since it rotates freely in the direction, it is possible to follow the difference in rotation and obtain smooth running.
Further, since the decrease value Tcd of the maximum driving torque Tc of the intermediate wheel Wc is equally distributed (1/2) to the front and rear wheels Wd on the outer side in the turning radius direction, the track becomes smoother and the running stability is further increased. It is possible to improve the performance.

このように、各車輪の回転数及び最大駆動トルクの配分率を適宜変えることによりあらゆる路面に対応することができるようになる。特に、旋回の際には、個々の駆動部7に対して、夫々、最大駆動トルク指令手段21から個別の最大駆動トルクを指令することができるので、従来に比較して、制御の組合せが増加する。そのため、例えば、特にコーナリング等のカーブ走行する旋回時に進路が乱れる事態を防止し、走行安定性の向上を図ることができるのである。   Thus, it becomes possible to deal with any road surface by appropriately changing the rotation speed of each wheel and the distribution ratio of the maximum driving torque. In particular, when turning, since individual maximum drive torque can be commanded from the maximum drive torque command means 21 to each drive unit 7, the number of control combinations is increased as compared with the conventional case. To do. Therefore, for example, it is possible to prevent a situation where the course is disturbed particularly during cornering and the like when turning, thereby improving the running stability.

また、この走行においては、前輪Wf,中間輪Wc及び後輪Wdはシャシ1に対してサスペンション機構10を介して支持されているので、路面が、凸凹していても、これに追従することができ、即ち、路面の凸凹によりシャシ1が浮き上がっても、サスペンション機構10が作動して各車輪Wf,Wc,Wdが走行面に追従し、各車輪Wf,Wc,Wdの浮き上がりを防止することができ、駆動力を確実に走行面に伝達することができる。特に、雪道などでは、上記の滑りに対応することに加えて、雪による凸凹にも対応できるので、より一層、走行安定性の向上を図ることができる。   In this traveling, the front wheel Wf, the intermediate wheel Wc, and the rear wheel Wd are supported by the chassis 1 via the suspension mechanism 10. Therefore, even if the road surface is uneven, it can follow this. In other words, even if the chassis 1 is lifted due to the unevenness of the road surface, the suspension mechanism 10 is operated so that the wheels Wf, Wc, Wd follow the running surface, and the wheels Wf, Wc, Wd can be prevented from lifting. The driving force can be reliably transmitted to the traveling surface. In particular, on snowy roads, it is possible to cope with unevenness due to snow in addition to dealing with the above-mentioned slipping, so that the running stability can be further improved.

尚、上記実施の形態において、制御部20による最大駆動トルクの配分は、上述した配分に限定されるものではなく、適宜変更して差し支えない。加速時やブレーキ時に前後輪Wf,Wdに最大駆動トルク差を設けてよいことは勿論である。また、制御部20の機能をシャシ1に搭載したが、必ずしもこれに限定されるものではなく、無線通信により指令するようにしてもよく、適宜変更して差し支えない。更に、上記実施の形態では、前輪Wf,中間輪Wc及び後輪Wdのトレッドを夫々同じにしたが、必ずしもこれに限定されるものではなく、トレッドを異ならせてもよく、適宜変更して差し支えない。更にまた、車輪の数は上記6輪に限定されるものではなく、8輪、10輪等にしてよい。この場合、中間輪Wcは、一対にしておくことが望ましい。また、車軸方向には、車輪を増やして良いことは勿論である。   In the above embodiment, the distribution of the maximum drive torque by the control unit 20 is not limited to the above-described distribution, and may be changed as appropriate. Of course, a maximum driving torque difference may be provided between the front and rear wheels Wf and Wd during acceleration or braking. Moreover, although the function of the control part 20 was mounted in the chassis 1, it is not necessarily limited to this, You may make it instruct | indicate by radio | wireless communication and may change suitably. Furthermore, in the above embodiment, the treads of the front wheel Wf, the intermediate wheel Wc, and the rear wheel Wd are the same. However, the tread is not necessarily limited to this, and the tread may be different and may be appropriately changed. Absent. Furthermore, the number of wheels is not limited to the above six wheels, and may be eight wheels, ten wheels, or the like. In this case, it is desirable that the intermediate wheel Wc be paired. Of course, the number of wheels may be increased in the axle direction.

C 搬送車
1 シャシ
Wf 前輪
Wc 中間輪
Wr 後輪
2 車輪軸
3 ホイール
4 ゴムタイヤ
5 ホイール
6 横転ローラ
7 駆動部
10 サスペンション機構
11 保持部
12 支持部
13 リンク
14 アーム
15 コイルスプリング
16 ダンパ
20 制御部
21 最大駆動トルク指令手段
22 中間輪最大駆動トルク算出手段
23 前後輪最大駆動トルク算出手段
24 回転指令手段
Tf,Tc,Tr 旋回半径方向外側の車輪の最大駆動トルク
30 積雪路面のタイヤ摩擦円
31 ウエット路面のタイヤ摩擦円
32 舗装ドライ路面のタイヤ摩擦円
C carrier 1 chassis Wf front wheel Wc intermediate wheel Wr rear wheel 2 wheel shaft 3 wheel 4 rubber tire 5 wheel 6 rollover roller 7 drive unit 10 suspension mechanism 11 holding unit 12 support unit 13 link 14 arm 15 coil spring 16 damper 20 control unit 21 Maximum drive torque command means 22 Intermediate wheel maximum drive torque calculation means 23 Front and rear wheel maximum drive torque calculation means 24 Rotation command means Tf, Tc, Tr Maximum drive torque of wheels on the outer side in the turning radius 30 Tire friction circle 31 on snowy road surface Wet road surface Tire friction circle of 32 Tire friction circle of pavement dry road surface

Claims (6)

シャシの前後方向に少なくとも一対の前輪,一対の中間輪及び一対の後輪を設けた搬送車であって、
上記各車輪をその車輪軸が上記シャシの前後方向に直交するように設け、上記中間輪をゴムタイヤを備えて構成し、上記中間輪以外の前輪及び後輪を、該車輪の直進方向に対して直交する横方向へ自在に回転する複数個の横転ローラを環状に配列した全方向車輪で構成し、上記各車輪に夫々指令された最大駆動トルクを独立して出力可能な駆動部を設け、該各駆動部を制御してシャシを前後進及び旋回させる制御部を設け、該制御部に各駆動部に対し最大駆動トルクを配分して指令する最大駆動トルク指令手段を備えたことを特徴とする搬送車。
A transport vehicle provided with at least a pair of front wheels, a pair of intermediate wheels, and a pair of rear wheels in the front-rear direction of the chassis,
Each wheel is provided such that its wheel axis is orthogonal to the front-rear direction of the chassis, the intermediate wheel is provided with a rubber tire, and the front wheels and rear wheels other than the intermediate wheel are arranged in a straight direction of the wheel. It comprises omnidirectional wheels in which a plurality of roll rollers that rotate freely in a transverse direction orthogonal to each other are arranged in an annular shape, and each of the wheels is provided with a drive unit capable of independently outputting a maximum drive torque, A control unit for controlling each drive unit to move the chassis forward and backward and turn is provided, and the control unit is provided with a maximum drive torque command means for allocating and commanding the maximum drive torque to each drive unit. Transport vehicle.
上記最大駆動トルク指令手段は、シャシの少なくともカーブ走行する旋回時に、旋回半径方向外側の前輪,中間輪及び後輪において、該中間輪の最大駆動トルクを前輪及び後輪の最大駆動トルクより減少させて配分することを特徴とする請求項1記載の搬送車。   The maximum drive torque command means reduces the maximum drive torque of the intermediate wheel to the maximum drive torque of the front wheel and the rear wheel at the front, intermediate and rear wheels on the outer side in the turning radius when turning at least a curve of the chassis. 2. The transport vehicle according to claim 1, wherein the transport vehicle is distributed. 上記旋回半径方向外側の中間輪の最大駆動トルクは、該中間輪の最大駆動トルクとコーナリングフォースの合成トルクが、路面の滑りやすさに対応して定められた摩擦円の内側に収まるように設定されることを特徴とする請求項2記載の搬送車。   The maximum driving torque of the intermediate wheel on the outer side in the turning radius direction is set so that the maximum driving torque of the intermediate wheel and the combined torque of the cornering force are within the friction circle determined according to the slipperiness of the road surface. The conveyance vehicle according to claim 2, wherein: 上記制御部は、上記旋回半径方向外側の中間輪の最大駆動トルクを路面の滑りやすさ及びシャシ速度に対応して予め定められた関係に基づいて算出する中間輪最大駆動トルク算出手段と、該中間輪最大駆動トルク算出手段が算出した中間輪の最大駆動トルクに基づいて旋回半径方向外側の前輪及び後輪の最大駆動トルクを算出する前後輪最大駆動トルク算出手段とを備え、上記最大駆動トルク指令手段は、上記中間輪最大駆動トルク算出手段及び前後輪最大駆動トルク算出手段が算出した最大駆動トルクを配分して指令することを特徴とする請求項3記載の搬送車。   The control unit calculates the maximum driving torque of the intermediate wheel on the outer side in the turning radius direction based on a predetermined relationship corresponding to the slipperiness of the road surface and the chassis speed; and Front and rear wheel maximum drive torque calculating means for calculating the maximum drive torque of the front and rear wheels on the outer side in the turning radius based on the maximum drive torque of the intermediate wheel calculated by the intermediate wheel maximum drive torque calculating means, and the maximum drive torque 4. The transport vehicle according to claim 3, wherein the command means distributes and commands the maximum drive torque calculated by the intermediate wheel maximum drive torque calculation means and the front and rear wheel maximum drive torque calculation means. 上記旋回半径方向外側の前輪,中間輪及び後輪に配分される最大駆動トルクを夫々Tf,Tc,Trとし、該中間輪の最大駆動トルクを減少させないで該前輪,中間輪及び後輪に対して配分される標準最大駆動トルクを夫々Tfs,Tcs,Trsとし、該中間輪の標準最大駆動トルクに対する最大駆動トルクの値減少値をTcdとしたとき、
Tcd=Tcs−Tc
Tf=Tfs+(1/2)Tcd
Tr=Trs+(1/2)Tcd
に設定することを特徴とする請求項3または4記載の搬送車。
The maximum driving torques distributed to the front, intermediate and rear wheels on the outside in the turning radius direction are Tf, Tc and Tr, respectively, and the maximum driving torque of the intermediate wheels is not reduced and the front wheels, intermediate wheels and rear wheels are reduced. When the standard maximum driving torque distributed in the above is Tfs, Tcs, Trs, and the decrease value of the maximum driving torque with respect to the standard maximum driving torque of the intermediate wheel is Tcd,
Tcd = Tcs−Tc
Tf = Tfs + (1/2) Tcd
Tr = Trs + (1/2) Tcd
The transport vehicle according to claim 3 or 4, wherein the transport vehicle is set as follows.
上記前輪,中間輪及び後輪をシャシに対してサスペンション機構を介して支持したことを特徴とする請求項1乃至5何れかに記載の搬送車。   6. The transport vehicle according to claim 1, wherein the front wheel, the intermediate wheel, and the rear wheel are supported by a chassis via a suspension mechanism.
JP2012165684A 2012-07-26 2012-07-26 Transport vehicle Expired - Fee Related JP5762367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165684A JP5762367B2 (en) 2012-07-26 2012-07-26 Transport vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165684A JP5762367B2 (en) 2012-07-26 2012-07-26 Transport vehicle

Publications (2)

Publication Number Publication Date
JP2014024434A true JP2014024434A (en) 2014-02-06
JP5762367B2 JP5762367B2 (en) 2015-08-12

Family

ID=50198521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165684A Expired - Fee Related JP5762367B2 (en) 2012-07-26 2012-07-26 Transport vehicle

Country Status (1)

Country Link
JP (1) JP5762367B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001450A (en) * 2015-06-07 2017-01-05 国立大学法人京都大学 Movement/conveyance device
JP2017132404A (en) * 2016-01-29 2017-08-03 トヨタ自動車東日本株式会社 Omnidirectional wheel and vehicle
CN109681557A (en) * 2018-06-12 2019-04-26 杭州程天科技发展有限公司 Damping device and its wheel structure
CN115122831A (en) * 2022-07-26 2022-09-30 松灵机器人(深圳)有限公司 Differential drive vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110588834A (en) * 2019-10-18 2019-12-20 广东博智林机器人有限公司 Omnidirectional chassis and robot

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141405U (en) * 1983-03-09 1984-09-21 日産自動車株式会社 Electric car
JPS60241438A (en) * 1984-05-01 1985-11-30 ジエフリー フアーナム Four-wheel driven vehicle
US5323867A (en) * 1992-03-06 1994-06-28 Eric J. Allard Robot transport platform with multi-directional wheels
JP2003034262A (en) * 2001-07-24 2003-02-04 Tcm Corp Traveling wagon
JP2004306782A (en) * 2003-04-07 2004-11-04 Takenaka Komuten Co Ltd Traveling device
JP2008143259A (en) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd Driving/braking force control unit, automobile, and driving/braking force control method
JP2008247064A (en) * 2007-03-29 2008-10-16 Mazda Motor Corp Motion control device for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141405U (en) * 1983-03-09 1984-09-21 日産自動車株式会社 Electric car
JPS60241438A (en) * 1984-05-01 1985-11-30 ジエフリー フアーナム Four-wheel driven vehicle
US5323867A (en) * 1992-03-06 1994-06-28 Eric J. Allard Robot transport platform with multi-directional wheels
JP2003034262A (en) * 2001-07-24 2003-02-04 Tcm Corp Traveling wagon
JP2004306782A (en) * 2003-04-07 2004-11-04 Takenaka Komuten Co Ltd Traveling device
JP2008143259A (en) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd Driving/braking force control unit, automobile, and driving/braking force control method
JP2008247064A (en) * 2007-03-29 2008-10-16 Mazda Motor Corp Motion control device for vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017001450A (en) * 2015-06-07 2017-01-05 国立大学法人京都大学 Movement/conveyance device
JP2017132404A (en) * 2016-01-29 2017-08-03 トヨタ自動車東日本株式会社 Omnidirectional wheel and vehicle
CN109681557A (en) * 2018-06-12 2019-04-26 杭州程天科技发展有限公司 Damping device and its wheel structure
CN109681557B (en) * 2018-06-12 2023-11-10 杭州程天科技发展有限公司 Damping device and wheel structure thereof
CN115122831A (en) * 2022-07-26 2022-09-30 松灵机器人(深圳)有限公司 Differential drive vehicle
CN115122831B (en) * 2022-07-26 2024-01-09 松灵机器人(深圳)有限公司 Differential drive type vehicle

Also Published As

Publication number Publication date
JP5762367B2 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
JP5762367B2 (en) Transport vehicle
CN111655346B (en) Remote control vehicle
EP2414212B1 (en) Omni-directional wheel assembly and omni-directional vehicle
KR950001231B1 (en) Electric vehicle
US7552784B2 (en) Differential steering type motorized vehicle
JP6945735B2 (en) Wheel module for automobiles
WO2011161815A1 (en) Vehicle motion control system
US20190241037A1 (en) Ground vehicle
JP2012530638A5 (en)
CN111409737A (en) Electric carrying platform without steering system and capable of moving in all directions and control method thereof
CN101148176A (en) Variable wheel positioning vehicle
JP5157306B2 (en) Wheel position variable vehicle
JP2004306782A (en) Traveling device
JP2021142961A (en) Three-row wheel vehicle
KR101533932B1 (en) Two-wheeled vehicle improved rotation-driving stability
JP5652339B2 (en) Vehicle motion control system
US11643143B2 (en) Spherical wheel leaning systems for vehicles
CN211943572U (en) Electric carrying platform without steering system and capable of moving in all directions
JP2021142963A (en) Three-row wheel vehicle
WO2011052078A1 (en) Vehicle motion control system
JP2017132404A (en) Omnidirectional wheel and vehicle
JP3141814U (en) A swivel caster that supports multiple wheels on a radial frame tip
JP3418844B2 (en) Amusement vehicle
WO2011052077A1 (en) Vehicle motion control system
CN216033733U (en) Double-wheel drive axle and vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150609

R150 Certificate of patent or registration of utility model

Ref document number: 5762367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees