WO2011052077A1 - Vehicle motion control system - Google Patents

Vehicle motion control system Download PDF

Info

Publication number
WO2011052077A1
WO2011052077A1 PCT/JP2009/068707 JP2009068707W WO2011052077A1 WO 2011052077 A1 WO2011052077 A1 WO 2011052077A1 JP 2009068707 W JP2009068707 W JP 2009068707W WO 2011052077 A1 WO2011052077 A1 WO 2011052077A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle
turning
control
shared load
Prior art date
Application number
PCT/JP2009/068707
Other languages
French (fr)
Japanese (ja)
Inventor
一平 山崎
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/068707 priority Critical patent/WO2011052077A1/en
Publication of WO2011052077A1 publication Critical patent/WO2011052077A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D61/00Motor vehicles or trailers, characterised by the arrangement or number of wheels, not otherwise provided for, e.g. four wheels in diamond pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G3/00Resilient suspensions for a single wheel
    • B60G3/18Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram
    • B60G3/20Resilient suspensions for a single wheel with two or more pivoted arms, e.g. parallelogram all arms being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D31/00Superstructures for passenger vehicles
    • B62D31/003Superstructures for passenger vehicles compact cars, e.g. city cars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/13Small sized city motor vehicles

Definitions

  • the present invention relates to a system for controlling the movement of a vehicle having a single front wheel disposed at the front portion of the vehicle and a left wheel and a right wheel disposed on the left and right of the vehicle behind the front wheel.
  • Patent Document 1 a technique described in Patent Document 1 below as a system for controlling the movement of the vehicle.
  • the technology relates to the control of the turning motion of the vehicle, and more particularly to the control of the left wheel and the right wheel turning and the driving force difference accompanying the turning of the vehicle.
  • Patent Document 2 a vehicle as described in Patent Document 2 below, that is, a vehicle having a single rear wheel provided behind the left wheel and the right wheel in addition to the three wheels has been studied.
  • the motion control related to the vehicle as described above (hereinafter sometimes referred to as a “special wheel arrangement vehicle”) still has room for sufficient improvement. It is possible to improve.
  • This invention is made
  • a vehicle motion control system is a system for controlling the motion of the above-described special wheel-arranged vehicle having a rear wheel (hereinafter, sometimes referred to as “rhombic wheel-arranged vehicle”).
  • the vehicle includes a shared load ratio changing device that changes a shared load ratio that is a ratio of a left and right wheel shared load to a front and rear wheel shared load of the vehicle body, and is configured to be able to control the load shared ratio.
  • a vehicle motion control system for controlling the motion of a vehicle having a single front wheel disposed in the front part of the vehicle and a left wheel and a right wheel disposed on the left and right of the front wheel behind the front wheel. Because A front wheel steering device for steering the front wheels; A left wheel driving braking device and a right wheel driving braking device for applying a driving braking force, which is a force for driving and braking the vehicle, to the left wheel and the right wheel, respectively; A vehicle motion control system comprising: a control device that controls the vehicle.
  • the vehicle motion control system described in this section is a system in the most basic form, and is a premise of the system of the present invention.
  • the vehicle targeted by the system of this aspect is the above-described special wheel arrangement vehicle, and the vehicle may be a three-wheeled vehicle having only the front wheel, the left wheel, and the right wheel, and further, the left wheel and the right wheel. It may be a vehicle having a single rear wheel disposed behind the vehicle (hereinafter sometimes referred to as a “rhombic wheel disposed vehicle”).
  • the “front wheel steering device” in the system of this section may be a device configured to steer the front wheels by the driver's operation force applied to the steering operation member, and has a drive source to operate the steering.
  • It may be configured to be mechanically separated from the member and to steer the front wheels by the force of the drive source while controlling the drive source in accordance with the operation of the steering operation member. It may be a so-called steer-by-wire type device. Note that various types of steering operation members such as a steering wheel, a joystick, and a lever can be adopted as the steering operation member.
  • “Drive / braking force” in this section is a concept for comprehensively or centrally handling the force for driving the wheel and the force for braking the wheel.
  • the force for driving the wheel and the force for braking the wheel can be considered as the force for driving the vehicle and the force for braking the vehicle, respectively.
  • the “left wheel drive braking device” and “right wheel drive braking device” in this section include (a) a drive source such as an engine and a motor and a transmission mechanism for transmitting the force of the drive source as rotation of the wheel. And (b) a hydraulic brake device, an electric brake device, and a braking device such as a brake device (for example, a regenerative brake) that uses an electromotive force of the motor when the drive source is a motor.
  • left wheel drive braking device and the right wheel drive braking device in the aspect of this section are not limited to those that can apply driving force to the left wheel and the right wheel independently of each other, as will be described later. On the other hand, it may be possible to apply a driving and braking force having a magnitude equal to or related to each other.
  • This mode is a mode in which the left wheel drive braking device and the right wheel drive braking device are limited.
  • These driving / braking devices include, for example, a driving device that has a dedicated driving source for each of the left wheel and the right wheel, and is configured so that the left wheel and the right wheel are driven independently. Is possible.
  • the left and right wheels are braked independently, such as a brake-by-wire brake device, a brake device that uses an electromotive force of an electromagnetic motor provided as a dedicated drive source for each of the left and right wheels. It is possible to adopt a brake device.
  • the vehicle motion control system is for controlling the motion of the vehicle further having a single rear wheel disposed behind the left wheel and the right wheel (1) or (2) The vehicle motion control system according to Item.
  • the vehicle motion control system is a system in which the target vehicle is the above rhombus wheel arrangement vehicle.
  • the target rear wheel of the vehicle may be a steered wheel that is steered or a non-steered wheel that is not steered.
  • the “steered wheel” means a wheel that can be set to an arbitrary steered amount by an operation, control, or the like of a steering operation.
  • a wheel whose direction is freely changed like a caster is not a steered wheel but a non-steered wheel.
  • the wheel whose direction is fixed is also a non-steered wheel.
  • This mode is a mode in which the rear wheels are steered wheels.
  • the “rear wheel steering device” in the system of this section is a device configured to steer the rear wheels by the driver's operation force applied to the steering operation member, like the front wheel steering device described above. Alternatively, a so-called steer-by-wire type device may be used.
  • the vehicle motion control system is It is a ratio of left and right wheel shared load that is a share of the left wheel and the right wheel to a front and rear wheel share load that is a share of the front wheel and the rear wheel of the weight of the vehicle body.
  • the specific configuration of the “shared load ratio changing device” in this section is not particularly limited.
  • An apparatus having a configuration as will be described later is also possible.
  • one or more weights (weights) that can be moved are arranged on the vehicle body, and the one or more weights are moved in the front-rear direction. It is also possible to use an apparatus that changes the shared load ratio.
  • the vehicle is configured such that the vehicle body is suspended by a plurality of suspension springs provided corresponding to the front wheel, the rear wheel, the left wheel, and the right wheel
  • the shared load ratio changing device includes: (a) a vertical distance between the front wheel and the vehicle body and a vertical distance between the rear wheel and the vehicle body; and (b) a vertical distance between the left wheel and the vehicle body.
  • the vehicle according to (5) configured to change the shared load ratio by generating a force in a direction to change at least one of a distance and a distance in a vertical direction between the right wheel and the vehicle body.
  • Motion control system configured to change the shared load ratio by generating a force in a direction to change at least one of a distance and a distance in a vertical direction between the right wheel and the vehicle body.
  • the aspect of this section is an aspect in which a limitation relating to the configuration of the shared load ratio changing device is added.
  • the shared load ratio changing device in this section treats the vehicle body as a rigid body, and increases or decreases the distance between the wheel and the vehicle body in the vertical direction (hereinafter sometimes referred to as “wheel vehicle body distance”). It is possible to change the shared load ratio by appropriately applying a force in a direction to be applied (hereinafter, referred to as “wheel vehicle body approaching / separating force”) between each of the four wheels and the vehicle body. . More specifically, for the front and rear wheels, a force is applied between the wheel and the body, and / or for the left and right wheels, the force is separated between the wheel and the body.
  • the shared load ratio can be increased.
  • a force in a direction to separate them is applied between the wheel and the vehicle body, and / or for the left wheel and the right wheel, a force in a direction to make them approach between the wheel and the vehicle body.
  • the shared load ratio can be reduced.
  • the structure for generating the wheel body approaching / separating force is not particularly limited.
  • an actuator that changes the distance between them is arranged to increase the distance.
  • the shared load of the corresponding wheel is reduced by increasing the shared load of the corresponding wheel and, conversely, by reducing the interval.
  • four devices such as so-called electromagnetic dampers (electromagnetic shock absorbers) for applying a force between the wheel and the vehicle body are arranged corresponding to the four wheels, and each of the four devices is used. It is also possible to adopt a configuration in which the share load ratio is changed by applying a force between the corresponding wheel and the vehicle body at an appropriate ratio.
  • the control device The vehicle according to any one of (1) to (6), further including a front wheel turning amount control unit that controls the front wheel turning device to control a turning amount of the front wheel when the vehicle is turning. Vehicle motion control system.
  • the mode of this section is a mode in which the front wheel steering device is the steer-by-wire type steering device described above. If a steer-by-wire type steering device is adopted, for example, the amount of steering of the front wheels does not necessarily have to be controlled to a magnitude corresponding only to the amount of operation of the steering operation member.
  • the amount of steering can be controlled according to various parameters such as speed and vehicle speed. That is, by employing a steer-by-wire type steering device, the degree of freedom in controlling the amount of steering can be made relatively high.
  • the “steering amount” is an index representing the degree of steering of the wheel. For example, the turning angle of the wheel, that is, the turning phase angle with respect to the turning angle position of the wheel when going straight, It becomes a kind.
  • the front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on an operation of a steering operation member, and is actually generated in the vehicle.
  • the vehicle motion control system according to item (11), configured to control a turning amount of the front wheels so that an actual lateral acceleration that is a lateral acceleration approaches the target lateral acceleration.
  • the aspect of this section is an aspect in which a limitation on the front wheel steering method is added. Since the steering operation member is operated in accordance with the degree and state of the vehicle turning desired by the driver, the operation of the steering operation member becomes an intention display regarding the degree and state of the vehicle turning desired by the driver. On the other hand, the lateral acceleration generated in the vehicle at the time of turning can be considered as the lateral force acting on the vehicle divided by the vehicle weight, and an index indicating the degree and state of the turning (hereinafter referred to as “vehicle turning index”) There is a kind).
  • the amount of steering of the front wheels is not directly controlled based on the operation of the steering operation member, but based on the lateral acceleration that is a kind of vehicle turning index. Controlled.
  • the steering method of the front wheels in the aspect of this section is a unique technique, and the vehicle motion control system of the aspect of this section in which the front wheels are steered by such a steering technique is based on the driver's intention. A suitable turning motion of the vehicle along the road will be realized.
  • a feedback control method based on the deviation of the actual lateral acceleration with respect to the target lateral acceleration can be used. Specifically, it can be realized by control such as P control based on deviation, PI control, PID control.
  • the method for determining the target lateral acceleration is not particularly limited. For example, a method described later, that is, a method of determining the size according to the operation amount of the steering operation member can be adopted, and for example, the operation speed of the steering operation member, the traveling speed of the vehicle A method based on various parameters such as “hereinafter referred to as“ vehicle speed ”in some cases) can be widely adopted.
  • the lateral force that is the basis for the occurrence of the lateral acceleration is a force acting on the vehicle at the wheel. Therefore, when the lateral force acts on the vehicle, the inertia force in the opposite direction acts on the vehicle body.
  • a lateral acceleration sensor provided on the vehicle body may be used to detect the actual lateral acceleration based on the detected value.
  • the mode in this section is a mode in which a limitation on the method for determining the target lateral acceleration is added.
  • the vehicle turning motion as desired by the driver is appropriately realized.
  • the front wheel turning amount is generally small when the vehicle speed is high, and the front wheel turning amount is low when the vehicle speed is low. Becomes bigger.
  • the left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
  • the control device is When the vehicle turns, the left wheel drive braking device and the right wheel drive braking device are controlled to control a left and right wheel drive braking force difference that is a difference between the left wheel drive braking force and the right wheel drive braking force.
  • the vehicle motion control system according to any one of items (1) to (14), further including a left / right wheel drive braking force difference control unit.
  • the aspect of this section is an aspect configured to control the movement of the vehicle by making a difference between the driving force of the left wheel and the driving force of the right wheel. For example, by making a difference between the driving and braking force of the left wheel and the right wheel that are turning outer wheels (wheels farther from the turning center) and the driving force of the turning inner wheel (wheels closer to the turning center) Can also change the orientation of the vehicle. For example, the yaw rate of the vehicle during vehicle turning can be controlled by the difference in driving force.
  • the aspect of this section is an aspect in which the turning motion of the vehicle is controlled by controlling the driving / braking force difference. According to the aspect of this section, it is possible to realize a vehicle turning motion with good characteristics.
  • the “driving braking force difference” may be a difference in driving force between the left and right wheels by the above-described driving device, or may be a difference in braking force between the left and right wheels by the above-described braking device.
  • the difference when the vehicle is accelerating or when the vehicle speed is maintained, the difference is mainly the driving force, and when the vehicle is decelerating, the difference is mainly the braking force.
  • the left and right wheel driving braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on an operation of a steering operation member, and uses a yaw rate actually generated in the vehicle.
  • the vehicle motion control system according to item (14), configured to control the left and right wheel drive braking force difference so that a certain actual yaw rate approaches the target yaw rate.
  • the aspect of this section is an aspect in which a limitation relating to the control method of the driving / braking force difference is added.
  • the operation of the steering operation member serves as an intention display regarding the degree and state of the vehicle turning desired by the driver.
  • the yaw rate of the vehicle at the time of vehicle turning is also a kind of vehicle turning index described above.
  • the driving / braking force difference is not directly controlled based on the operation of the steering operation member, but is controlled based on the yaw rate, which is a kind of vehicle turning index.
  • the control method of the driving / braking force difference in the aspect of this section is a unique technique, and according to the vehicle motion control system of the aspect of this section in which the driving / braking force difference is controlled by such a control method, the driver's An appropriate vehicle turn according to the intention is realized.
  • the control of the driving / braking force difference in the aspect of this section can use, for example, a feedback control method based on the deviation of the actual yaw rate with respect to the target yaw rate, similarly to the control of the front wheel turning amount described above. is there. Specifically, it can be realized by control such as P control based on deviation, PI control, PID control.
  • the actual yaw rate can be detected by using a yaw rate sensor provided on the vehicle body.
  • the method for determining the target yaw rate is not particularly limited.
  • a method described later that is, a method of determining a size corresponding to the operation amount of the steering operation member divided by the vehicle speed can be adopted, and for example, the operation of the steering operation member can be adopted.
  • a method based on various parameters such as the amount, the operation speed of the steering operation member, and the vehicle speed can be widely adopted.
  • the aspect of this section with the control of the front wheel turning amount based on the lateral acceleration described above.
  • the followability to the change in the target lateral acceleration responsiveness to the lateral acceleration
  • the followability to the change in the target yaw rate Both responsiveness with respect to yaw rate are good. That is, it is considered that one of these two controls functions to assist the other control.
  • the effect of the combination of the two controls is higher when the vehicle speed is high than when the vehicle speed is low. In this sense, it is particularly desirable to execute the combination of the two controls at least when the vehicle speed is high.
  • the left and right wheel drive braking force difference control unit is configured to determine the target yaw rate to a size according to the operation amount of the steering operation member divided by the traveling speed of the vehicle ( The vehicle motion control system according to item 15).
  • the aspect of this section is an aspect in which a limitation relating to the target yaw rate determination method is added. According to the aspect of this section, the vehicle turning as desired by the driver is appropriately realized. By the way, according to the determination method of this aspect, even when the operation amount of the steering operation member is the same, the vehicle yaw rate generally increases when the vehicle speed is high, and the vehicle yaw rate decreases when the vehicle speed is low. .
  • the vehicle motion control system is The vehicle further has a single rear wheel disposed behind the left wheel and the right wheel, and controls the movement of the vehicle, and includes a rear wheel steering device that steers the rear wheel,
  • the control device is The vehicle according to any one of (11) to (16), further including a rear wheel turning amount control unit that controls a rear wheel turning device to control a turning amount of the rear wheel when the vehicle turns. Vehicle motion control system.
  • the aspect of this section is an aspect in which the rear-wheel steering device is the steer-by-wire type steering device described above when the vehicle to be subjected to motion control is the rhombus-wheel-arranged vehicle. If a steer-by-wire type steering device is used to control the steering of the rear wheels, for example, the turning characteristics of the vehicle with rhombus wheels can be improved. As in the case of the front wheels, the amount of steering of the rear wheels does not necessarily have to be controlled to a magnitude corresponding to the amount of operation of the steering operation member, and the degree of freedom in controlling the amount of steering is relatively high. Is possible.
  • the rear wheels are steered in phase with the front wheels, and if they are in opposite directions, the rear Let's say that the wheels are steered in the opposite phase to the front wheels.
  • the rear wheel may be steered in the same phase with respect to the front wheel, or may be steered in the opposite phase. For example, it is possible to control the rear wheel steering so that it is determined in accordance with the vehicle speed.
  • the rear wheels are steered in phase with respect to the front wheels in consideration of the running stability of the vehicle, and when the vehicle speed is low, the turning performance of the vehicle (vehicle In view of, for example, improvement in performance regarding ease of changing the direction, it is possible to perform control such that the rear wheels are steered in the opposite phase to the front wheels.
  • the vehicle performs a turning motion with a relatively large lateral acceleration and a relatively small yaw rate.
  • the vehicle performs a turning motion in which the lateral acceleration generated in the vehicle is relatively small and the yaw rate is relatively large.
  • the control device A front wheel turning amount control unit that controls the front wheel turning device to control the turning amount of the front wheel during turning of the vehicle;
  • the front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on the operation of the steering operation member, and the lateral acceleration actually generated in the vehicle is determined. It is configured to control the amount of steering of the front wheels so that a certain actual lateral acceleration approaches the target lateral acceleration,
  • the rear wheel turning amount control unit controls the rear wheel turning device so that the approach to the target lateral acceleration of the actual lateral acceleration realized by the control by the front wheel turning amount control unit is assisted.
  • the vehicle motion control system according to item (17), which is configured to control a turning amount of the rear wheel.
  • the aspect of this section is an aspect in which the method of controlling the rear wheel turning amount is specifically limited when the control of the front wheel turning amount based on the lateral acceleration described above is adopted. According to the aspect of this section, it is possible to improve the followability to the change in the target lateral acceleration described above.
  • the left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
  • the control device is Left and right wheel drive braking force difference control that controls the difference between the left wheel drive braking force and the right wheel drive braking force by controlling the left wheel drive braking device and the right wheel drive braking device when the vehicle is turning.
  • the left and right wheel drive braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on the operation of the steering operation member, and an actual yaw rate that is actually generated in the vehicle Is configured to control the difference between the driving force of the left wheel and the driving force of the right wheel so as to approach the target yaw rate,
  • the rear wheel turning amount control unit controls the rear wheel turning amount so that the approach of the actual yaw rate to the target yaw rate, which is realized by the control by the left and right wheel drive braking force difference control unit, is assisted.
  • the vehicle motion control system according to item (17), configured to
  • the aspect of this section is an aspect in which the control method of the rear wheel turning amount is specifically limited when the control of the difference in driving force between the left and right wheels based on the yaw rate described above is employed. According to the aspect of this section, it is possible to improve the followability to the change of the target yaw rate described above.
  • the control device A front wheel turning amount control unit that controls the front wheel turning device to control the turning amount of the front wheel during turning of the vehicle;
  • the front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on the operation of the steering operation member, and the lateral acceleration actually generated in the vehicle is determined.
  • the left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
  • the control device is When the vehicle turns, the left wheel drive braking device and the right wheel drive braking device are controlled to control a left and right wheel drive braking force difference that is a difference between the left wheel drive braking force and the right wheel drive braking force.
  • the left and right wheel drive braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on the operation of the steering operation member, and is an actual yaw rate generated in the vehicle.
  • the vehicle motion control system according to item (17), configured to control the left and right wheel drive braking force difference so that a yaw rate approaches the target yaw rate.
  • the aspect of this section is an aspect that employs both the control of the front wheel turning amount based on the lateral acceleration described above and the control of the driving force difference between the left and right wheels based on the yaw rate.
  • the rear wheel turning amount control unit approaches the target lateral acceleration of the actual lateral acceleration realized by the control by the front wheel turning amount control unit, and is controlled by the left and right wheel driving braking force difference control unit.
  • the rear wheel turning amount control unit determines the turning amount of the rear wheel when the actual lateral acceleration is smaller than the target lateral acceleration and the actual yaw rate is larger than the target yaw rate.
  • the rear wheel is opposite to the front wheel.
  • the vehicle motion control system according to item (20) or (21), wherein the vehicle motion control system is configured to control the vehicle to steer in the direction of.
  • the aspect of this section is considered as a kind of aspect in which the turning amount of the rear wheel is controlled so as to assist both the approach of the actual lateral acceleration to the target lateral acceleration and the approach of the actual yaw rate to the target yaw rate. be able to. According to the aspect of this section, it is possible to improve both the followability to the change in the target lateral acceleration and the followability to the change in the target yaw rate.
  • the rear wheel turning amount control unit determines a target revolution centripetal acceleration that is a revolution centripetal acceleration that should occur in the vehicle when the vehicle turns, and is an actual revolution centripetal acceleration actually occurring in the vehicle.
  • the vehicle motion control system according to any one of (17) to (22), wherein the turning amount of the rear wheel is controlled so that the revolution centripetal acceleration approaches the target revolution centripetal acceleration. .
  • the lateral acceleration is the lateral acceleration in the coordinate system centered on the vehicle, and the “revolution centripetal acceleration” can be considered as the lateral acceleration in the road surface coordinate system. In other words, it can be considered that the product of the vehicle speed and the yaw rate is subtracted from the lateral acceleration.
  • the mode of this section is a mode of controlling the rear wheel turning amount based on this revolution acceleration.
  • the aspect of this section is an aspect of controlling the rear wheel turning amount so as to assist both the approach of the actual lateral acceleration to the target lateral acceleration and the approach of the actual yaw rate to the target yaw rate.
  • the control of the rear wheel turning amount in the aspect of this section is, for example, the deviation of the actual revolution centripetal acceleration with respect to the target revolution centripetal acceleration, similarly to the control of the front wheel turning amount and the control of the driving force difference between the left and right wheels. It can be realized by the method of feedback control based on. Specifically, it can be realized by control such as P control based on deviation, PI control, PID control. Incidentally, the actual lateral acceleration and the actual yaw rate can be detected by using the lateral acceleration sensor and the yaw rate sensor provided on the vehicle body as described above.
  • the target revolution centripetal acceleration is determined based on, for example, when the target lateral acceleration is determined in the control of the front wheel turning amount and the target yaw rate is determined in the control of the driving force difference between the left and right wheels. That's fine.
  • the deviation of the actual revolution centripetal acceleration with respect to the target revolution centripetal acceleration is the deviation of the actual lateral acceleration with respect to the target lateral acceleration in the control of the front wheel turning amount, and the actual yaw rate with respect to the target yaw rate in the control of the driving force difference between the left and right wheels. May be determined by subtracting the product of the latter and the vehicle speed from the former.
  • the vehicle motion control system controls the motion of the vehicle further having a single rear wheel disposed behind the left wheel and the right wheel, and the weight of the vehicle body of the vehicle
  • the load sharing ratio which is the ratio of the left and right wheel shared load that is shared by the left wheel and the right wheel, to the front and rear wheel shared load that is shared by the front wheel and the rear wheel is changed. Equipped with a shared load ratio change device,
  • the control device is The vehicle motion control system according to any one of (1) to (20), further including a shared load ratio change control unit that controls the shared load ratio by controlling the shared load ratio changing device.
  • the mode of this section is a mode for performing control for the motion of the rhombus wheel arrangement vehicle described above.
  • vehicle motion characteristics corresponding to the shared load ratio can be obtained.
  • the drive performance here means performance related to the magnitude of the propulsive force of the vehicle obtained by the rotation of the left and right wheels, which are drive wheels.
  • the front and rear wheels are resistant to the turning motion of the vehicle. That is, the frictional force between the front and rear wheels and the road surface in the yaw motion of the vehicle (which can be considered as a lateral force generated by the left and right wheels) acts so that the yaw rate of the vehicle is reduced. Therefore, by increasing the share load ratio, the ground contact load of the front and rear wheels can be reduced, and the vehicle with the rhombus wheels can be easily turned so that a relatively large yaw rate is required.
  • the shared load ratio can be changed according to the vehicle speed.
  • the vehicle motion characteristics required for a vehicle with rhombus wheels change depending on the vehicle speed.
  • the shared load ratio change control unit is configured to control the shared load ratio change device so that the shared load ratio is smaller when the traveling speed of the vehicle is high than when the vehicle is low.
  • the vehicle motion control system according to item (32).
  • a vehicle with a rhombus wheel has a relatively large lateral acceleration generated in the vehicle and a relatively small yaw rate of the vehicle in view of the running stability of the vehicle. It is desirable to be controlled to perform a swivel motion. Conversely, when the vehicle speed is low, it is desirable to control the vehicle so as to perform a turning motion in which the lateral acceleration generated in the vehicle is relatively large and the vehicle yaw rate is relatively small in view of improvement in the turning performance of the vehicle. According to the aspect of this section, for the reason described above, when the vehicle speed is high, it is possible to easily cause the vehicle with rhombus wheels to perform a turning motion that requires a relatively large lateral acceleration. On the other hand, when the vehicle speed is low, it is possible to easily cause the vehicle with rhombus wheels to perform a turning motion that requires a relatively large yaw rate.
  • the shared load ratio change control unit is configured such that when the vehicle traveling speed is higher than a set threshold speed, the front and rear wheel shared load is larger than the left and right wheel shared load, and the vehicle traveling speed is (32) or (33), wherein the shared load ratio changing device is configured to control the front and rear wheel shared load to be smaller than the left and right wheel shared load when lower than the set threshold speed.
  • Vehicle motion control system is configured such that when the vehicle traveling speed is higher than a set threshold speed, the front and rear wheel shared load is larger than the left and right wheel shared load, and the vehicle traveling speed is (32) or (33), wherein the shared load ratio changing device is configured to control the front and rear wheel shared load to be smaller than the left and right wheel shared load when lower than the set threshold speed.
  • the aspect of this section is an aspect in which a limitation relating to the magnitude relationship between the front and rear wheel shared load and the left and right wheel shared load is added.
  • the aspect of this section can also be considered as one aspect of the aspect of controlling so as to reduce the shared load ratio when the vehicle speed is high compared to when the vehicle speed is low.
  • FIG. 1 It is a schematic side view of the vehicle carrying the vehicle motion control system which is an Example of claimable invention. It is a conceptual diagram which shows the whole structure of the vehicle shown in FIG. 1, and the vehicle motion control system mounted in the vehicle. It is sectional drawing which shows the left wheel (right wheel) of the vehicle shown in FIG. 1, and the suspension apparatus, drive device, and braking device which were provided with respect to it. It is a figure which shows the front wheel (rear wheel) of the vehicle shown in FIG. 1, and the steering apparatus provided with respect to it. It is a figure which shows notionally the mode of steering of the front wheel and rear wheel by turning control, and the right-and-left wheel drive braking force difference. FIG.
  • FIG. 6 is a graph for comparing and explaining changes in lateral acceleration and yaw rate that occur in a vehicle during turning in a case of turning under turning control and in a case of turning only by turning front wheels.
  • FIG. FIG. 5 is a graph for comparing and explaining changes in lateral acceleration and yaw rate when a lane change is performed in a case of turning under control during turning and in a case of turning only by turning front wheels. It is a graph which shows the change of the ratio of the shared load of the right-and-left wheel with respect to the shared load of the front and rear wheel by shared load ratio change control. It is a figure which shows notionally the mode that the load of a vehicle body is shared by the front-and-rear wheel and a left-right wheel.
  • FIG. 1 shows a vehicle equipped with the vehicle motion control system of the embodiment.
  • This vehicle is a vehicle with rhombus wheels, and is expected as a next generation commuter.
  • the vehicle includes a vehicle body 10, a front wheel 12F provided at a front portion thereof, a left wheel 14L and a right wheel 14R provided respectively at a left portion and a right portion of the vehicle body 10 behind the front wheel 12F, and the left wheel 14L. , And a rear wheel 12R provided behind the right wheel 14R.
  • FIG. 2 showing a plan view of the vehicle, the front wheel 12F and the rear wheel 12R are disposed at the center in the vehicle width direction.
  • the wheel 12 when it is not necessary to distinguish between the front wheel 12F and the rear wheel 12R, it is collectively referred to as the wheel 12, and when it is not necessary to distinguish between the left wheel 14L and the right wheel 14R, it is collectively referred to as the wheel 14. To do. The same applies to the components, parameters, and the like related to the front wheel 12F, the rear wheel 12R, the left wheel 14L, and the right wheel 14R.
  • the front wheel 12F and the rear wheel 12R are steered wheels, and the left wheel 14L and the right wheel 14R are not steered wheels.
  • the left wheel 14L and the right wheel 14R are driving wheels (wheels that are rotationally driven to drive the vehicle), the front wheels 12F and the rear wheels 12R are not driving wheels.
  • the left wheel 14L and the right wheel 14R are used as braking wheels (wheels whose rotation is braked to brake the vehicle), the front wheels 12F and the rear wheels 12R are not used as braking wheels.
  • This vehicle is provided with three operation members as operation members for the driver to operate the vehicle.
  • One of them is a steering wheel 20 that is a steering operation member for causing the vehicle to perform a turning operation
  • the other is an accelerator pedal 22 that is an accelerator operation member for accelerating the vehicle
  • the other is an operation of the vehicle.
  • It is the brake pedal 24 which is a brake operation member for decelerating.
  • this vehicle can be moved not only forward but also backward, but in the following description, only forward is described in order to avoid redundancy of the present specification.
  • the wheel 14 includes a wheel body 30 and a tire 32, as can be seen from FIG.
  • the wheel body 30 is fixed to an axle 34, and the axle 34 is rotatably held by a carrier 36.
  • the carrier 36 is swingable with respect to the vehicle body by a lower arm 38 and an upper arm 40 that are suspension arms constituting the suspension device.
  • a lower end portion of a hydraulic shock absorber 42 is attached to the lower arm 38.
  • the upper end of the shock absorber 42 is supported on the vehicle body via a spring support position adjusting device 44.
  • the spring support position adjusting device 44 is for increasing or decreasing the distance in the vertical direction between the upper end portion of the shock absorber 42 and the support portion of the vehicle body, and includes an electromagnetic motor. By controlling the operation of the motor, it is possible to adjust the support position (hereinafter also referred to as “spring support position”) of the upper end portion of the suspension spring 46, which will be described later, with respect to the vehicle body.
  • the hydraulic shock absorber 42 has a lower tube 48 and an upper tube 50, and can be expanded and contracted by being relatively movable.
  • a lower retainer 52 is fixed to the lower tube 48, and an upper retainer 54 is fixed to the upper tube 50, and the suspension spring 46 is sandwiched between the lower retainer 52 and the upper retainer 54. With such a configuration, the wheel 14 is rotatable and elastically swingable up and down.
  • the carrier 36 has a short cylindrical coil holding portion 58 outside the hub portion 56 that holds the axle 34.
  • a plurality of coils 60 constituting an electromagnetic motor are provided on the outer periphery of the coil holding portion 58. Is retained.
  • a plurality of magnets 62 are disposed on the rim portion of the wheel body 30 along the inner peripheral surface thereof.
  • the plurality of coils 60 and the plurality of magnets 62 face each other, and they constitute a brushless DC motor. That is, the wheel 14 is rotationally driven by an in-wheel motor charged inside the wheel body 30, and the in-wheel motor functions as a driving device 64 in the vehicle.
  • the in-wheel motor also functions as a generator by the rotation of the wheel 14.
  • the drive device 64 is configured to function also as a regenerative brake device by regenerating the current generated by the electromotive force of the motor.
  • a brake disc 66 is fixed to the axle 34.
  • a caliper device 68 that holds a brake pad is fixed to the carrier 36.
  • the caliper device 68 is configured to press the brake pad against the brake disc 66 by the force of the electromagnetic motor. That is, the vehicle has a disc-type braking device 70 constituted by the brake disc 66 and the caliper device 68.
  • the wheel 12 includes a wheel body 80 and a tire 82.
  • the wheel body 80 is sandwiched from the left and right by a pair of hydraulic shock absorbers 84. More specifically, the axle 88 provided on the hub portion 86 of the wheel main body 80 is rotatably held by the bearing portion 90 provided at the lower end of each of the pair of shock absorbers 84, so that the wheel 12. Is made rotatable.
  • Each upper end portion of the pair of shock absorbers 84 is fixed to a support plate 92 extending in the vehicle width direction, and the support plate 92 connects the upper end portions of the pair of shock absorbers 84.
  • a shaft 94 is fixedly attached to the support plate 92, and the shaft 94 is rotatably held by a bearing portion 96 provided on the vehicle body.
  • the shaft 94 extends upward from the bearing portion 96, and the wheel 12 is steered when the steered device 98 rotates the extended portion.
  • the steering device 98 includes an electromagnetic motor, and is configured to steer the wheel 12 at an arbitrary turning angle by controlling the operation of the electromagnetic motor.
  • the steering device 98 has a stopper for preventing the wheels 12 from being steered by 90 ° or more on both the left and right sides.
  • Each of the pair of shock absorbers 84 includes a lower tube 100 and an upper tube 102, and they can be expanded and contracted by being relatively movable.
  • a lower retainer 104 is fixed to the lower tube 100, and each of the pair of suspension springs 108 is sandwiched between the lower retainer 104 of each of the pair of shock absorbers 84 and the support plate 92. With such a configuration, the wheel 12 is elastically swingable up and down.
  • the movement of the vehicle is controlled by a vehicle movement control system whose overall configuration is shown in FIG.
  • This system includes an electronic control unit (hereinafter abbreviated as “ECU”) 130 as a control device that forms the core of the system.
  • the ECU 130 is a computer-based device, such as a left wheel drive device [D L ] 64L, a right wheel drive device [D R ] 64R, a left wheel brake device [B L ] 70L, and a right wheel brake device [B R ].
  • the ECU 130 also has a driver circuit for controlling the operation of the electromagnetic motors of these devices.
  • this vehicle movement system is provided with various sensors as a device which acquires the parameter for control. Specifically, a vehicle speed sensor [v] 132 for detecting the traveling speed (vehicle speed) v of the vehicle, a steering sensor [ ⁇ ] 134 for detecting the operation angle ⁇ of the steering wheel 20, and the operation amount of the accelerator pedal 22 horizontal for detecting a O accelerator sensor for detecting [a O] 136, a brake sensor [b O] 138 for detecting an operation amount b O of the brake pedal 24, the lateral acceleration Gy caused in the vehicle body Acceleration sensor [Gy] 140, yaw rate sensor [ ⁇ ] 142 for detecting the yaw rate ⁇ of the vehicle, left wheel spring support position sensor for detecting the spring support positions h L and h R on the left wheel side and the right wheel side, respectively.
  • a vehicle speed sensor [v] 132 for detecting the traveling speed (vehicle speed) v of the vehicle
  • a steering sensor [ ⁇ ] 134 for detecting the operation angle
  • the front wheel steering angle sensor for detecting the front wheel turning angle [delta] F is the steering amount of the front wheel [[delta] F] 1 6F
  • the rear wheel wheel steering angle sensor [[delta] R] 146R after for detecting wheel steering angle [delta] R after a steering amount of are provided on the vehicle body, their sensors are linked to ECU130 .
  • the lateral acceleration sensor [Gy] is for detecting the lateral acceleration Gy actually generated in the vehicle body.
  • the lateral acceleration Gy actually generated in the vehicle is the lateral acceleration Gy in the opposite direction. In the control of the vehicle motion system, the lateral acceleration Gy generated in the vehicle body is treated as the lateral acceleration Gy actually generated in the vehicle to control the vehicle motion.
  • acceleration / deceleration control which is control for accelerating the vehicle and control for decelerating the vehicle is performed as follows.
  • the accelerator pedal 22 is operated by the driver. Therefore, the vehicle is given to the vehicle according to the following expression (1) based on the operation amount a O of the accelerator pedal 22 detected by the accelerator sensor 136.
  • driving force F D to, i.e., the driving force F D applied left and right wheels 14L, 14R and is determined.
  • K D is a driving force gain for determining the driving force F D.
  • F D K D ⁇ a O (1)
  • the brake pedal 24 is operated by a driver, based on the operation amount b O of the brake pedal 24 detected by the brake sensor 138, according to the following equation (2), the vehicle braking force F B to be applied to, i.e., left and right wheels 14L, the braking force F B applied to 14R are determined.
  • K B is the braking force gain for determining the braking force F B.
  • F B K B ⁇ b O (2)
  • the driving force gain K D and the braking force gain K B may be constants or may be changed based on some parameter.
  • the driving braking force F is determined according to the following equation (3).
  • F F D -F B (3) That is, when F> 0, the driving force F is applied to the vehicle, and when F ⁇ 0, the braking force F is applied to the vehicle. Then, the left wheel and the driving braking force F, so as to share the right wheel, the following equation (4), according to (5), Hidariwaka braking force F L, Migiwaka braking force F R is determined.
  • F L F / 2 (4)
  • F R F / 2 (5)
  • the left wheel driving braking force F L based on Migiwaka braking force F R, which driving braking force F L, so F R are respectively obtained, the driving device 64L, 64R, the braking device 70L, 70R are controlled .
  • F L the magnitude of current according to Hidariwaka braking force F L is supplied to the electromagnetic motor of the left wheel drive unit 64L from the battery.
  • F L ⁇ 0 the operation is as follows.
  • the left wheel drive device 64 since it has a function as a regenerative braking device, when the Hidariwaka braking force F L is covered by our regenerative braking force corresponding to Hidariwaka braking force F L
  • the left wheel drive device 64L is controlled such that a large current is generated by the electromagnetic motor of the left wheel drive device 64L and regenerated by the battery.
  • the maximum regenerative braking force when the left wheel drive unit 64L so as to obtain is controlled, not be covered by the regenerative braking force of the maximum
  • An electric current having a magnitude corresponding to the braking force is supplied to the electromagnetic motor of the left wheel braking device 70L so that a braking force corresponding to the minute can be obtained. Since the right wheel 14R is the same as the left wheel 14L, description thereof is omitted here.
  • the left wheel driving braking force F L and the right wheel driving braking force F R are corrected based on the left and right wheel driving braking force difference ⁇ F required by the turning control.
  • F L F L + ⁇ F / 2 (6)
  • F R F R ⁇ F / 2 (7) Therefore, when the vehicle is turning, driving device 64L, 64R, the braking device 70L, control 70R is driving the left wheel of the corrected braking force F L, it is performed based on Migiwaka braking force F R.
  • a target lateral acceleration Gy * which is a lateral acceleration Gy to be generated in the vehicle during vehicle turning, is determined according to the following equation (8). That is, the target lateral acceleration Gy * is determined to have a magnitude corresponding to the operation angle ⁇ .
  • K G is a lateral acceleration gain for determining the target lateral acceleration Gy *, may be constant, may be such a value by some parameters change.
  • Gy * K G ⁇ ⁇ (8)
  • the actual lateral acceleration (actual lateral acceleration) Gy actually generated in the vehicle is acquired from the detection value of the lateral acceleration sensor 140, and the lateral acceleration deviation which is the deviation of the actual lateral acceleration Gy from the target lateral acceleration Gy * .
  • ⁇ Gy is certified according to the following equation (9).
  • ⁇ Gy Gy * ⁇ Gy (9)
  • the target front-wheel steering angle as a target front wheel steering angle [delta] F [delta] F * is determined.
  • the target front wheel turning angle ⁇ F * is determined according to the following equation (10) based on the PID control law.
  • the first term, the second term, and the third term on the right side of the equation (10) are a proportional term (P term), an integral term (I term), and a differential term (D term), respectively, and P F , I F , D F are a proportional gain, an integral gain, and a differential gain for determining the target front wheel turning angle ⁇ F * .
  • these gains P F , I F , and D F may all be constants, or values that change depending on some parameters.
  • the front wheel turning is performed such that the actual front wheel turning angle ⁇ F detected by the front wheel turning angle sensor 146F becomes the target front wheel turning angle ⁇ F *.
  • the amount of current supplied to the electromagnetic motor included in the device 98F is determined, and the current corresponding to the amount of current is supplied to the electromagnetic motor.
  • the amount of current supplied to the electromagnetic motor is directly determined by the above equation (10), and control is performed so that the current amount of current is supplied to the electromagnetic motor. May be.
  • K ⁇ is a yaw rate gain for determining the target yaw rate ⁇ * , and may be a constant or a value that changes depending on some parameter.
  • ⁇ * K ⁇ ⁇ ⁇ ⁇ v (11)
  • the actual vehicle yaw rate (actual yaw rate) ⁇ is obtained from the detection value of the yaw rate sensor 142.
  • the yaw rate deviation ⁇ which is the deviation of the actual yaw rate ⁇ from the target yaw rate ⁇ * , is recognized according to the following equation (12).
  • ⁇ * ⁇ (12)
  • the left and right wheel drive braking force difference ⁇ F to be realized is determined in accordance with the feedback control law based on the yaw rate deviation ⁇ .
  • an appropriate left and right wheel drive braking force difference ⁇ F is determined according to the following equation (13) based on the PID control law.
  • the first term, the second term, and the third term on the right side of the above equation (13) are a proportional term (P term), an integral term (I term), and a differential term (D term), and P LR and I LR , D LR are a proportional gain, an integral gain, and a differential gain for determining the left and right wheel drive braking force difference ⁇ F.
  • gains P LR , I LR , and D LR may all be constants, or values that change depending on some parameters.
  • the left wheel drive braking force F L and the right wheel drive braking force F R are corrected based on the left and right wheel drive braking force difference ⁇ F as described above.
  • the left and right wheel drive braking force difference ⁇ F is determined to be 0.
  • the target revolution centripetal acceleration Go * is represented by the following equation (15), and the actual revolution centripetal acceleration Go is represented by the following equation (16).
  • Go * Gy * ⁇ v ⁇ ⁇ * (15)
  • Go Gy ⁇ v ⁇ ⁇ (16)
  • the target rear wheel turning angle ⁇ F * which is the target of the rear wheel turning angle ⁇ R is determined.
  • the rear wheel target turning angle ⁇ R * is determined according to the following equation (17) based on the PID control law.
  • the first term, the second term, and the third term on the right side of the equation (17) are a proportional term (P term), an integral term (I term), and a differential term (D term), and P R , I R , D R is the proportional gain for determining the target rear wheel steering angle [delta] F *, integral gain and derivative gain.
  • these gains P R , I R , and D R may all be constants, or values that change depending on some parameters.
  • the rear wheel turning is performed such that the actual rear wheel turning angle ⁇ R detected by the rear wheel turning angle sensor 146R becomes the target rear wheel turning angle ⁇ R *.
  • the amount of current supplied to the electromagnetic motor included in the device 98R is determined, and the current corresponding to the amount of current is supplied to the electromagnetic motor.
  • the supply current amount to the electromagnetic motor is directly determined by the above equation (17), and control is performed so that the current amount of the current is supplied to the electromagnetic motor. May be.
  • FIG. 5 shows a state in which the steering wheel 20 is operated counterclockwise, that is, when turning left
  • FIG. 5A shows a case where the vehicle speed v is relatively high (hereinafter, “high speed” for convenience.
  • FIG. 5B shows a case where the vehicle speed v is relatively low (hereinafter sometimes referred to as “low speed” for convenience).
  • the operation angle ⁇ of the steering wheel 20 is the same in both the case of FIG. 5A and the case of FIG.
  • the front wheel 12F is naturally steered to the left at both high and low speeds. If the operation angle ⁇ of the steering wheel 20 is the same at the high speed and the low speed, the target lateral acceleration Gy * is the same but the front wheel turning angle ⁇ F is constant according to the above equation (8). In this case, generally, the higher the vehicle speed v, the greater the lateral acceleration Gy obtained by turning the front wheel 12F. Therefore, as shown in FIG. 5, in this turning control, the various gains are generally set so that the front wheel turning angle ⁇ F is smaller at high speed than at low speed.
  • the left and right wheel drive braking force difference ⁇ F is smaller at high speed than at low speed.
  • 1/2 each of the left and right wheel drive braking force difference ⁇ F is given in the direction of braking the left wheel 14L and given in the direction of driving the right wheel 14R. .
  • the driving force difference or the braking force difference is determined. When the vehicle is accelerating, the driving force of the left wheel 14L is greater than the driving force of the right wheel 14R.
  • the various gains are set so that turning at a relatively low yaw rate is performed when the vehicle speed v is high, and turning at a relatively large yaw rate is performed when the vehicle speed v is low. .
  • the rear wheel 12R is steered to some extent, but simply speaking, as will be understood with reference to the above formulas (14) to (17), the revolution centripetal acceleration Go generated in the vehicle is the target.
  • the rear wheel turning angle ⁇ R is steered so that the revolution centripetal acceleration Go * is obtained.
  • the rear wheel 12R is steered in the same direction as the front wheel 12F. That is, the rear wheel 12R is steered in phase with the front wheel 12F.
  • the rear wheel 12R is steered in the opposite direction. That is, the rear wheel 12R is steered in the opposite phase to the front wheel 12F.
  • this turning control when the vehicle speed v is high, turning at a relatively small yaw rate is performed, and when the vehicle speed v is low, turning at a relatively large yaw rate is performed.
  • the vehicle speed v when the vehicle speed v is high, the vehicle is generally steered to the left, which is the same direction as the front wheels 12F.
  • the rear wheel turning angle ⁇ R is set so as to assist the approach of the actual lateral acceleration Gy to the target lateral acceleration Gy * due to the turning of the front wheel 12F, and the left and right wheel drive braking force difference ⁇ F.
  • the angle is set so as to assist the approach of the actual yaw rate ⁇ to the target yaw rate ⁇ * by the above control.
  • the various gains are set so that the rear wheel 12R is steered.
  • FIG. 6 is a graph showing the results of this comparison.
  • FIG. 6A shows a comparison for the lateral acceleration Gy
  • FIG. 6B shows a comparison for the yaw rate ⁇ .
  • the solid line represents the change when turning under the turning control
  • the broken line represents the change when turning only by turning the front wheel 12F.
  • any change in any case is a change on the premise that the steering wheel 20 is operated stepwise to a certain operation angle ⁇ .
  • the lateral acceleration Gy reaches the target lateral acceleration Gy * in a relatively short time, whereas in the turn only by turning the front wheel 12F. It takes a relatively long time for the lateral acceleration Gy to reach the target lateral acceleration Gy * .
  • the yaw rate ⁇ reaches the target yaw rate ⁇ * in a relatively short time, whereas the front wheel 12F, as in the case of the lateral acceleration Gy. In the turning by only turning, it takes a relatively long time for the yaw rate ⁇ to reach the target yaw rate ⁇ * .
  • FIG. 7 shows changes when a lane change is performed in 2 seconds.
  • FIG. 7A shows changes in the lateral acceleration Gy
  • FIG. 7B shows changes in the yaw rate ⁇ .
  • the change in the target lateral acceleration Gy * or the target yaw rate ⁇ * is indicated by a one-dot chain line
  • the change in the lateral acceleration Gy or the yaw rate ⁇ under the turning control is a solid line
  • the front wheel 12F is steered.
  • the upper end portions of the suspension springs 46 that support the left wheel 14L and the right wheel 14R are respectively connected to the left wheel spring support position adjusting device 44L and the right wheel spring support position. It is attached to the vehicle body via an adjusting device 44R.
  • the vehicle body Considering the vehicle body as a rigid body, for example, if the spring support position adjusting device 44 lowers the position of each upper end of the suspension spring 46 relative to the vehicle body, that is, if the spring support position is lowered, the suspension spring 46 is compressed. The spring reaction force of the suspension spring 46 increases and the vehicle body rises to some extent. Accordingly, the suspension spring 108 that supports the front wheel 12F and the rear wheel 12R is extended, and the spring reaction force thereof decreases.
  • the front / rear wheel shared load WFR decreases, and the left / right wheel shared load WLR increases, thereby increasing the shared load ratio Rw.
  • the suspension spring 46 supporting the left wheel 14L and the right wheel 14R is extended, and the suspension spring 108 supporting the front wheel 12F and the rear wheel 12R is extended. It is shortened.
  • the front and rear wheel shared load WFR increases and the left and right wheel shared load WLR decreases, so that the shared load ratio Rw increases. In this vehicle, the shared load ratio Rw is changed in this way.
  • the left wheel spring support position adjustment device 44L and the right wheel spring support position adjustment device 44R respectively determine the distance in the vertical direction between the left wheel 14L and the vehicle body and the distance in the vertical direction between the right wheel 14R and the vehicle body. By generating a force in the changing direction, it functions as a shared load ratio changing device that changes the shared load ratio Rw.
  • the distance between the upper end of the suspension spring 46 provided on the left wheel 14L and the mounting portion of the vehicle body (left wheel side mounting interval) h L , and the distance between the upper end of the suspension spring 46 provided on the right wheel 14R and the mounting portion of the vehicle body (Right wheel side mounting interval) h R is detected by the left wheel spring support position sensor 144L and the right wheel spring support position sensor 144R, respectively.
  • the left wheel side mounting interval h L and the right wheel side mounting interval h R are respectively set as a target left wheel side mounting interval h L * and a target right wheel side mounting interval h R * .
  • the current supply to the electromagnetic motor of each of the left wheel spring support position adjusting device 44L and the right wheel spring support position adjusting device 44R is controlled.
  • This shared load ratio change control is performed based on the vehicle speed v. Specifically, the shared load ratio Rw is controlled to be smaller when the vehicle speed v is high than when it is low. Specifically, the shared load ratio Rw is controlled so as to change as shown in FIG. 8 according to the vehicle speed v. Specifically, the shared load ratio Rw to be realized is determined with reference to map data set according to the vehicle speed v and stored in the ECU 130, and based on the determined shared load ratio Rw, The target left wheel side mounting interval h L * and the target right wheel side mounting interval h R * are determined according to the following equations (18) and (19).
  • f L (Rw) and f R (Rw) are functions for determining the target left wheel side mounting interval h L * and the target right wheel side mounting interval h R * using the shared load ratio R as a parameter.
  • the left wheel side mounting interval h L and the right wheel side mounting interval h R are determined as the determined target left wheel side mounting interval.
  • the left wheel spring support position adjusting device 44L and the right wheel spring support position adjusting device 44R are controlled so that the interval h L * and the target right wheel side mounting interval h R * are obtained.
  • the shared load ratio Rw is determined when the vehicle speed v exceeds a certain threshold vehicle speed (first threshold vehicle speed) v 1 . It is controlled so as to continuously decrease in accordance with the increase.
  • first threshold vehicle speed first threshold vehicle speed
  • second threshold vehicle speed second threshold vehicle speed
  • the front and rear wheel shared load W FR is smaller than the left and right wheel shared load W LR
  • the vehicle speed v is higher than the threshold speed v 2.
  • the front and rear wheels shared load W FR is larger than the left and right wheel shared load W LR.
  • the vehicle body load is shared between the front wheel 12F and the rear wheel 12R, and the left wheel 14L and the right wheel 14R as conceptually shown in FIG.
  • FIG. 9A shows the state of load sharing when the vehicle speed v is high
  • FIG. 9B shows the state of load sharing when the vehicle speed v is high.
  • the shared load of the front wheel 12F and the shared load of the rear wheel 12R are treated as being equal to each other.
  • FIG. 10B is a diagram for explaining the motion at a low speed. The left diagram shows a case where the shared load ratio Rw is 1, and the right diagram shows a case where the shared load ratio Rw is increased. , Respectively.
  • the burden during turning can be reduced.
  • the front and rear wheel share load W FR is relatively large, the lateral acceleration Gy generated by the front wheels 12F and the rear wheels 12R is increased, and this also means that the front wheel turning angle ⁇ F and the rear wheels are increased. This contributes to reducing the wheel turning angle ⁇ R.
  • the direction of turning of the rear wheel 12R is determined depending on various gains for determining the target rear wheel turning angle ⁇ F * , but FIG. As shown in FIG. 5B, the resistance of the front wheels 12F and the rear wheels 12R with respect to turning of the vehicle may be steered in the same phase as the front wheels 12F, contrary to the case where the shared load ratio change control is not performed.
  • FIG. 11 is a graph group for explaining a comparison between the case where the shared load ratio change control is performed and the case where it is not performed in the 2-second lane change when the vehicle speed v is 100 km / h.
  • FIG. 12 is a graph group for explaining a comparison between the case where the shared load ratio change control is performed and the case where it is not performed in the 2-second lane change when the vehicle speed v is 10 km / h.
  • Each figure shows the components of the target lateral acceleration Gy * , the target yaw rate ⁇ * , the front wheel turning angle ⁇ F , the rear wheel turning angle ⁇ R , and the left and right wheel drive braking force difference ⁇ F for the left wheel ( ⁇ F / It is configured by a graph for each change of 2).
  • Each graph shows that the maximum yaw rate during the lane change is the same when the vehicle speed v is 100 km / h and when the vehicle speed v is 10 km / h, and the maximum lateral acceleration Gy is the vehicle speed v is 100 km / h.
  • the result in the lane change under the condition that it is about 10 times that at 10 km / h is shown.
  • the shared load ratio Rw is about 0.74
  • the shared load ratio Rw is about 1.35.
  • the solid lines in the respective graphs of the front wheel turning angle ⁇ F , the rear wheel turning angle ⁇ R , and the left and right wheel drive braking force difference ⁇ F component ( ⁇ F / 2) for the left wheel are when the shared load ratio change control is performed.
  • the broken line represents the change when the shared load ratio change control is not performed.
  • step 1 (hereinafter, step is abbreviated as “S”)
  • step 2 the vehicle speed v is acquired
  • step 2 the operation angle ⁇ of the steering wheel 20 is acquired.
  • step 3 the vehicle speed v
  • S2 the operation angle ⁇ of the steering wheel 20 is acquired.
  • step 3 turning control is performed in S3
  • acceleration / deceleration control is performed in subsequent S4
  • shared load ratio change control is performed in further subsequent S5.
  • a turning control subroutine whose flowchart is shown in FIG. 14 is executed.
  • front wheel steering amount control is performed in S10
  • left and right wheel drive braking force difference control is performed in S20
  • rear wheel steering amount control is performed in S30.
  • the front wheel turning amount control, the left and right wheel driving braking force difference control, and the rear wheel turning amount control are respectively a front wheel turning amount control subroutine shown in a flowchart in FIG. 15, and a left and right wheel driving braking force difference shown in a flowchart in FIG.
  • the control subroutine and the rear wheel turning amount control subroutine shown in the flowchart of FIG. 17 are executed. Since processing according to these subroutines has been described in detail earlier, description thereof will be omitted here.
  • the acceleration / deceleration control subroutine shown in the flowchart in FIG. 18 is executed, and in the shared load ratio change control in S5, the shared load ratio change control subroutine shown in the flowchart in FIG. 19 is executed. Since processing according to these subroutines has also been described in detail earlier, description thereof will be omitted here.
  • the ECU 130 that executes the vehicle motion control program can be considered to have a functional unit that executes the above-described controls as shown in FIG. Specifically, the ECU 130 executes the turning control unit 160 as a functional unit that executes the turning control, the acceleration / deceleration control unit 162 as a functional unit that executes the acceleration / deceleration control, and the shared load ratio change control. It can be considered that it has a shared load ratio change control unit 164 as a functional unit.
  • the turning control unit 160 includes a front wheel turning amount control unit 166 as a functional unit that executes the front wheel turning amount control, and a left and right wheel driving unit as a functional unit that executes the left and right wheel driving braking force difference control. It can be considered that the power difference control unit 168 and the rear wheel turning amount control unit 170 as a functional unit that executes the rear wheel turning amount control are included.
  • Vehicle body 12F Front wheel 12R: Rear wheel 14L: Left wheel 14R: Right wheel 20: Steering wheel (steering operation member) 44L: Left wheel spring support position adjusting device (shared load ratio changing device) 44R: Right wheel spring supporting position adjusting device (Shared load ratio changing device) 46: Suspension spring 64L: Left wheel drive device 64R: Right wheel drive device 70L: Left wheel brake device 70R: Right wheel brake device 98F: Front wheel steering device 98R: Rear wheel steering device 130: Electronic control unit (ECU) (Control Device) 164: Shared Load Ratio Change Control Unit 166: Front Wheel Steering Amount Control Unit 168: Left / Right Wheel Driving Braking Force Difference Control Unit 170: Rear Wheel Steering Amount Control Unit

Abstract

Disclosed is a system for controlling the motion of a vehicle that has a single front wheel disposed at the front section of the vehicle, a left wheel and a right wheel disposed at the left and the right of the vehicle therebehind, and a single rear wheel disposed behind the left wheel and the right wheel. The system is granted the ability to alter the ratio (left-right wheel shared load ratio (RW)) between the vehicle body load (front-back wheel shared load (WFR)) shared by the front wheel and the back wheel, and the vehicle body load (left-right wheel shared load (WLR)) shared by the left wheel and the right wheel. In a so-called vehicle having rhomboidally disposed wheels, by making the shared load ratio variable, vehicle movement characteristics corresponding to said change can be obtained.

Description

車両運動制御システムVehicle motion control system
 本発明は、車両の前方部に配置された単一の前輪と、それの後方において車両の左右に配置された左輪および右輪とを有する車両の運動を制御するシステムに関する。 The present invention relates to a system for controlling the movement of a vehicle having a single front wheel disposed at the front portion of the vehicle and a left wheel and a right wheel disposed on the left and right of the vehicle behind the front wheel.
 従来、単一の前輪と、それの後方に設けられた左輪,右輪とを有する車両において、その車両の運動を制御するシステムとして、下記特許文献1に記載されているような技術が存在する。その技術は、車両の旋回運動の制御に関するものであり、特に、車両の旋回に伴う左輪,右輪の転舵,駆動力差の制御に関するものである。また、近年では、下記特許文献2に記載されたような車両、つまり、3つの車輪に加えて左輪,右輪の後方に設けられた単一の後輪を有する車両も検討されている。 2. Description of the Related Art Conventionally, in a vehicle having a single front wheel and a left wheel and a right wheel provided behind the vehicle, there is a technique described in Patent Document 1 below as a system for controlling the movement of the vehicle. . The technology relates to the control of the turning motion of the vehicle, and more particularly to the control of the left wheel and the right wheel turning and the driving force difference accompanying the turning of the vehicle. In recent years, a vehicle as described in Patent Document 2 below, that is, a vehicle having a single rear wheel provided behind the left wheel and the right wheel in addition to the three wheels has been studied.
特開2006-130985号公報JP 2006-130985 A 中国授権公告号 CN1304237CChina authorized notice CN1304237C
 上述のような車両は、車輪の配置が、左右2つの前輪,左右2つの後輪を有する通常の車両とは異なることから、車両運動の制御において特別に配慮することが望ましい。上述のような車両(以下、「特殊車輪配置車両」という場合がある)に関する運動制御には、充分な改良の余地が残されており、何らかの改良を施すことにより、特殊車輪配置車両の実用性を向上させることが可能である。本発明は、そのような実情に鑑みてなされたものであり、特殊車輪配置車両の実用性を向上させるための車両運動制御システムを提供することを課題とする。 Since the arrangement of wheels is different from that of a normal vehicle having two left and right front wheels and two right and left rear wheels, it is desirable to give special consideration to vehicle motion control. The motion control related to the vehicle as described above (hereinafter sometimes referred to as a “special wheel arrangement vehicle”) still has room for sufficient improvement. It is possible to improve. This invention is made | formed in view of such a situation, and makes it a subject to provide the vehicle motion control system for improving the practicality of a special wheel arrangement | positioning vehicle.
 上記課題を解決するために、本発明の車両運動制御システムは、後輪をも有する上記特殊車輪配置車両(以下、「菱形車輪配置車両」という場合がある)の運動を制御するためのシステムであって、車体の前後輪分担荷重に対する左右輪分担荷重との比である分担荷重比を変更する分担荷重比変更装置を備え、その荷重分担比を制御可能に構成される。 In order to solve the above-mentioned problems, a vehicle motion control system according to the present invention is a system for controlling the motion of the above-described special wheel-arranged vehicle having a rear wheel (hereinafter, sometimes referred to as “rhombic wheel-arranged vehicle”). The vehicle includes a shared load ratio changing device that changes a shared load ratio that is a ratio of a left and right wheel shared load to a front and rear wheel shared load of the vehicle body, and is configured to be able to control the load shared ratio.
 菱形車輪配置車両において、上記分担荷重比を変更可能とすることで、その変更に応じた車両運動特性が得られることになる。それにより、直進時と旋回時との少なくとも一方において、車両の運動を適切なものとすることが可能である。 In the vehicle with rhombus wheels, by making the share load ratio changeable, vehicle motion characteristics corresponding to the change can be obtained. Thereby, it is possible to make the motion of the vehicle appropriate in at least one of when going straight and turning.
発明の態様Aspects of the Invention
 以下に、本願において特許請求が可能と認識されている発明(以下、「請求可能発明」という場合がある)の態様をいくつか例示し、それらについて説明する。各態様は請求の範囲と同様に、項に区分し、各項に番号を付し、必要に応じて他の項の番号を引用する形式で記載する。これは、あくまでも請求可能発明の理解を容易にするためであり、それらの発明を構成する構成要素の組み合わせを、以下の各項に記載されたものに限定する趣旨ではない。つまり、請求可能発明は、以下の各項に付随する記載,実施形態の記載等を参酌して解釈されるべきであり、その解釈に従う限りにおいて、各項の態様にさらに他の構成要素を付加した態様も、また、各項の態様から何某かの構成要素を削除した態様も、請求可能発明の一態様となり得るのである。 Hereinafter, some aspects of the invention that is recognized as being capable of being claimed in the present application (hereinafter sometimes referred to as “claimable invention”) will be exemplified and described. As with the claims, each aspect is divided into sections, each section is given a number, and is described in a form that cites other section numbers as necessary. This is merely for the purpose of facilitating the understanding of the claimable inventions, and is not intended to limit the combinations of the constituent elements constituting those inventions to those described in the following sections. In other words, the claimable invention should be construed in consideration of the description accompanying the following sections, the description of the embodiments, etc., and as long as the interpretation is followed, other components are added to the aspects of the respective sections. In addition, an aspect in which some constituent elements are deleted from the aspect of each item can also be an aspect of the claimable invention.
 なお、以下の(1)項および(31)項を合わせたものが請求項1に相当し、請求項1に(32)項に記載の発明特定事項を付加したものが請求項2に、請求項2に(33)項に記載の発明特定事項を付加したものが請求項3に、請求項2または請求項3に(34)項に記載の発明特定事項を付加したものが請求項4に、請求項1ないし請求項4のいずれか1つに(14)項に記載の発明特定事項を付加したものが請求項5に、請求項5に(15)項に記載の発明特定事項を付加したものが請求項6に、請求項1ないし請求項6のいずれか1つに(11)項および(12)項に記載の発明特定事項を付加したものが請求項7に、請求項7に(17)項に記載の発明特定事項を付加したものが請求項8に、請求項8に(14)項および(15)項に記載の発明特定事項を付加したものが請求項9に、請求項9に(21)項に記載の発明特定事項を付加したものが請求項10に、それぞれ相当する。 The combination of the following items (1) and (31) corresponds to claim 1, and the addition of the invention-specific matters described in claim (32) to claim 1 is claimed in claim 2. What added the invention specific matter of (33) to Claim 2 was added to Claim 3, and what added the invention specific matter of (34) to Claim 2 or Claim 3 was added to Claim 4. The invention specific matter described in (14) is added to any one of claims 1 to 4, and the invention specific matter described in (15) is added to claim 5. The invention-specific matters described in (11) and (12) are added to any one of claims 1 to 6 in claims 7 and 7, respectively. The invention-specific matters described in (17) are added to claims 8 and 8, and (14) and (15). To the claim 9 obtained by adding the subject matter according to term, an inventive specific matters according to (21) section to claim 9 to claim 10, corresponding respectively.
 (1)自身の前方部に配置された単一の前輪と、その前輪よりも後方において自身の左右にそれぞれ配置された左輪および右輪とを有する車両の運動を制御するための車両運動制御システムであって、
 前記前輪を転舵させる前輪転舵装置と、
 前記車両を駆動および制動するための力である駆制動力を前記左輪,前記右輪に対してそれぞれ付与する左輪駆制動装置および右輪駆制動装置と、
 前記車両の制御を司る制御装置と
 を備えた車両運動制御システム。
(1) A vehicle motion control system for controlling the motion of a vehicle having a single front wheel disposed in the front part of the vehicle and a left wheel and a right wheel disposed on the left and right of the front wheel behind the front wheel. Because
A front wheel steering device for steering the front wheels;
A left wheel driving braking device and a right wheel driving braking device for applying a driving braking force, which is a force for driving and braking the vehicle, to the left wheel and the right wheel, respectively;
A vehicle motion control system comprising: a control device that controls the vehicle.
 本項に記載の車両運動制御システムは、最も基本的な態様のシステムであり、本発明のシステムの前提となるシステムである。本項の態様のシステムが対象とする車両は、上述した特殊車輪配置車両であり、その車両は、上記前輪,左輪,右輪のみを有する三輪車両であってもよく、さらに、左輪,右輪の後方に配置された単一の後輪を有する車両(以下、「菱形車輪配置車両」という場合がある)であってもよい。本項のシステムにおける「前輪転舵装置」は、ステアリング操作部材に加えられる運転者の操作力によって前輪を転舵させるように構成された装置であってもよく、駆動源を有してステアリング操作部材と機械的に分離され、そのステアリング操作部材の操作に応じて、駆動源を制御しつつその駆動源の力によって前輪を転舵させるように構成されたものであってもよい。いわゆるステアバイワイヤ型の装置であってもよいのである。なお、ステアリング操作部材は、ステアリングホイールを始め、ジョイスティック,レバー等、種々の形式のものを採用可能である。 The vehicle motion control system described in this section is a system in the most basic form, and is a premise of the system of the present invention. The vehicle targeted by the system of this aspect is the above-described special wheel arrangement vehicle, and the vehicle may be a three-wheeled vehicle having only the front wheel, the left wheel, and the right wheel, and further, the left wheel and the right wheel. It may be a vehicle having a single rear wheel disposed behind the vehicle (hereinafter sometimes referred to as a “rhombic wheel disposed vehicle”). The “front wheel steering device” in the system of this section may be a device configured to steer the front wheels by the driver's operation force applied to the steering operation member, and has a drive source to operate the steering. It may be configured to be mechanically separated from the member and to steer the front wheels by the force of the drive source while controlling the drive source in accordance with the operation of the steering operation member. It may be a so-called steer-by-wire type device. Note that various types of steering operation members such as a steering wheel, a joystick, and a lever can be adopted as the steering operation member.
 本項における「駆制動力」は、車輪を駆動する力と、車輪を制動する力とを総合的若しくは一元的に取り扱うための概念である。ちなみに、車輪を駆動する力,車輪を制動する力は、それぞれ、車両を駆動する力,車両を制動する力と考えることも可能である。したがって、本項における「左輪駆制動装置」,「右輪駆制動装置」は、(a)エンジン,モータ等の駆動源とその駆動源の力を車輪の回転として伝達する伝達機構等を含んで構成される駆動装置と、(b)液圧ブレーキ装置,電気ブレーキ装置,駆動源がモータである場合におけるそのモータの起電力を利用したブレーキ装置(例えば回生ブレーキ)等の制動装置とを含んで構成される装置と考えることが可能である。なお、本項の態様における左輪駆制動装置,右輪駆制動装置は、後に説明するような互いに独立して左輪,右輪に駆制動力を付与可能なものに限られず、左輪,右輪に対して互いに等しい若しくは互いに関連した大きさの駆制動力を付与可能なものであってもよい。 “Drive / braking force” in this section is a concept for comprehensively or centrally handling the force for driving the wheel and the force for braking the wheel. Incidentally, the force for driving the wheel and the force for braking the wheel can be considered as the force for driving the vehicle and the force for braking the vehicle, respectively. Therefore, the “left wheel drive braking device” and “right wheel drive braking device” in this section include (a) a drive source such as an engine and a motor and a transmission mechanism for transmitting the force of the drive source as rotation of the wheel. And (b) a hydraulic brake device, an electric brake device, and a braking device such as a brake device (for example, a regenerative brake) that uses an electromotive force of the motor when the drive source is a motor. It can be considered as a constructed device. Note that the left wheel drive braking device and the right wheel drive braking device in the aspect of this section are not limited to those that can apply driving force to the left wheel and the right wheel independently of each other, as will be described later. On the other hand, it may be possible to apply a driving and braking force having a magnitude equal to or related to each other.
 (2)前記左輪駆制動装置および前記右輪駆制動装置が、前記左輪,前記右輪に対して互いに独立して駆制動力を付与可能に構成された(1)項に記載の車両運動制御システム。 (2) The vehicle motion control according to (1), wherein the left wheel driving braking device and the right wheel driving braking device are configured to be able to apply driving force to the left wheel and the right wheel independently of each other. system.
 本項の態様は、左輪駆制動装置および右輪駆制動装置に限定を加えた態様である。それら駆制動装置は、例えば、左輪,右輪の各々に対して専用の駆動源を有して左輪,右輪が独立して駆動されるように構成された駆動装置を含むように構成することが可能である。また、ブレーキバイワイヤ型のブレーキ装置、左輪,右輪の各々に対する専用の駆動源として配備された電磁モータの起電力を利用したブレーキ装置等、左輪,右輪が独立して制動されるように構成されたブレーキ装置を採用可能である。 This mode is a mode in which the left wheel drive braking device and the right wheel drive braking device are limited. These driving / braking devices include, for example, a driving device that has a dedicated driving source for each of the left wheel and the right wheel, and is configured so that the left wheel and the right wheel are driven independently. Is possible. In addition, the left and right wheels are braked independently, such as a brake-by-wire brake device, a brake device that uses an electromotive force of an electromagnetic motor provided as a dedicated drive source for each of the left and right wheels. It is possible to adopt a brake device.
 (3)当該車両運動制御システムが、前記左輪および前記右輪よりも後方に配置された単一の後輪をさらに有する前記車両の運動を制御するためものである(1)項または(2)項に記載の車両運動制御システム。 (3) The vehicle motion control system is for controlling the motion of the vehicle further having a single rear wheel disposed behind the left wheel and the right wheel (1) or (2) The vehicle motion control system according to Item.
 本項の態様の車両運動制御システムは、対象とする車両が上記菱形車輪配置車両とされたシステムである。その対象とする車両の後輪は、転舵される転舵輪であってもよく、転舵されない非転舵輪であってもよい。なお、本明細書において「転舵輪」とは、ステアリング操作の操作,制御等によって、任意の転舵量とすることが可能な車輪を意味する。例えば、キャスターのように自由に向きが変わる車輪は、転舵輪ではなく非転舵輪となる。もちろん、向きが固定された車輪も非転舵輪である。 The vehicle motion control system according to the aspect of this section is a system in which the target vehicle is the above rhombus wheel arrangement vehicle. The target rear wheel of the vehicle may be a steered wheel that is steered or a non-steered wheel that is not steered. In the present specification, the “steered wheel” means a wheel that can be set to an arbitrary steered amount by an operation, control, or the like of a steering operation. For example, a wheel whose direction is freely changed like a caster is not a steered wheel but a non-steered wheel. Of course, the wheel whose direction is fixed is also a non-steered wheel.
 (4)当該車両運動制御システムが、前記後輪を転舵する後輪転舵装置を備えた(3)項に記載の車両運動制御システム。 (4) The vehicle motion control system according to (3), wherein the vehicle motion control system includes a rear wheel steering device that steers the rear wheel.
 本項の態様は、後輪が転舵輪とされた態様である。本項のシステムにおける「後輪転舵装置」は、先に説明した前輪転舵装置と同様、ステアリング操作部材に加えられる運転者の操作力によって後輪を転舵させるように構成された装置であってもよく、いわゆるステアバイワイヤ型の装置であってもよい。 This mode is a mode in which the rear wheels are steered wheels. The “rear wheel steering device” in the system of this section is a device configured to steer the rear wheels by the driver's operation force applied to the steering operation member, like the front wheel steering device described above. Alternatively, a so-called steer-by-wire type device may be used.
 (5)当該車両運動制御システムが、
 前記車両の車体の重量のうちの前記前輪および前記後輪が分担する分である前後輪分担荷重に対しての、前記左輪および前記右輪が分担する分である左右輪分担荷重の比である分担荷重比を変更する分担荷重比変更装置を備えた(3)項または(4)項に記載の車両運動制御システム。
(5) The vehicle motion control system is
It is a ratio of left and right wheel shared load that is a share of the left wheel and the right wheel to a front and rear wheel share load that is a share of the front wheel and the rear wheel of the weight of the vehicle body. The vehicle motion control system according to (3) or (4), comprising a shared load ratio changing device that changes the shared load ratio.
 本項における「分担荷重比変更装置」は、具体的な構成が特に限定されるものではない。後に説明するような構成の装置とすることも可能であり、また、例えば、車体に移動可能な1以上の錘(ウエイト)を配設し、その1以上の錘を前後方向に移動させることによって分担荷重比を変更するような装置とすることも可能である。 The specific configuration of the “shared load ratio changing device” in this section is not particularly limited. An apparatus having a configuration as will be described later is also possible. For example, one or more weights (weights) that can be moved are arranged on the vehicle body, and the one or more weights are moved in the front-rear direction. It is also possible to use an apparatus that changes the shared load ratio.
 (6)当該車両が、前記前輪,前記後輪,前記左輪,前記右輪に対応してそれぞれ設けられた複数のサスペンションスプリングによって前記車体が懸架されるようにに構成されており、
 前記分担荷重比変更装置が、(a)前記前輪と前記車体との上下方向における距離および前記後輪と前記車体との上下方向における距離と、(b)前記左輪と前記車体との上下方向における距離および前記右輪と前記車体との上下方向における距離との少なくとも一方を変更する向きの力を発生させることで、前記分担荷重比を変更するように構成された(5)項に記載の車両運動制御システム。
(6) The vehicle is configured such that the vehicle body is suspended by a plurality of suspension springs provided corresponding to the front wheel, the rear wheel, the left wheel, and the right wheel,
The shared load ratio changing device includes: (a) a vertical distance between the front wheel and the vehicle body and a vertical distance between the rear wheel and the vehicle body; and (b) a vertical distance between the left wheel and the vehicle body. The vehicle according to (5), configured to change the shared load ratio by generating a force in a direction to change at least one of a distance and a distance in a vertical direction between the right wheel and the vehicle body. Motion control system.
 本項の態様は、分担荷重比変更装置の構成に関する限定を加えた態様である。本項における分担荷重比変更装置は、具体的には、例えば、車体を剛体として扱い、車輪と車体との上下方向における距離(以下、「車輪車体間距離」という場合がある)を増大若しくは減少させる方向の力(以下、「車輪車体接近離間力」という場合がある)を、4つの車輪の各々と車体との間に適切に作用させることによって、分担荷重比を変更することが可能である。より詳しく言えば、前輪および後輪について車輪と車体との間にそれらを接近させる方向の力を作用させる、および/または、左輪および右輪について車輪と車体との間にそれらを離間させる方向の力を作用させることによって、前後輪分担荷重に対して左右輪分担荷重を大きくすることが可能である。つまり、分担荷重比を大きくすることが可能である。逆に、前輪および後輪について車輪と車体との間にそれらを離間させる方向の力を作用させる、および/または、左輪および右輪について車輪と車体との間にそれらを接近させる方向の力を作用させることよって、前後輪分担荷重に対して左右輪分担荷重を小さくすることが可能である。言い換えれば、分担荷重比を小さくすることが可能である。 The aspect of this section is an aspect in which a limitation relating to the configuration of the shared load ratio changing device is added. Specifically, the shared load ratio changing device in this section treats the vehicle body as a rigid body, and increases or decreases the distance between the wheel and the vehicle body in the vertical direction (hereinafter sometimes referred to as “wheel vehicle body distance”). It is possible to change the shared load ratio by appropriately applying a force in a direction to be applied (hereinafter, referred to as “wheel vehicle body approaching / separating force”) between each of the four wheels and the vehicle body. . More specifically, for the front and rear wheels, a force is applied between the wheel and the body, and / or for the left and right wheels, the force is separated between the wheel and the body. By applying a force, it is possible to increase the left and right wheel sharing load with respect to the front and rear wheel sharing load. That is, the shared load ratio can be increased. Conversely, for the front wheel and the rear wheel, a force in a direction to separate them is applied between the wheel and the vehicle body, and / or for the left wheel and the right wheel, a force in a direction to make them approach between the wheel and the vehicle body. By acting, it is possible to reduce the left and right wheel sharing load with respect to the front and rear wheel sharing load. In other words, the shared load ratio can be reduced.
 上記車輪車体接近離間力を発生させるための構成については特に限定されない。例えば、4つの車輪に対応して設けられた複数のサスペンションスプリングの各々と、それを支持する車体の部分との間に、それらの間隔を変更するアクチュエータを配設し、その間隔を大きくすることで、対応する車輪の分担荷重を大きくし、逆に、その間隔を小さくすることで、その車輪の分担荷重を小さくするような構成を採用することが可能である。また、例えば、いわゆる電磁式ダンパ(電磁式ショックアブソーバ)等の車輪と車体との間に力を作用させるデバイスを、4つの車輪に対応して4つ配設し、それら4つのデバイスの各々による力を、その各々に対応する車輪と車体との間に適切な比で作用させることで、上記分担荷重比を変更するような構成を採用することも可能である。 The structure for generating the wheel body approaching / separating force is not particularly limited. For example, between each of a plurality of suspension springs provided corresponding to four wheels and a portion of the vehicle body that supports the suspension springs, an actuator that changes the distance between them is arranged to increase the distance. Thus, it is possible to adopt a configuration in which the shared load of the corresponding wheel is reduced by increasing the shared load of the corresponding wheel and, conversely, by reducing the interval. Further, for example, four devices such as so-called electromagnetic dampers (electromagnetic shock absorbers) for applying a force between the wheel and the vehicle body are arranged corresponding to the four wheels, and each of the four devices is used. It is also possible to adopt a configuration in which the share load ratio is changed by applying a force between the corresponding wheel and the vehicle body at an appropriate ratio.
 (11)前記制御装置が、
 前記車両の旋回時において、前記前輪転舵装置を制御して前記前輪の転舵量を制御する前輪転舵量制御部を有する(1)項ないし(6)項のいずれか1つに記載の車両運動制御システム。
(11) The control device
The vehicle according to any one of (1) to (6), further including a front wheel turning amount control unit that controls the front wheel turning device to control a turning amount of the front wheel when the vehicle is turning. Vehicle motion control system.
 本項の態様は、前輪転舵装置が、先に説明したステアバイワイヤ型の転舵装置とされた態様である。ステアバイワイヤ型の転舵装置を採用すれば、例えば、前輪の転舵量が必ずしもステアリング操作部材の操作量のみに応じた大きさに制御されることを要せず、例えば、ステアリング操作部材の操作速度,車速等の種々のパラメータに応じた転舵量の制御が可能となる。つまり、ステアバイワイヤ型の転舵装置を採用することにより、転舵量の制御の自由度を、比較的高いものとすることが可能である。なお、「転舵量」は、車輪の転舵の程度を表す指標であり、例えば、車輪の転舵角、つまり、直進時の車輪の転向角度位置に対する転向位相角等が、転舵量の一種となる。 The mode of this section is a mode in which the front wheel steering device is the steer-by-wire type steering device described above. If a steer-by-wire type steering device is adopted, for example, the amount of steering of the front wheels does not necessarily have to be controlled to a magnitude corresponding only to the amount of operation of the steering operation member. The amount of steering can be controlled according to various parameters such as speed and vehicle speed. That is, by employing a steer-by-wire type steering device, the degree of freedom in controlling the amount of steering can be made relatively high. The “steering amount” is an index representing the degree of steering of the wheel. For example, the turning angle of the wheel, that is, the turning phase angle with respect to the turning angle position of the wheel when going straight, It becomes a kind.
 (12)前記前輪転舵量制御部が、ステアリング操作部材の操作に基づいて、前記車両の旋回において前記車両に生じるべき横加速度である目標横加速度を決定し、実際に前記車両に生じている横加速度である実横加速度が前記目標横加速度に近づくように、前記前輪の転舵量を制御するように構成された(11)項に記載の車両運動制御システム。 (12) The front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on an operation of a steering operation member, and is actually generated in the vehicle. The vehicle motion control system according to item (11), configured to control a turning amount of the front wheels so that an actual lateral acceleration that is a lateral acceleration approaches the target lateral acceleration.
 本項の態様は、前輪の転舵手法に関する限定を加えた態様である。ステアリング操作部材は、運転者が望む車両旋回の程度,様子等に応じて操作されることから、ステアリング操作部材の操作は、運転者が望む車両旋回の程度,様子等に関する意思表示となる。一方で、旋回時に車両に生じる横加速度は、車両に作用する横力を車両重量で除したものと考えることができ、旋回の程度,様子等を示す指標(以下、「車両旋回指標」という場合がある)の一種である。そのことに鑑み、本項の態様の転舵手法では、前輪の転舵量が、ステアリング操作部材の操作に基づいて直接制御されるのではなく、車両旋回指標の一種である上記横加速度に基づいて制御される。本項の態様における前輪の転舵手法は、ユニークな手法であり、そのような転舵手法によって前輪が転舵される本項の態様の車両運動制御システムはによれば、運転者の意図に沿った適切な車両の旋回運動が実現されることになる。 The aspect of this section is an aspect in which a limitation on the front wheel steering method is added. Since the steering operation member is operated in accordance with the degree and state of the vehicle turning desired by the driver, the operation of the steering operation member becomes an intention display regarding the degree and state of the vehicle turning desired by the driver. On the other hand, the lateral acceleration generated in the vehicle at the time of turning can be considered as the lateral force acting on the vehicle divided by the vehicle weight, and an index indicating the degree and state of the turning (hereinafter referred to as “vehicle turning index”) There is a kind). In view of that, in the steering method of the aspect of this section, the amount of steering of the front wheels is not directly controlled based on the operation of the steering operation member, but based on the lateral acceleration that is a kind of vehicle turning index. Controlled. The steering method of the front wheels in the aspect of this section is a unique technique, and the vehicle motion control system of the aspect of this section in which the front wheels are steered by such a steering technique is based on the driver's intention. A suitable turning motion of the vehicle along the road will be realized.
 本項の態様における前輪の転舵量の制御は、例えば、上記目標横加速度に対する上記実横加速度の偏差に基づくフィードバック制御の手法を利用することが可能である。具体的には、偏差に基づくP制御,PI制御,PID制御といった制御によって実現することが可能である。なお、目標横加速度の決定方法は、特に限定されない。例えば、後に説明する方法、つまり、ステアリング操作部材の操作量に応じた大きさとなるように決定するような方法を採用することができ、また、例えば、ステアリング操作部材の操作速度,車両の走行速度(以下、「車速」という場合がある)等、種々のパラメータに基づく方法を広く採用することが可能である。 For the control of the steering amount of the front wheels in the aspect of this section, for example, a feedback control method based on the deviation of the actual lateral acceleration with respect to the target lateral acceleration can be used. Specifically, it can be realized by control such as P control based on deviation, PI control, PID control. The method for determining the target lateral acceleration is not particularly limited. For example, a method described later, that is, a method of determining the size according to the operation amount of the steering operation member can be adopted, and for example, the operation speed of the steering operation member, the traveling speed of the vehicle A method based on various parameters such as “hereinafter referred to as“ vehicle speed ”in some cases) can be widely adopted.
 ちなみに、上記横加速度の発生の根拠となる上記横力は、車輪において車両に作用する力である。そのため、その横力が車両に作用した場合、その反対方向の慣性力が車体に作用することになる。このことに鑑み、実横加速度を検出する場合には、車体に設けられた横加速度センサを利用して、それの検出値に基づいて検出すればよい。 Incidentally, the lateral force that is the basis for the occurrence of the lateral acceleration is a force acting on the vehicle at the wheel. Therefore, when the lateral force acts on the vehicle, the inertia force in the opposite direction acts on the vehicle body. In view of this, when detecting the actual lateral acceleration, a lateral acceleration sensor provided on the vehicle body may be used to detect the actual lateral acceleration based on the detected value.
 (13)前記前輪転舵量制御部が、前記目標横加速度を、前記ステアリング操作部材の操作量に応じた大きさに決定するように構成された(12)項に記載の車両運動制御システム。 (13) The vehicle motion control system according to (12), wherein the front wheel turning amount control unit is configured to determine the target lateral acceleration to a size according to an operation amount of the steering operation member.
 本項の態様は、目標横加速度の決定方法に関しての限定を加えた態様である。本項の態様によれば、運転者が望む程度の車両旋回運動が適切に実現されることになる。ちなみに、本項の態様の決定方法によれば、ステアリング操作部材の操作量が同じ場合であっても、概して、車速が高いときには前輪の転舵量は小さく、車速が低いときには前輪の転舵量は大きくなる。 The mode in this section is a mode in which a limitation on the method for determining the target lateral acceleration is added. According to the aspect of this section, the vehicle turning motion as desired by the driver is appropriately realized. By the way, according to the determination method of this aspect, even when the operation amount of the steering operation member is the same, the front wheel turning amount is generally small when the vehicle speed is high, and the front wheel turning amount is low when the vehicle speed is low. Becomes bigger.
 (14)前記左輪駆制動装置および前記右輪駆制動装置が、前記左輪,前記右輪に対して互いに独立して前記駆制動力を付与可能に構成されており、
 前記制御装置が、
 前記車両の旋回時において、前記左輪駆制動装置および前記右輪駆制動装置を制御して前記左輪の駆制動力と前記右輪の駆制動力との差である左右輪駆制動力差を制御する左右輪駆制動力差制御部を有する(1)項ないし(14)項のいずれか1つに記載の車両運動制御システム。
(14) The left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
The control device is
When the vehicle turns, the left wheel drive braking device and the right wheel drive braking device are controlled to control a left and right wheel drive braking force difference that is a difference between the left wheel drive braking force and the right wheel drive braking force. The vehicle motion control system according to any one of items (1) to (14), further including a left / right wheel drive braking force difference control unit.
 本項の態様は、左輪の駆制動力と右輪の駆制動力とに差をつけることによって、車両の運動を制御するように構成された態様である。例えば、左輪,右輪のうちの旋回外輪(旋回中心から遠い方の車輪)となるものの駆制動力と、旋回内輪(旋回中心に近い方の車輪)の駆制動力とに差をつけることによっても、車両の向きを変更することができる。例えば、車両旋回における車両のヨーレートを、駆制動力差によって制御することが可能なのである。本項の態様は、そのことに鑑み、上記駆制動力差を制御することで、車両の旋回運動を制御する態様である。本項の態様によれば、良好な特性の車両旋回運動を実現することが可能になる。なお、本項の態様は、上述した前輪転舵量制御部に関する態様と組み合わせることで、より良好な特性の車両旋回運動が実現される。ちなみに、「駆制動力差」は、上述した駆動装置による左右の車輪の駆動力の差であってもよく、上述した制動装置による左右の車輪の制動力の差であってもよい。言い換えれば、車両が加速中若しくは車速が維持される場合には、主に駆動力差となり、車両が減速中には、主に、制動力差となる。 The aspect of this section is an aspect configured to control the movement of the vehicle by making a difference between the driving force of the left wheel and the driving force of the right wheel. For example, by making a difference between the driving and braking force of the left wheel and the right wheel that are turning outer wheels (wheels farther from the turning center) and the driving force of the turning inner wheel (wheels closer to the turning center) Can also change the orientation of the vehicle. For example, the yaw rate of the vehicle during vehicle turning can be controlled by the difference in driving force. In view of this, the aspect of this section is an aspect in which the turning motion of the vehicle is controlled by controlling the driving / braking force difference. According to the aspect of this section, it is possible to realize a vehicle turning motion with good characteristics. In addition, the aspect of this term is combined with the aspect regarding the front wheel turning amount control unit described above, thereby realizing a vehicle turning motion with better characteristics. Incidentally, the “driving braking force difference” may be a difference in driving force between the left and right wheels by the above-described driving device, or may be a difference in braking force between the left and right wheels by the above-described braking device. In other words, when the vehicle is accelerating or when the vehicle speed is maintained, the difference is mainly the driving force, and when the vehicle is decelerating, the difference is mainly the braking force.
 (15)前記左右輪駆制動力差制御部が
 ステアリング操作部材の操作に基づいて、前記車両の旋回において実現されるべきヨーレートである目標ヨーレートを決定し、実際に前記車両に生じているヨーレートである実ヨーレートが前記目標ヨーレートに近づくように、前記左右輪駆制動力差を制御するように構成された(14)項に記載の車両運動制御システム。
(15) The left and right wheel driving braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on an operation of a steering operation member, and uses a yaw rate actually generated in the vehicle. The vehicle motion control system according to item (14), configured to control the left and right wheel drive braking force difference so that a certain actual yaw rate approaches the target yaw rate.
 本項の態様は、上記駆制動力差の制御手法に関する限定を加えた態様である。先に説明したように、ステアリング操作部材の操作は、運転者が望む車両旋回の程度,様子等に関する意思表示となる。一方、車両旋回時における車両のヨーレートも、先に説明した車両旋回指標の一種である。そのことに鑑み、本項の態様では、上記駆制動力差が、ステアリング操作部材の操作に基づいて直接制御されるのではなく、車両旋回指標の一種である上記ヨーレートに基づいて制御される。本項の態様における駆制動力差の制御手法は、ユニークな手法であり、そのような制御手法によって駆制動力差が制御される本項の態様の車両運動制御システムによれば、運転者の意図に沿った適切な車両旋回が実現されることになる。 The aspect of this section is an aspect in which a limitation relating to the control method of the driving / braking force difference is added. As described above, the operation of the steering operation member serves as an intention display regarding the degree and state of the vehicle turning desired by the driver. On the other hand, the yaw rate of the vehicle at the time of vehicle turning is also a kind of vehicle turning index described above. In view of this, in the aspect of this section, the driving / braking force difference is not directly controlled based on the operation of the steering operation member, but is controlled based on the yaw rate, which is a kind of vehicle turning index. The control method of the driving / braking force difference in the aspect of this section is a unique technique, and according to the vehicle motion control system of the aspect of this section in which the driving / braking force difference is controlled by such a control method, the driver's An appropriate vehicle turn according to the intention is realized.
 なお、本項の態様における駆制動力差の制御は、上述の前輪転舵量の制御と同様、例えば、上記目標ヨーレートに対する上記実ヨーレートの偏差に基づくフィードバック制御の手法を利用することが可能である。具体的には、偏差に基づくP制御,PI制御,PID制御といった制御によって実現することが可能である。ちなみに、実ヨーレートは、車体に設けられたヨーレートセンサを利用して検出することが可能である。なお、目標ヨーレートの決定方法は、特に限定されない。例えば、後に説明する方法、つまり、ステアリング操作部材の操作量を車速で除したものに応じた大きさとなるように決定するような方法を採用することができ、また、例えば、ステアリング操作部材の操作量,ステアリング操作部材の操作速度,車速等、種々のパラメータに基づく方法を広く採用することが可能である。 The control of the driving / braking force difference in the aspect of this section can use, for example, a feedback control method based on the deviation of the actual yaw rate with respect to the target yaw rate, similarly to the control of the front wheel turning amount described above. is there. Specifically, it can be realized by control such as P control based on deviation, PI control, PID control. Incidentally, the actual yaw rate can be detected by using a yaw rate sensor provided on the vehicle body. The method for determining the target yaw rate is not particularly limited. For example, a method described later, that is, a method of determining a size corresponding to the operation amount of the steering operation member divided by the vehicle speed can be adopted, and for example, the operation of the steering operation member can be adopted. A method based on various parameters such as the amount, the operation speed of the steering operation member, and the vehicle speed can be widely adopted.
 また、本項の態様は、上述した横加速度に基づく前輪転舵量の制御と組み合わせることが望ましい。横加速度に基づく前輪転舵量とヨーレートに基づく左右輪の駆制動力差とを組み合わせることで、目標横加速度の変化に対する追従性(横加速度についての応答性)、目標ヨーレートの変化に対する追従性(ヨーレートについての応答性)の両方ともが良好となる。つまり、それら2つの制御の一方が、他方の制御をアシストするような働きをすることになると考えられる。ちなみに、2つの制御の組み合わせの効果は、車速が高い場合に、車速が低い場合に比較して高く、その意味において、少なくとも車速が高い場合に2つの制御を組み合わせて実行することが特に望ましい。 Also, it is desirable to combine the aspect of this section with the control of the front wheel turning amount based on the lateral acceleration described above. By combining the front wheel turning amount based on the lateral acceleration and the driving force difference between the left and right wheels based on the yaw rate, the followability to the change in the target lateral acceleration (responsiveness to the lateral acceleration), the followability to the change in the target yaw rate ( Both responsiveness with respect to yaw rate are good. That is, it is considered that one of these two controls functions to assist the other control. Incidentally, the effect of the combination of the two controls is higher when the vehicle speed is high than when the vehicle speed is low. In this sense, it is particularly desirable to execute the combination of the two controls at least when the vehicle speed is high.
 (16)前記左右輪駆制動力差制御部が、前記目標ヨーレートを、前記ステアリング操作部材の操作量を前記車両の走行速度で除したものに応じた大きさに決定するように構成された(15)項に記載の車両運動制御システム。 (16) The left and right wheel drive braking force difference control unit is configured to determine the target yaw rate to a size according to the operation amount of the steering operation member divided by the traveling speed of the vehicle ( The vehicle motion control system according to item 15).
 本項の態様は、目標ヨーレートの決定方法に関しての限定を加えた態様である。本項の態様によれば、運転者が望む様子の車両旋回が適切に実現されることになる。ちなみに、本項の態様の決定方法によれば、ステアリング操作部材の操作量が同じ場合であっても、概して、車速が高いときには車両のヨーレートが大きくなり、車速が低いときには車両のヨーレートは小さくなる。 The aspect of this section is an aspect in which a limitation relating to the target yaw rate determination method is added. According to the aspect of this section, the vehicle turning as desired by the driver is appropriately realized. By the way, according to the determination method of this aspect, even when the operation amount of the steering operation member is the same, the vehicle yaw rate generally increases when the vehicle speed is high, and the vehicle yaw rate decreases when the vehicle speed is low. .
 (17)当該車両運動制御システムが、
 前記左輪および前記右輪よりも後方に配置された単一の後輪をさらに有する前記車両の運動を制御するものであり、かつ、その後輪を転舵する後輪転舵装置を備え、
 前記制御装置が、
 前記車両の旋回時において、その後輪転舵装置を制御して前記後輪の転舵量を制御する後輪転舵量制御部を有する(11)項ないし(16)項のいずれか1つに記載の車両運動制御システム。
(17) The vehicle motion control system is
The vehicle further has a single rear wheel disposed behind the left wheel and the right wheel, and controls the movement of the vehicle, and includes a rear wheel steering device that steers the rear wheel,
The control device is
The vehicle according to any one of (11) to (16), further including a rear wheel turning amount control unit that controls a rear wheel turning device to control a turning amount of the rear wheel when the vehicle turns. Vehicle motion control system.
 本項の態様は、運動の制御の対象となる車両が上記菱形車輪配置車両である場合において、後輪転舵装置が、先に説明したステアバイワイヤ型の転舵装置とされた態様である。後輪の転舵の制御のためにステアバイワイヤ型の転舵装置を採用すれば、例えば、菱形車輪配置車両の旋回特性を、より良好なものとすることが可能となる。前輪の場合と同様、後輪の転舵量が必ずしもステアリング操作部材の操作量に応じた大きさに制御されることを要せず、転舵量の制御の自由度を、比較的高いものとすることが可能である。 The aspect of this section is an aspect in which the rear-wheel steering device is the steer-by-wire type steering device described above when the vehicle to be subjected to motion control is the rhombus-wheel-arranged vehicle. If a steer-by-wire type steering device is used to control the steering of the rear wheels, for example, the turning characteristics of the vehicle with rhombus wheels can be improved. As in the case of the front wheels, the amount of steering of the rear wheels does not necessarily have to be controlled to a magnitude corresponding to the amount of operation of the steering operation member, and the degree of freedom in controlling the amount of steering is relatively high. Is possible.
 前輪の転舵方向に対する後輪の転舵方向に関し、それらが同じ方向である場合に、後輪が前輪と同相に転舵されていると言い、それらが互いに逆の方向である場合に、後輪が前輪と逆相に転舵されていると言うこととする。このような言い方に従えば、本項の態様では、後輪が前輪に対して同相に転舵されてもよく、逆相に転舵されてもいい。一例をあげれば、車速に応じていずれに転舵されるかが決まるように、後輪の転舵を制御することも可能である。より具体的に言えば、車速が高い場合には、車両の走行安定性等に鑑み、後輪を前輪に対して同相に転舵させ、車速が低い場合には、車両の転向性能(車両の向きの変え易さについての性能)の向上等に鑑み、後輪を前輪に対して逆相に転舵させるような制御を行うことも可能である。ちなみに、後輪を前輪に対して同相に転舵させる場合には、車両は、自身に生じる横加速度が比較的大きくかつ自身のヨーレートが比較的小さな旋回運動を行い、逆に、後輪を前輪に対して逆相に転舵させる場合には、車両は、自身に生じる横加速度が比較的小さくかつ自身のヨーレートが比較的大きな旋回運動を行うことになる。 Regarding the steering direction of the rear wheels relative to the steering direction of the front wheels, if they are in the same direction, it is said that the rear wheels are steered in phase with the front wheels, and if they are in opposite directions, the rear Let's say that the wheels are steered in the opposite phase to the front wheels. According to such a way of speaking, in the aspect of this section, the rear wheel may be steered in the same phase with respect to the front wheel, or may be steered in the opposite phase. For example, it is possible to control the rear wheel steering so that it is determined in accordance with the vehicle speed. More specifically, when the vehicle speed is high, the rear wheels are steered in phase with respect to the front wheels in consideration of the running stability of the vehicle, and when the vehicle speed is low, the turning performance of the vehicle (vehicle In view of, for example, improvement in performance regarding ease of changing the direction, it is possible to perform control such that the rear wheels are steered in the opposite phase to the front wheels. By the way, when the rear wheels are steered in phase with the front wheels, the vehicle performs a turning motion with a relatively large lateral acceleration and a relatively small yaw rate. When the vehicle is steered in the opposite phase, the vehicle performs a turning motion in which the lateral acceleration generated in the vehicle is relatively small and the yaw rate is relatively large.
 (18)前記制御装置が、
 前記車両の旋回時において、前記前輪転舵装置を制御して前記前輪の転舵量を制御する前輪転舵量制御部を有し、
 その前輪転舵量制御部が、ステアリング操作部材の操作に基づいて、前記車両の旋回において前記車両に生じるべき横加速度である目標横加速度を決定し、実際に前記車両に生じている横加速度である実横加速度が前記目標横加速度に近づくように、前記前輪の転舵量を制御するように構成され、
 前記後輪転舵量制御部が、前記前輪転舵量制御部による制御によって実現される前記実横加速度の前記目標横加速度への接近がアシストされるように、前記後輪転舵装置を制御して前記後輪の転舵量を制御するように構成された(17)項に記載の車両運動制御システム。
(18) The control device
A front wheel turning amount control unit that controls the front wheel turning device to control the turning amount of the front wheel during turning of the vehicle;
The front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on the operation of the steering operation member, and the lateral acceleration actually generated in the vehicle is determined. It is configured to control the amount of steering of the front wheels so that a certain actual lateral acceleration approaches the target lateral acceleration,
The rear wheel turning amount control unit controls the rear wheel turning device so that the approach to the target lateral acceleration of the actual lateral acceleration realized by the control by the front wheel turning amount control unit is assisted. The vehicle motion control system according to item (17), which is configured to control a turning amount of the rear wheel.
 本項の態様は、先に説明した横加速度に基づく前輪転舵量の制御を採用した場合において、後輪転舵量の制御の手法を具体的に限定した態様である。本項の態様によれば、先に説明した目標横加速度の変化に対する追従性をより良好なものとすることが可能である。 The aspect of this section is an aspect in which the method of controlling the rear wheel turning amount is specifically limited when the control of the front wheel turning amount based on the lateral acceleration described above is adopted. According to the aspect of this section, it is possible to improve the followability to the change in the target lateral acceleration described above.
 (19)前記左輪駆制動装置および前記右輪駆制動装置が、前記左輪,前記右輪に対して互いに独立して前記駆制動力を付与可能に構成されており、
 前記制御装置が、
 前記車両の旋回時において、前記左輪駆制動装置および前記右輪駆制動装置を制御して前記左輪の駆制動力と前記右輪の駆制動力との差を制御する左右輪駆制動力差制御部を有し、
 その左右輪駆制動力差制御部が
 ステアリング操作部材の操作に基づいて、前記車両の旋回において実現されるべきヨーレートである目標ヨーレートを決定し、実際に前記車両に生じているヨーレートである実ヨーレートが前記目標ヨーレートに近づくように、前記左輪の駆制動力と前記右輪の駆制動力との差を制御するように構成され、
 前記後輪転舵量制御部が、前記左右輪駆制動力差制御部による制御によって実現される前記実ヨーレートの前記目標ヨーレートへの接近がアシストされるように、前記後輪の転舵量を制御するように構成された(17)項に記載の車両運動制御システム。
(19) The left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
The control device is
Left and right wheel drive braking force difference control that controls the difference between the left wheel drive braking force and the right wheel drive braking force by controlling the left wheel drive braking device and the right wheel drive braking device when the vehicle is turning. Part
The left and right wheel drive braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on the operation of the steering operation member, and an actual yaw rate that is actually generated in the vehicle Is configured to control the difference between the driving force of the left wheel and the driving force of the right wheel so as to approach the target yaw rate,
The rear wheel turning amount control unit controls the rear wheel turning amount so that the approach of the actual yaw rate to the target yaw rate, which is realized by the control by the left and right wheel drive braking force difference control unit, is assisted. The vehicle motion control system according to item (17), configured to
 本項の態様は、先に説明したヨーレートに基づく左右輪の駆制動力差の制御を採用した場合において、後輪転舵量の制御の手法を具体的に限定した態様である。本項の態様によれば、先に説明した目標ヨーレートの変化に対する追従性をより良好なものとすることが可能である。 The aspect of this section is an aspect in which the control method of the rear wheel turning amount is specifically limited when the control of the difference in driving force between the left and right wheels based on the yaw rate described above is employed. According to the aspect of this section, it is possible to improve the followability to the change of the target yaw rate described above.
 (20)前記制御装置が、
 前記車両の旋回時において、前記前輪転舵装置を制御して前記前輪の転舵量を制御する前輪転舵量制御部を有し、
 その前輪転舵量制御部が、ステアリング操作部材の操作に基づいて、前記車両の旋回において前記車両に生じるべき横加速度である目標横加速度を決定し、実際に前記車両に生じている横加速度である実横加速度が前記目標横加速度に近づくように、前記前輪の転舵量を制御するように構成され、
 前記左輪駆制動装置および前記右輪駆制動装置が、前記左輪,前記右輪に対して互いに独立して前記駆制動力を付与可能に構成されており、
 前記制御装置が、
 前記車両の旋回時において、前記左輪駆制動装置および前記右輪駆制動装置を制御して前記左輪の駆制動力と前記右輪の駆制動力との差である左右輪駆制動力差を制御する左右輪駆制動力差制御部を有し、
 その左右輪駆制動力差制御部が
 前記ステアリング操作部材の操作に基づいて、前記車両の旋回において実現されるべきヨーレートである目標ヨーレートを決定し、実際に前記車両に生じているヨーレートである実ヨーレートが前記目標ヨーレートに近づくように、前記左右輪駆制動力差を制御するように構成された(17)項に記載の車両運動制御システム。
(20) The control device
A front wheel turning amount control unit that controls the front wheel turning device to control the turning amount of the front wheel during turning of the vehicle;
The front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on the operation of the steering operation member, and the lateral acceleration actually generated in the vehicle is determined. It is configured to control the amount of steering of the front wheels so that a certain actual lateral acceleration approaches the target lateral acceleration,
The left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
The control device is
When the vehicle turns, the left wheel drive braking device and the right wheel drive braking device are controlled to control a left and right wheel drive braking force difference that is a difference between the left wheel drive braking force and the right wheel drive braking force. The left and right wheel drive braking force difference control unit
The left and right wheel drive braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on the operation of the steering operation member, and is an actual yaw rate generated in the vehicle. The vehicle motion control system according to item (17), configured to control the left and right wheel drive braking force difference so that a yaw rate approaches the target yaw rate.
 本項の態様は、先に説明した横加速度に基づく前輪転舵量の制御と、ヨーレートに基づく左右輪の駆制動力差の制御との両方を採用した態様である。 The aspect of this section is an aspect that employs both the control of the front wheel turning amount based on the lateral acceleration described above and the control of the driving force difference between the left and right wheels based on the yaw rate.
 (21)前記後輪転舵量制御部が、前記前輪転舵量制御部による制御によって実現される前記実横加速度の前記目標横加速度への接近と、前記左右輪駆制動力差制御部による制御によって実現される前記実ヨーレートの前記目標ヨーレートへの接近との少なくとも一方がアシストされるように、前記後輪の転舵量を制御するように構成された(20)項に記載の車両運動制御システム。 (21) The rear wheel turning amount control unit approaches the target lateral acceleration of the actual lateral acceleration realized by the control by the front wheel turning amount control unit, and is controlled by the left and right wheel driving braking force difference control unit. The vehicle motion control according to (20), wherein the steering amount of the rear wheel is controlled so that at least one of the actual yaw rate and the approach to the target yaw rate is assisted by system.
 本項の態様は、先に説明した横加速度に基づく前輪転舵量の制御と、ヨーレートに基づく左右輪の駆制動力差の制御との両方を採用した場合において、後輪転舵量の制御の手法を具体的に限定した態様である。本項の態様によれば、先に説明した目標横加速度の変化に対する追従性と、目標ヨーレートの変化に対する追従性との少なくとも一方をより良好なものとすることが可能である。なお、上記実横加速度の目標横加速度への接近と、上記実ヨーレートの目標ヨーレートへの接近との両方をアシストするように、後輪の転舵量を制御することにより、上記目標横加速度の変化に対する追従性と、上記目標ヨーレートの変化に対する追従性との両方を、より良好なものとすることが可能となる。 In the aspect of this section, when both the control of the front wheel turning amount based on the lateral acceleration described above and the control of the driving / braking force difference between the left and right wheels based on the yaw rate are adopted, the control of the rear wheel turning amount is controlled. This is a mode in which the method is specifically limited. According to the aspect of this section, it is possible to improve at least one of the followability to the change in the target lateral acceleration and the followability to the change in the target yaw rate described above. In addition, by controlling the turning amount of the rear wheel so as to assist both the approach of the actual lateral acceleration to the target lateral acceleration and the approach of the actual yaw rate to the target yaw rate, It is possible to improve both the following ability to change and the following ability to change the target yaw rate.
 (22)前記後輪転舵量制御部が、前記後輪の転舵量を、前記実横加速度が前記目標横加速度より小さくかつ前記実ヨーレートが前記目標ヨーレートよりも大きい場合には、前記後輪が前記前輪と同じ向きに転舵するように制御し、前記実横加速度が前記目標横加速度より大きくかつ前記実ヨーレートが前記目標ヨーレートよりも小さい場合には、前記後輪が前記前輪とは逆の向きに転舵するように制御するように構成された(20)項または(21)項に記載の車両運動制御システム。 (22) The rear wheel turning amount control unit determines the turning amount of the rear wheel when the actual lateral acceleration is smaller than the target lateral acceleration and the actual yaw rate is larger than the target yaw rate. When the actual lateral acceleration is larger than the target lateral acceleration and the actual yaw rate is smaller than the target yaw rate, the rear wheel is opposite to the front wheel. The vehicle motion control system according to item (20) or (21), wherein the vehicle motion control system is configured to control the vehicle to steer in the direction of.
 本項の態様は、上記実横加速度の目標横加速度への接近と、上記実ヨーレートの目標ヨーレートへの接近との両方をアシストするように後輪の転舵量を制御する態様の一種と考えることができる。本項の態様によれば、上記目標横加速度の変化に対する追従性と、上記目標ヨーレートの変化に対する追従性との両方を、より良好なものとすることが可能となる。 The aspect of this section is considered as a kind of aspect in which the turning amount of the rear wheel is controlled so as to assist both the approach of the actual lateral acceleration to the target lateral acceleration and the approach of the actual yaw rate to the target yaw rate. be able to. According to the aspect of this section, it is possible to improve both the followability to the change in the target lateral acceleration and the followability to the change in the target yaw rate.
 (23)前記後輪転舵量制御部が、前記車両の旋回時において前記車両に生じるべき公転求心加速度である目標公転求心加速度を決定し、実際に前記車両に生じている公転求心加速度である実公転求心加速度が前記目標公転求心加速度に近づくように、前記後輪の転舵量を制御するように構成された(17)項ないし(22)項のいずれか1つに記載の車両運動制御システム。 (23) The rear wheel turning amount control unit determines a target revolution centripetal acceleration that is a revolution centripetal acceleration that should occur in the vehicle when the vehicle turns, and is an actual revolution centripetal acceleration actually occurring in the vehicle. The vehicle motion control system according to any one of (17) to (22), wherein the turning amount of the rear wheel is controlled so that the revolution centripetal acceleration approaches the target revolution centripetal acceleration. .
 上記横加速度は、車両を中心とした座標系における横加速度であり、上記「公転求心加速度」は、路面座標系における横加速度と考えることのできるものである。言い換えれば、上記横加速度から、車速とヨーレートとの積を減じたものと考えることのできるものである。本項の態様は、この公転加速度に基づく後輪の転舵量を制御する態様である。本項の態様は、概して言えば、上記実横加速度の目標横加速度への接近と、上記実ヨーレートの目標ヨーレートへの接近との両方をアシストするように後輪の転舵量を制御する態様の一種と考えることができる。本項の態様によれば、上記目標横加速度の変化に対する追従性と、上記目標ヨーレートの変化に対する追従性との両方を、より良好なものとすることが可能となる。 The lateral acceleration is the lateral acceleration in the coordinate system centered on the vehicle, and the “revolution centripetal acceleration” can be considered as the lateral acceleration in the road surface coordinate system. In other words, it can be considered that the product of the vehicle speed and the yaw rate is subtracted from the lateral acceleration. The mode of this section is a mode of controlling the rear wheel turning amount based on this revolution acceleration. Generally speaking, the aspect of this section is an aspect of controlling the rear wheel turning amount so as to assist both the approach of the actual lateral acceleration to the target lateral acceleration and the approach of the actual yaw rate to the target yaw rate. Can be thought of as a kind of According to the aspect of this section, it is possible to improve both the followability to the change in the target lateral acceleration and the followability to the change in the target yaw rate.
 本項の態様における後輪転舵量の制御は、上述の前輪転舵量の制御,左右輪の駆制動力差の制御と同様、例えば、上記目標公転求心加速度に対する上記実公転求心加速度の偏差に基づくフィードバック制御の手法によって実現することができる。具体的には、偏差に基づくP制御,PI制御,PID制御といった制御によって実現することが可能である。ちなみに、実横加速度,実ヨーレートは、それぞれ、上述したように、車体に設けられた横加速度センサ,ヨーレートセンサを利用して検出することが可能である。また、目標公転求心加速度は、例えば、前輪転舵量の制御において目標横加速度が、左右輪の駆制動力差の制御において目標ヨーレートがそれぞれ決定されている場合には、それらに基づいて決定すればよい。なお、目標公転求心加速度に対する実公転求心加速度の偏差は、前輪転舵量の制御において目標横加速度に対する実横加速度の偏差が、および、左右輪の駆制動力差の制御において目標ヨーレートに対する実ヨーレートの偏差が、それぞれ認定されている場合には、前者から後者と車速との積を減じて決定してもよい。 The control of the rear wheel turning amount in the aspect of this section is, for example, the deviation of the actual revolution centripetal acceleration with respect to the target revolution centripetal acceleration, similarly to the control of the front wheel turning amount and the control of the driving force difference between the left and right wheels. It can be realized by the method of feedback control based on. Specifically, it can be realized by control such as P control based on deviation, PI control, PID control. Incidentally, the actual lateral acceleration and the actual yaw rate can be detected by using the lateral acceleration sensor and the yaw rate sensor provided on the vehicle body as described above. Further, the target revolution centripetal acceleration is determined based on, for example, when the target lateral acceleration is determined in the control of the front wheel turning amount and the target yaw rate is determined in the control of the driving force difference between the left and right wheels. That's fine. The deviation of the actual revolution centripetal acceleration with respect to the target revolution centripetal acceleration is the deviation of the actual lateral acceleration with respect to the target lateral acceleration in the control of the front wheel turning amount, and the actual yaw rate with respect to the target yaw rate in the control of the driving force difference between the left and right wheels. May be determined by subtracting the product of the latter and the vehicle speed from the former.
 (31)当該車両運動制御システムが、前記左輪および前記右輪よりも後方に配置された単一の後輪をさらに有する前記車両の運動を制御するものであり、かつ、その車両の車体の重量のうちの前記前輪および前記後輪が分担する分である前後輪分担荷重に対しての、前記左輪および前記右輪が分担する分である左右輪分担荷重の比である分担荷重比を変更する分担荷重比変更装置を備え、
 前記制御装置が、
 前記分担荷重比変更装置を制御することで、前記分担荷重比を制御する分担荷重比変更制御部を有する(1)項ないし(20)項のいずれか1つに記載の車両運動制御システム。
(31) The vehicle motion control system controls the motion of the vehicle further having a single rear wheel disposed behind the left wheel and the right wheel, and the weight of the vehicle body of the vehicle The load sharing ratio, which is the ratio of the left and right wheel shared load that is shared by the left wheel and the right wheel, to the front and rear wheel shared load that is shared by the front wheel and the rear wheel is changed. Equipped with a shared load ratio change device,
The control device is
The vehicle motion control system according to any one of (1) to (20), further including a shared load ratio change control unit that controls the shared load ratio by controlling the shared load ratio changing device.
 本項の態様は、先に説明した菱形車輪配置車両の運動を対象とした制御を行うための態様である。上記分担荷重比を変更することにより、その分担荷重比に応じた車両運動特性が得られることになる。具体的に言えば、例えば、左右輪分担荷重を前後輪分担荷重に対して小さくする、つまり、分担荷重比を小さくすることで、菱形車輪配置車両の直進安定性を高めることが可能であり、逆に、左右輪分担荷重を前後輪分担荷重に対して小さくする、つまり、分担荷重比を大きくすることで、菱形車輪配置車両の駆動性能を向上させることが可能となる。ちなみに、ここでいう駆動性能とは、駆動輪とされている左輪,右輪の回転によって得られる車両の推進力の大きさに関する性能のことを意味する。 The mode of this section is a mode for performing control for the motion of the rhombus wheel arrangement vehicle described above. By changing the shared load ratio, vehicle motion characteristics corresponding to the shared load ratio can be obtained. Specifically, for example, by reducing the left and right wheel shared load relative to the front and rear wheel shared load, that is, by reducing the shared load ratio, it is possible to improve the straight running stability of the rhombus wheel arrangement vehicle, Conversely, by reducing the left and right wheel shared load with respect to the front and rear wheel shared load, that is, by increasing the shared load ratio, it becomes possible to improve the driving performance of the rhombus wheel arrangement vehicle. Incidentally, the drive performance here means performance related to the magnitude of the propulsive force of the vehicle obtained by the rotation of the left and right wheels, which are drive wheels.
 旋回時の運動に関しては、概して、以下のように考えることが可能である。例えば、後輪を前輪に対して同相に転舵させるようにして行われる旋回を考えれば、そのような旋回時には、左右輪は、車両の横方向の並進運動に対して大きな抵抗となる。つまり、車両の横方向の運動成分による左右輪と路面との摩擦力(左右輪が発生させる横力と考えることもできる)は、旋回時の横加速度が小さくなるように作用する。したがって、分担荷重比を小さくすることで、左右輪の接地荷重を減少させ、菱形車輪配置車両に、比較的大きな横加速度が求められるような旋回運動を容易に行なわせることが可能となる。一方、例えば、左右輪駆制動力差を積極的に利用して車両が旋回しているような場合を考えれば、その場合には、前後輪は、車両の転向運動に対して抵抗となる。つまり、車両のヨー運動における前後輪と路面との摩擦力(左右輪が発生させる横力と考えることもできる)は、車両のヨーレートが小さくなるように作用する。したがって、分担荷重比を大きくすることで、前後輪の接地荷重を減少させ、菱形車輪配置車両に、比較的大きなヨーレートが求められるような旋回運動を容易に行なわせることが可能となる。 運動 As a general rule, it is possible to think about the movement during turning as follows. For example, considering a turn performed by turning the rear wheels in phase with respect to the front wheels, during such a turn, the left and right wheels are greatly resistant to the lateral translation of the vehicle. In other words, the frictional force between the left and right wheels and the road surface due to the lateral motion component of the vehicle (which can also be considered as a lateral force generated by the left and right wheels) acts to reduce the lateral acceleration during turning. Therefore, by reducing the shared load ratio, it is possible to reduce the ground load on the left and right wheels, and to make the vehicle with rhombus wheels easily perform a turning motion that requires a relatively large lateral acceleration. On the other hand, for example, when considering a case where the vehicle is turning by positively using the left and right wheel drive braking force difference, the front and rear wheels are resistant to the turning motion of the vehicle. That is, the frictional force between the front and rear wheels and the road surface in the yaw motion of the vehicle (which can be considered as a lateral force generated by the left and right wheels) acts so that the yaw rate of the vehicle is reduced. Therefore, by increasing the share load ratio, the ground contact load of the front and rear wheels can be reduced, and the vehicle with the rhombus wheels can be easily turned so that a relatively large yaw rate is required.
 (32)前記分担荷重比変更制御部が、前記車両の走行速度に基づいて前記分担荷重比を制御するように構成された(31)項に記載の車両運動制御システム。 (32) The vehicle motion control system according to (31), wherein the shared load ratio change control unit is configured to control the shared load ratio based on a traveling speed of the vehicle.
 本項の態様によれば、例えば、車速に応じて分担荷重比を変更することができる。一般的に、菱形車輪配置車両は、車速に応じて、求められる車両運動特性は変わる。本項の態様によれば、そのような要求に応えることのできる菱形車輪配置車両を実現することが可能となる。 According to the aspect of this section, for example, the shared load ratio can be changed according to the vehicle speed. In general, the vehicle motion characteristics required for a vehicle with rhombus wheels change depending on the vehicle speed. According to the aspect of this section, it is possible to realize a rhombus wheel-arranged vehicle that can meet such a demand.
 (33)前記分担荷重比変更制御部が、前記車両の走行速度が高い場合に、低い場合に比べて、前記分担荷重比が小さくなるように前記分担荷重比変更装置を制御するように構成された(32)項に記載の車両運動制御システム。 (33) The shared load ratio change control unit is configured to control the shared load ratio change device so that the shared load ratio is smaller when the traveling speed of the vehicle is high than when the vehicle is low. The vehicle motion control system according to item (32).
 先に説明したように、一般的に、菱形車輪配置車両は、車速が高い場合には、車両の走行安定性等に鑑み、車両に生じる横加速度が比較的大きくかつ車両のヨーレートが比較的小さな旋回運動を行うようにに制御されることが望ましい。逆に、車速が低い場合には、車両の転向性能の向上等に鑑み、車両に生じる横加速度が比較的大きくかつ車両のヨーレートが比較的小さな旋回運動を行うように制御されることが望ましい。本項の態様によれば、先に説明した理由から、車速の高い場合には、菱形車輪配置車両に、比較的大きな横加速度が求められるような旋回運動を容易に行なわせることが可能であり、逆に、車速の低い場合には、菱形車輪配置車両に、比較的大きなヨーレートが求められるような旋回運動を容易に行なわせることが可能となる。 As described above, in general, when the vehicle speed is high, a vehicle with a rhombus wheel has a relatively large lateral acceleration generated in the vehicle and a relatively small yaw rate of the vehicle in view of the running stability of the vehicle. It is desirable to be controlled to perform a swivel motion. Conversely, when the vehicle speed is low, it is desirable to control the vehicle so as to perform a turning motion in which the lateral acceleration generated in the vehicle is relatively large and the vehicle yaw rate is relatively small in view of improvement in the turning performance of the vehicle. According to the aspect of this section, for the reason described above, when the vehicle speed is high, it is possible to easily cause the vehicle with rhombus wheels to perform a turning motion that requires a relatively large lateral acceleration. On the other hand, when the vehicle speed is low, it is possible to easily cause the vehicle with rhombus wheels to perform a turning motion that requires a relatively large yaw rate.
 なお、車速に応じて分担荷重比を変更させる場合、連続的に変更することも可能であり、段階的に変更することも可能である。極端に言えば、車速に関するある閾値を挟んで、その閾値より車速が高い場合の分担荷重比が、その閾値より車速が低い場合の分担荷重比よりも小さくなるような態様も、本項の態様に含まれるのである。 In addition, when changing a shared load ratio according to a vehicle speed, it is also possible to change continuously and to change in steps. Extremely speaking, an aspect in which the shared load ratio when the vehicle speed is higher than the threshold is smaller than the shared load ratio when the vehicle speed is lower than the threshold across a certain threshold regarding the vehicle speed is also the aspect of this section It is included in.
 (34)前記分担荷重比変更制御部が、前記車両の走行速度が設定閾速度より高い場合に前記前後輪分担荷重が前記左右輪分担荷重より大きくなるように、かつ、前記車両の走行速度が前記設定閾速度より低い場合に前記前後輪分担荷重が前記左右輪分担荷重より小さくなるように前記分担荷重比変更装置を制御するように構成された(32)項または(33)項に記載の車両運動制御システム。 (34) The shared load ratio change control unit is configured such that when the vehicle traveling speed is higher than a set threshold speed, the front and rear wheel shared load is larger than the left and right wheel shared load, and the vehicle traveling speed is (32) or (33), wherein the shared load ratio changing device is configured to control the front and rear wheel shared load to be smaller than the left and right wheel shared load when lower than the set threshold speed. Vehicle motion control system.
 本項の態様は、上記前後輪分担荷重と上記左右輪分担荷重との大小関係に関する限定を加えた態様である。本項の態様は、車速が高い場合に、低い場合に比べて、分担荷重比を小さくするように制御する態様の一態様と考えることもできる。 The aspect of this section is an aspect in which a limitation relating to the magnitude relationship between the front and rear wheel shared load and the left and right wheel shared load is added. The aspect of this section can also be considered as one aspect of the aspect of controlling so as to reduce the shared load ratio when the vehicle speed is high compared to when the vehicle speed is low.
請求可能発明の実施例である車両運動制御システムが搭載された車両の概略側面図である。It is a schematic side view of the vehicle carrying the vehicle motion control system which is an Example of claimable invention. 図1に示す車両およびその車両に搭載されている車両運動制御システムの全体構成を示す概念図である。It is a conceptual diagram which shows the whole structure of the vehicle shown in FIG. 1, and the vehicle motion control system mounted in the vehicle. 図1に示す車両の左輪(右輪)およびそれに対して設けられた懸架装置,駆動装置,制動装置を示す断面図である。It is sectional drawing which shows the left wheel (right wheel) of the vehicle shown in FIG. 1, and the suspension apparatus, drive device, and braking device which were provided with respect to it. 図1に示す車両の前輪(後輪)およびそれに対して設けられた転舵装置を示す図である。It is a figure which shows the front wheel (rear wheel) of the vehicle shown in FIG. 1, and the steering apparatus provided with respect to it. 旋回制御による前輪,後輪の転舵および左右輪駆制動力差の様子を概念的に示す図である。It is a figure which shows notionally the mode of steering of the front wheel and rear wheel by turning control, and the right-and-left wheel drive braking force difference. 旋回時において車両に生じる横加速度およびヨーレートの変化を、旋回制御下での旋回の場合と、前輪の転舵のみによる旋回の場合とで、比較して説明するためのグラフである。FIG. 6 is a graph for comparing and explaining changes in lateral acceleration and yaw rate that occur in a vehicle during turning in a case of turning under turning control and in a case of turning only by turning front wheels. FIG. レーンチェンジを行った場合における横加速度およびヨーレートの変化を、旋回時制御下での旋回の場合と、前輪の転舵のみによる旋回の場合とで、比較して説明するためのグラフである。FIG. 5 is a graph for comparing and explaining changes in lateral acceleration and yaw rate when a lane change is performed in a case of turning under control during turning and in a case of turning only by turning front wheels. 分担荷重比変更制御による前後輪の分担荷重に対する左右輪の分担荷重の比の変化を示すグラフである。It is a graph which shows the change of the ratio of the shared load of the right-and-left wheel with respect to the shared load of the front and rear wheel by shared load ratio change control. 車体の荷重が前後輪と左右輪とに分担される様子を概念的に示す図である。It is a figure which shows notionally the mode that the load of a vehicle body is shared by the front-and-rear wheel and a left-right wheel. 分担荷重比を変更した場合における旋回時の車両の運動を説明するための概念図である。It is a conceptual diagram for demonstrating the motion of the vehicle at the time of a turn in the case of changing a shared load ratio. 高速でレーンチェンジを行った際の分担荷重比の変更による効果を示すグラフである。It is a graph which shows the effect by the change of the shared load ratio at the time of performing a lane change at high speed. 低速でレーンチェンジを行った際の分担荷重比の変更による効果を示すグラフである。It is a graph which shows the effect by the change of the shared load ratio at the time of performing lane change at low speed. 車両運動制御システムにおいて実行される車両運動制御プログラムのフローチャートである。It is a flowchart of the vehicle motion control program performed in a vehicle motion control system. 車両運動制御プログラムを構成する旋回制御サブルーチンのフローチャートである。It is a flowchart of the turning control subroutine which comprises a vehicle motion control program. 旋回制御サブルーチンを構成する前輪転舵量制御サブルーチンのフローチャートである。It is a flowchart of the front-wheel steering amount control subroutine which comprises a turning control subroutine. 旋回制御サブルーチンを構成する左右輪駆制動力差制御サブルーチンのフローチャートである。It is a flowchart of the left and right wheel drive braking force difference control subroutine constituting the turning control subroutine. 旋回制御サブルーチンを構成する後輪転舵量制御サブルーチンのフローチャートである。It is a flowchart of the rear-wheel steering amount control subroutine which comprises a turning control subroutine. 車両運動制御プログラムを構成する加減速制御サブルーチンのフローチャートである。It is a flowchart of the acceleration / deceleration control subroutine which comprises a vehicle motion control program. 車両運動制御プログラムを構成する分担荷重比変更制御サブルーチンのフローチャートである。It is a flowchart of the shared load ratio change control subroutine which comprises a vehicle motion control program. 車両運動制御システムの制御装置として車両に搭載された電子制御ユニットの機能部を示すブロック図である。It is a block diagram which shows the function part of the electronic control unit mounted in the vehicle as a control apparatus of a vehicle motion control system.
 以下、請求可能発明の代表的な実施形態を、実施例として、図を参照しつつ詳しく説明する。なお、請求可能発明は、下記実施例の他、前記〔発明の態様〕の項に記載された態様を始めとして、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することができる。 Hereinafter, a representative embodiment of the claimable invention will be described in detail with reference to the drawings as an example. In addition to the following examples, the claimable invention is implemented in various modes including various modifications and improvements based on the knowledge of those skilled in the art, including the mode described in the above [Mode of Invention]. can do.
 ≪車両の構成≫
 図1に、実施例の車両運動制御システムが搭載された車両を示す。本車両は、菱形車輪配置の車両であり、次世代コミュータとして期待されている。本車両は、車体10と、それの前方部に設けられた前輪12Fと、その前輪12Fの後方において車体10の左部,右部にそれぞれ設けられた左輪14L,右輪14Rと、それら左輪14L,右輪14Rの後方に設けられた後輪12Rとを有している。当該車両の平面視を示す図2から解るように、前輪12F,後輪12Rは、車幅方向における中央に配設されている。なお、以下の説明において、前輪12F,後輪12Rの区別を要しない場合には、車輪12と総称し、左輪14L,右輪14Rの区別を要しない場合には、車輪14と総称することとする。前輪12F,後輪12R,左輪14L,右輪14Rに関係する構成要素,パラメータ等についても同様とする。
≪Vehicle configuration≫
FIG. 1 shows a vehicle equipped with the vehicle motion control system of the embodiment. This vehicle is a vehicle with rhombus wheels, and is expected as a next generation commuter. The vehicle includes a vehicle body 10, a front wheel 12F provided at a front portion thereof, a left wheel 14L and a right wheel 14R provided respectively at a left portion and a right portion of the vehicle body 10 behind the front wheel 12F, and the left wheel 14L. , And a rear wheel 12R provided behind the right wheel 14R. As can be seen from FIG. 2 showing a plan view of the vehicle, the front wheel 12F and the rear wheel 12R are disposed at the center in the vehicle width direction. In the following description, when it is not necessary to distinguish between the front wheel 12F and the rear wheel 12R, it is collectively referred to as the wheel 12, and when it is not necessary to distinguish between the left wheel 14L and the right wheel 14R, it is collectively referred to as the wheel 14. To do. The same applies to the components, parameters, and the like related to the front wheel 12F, the rear wheel 12R, the left wheel 14L, and the right wheel 14R.
 本車両では、後に詳しく説明するが、前輪12F,後輪12Rが転舵輪とされており、左輪14L,右輪14Rは転舵輪とはされていない。また、左輪14L,右輪14Rが駆動輪(車両を駆動するために回転駆動される車輪)とされてはいるものの、前輪12F,後輪12Rは、駆動輪とはされていない。同様に、左輪14L,右輪14Rが制動輪(車両を制動するために回転が制動される車輪)とされてはいるものの、前輪12F,後輪12Rは、制動輪とはされていない。 In this vehicle, as will be described in detail later, the front wheel 12F and the rear wheel 12R are steered wheels, and the left wheel 14L and the right wheel 14R are not steered wheels. Although the left wheel 14L and the right wheel 14R are driving wheels (wheels that are rotationally driven to drive the vehicle), the front wheels 12F and the rear wheels 12R are not driving wheels. Similarly, although the left wheel 14L and the right wheel 14R are used as braking wheels (wheels whose rotation is braked to brake the vehicle), the front wheels 12F and the rear wheels 12R are not used as braking wheels.
 本車両には、運転者が当該車両を操作するための操作部材として、3つの操作部材が設けられている。その1つが、車両に旋回動作を行わせるためのステアリング操作部材であるステアリングホイール20であり、もう1つが、車両を加速させるためのアクセル操作部材であるアクセルペダル22,さらにもう1つが、車両を減速させるためのブレーキ操作部材であるブレーキペダル24である。ちなみに、本車両は、前進ばかりでなく後退も可能であるが、本明細書が冗長となることを避けるべく、以下の説明では、前進についてのみ説明することとする。 This vehicle is provided with three operation members as operation members for the driver to operate the vehicle. One of them is a steering wheel 20 that is a steering operation member for causing the vehicle to perform a turning operation, the other is an accelerator pedal 22 that is an accelerator operation member for accelerating the vehicle, and the other is an operation of the vehicle. It is the brake pedal 24 which is a brake operation member for decelerating. Incidentally, this vehicle can be moved not only forward but also backward, but in the following description, only forward is described in order to avoid redundancy of the present specification.
 左輪14L,右輪14Rに関して説明すれば、図3から解るように、車輪14は、ホイール本体30と、タイヤ32とから構成されている。ホイール本体30は、アクスル34に固定され、そのアクスル34は、キャリア36に回転可能に保持されている。キャリア36は、それぞれがサスペンション装置を構成するサスペンションアームであるロアアーム38,アッパアーム40によって、車体に対して揺動可能とされている。ロアアーム38には、液圧式のショックアブソーバ42の下端部が取付られている。このショックアブアブソーバ42の上端部は、ばね支持位置調整装置44を介して、車体に支持されている。このばね支持位置調整装置44は、ショックアブソーバ42の上端部と、車体の支持部との上下方向における間隔を大きくしたり、小さくしたりするためのものであり、電磁モータを有し、その電磁モータの作動を制御することによって、後に説明するサスペンションスプリング46の上端部の車体に対する支持位置(以下、「ばね支持位置」という場合がある)を調整することが可能とされている。 If the left wheel 14L and the right wheel 14R are described, the wheel 14 includes a wheel body 30 and a tire 32, as can be seen from FIG. The wheel body 30 is fixed to an axle 34, and the axle 34 is rotatably held by a carrier 36. The carrier 36 is swingable with respect to the vehicle body by a lower arm 38 and an upper arm 40 that are suspension arms constituting the suspension device. A lower end portion of a hydraulic shock absorber 42 is attached to the lower arm 38. The upper end of the shock absorber 42 is supported on the vehicle body via a spring support position adjusting device 44. The spring support position adjusting device 44 is for increasing or decreasing the distance in the vertical direction between the upper end portion of the shock absorber 42 and the support portion of the vehicle body, and includes an electromagnetic motor. By controlling the operation of the motor, it is possible to adjust the support position (hereinafter also referred to as “spring support position”) of the upper end portion of the suspension spring 46, which will be described later, with respect to the vehicle body.
 液圧式のショックアブソーバ42は、ロアチューブ48とアッパチューブ50とを有し、それらが相対移動可能とされていることで、伸縮可能とされている。ロアチューブ48には、下部リテーナ52が、アッパチューブ50には、上部リテーナ54が、それぞれ固定されており、それら下部リテーナ52,上部リテーナ54によって、サスペンションスプリング46が挟持されている。このような構成により、車輪14は、回転可能にかつ、弾性的に上下に揺動可能とされているのである。 The hydraulic shock absorber 42 has a lower tube 48 and an upper tube 50, and can be expanded and contracted by being relatively movable. A lower retainer 52 is fixed to the lower tube 48, and an upper retainer 54 is fixed to the upper tube 50, and the suspension spring 46 is sandwiched between the lower retainer 52 and the upper retainer 54. With such a configuration, the wheel 14 is rotatable and elastically swingable up and down.
 キャリア36は、アクスル34を保持するハブ部56の外方に短円筒状のコイル保持部58を有しているこのコイル保持部58の外周部には、電磁モータを構成する複数のコイル60が保持されている。一方、ホイール本体30のリム部には、それの内周面に沿って、複数の磁石62が配設されている。それら、複数のコイル60および複数の磁石62は互いに向かい合っており、それらは、ブラシレスDCモータを構成するものとなっている。つまり、車輪14は、ホイール本体30の内部に仕込まれたインホイールモータによって回転駆動され、そのインホイールモータは、当該車両における駆動装置64として機能するものとされている。なお、詳しい説明は省略するが、インホイールモータは、車輪14の回転によって発電機としても機能する。このモータが起電力によって発生させる電流を回生することで、駆動装置64は、回生ブレーキ装置としても機能するようにされているのである。 The carrier 36 has a short cylindrical coil holding portion 58 outside the hub portion 56 that holds the axle 34. A plurality of coils 60 constituting an electromagnetic motor are provided on the outer periphery of the coil holding portion 58. Is retained. On the other hand, a plurality of magnets 62 are disposed on the rim portion of the wheel body 30 along the inner peripheral surface thereof. The plurality of coils 60 and the plurality of magnets 62 face each other, and they constitute a brushless DC motor. That is, the wheel 14 is rotationally driven by an in-wheel motor charged inside the wheel body 30, and the in-wheel motor functions as a driving device 64 in the vehicle. Although not described in detail, the in-wheel motor also functions as a generator by the rotation of the wheel 14. The drive device 64 is configured to function also as a regenerative brake device by regenerating the current generated by the electromotive force of the motor.
 また、アクスル34には、ブレーキディスク66が固定されている。一方、キャリア36には、ブレーキパッドを保持するキャリパ装置68が固定されている。キャリパ装置68は、電磁モータの力によってブレーキパッドをブレーキディスク66に押し付けるようにされている。つまり、本車両では、それらブレーキディスク66,キャリパ装置68によって構成されるディスク型の制動装置70を有しているのである。 Also, a brake disc 66 is fixed to the axle 34. On the other hand, a caliper device 68 that holds a brake pad is fixed to the carrier 36. The caliper device 68 is configured to press the brake pad against the brake disc 66 by the force of the electromagnetic motor. That is, the vehicle has a disc-type braking device 70 constituted by the brake disc 66 and the caliper device 68.
 次に、前輪12F,後輪12Rに関して説明すれば、図4から解るように、車輪12は、ホイール本体80と、タイヤ82とから構成されている。ホイール本体80は、1対の液圧式のショックアブソーバ84によって、左右から挟持されている。詳しく言えば、ホイール本体80のハブ部86に設けられたアクスル88が、1対のショックアブソーバ84の各々の下端部に設けられた軸受部90によって回転可能に保持されていることで、車輪12は回転可能とされているのである。 Next, the front wheel 12F and the rear wheel 12R will be described. As can be seen from FIG. 4, the wheel 12 includes a wheel body 80 and a tire 82. The wheel body 80 is sandwiched from the left and right by a pair of hydraulic shock absorbers 84. More specifically, the axle 88 provided on the hub portion 86 of the wheel main body 80 is rotatably held by the bearing portion 90 provided at the lower end of each of the pair of shock absorbers 84, so that the wheel 12. Is made rotatable.
 1対のショックアブソーバ84の各々の上端部は、車幅方向に延びる支持板92に固定されており、支持板92は、1対のショックアブソーバ84の上端部を繋ぐものとなっている。支持板92には、軸94が固定的に付設されており、その軸94が、車体に設けられた軸受部96に回転可能に保持されている。軸94は、軸受部96から上方に延びだしており、その延びだした部分を転舵装置98が回転させることで、車輪12は、転舵される。この転舵装置98は、電磁モータを有し、その電磁モータの作動が制御されることで、車輪12を任意の転舵角で転舵するように構成されている。なお、転舵装置98は、車輪12が左右ともに90°以上転舵されないようにするためのストッパを有している。 Each upper end portion of the pair of shock absorbers 84 is fixed to a support plate 92 extending in the vehicle width direction, and the support plate 92 connects the upper end portions of the pair of shock absorbers 84. A shaft 94 is fixedly attached to the support plate 92, and the shaft 94 is rotatably held by a bearing portion 96 provided on the vehicle body. The shaft 94 extends upward from the bearing portion 96, and the wheel 12 is steered when the steered device 98 rotates the extended portion. The steering device 98 includes an electromagnetic motor, and is configured to steer the wheel 12 at an arbitrary turning angle by controlling the operation of the electromagnetic motor. The steering device 98 has a stopper for preventing the wheels 12 from being steered by 90 ° or more on both the left and right sides.
 1対のショックアブソーバ84の各々は、ロアチューブ100とアッパチューブ102とを有し、それらが相対移動可能とされていることで、伸縮可能とされている。ロアチューブ100には、下部リテーナ104が固定されており、1対のショックアブソーバ84の各々の下部リテーナ104と上記支持板92によって、1対のサスペンションスプリング108の各々が挟持されている。このような構成により、車輪12は、弾性的に上下に揺動可能とされているのである。 Each of the pair of shock absorbers 84 includes a lower tube 100 and an upper tube 102, and they can be expanded and contracted by being relatively movable. A lower retainer 104 is fixed to the lower tube 100, and each of the pair of suspension springs 108 is sandwiched between the lower retainer 104 of each of the pair of shock absorbers 84 and the support plate 92. With such a configuration, the wheel 12 is elastically swingable up and down.
 ≪車両運動制御システムの構成≫
 本車両の運動は、図2に全体構成を示す車両運動制御システムによって制御される。このシステムは、当該システムの中核をなす制御装置としての電子制御ユニット(以下、「ECU」と略す)130を備えている。この、ECU130は、コンピュータを主体とする装置であり、左輪駆動装置[DL]64L,右輪駆動装置[DR]64R,左輪制動装置[BL]70L,右輪制動装置[BR]70R,左輪ばね支持位置調整装置[HL]44L,右輪ばね支持位置調整装置[HR]44R,前輪転舵装置[SF]98F,後輪転舵装置[SR]98Rを制御することで、当該車両の運動を制御するように構成されている。ちなみに、ECU130は、それら各装置の電磁モータの作動の制御のためのドライバ回路をも有している。
≪Configuration of vehicle motion control system≫
The movement of the vehicle is controlled by a vehicle movement control system whose overall configuration is shown in FIG. This system includes an electronic control unit (hereinafter abbreviated as “ECU”) 130 as a control device that forms the core of the system. The ECU 130 is a computer-based device, such as a left wheel drive device [D L ] 64L, a right wheel drive device [D R ] 64R, a left wheel brake device [B L ] 70L, and a right wheel brake device [B R ]. 70R, left wheel spring support position adjustment device [H L ] 44L, right wheel spring support position adjustment device [H R ] 44R, front wheel steering device [S F ] 98F, rear wheel steering device [S R ] 98R Thus, the movement of the vehicle is controlled. Incidentally, the ECU 130 also has a driver circuit for controlling the operation of the electromagnetic motors of these devices.
 なお、本車両運動システムは、制御のためのパラメータを取得するデバイスとして、種々のセンサを備えている。具体的には、車両の走行速度(車速)vを検出するための車速センサ[v]132,ステアリングホイール20の操作角θを検出するためのステアリングセンサ[θ]134,アクセルペダル22の操作量aOを検出するためのアクセルセンサ[aO]136,ブレーキペダル24の操作量bOを検出するためのブレーキセンサ[bO]138,車体に生じている横加速度Gyを検出するための横加速度センサ[Gy]140,車両のヨーレートγを検出するためのヨーレートセンサ[γ]142,左輪側,右輪側それぞれの上記ばね支持位置hL,hRを検出するための左輪ばね支持位置センサ[hL]144Lおよび右輪ばね支持位置センサ[hR]144R,前輪の転舵量である前輪転舵角δFを検出するための前輪転舵角センサ[δF]146F,後輪の転舵量である後輪転舵角δRを検出するための後輪転舵角センサ[δR]146Rが、車体に設けられており、それらのセンサがECU130に繋げられている。なお、横加速度センサ[Gy]は、車体に実際に生じている横加速度Gyを検出するためのものであるが、車両に実際に生じる横加速度Gyは、互いに反対方向の横加速度Gyであるため、本車両運動システムの制御では、車体に生じている横加速度Gyを、車両に実際に生じている横加速度Gyとして扱って、車両の運動制御を行うようにされている。 In addition, this vehicle movement system is provided with various sensors as a device which acquires the parameter for control. Specifically, a vehicle speed sensor [v] 132 for detecting the traveling speed (vehicle speed) v of the vehicle, a steering sensor [θ] 134 for detecting the operation angle θ of the steering wheel 20, and the operation amount of the accelerator pedal 22 horizontal for detecting a O accelerator sensor for detecting [a O] 136, a brake sensor [b O] 138 for detecting an operation amount b O of the brake pedal 24, the lateral acceleration Gy caused in the vehicle body Acceleration sensor [Gy] 140, yaw rate sensor [γ] 142 for detecting the yaw rate γ of the vehicle, left wheel spring support position sensor for detecting the spring support positions h L and h R on the left wheel side and the right wheel side, respectively. [h L] 144L and a right wheel spring support position sensor [h R] 144R, the front wheel steering angle sensor for detecting the front wheel turning angle [delta] F is the steering amount of the front wheel [[delta] F] 1 6F, the rear wheel wheel steering angle sensor [[delta] R] 146R after for detecting wheel steering angle [delta] R after a steering amount of are provided on the vehicle body, their sensors are linked to ECU130 . The lateral acceleration sensor [Gy] is for detecting the lateral acceleration Gy actually generated in the vehicle body. However, the lateral acceleration Gy actually generated in the vehicle is the lateral acceleration Gy in the opposite direction. In the control of the vehicle motion system, the lateral acceleration Gy generated in the vehicle body is treated as the lateral acceleration Gy actually generated in the vehicle to control the vehicle motion.
 ≪車両運動制御≫
 a)加減速制御
 本車両の運動の制御のうち、車両を加速させる制御および車両を減速させる制御である加減速制御は、以下のように行われる。車両を加速させる場合には、運転者によってアクセルペダル22が操作されるため、アクセルセンサ136によって検出されたアクセルペダル22の操作量aOに基づいて、次式(1)に従って、車両に与えられるべき駆動力FD,すなわち、左右の車輪14L,14Rに与えられる駆動力FDが決定される。KDは、駆動力FDを決定するための駆動力ゲインである。
  FD=KD・aO   ・・・(1)
一方で、車両を減速させる場合には、運転者によってブレーキペダル24が操作されるため、ブレーキセンサ138によって検出されたブレーキペダル24の操作量bOに基づいて、次式(2)に従って、車両に与えられるべき制動力FB,すなわち、左右の車輪14L,14Rに与えられる制動力FBが決定される。KBは、制動力FBを決定するための制動力ゲインである。
  FB=KB・bO   ・・・(2)
なお、上記駆動力ゲインKD,制動力ゲインKBは、定数であってもよく、また、何らかのパラメータに基づいて変化するようなものであってもよい。
≪Vehicle motion control≫
a) Acceleration / deceleration control Among the motion control of the vehicle, acceleration / deceleration control which is control for accelerating the vehicle and control for decelerating the vehicle is performed as follows. When the vehicle is accelerated, the accelerator pedal 22 is operated by the driver. Therefore, the vehicle is given to the vehicle according to the following expression (1) based on the operation amount a O of the accelerator pedal 22 detected by the accelerator sensor 136. driving force F D to, i.e., the driving force F D applied left and right wheels 14L, 14R and is determined. K D is a driving force gain for determining the driving force F D.
F D = K D · a O (1)
On the other hand, when decelerating the vehicle, the brake pedal 24 is operated by a driver, based on the operation amount b O of the brake pedal 24 detected by the brake sensor 138, according to the following equation (2), the vehicle braking force F B to be applied to, i.e., left and right wheels 14L, the braking force F B applied to 14R are determined. K B is the braking force gain for determining the braking force F B.
F B = K B · b O (2)
The driving force gain K D and the braking force gain K B may be constants or may be changed based on some parameter.
 加減速制御では、上記駆動力FDと上記制動力FBとを一元化して扱うため、駆制動力Fが、次式(3)に従って決定される。
  F=FD-FB ・・・(3)
つまり、F>0の場合には、車両に駆動力Fを与えるものとし、F<0の場合には、車両に制動力Fを与えるもとされる。次いで、その駆制動力Fを左輪,右輪に分担させるべく、次式(4),(5)に従って、左輪駆制動力FL,右輪駆制動力FRが決定される。
  FL=F/2 ・・・(4)
  FR=F/2 ・・・(5)
In the acceleration / deceleration control, the driving force F D and the braking force F B are handled in a unified manner, so the driving braking force F is determined according to the following equation (3).
F = F D -F B (3)
That is, when F> 0, the driving force F is applied to the vehicle, and when F <0, the braking force F is applied to the vehicle. Then, the left wheel and the driving braking force F, so as to share the right wheel, the following equation (4), according to (5), Hidariwaka braking force F L, Migiwaka braking force F R is determined.
F L = F / 2 (4)
F R = F / 2 (5)
 上記左輪駆制動力FL,右輪駆制動力FRに基づいて、それら駆制動力FL,FRがそれぞれ得られるように、駆動装置64L,64R,制動装置70L,70Rが制御される。詳しく説明すれば、FL>0の場合には、左輪駆制動力FLに応じた大きさの電流が、バッテリから左輪駆動装置64Lの電磁モータに供給される。一方、FL<0の場合は、以下のようにされる。駆動装置64は、先に説明したように、回生ブレーキ装置としての機能を有しているため、左輪駆制動力FLが回生制動力で賄える場合には、左輪駆制動力FLに応じた大きさの電流が左輪駆動装置64Lの電磁モータによって発電されてバッテリに回生されるように、左輪駆動装置64Lが制御される。左輪駆制動力FLが回生制動力で賄えない場合には、その時点で最大の回生制動力が得られるように左輪駆動装置64Lが制御され、その最大の回生制動力によっては賄えない分に応じた制動力が得られるように、左輪制動装置70Lの電磁モータにその制動力に応じた大きさの電流が供給される。右輪14Rについては、左輪14Lと同様であるので、ここでの説明は省略する。 The left wheel driving braking force F L, based on Migiwaka braking force F R, which driving braking force F L, so F R are respectively obtained, the driving device 64L, 64R, the braking device 70L, 70R are controlled . In detail, in the case of F L> 0, the magnitude of current according to Hidariwaka braking force F L is supplied to the electromagnetic motor of the left wheel drive unit 64L from the battery. On the other hand, when F L <0, the operation is as follows. Drive device 64, as described above, since it has a function as a regenerative braking device, when the Hidariwaka braking force F L is covered by our regenerative braking force corresponding to Hidariwaka braking force F L The left wheel drive device 64L is controlled such that a large current is generated by the electromagnetic motor of the left wheel drive device 64L and regenerated by the battery. If the Hidariwaka braking force F L is not be covered by the regenerative braking force, the maximum regenerative braking force when the left wheel drive unit 64L so as to obtain is controlled, not be covered by the regenerative braking force of the maximum An electric current having a magnitude corresponding to the braking force is supplied to the electromagnetic motor of the left wheel braking device 70L so that a braking force corresponding to the minute can be obtained. Since the right wheel 14R is the same as the left wheel 14L, description thereof is omitted here.
 なお、後に詳しく説明するが、上記左輪駆制動力FL,右輪駆制動力FRは、旋回制御によって必要とされる左右輪駆制動力差ΔFに基づく補正が、次式(6),(7)に従ってなされる。
  FL=FL+ΔF/2 ・・・(6)
  FR=FR-ΔF/2 ・・・(7)
したがって、車両旋回時には、駆動装置64L,64R,制動装置70L,70Rの制御は、補正後の左輪駆制動力FL,右輪駆制動力FRに基づいて行われる。
As will be described in detail later, the left wheel driving braking force F L and the right wheel driving braking force F R are corrected based on the left and right wheel driving braking force difference ΔF required by the turning control. According to (7).
F L = F L + ΔF / 2 (6)
F R = F R −ΔF / 2 (7)
Therefore, when the vehicle is turning, driving device 64L, 64R, the braking device 70L, control 70R is driving the left wheel of the corrected braking force F L, it is performed based on Migiwaka braking force F R.
 b)旋回制御
 本車両運動制御では、車両の旋回時において、前輪12Fの転舵角である前輪転舵角δF、後輪12Rの転舵角である後輪転舵角δRのそれぞれの目標が決定されて、前輪転舵量制御,後輪転舵量制御がなされ、左輪14L,右輪14Rの各々に与えられるべき駆制動力FL,右輪駆制動力FRの差ΔFが決定されて、左右輪駆制動力差制御がなされる。なお、旋回制御は、ステアリングホイール20の操作角θが0である場合は、車両を直進させるための制御となる。
b) Turning Control In this vehicle motion control, when the vehicle turns, the respective target of the front wheel turning angle δ F that is the turning angle of the front wheel 12F and the rear wheel turning angle δ R that is the turning angle of the rear wheel 12R. There is determined, front wheel steering amount control, the rear-wheel steering amount control is performed, the left wheel 14L, driving the braking force to be applied to each of the right wheel 14R F L, the difference ΔF of Migiwaka braking force F R is determined Thus, left and right wheel drive braking force difference control is performed. The turning control is a control for causing the vehicle to go straight when the operation angle θ of the steering wheel 20 is zero.
 i)前輪転舵量制御
 前輪12Fの転舵角δFの制御は、ステアリングホイール20の操作量である操作角θに基づいて行われる。まず、ステアリングセンサ134によって検出されている操作角θに基づいて、次式(8)に従って、車両旋回において車両に生じるべき横加速度Gyである目標横加速度Gy*が決定される。つまり、目標横加速度Gy*が上記操作角θに応じた大きさに決定される。ちなみに、KGは、目標横加速度Gy*を決定するための横加速度ゲインであり、定数であってもよく、何らかのパラメータによって値が変化するようなものであってもよい。
  Gy*=KG・θ ・・・(8)
車両に実際に生じている実際の横加速度(実横加速度)Gyは、横加速度センサ140の検出値から取得されており、上記目標横加速度Gy*に対する実横加速度Gyの偏差である横加速度偏差ΔGyが、次式(9)に従って認定される。
  ΔGy=Gy*-Gy ・・・(9)
i) Front Wheel Turning Amount Control The turning angle δ F of the front wheel 12F is controlled based on the operation angle θ that is the amount of operation of the steering wheel 20. First, based on the operation angle θ detected by the steering sensor 134, a target lateral acceleration Gy *, which is a lateral acceleration Gy to be generated in the vehicle during vehicle turning, is determined according to the following equation (8). That is, the target lateral acceleration Gy * is determined to have a magnitude corresponding to the operation angle θ. Incidentally, K G is a lateral acceleration gain for determining the target lateral acceleration Gy *, may be constant, may be such a value by some parameters change.
Gy * = K G · θ (8)
The actual lateral acceleration (actual lateral acceleration) Gy actually generated in the vehicle is acquired from the detection value of the lateral acceleration sensor 140, and the lateral acceleration deviation which is the deviation of the actual lateral acceleration Gy from the target lateral acceleration Gy * . ΔGy is certified according to the following equation (9).
ΔGy = Gy * −Gy (9)
 そして、上記横加速度偏差ΔGyに基づくフィードバック制御則に従って、前輪転舵角δFの目標となる目標前輪転舵角δF *が決定される。詳しく言えば、PID制御則に基づく次式(10)に従って、目標前輪転舵角δF *が決定される。
Figure JPOXMLDOC01-appb-M000001
上記式(10)の右辺第1項,第2項,第3項は、それぞれ、比例項(P項),積分項(I項),微分項(D項)であり、PF,IF,DFは、目標前輪転舵角δF *を決定するための比例ゲイン,積分ゲイン,微分ゲインである。なお、それらゲインPF,IF,DFは、いずれも、定数であってもよく、何らかのパラメータによって値が変化するようなものであってもよい。目標前輪転舵角δF *の決定後、前輪転舵角センサ146Fによって検出されている実際の前輪転舵角δFが、その目標前輪転舵角δF *となるように、前輪転舵装置98Fの有する電磁モータへの供給電流量が決定され、その電流量の電流がその電磁モータに供給される。なお、上記制御方法に代えて、上記式(10)によって、直接、上記電磁モータへの供給電流量を決定し、その電流量の電流が、電磁モータに供給されるような制御を行うようにしてもよい。
Then, according to the feedback control law based on the lateral acceleration deviation Delta] Gy, the target front-wheel steering angle as a target front wheel steering angle [delta] F [delta] F * is determined. Specifically, the target front wheel turning angle δ F * is determined according to the following equation (10) based on the PID control law.
Figure JPOXMLDOC01-appb-M000001
The first term, the second term, and the third term on the right side of the equation (10) are a proportional term (P term), an integral term (I term), and a differential term (D term), respectively, and P F , I F , D F are a proportional gain, an integral gain, and a differential gain for determining the target front wheel turning angle δ F * . Note that these gains P F , I F , and D F may all be constants, or values that change depending on some parameters. After determining the target front wheel turning angle δ F * , the front wheel turning is performed such that the actual front wheel turning angle δ F detected by the front wheel turning angle sensor 146F becomes the target front wheel turning angle δ F *. The amount of current supplied to the electromagnetic motor included in the device 98F is determined, and the current corresponding to the amount of current is supplied to the electromagnetic motor. Instead of the control method, the amount of current supplied to the electromagnetic motor is directly determined by the above equation (10), and control is performed so that the current amount of current is supplied to the electromagnetic motor. May be.
 ii)左右輪駆制動力差制御
 左輪14Lの駆制動力FLと右輪14Rの駆制動力FRに駆制動力差ΔFをつける制御は、ステアリングホイール20の操作量である操作角θと、車両が走行している速度vとに基づいて行われる。まず、ステアリングセンサ134によって検出されている操作角θと、車速センサ132によって検出されている車速vとに基づいて、次式(11)に従って、車両旋回において実現されるべきヨーレートγである目標ヨーレートγ*が決定される。つまり、目標ヨーレートγ*が上記操作角θを車速vで除したものに応じた大きさに決定される。ちなみに、Kγは、目標ヨーレートγ*を決定するためのヨーレートゲインであり、定数であってもよく、何らかのパラメータによって値が変化するようなものであってもよい。
  γ*=Kγ・θ・v ・・・(11)
実際の車両のヨーレート(実ヨーレート)γは、ヨーレートセンサ142の検出値から取得されており。上記目標ヨーレートγ*に対する実ヨーレートγの偏差であるヨーレート偏差Δγが、次式(12)に従って認定される。
  Δγ=γ*-γ ・・・(12)
ii) control to give the driving braking force F L and a right wheel 14R of driving braking force F R driving the braking force difference ΔF between the left and right wheels driving the braking force difference control the left wheel 14L, the operation angle θ and an operation amount of the steering wheel 20 , Based on the speed v at which the vehicle is traveling. First, based on the operation angle θ detected by the steering sensor 134 and the vehicle speed v detected by the vehicle speed sensor 132, a target yaw rate that is a yaw rate γ to be realized in vehicle turning according to the following equation (11): γ * is determined. That is, the target yaw rate γ * is determined to be a magnitude corresponding to the operation angle θ divided by the vehicle speed v. Incidentally, Kγ is a yaw rate gain for determining the target yaw rate γ * , and may be a constant or a value that changes depending on some parameter.
γ * = Kγ · θ · v (11)
The actual vehicle yaw rate (actual yaw rate) γ is obtained from the detection value of the yaw rate sensor 142. The yaw rate deviation Δγ, which is the deviation of the actual yaw rate γ from the target yaw rate γ * , is recognized according to the following equation (12).
Δγ = γ * −γ (12)
 そして、上記ヨーレート偏差Δγに基づくフィードバック制御則に従って、実現されるべき左右輪駆制動力差ΔFが決定される。詳しく言えば、PID制御則に基づく次式(13)に従って、適切な左右輪駆制動力差ΔFが決定される。
Figure JPOXMLDOC01-appb-M000002
上記式(13)の右辺第1項,第2項,第3項は、それぞれ、比例項(P項),積分項(I項),微分項(D項)であり、PLR,ILR,DLRは、上記左右輪駆制動力差ΔFを決定するための比例ゲイン,積分ゲイン,微分ゲインである。なお、それらゲインPLR,ILR,DLRは、いずれも、定数であってもよく、何らかのパラメータによって値が変化するようなものであってもよい。左右輪駆制動力差ΔFの決定後、その左右輪駆制動力差ΔFに基づいて、先に説明したように、上記左輪駆制動力FL,右輪駆制動力FRの補正が行われる。ちなみに、ステアリングホイール20の操作角θが0である場合、つまり、ステアリングホイールが操作されていない場合には、左右輪駆制動力差ΔFは、0に決定されることになる。
Then, the left and right wheel drive braking force difference ΔF to be realized is determined in accordance with the feedback control law based on the yaw rate deviation Δγ. Specifically, an appropriate left and right wheel drive braking force difference ΔF is determined according to the following equation (13) based on the PID control law.
Figure JPOXMLDOC01-appb-M000002
The first term, the second term, and the third term on the right side of the above equation (13) are a proportional term (P term), an integral term (I term), and a differential term (D term), and P LR and I LR , D LR are a proportional gain, an integral gain, and a differential gain for determining the left and right wheel drive braking force difference ΔF. Note that these gains P LR , I LR , and D LR may all be constants, or values that change depending on some parameters. After the left and right wheel drive braking force difference ΔF is determined, the left wheel drive braking force F L and the right wheel drive braking force F R are corrected based on the left and right wheel drive braking force difference ΔF as described above. . Incidentally, when the operation angle θ of the steering wheel 20 is 0, that is, when the steering wheel is not operated, the left and right wheel drive braking force difference ΔF is determined to be 0.
 iii)後輪転舵量制御
 後輪12Rの転舵角δRの制御は、前輪転舵量制御において認定された横加速度偏差ΔGyと、左右輪駆制動力差制御において認定されたヨーレート偏差Δγに基づいて行われる。まず、それら横加速度偏差ΔGy,ヨーレート偏差Δγに基づいて、次式(14)に従って、公転求心加速度偏差ΔGoが決定される。
  ΔGo=ΔGy-v・Δγ ・・・(14)
この公転求心加速度偏差ΔGoは、目標公転求心加速度Go*に対する、実際の公転求心加速度(実公転求心加速度)Goの偏差と等価なものと考えることができる。ちなみに、目標公転求心加速度Go*は、次式(15)で、実公転求心加速度Goは、次式(16)で、それぞれ表わされるものである。
  Go*=Gy*-v・γ* ・・・(15)
  Go=Gy-v・γ ・・・(16)
iii) Rear wheel turning amount control The turning angle δ R of the rear wheel 12R is controlled by the lateral acceleration deviation ΔGy certified in the front wheel turning amount control and the yaw rate deviation Δγ certified in the left and right wheel drive braking force difference control. Based on. First, based on the lateral acceleration deviation ΔGy and yaw rate deviation Δγ, the revolution centripetal acceleration deviation ΔGo is determined according to the following equation (14).
ΔGo = ΔGy−v · Δγ (14)
This revolution centripetal acceleration deviation ΔGo can be considered to be equivalent to the deviation of the actual revolution centripetal acceleration (actual revolution centripetal acceleration) Go from the target revolution centripetal acceleration Go * . Incidentally, the target revolution centripetal acceleration Go * is represented by the following equation (15), and the actual revolution centripetal acceleration Go is represented by the following equation (16).
Go * = Gy * −v · γ * (15)
Go = Gy−v · γ (16)
 そして、上記公転求心加速度偏差ΔGoに基づくフィードバック制御則に従って、後輪転舵角δRの目標となる目標後輪転舵角δF *が決定される。詳しく言えば、PID制御則に基づく次式(17)に従って、後輪目標転舵角δR *が決定される。
Figure JPOXMLDOC01-appb-M000003
上記式(17)の右辺第1項,第2項,第3項は、それぞれ、比例項(P項),積分項(I項),微分項(D項)であり、PR,IR,DRは、目標後輪転舵角δF *を決定するための比例ゲイン,積分ゲイン,微分ゲインである。なお、それらゲインPR,IR,DRは、いずれも、定数であってもよく、何らかのパラメータによって値が変化するようなものであってもよい。目標後輪転舵角δR *の決定後、後輪転舵角センサ146Rによって検出されている実際の後輪転舵角δRが、その目標後輪転舵角δR *となるように、後輪転舵装置98Rの有する電磁モータへの供給電流量が決定され、その電流量の電流がその電磁モータに供給される。なお、上記制御方法に代えて、上記式(17)によって、直接、上記電磁モータへの供給電流量を決定し、その電流量の電流が、電磁モータに供給されるような制御を行うようにしてもよい。
Then, according to the feedback control law based on the revolution centripetal acceleration deviation ΔGo, the target rear wheel turning angle δ F * which is the target of the rear wheel turning angle δ R is determined. Specifically, the rear wheel target turning angle δ R * is determined according to the following equation (17) based on the PID control law.
Figure JPOXMLDOC01-appb-M000003
The first term, the second term, and the third term on the right side of the equation (17) are a proportional term (P term), an integral term (I term), and a differential term (D term), and P R , I R , D R is the proportional gain for determining the target rear wheel steering angle [delta] F *, integral gain and derivative gain. Note that these gains P R , I R , and D R may all be constants, or values that change depending on some parameters. After determining the target rear wheel turning angle δ R * , the rear wheel turning is performed such that the actual rear wheel turning angle δ R detected by the rear wheel turning angle sensor 146R becomes the target rear wheel turning angle δ R *. The amount of current supplied to the electromagnetic motor included in the device 98R is determined, and the current corresponding to the amount of current is supplied to the electromagnetic motor. Instead of the above control method, the supply current amount to the electromagnetic motor is directly determined by the above equation (17), and control is performed so that the current amount of the current is supplied to the electromagnetic motor. May be.
 iv)旋回制御による前輪,後輪の転舵および左右輪駆制動力差の様子
 図5に、上記旋回制御における前輪および後輪の転舵の様子と、左右輪駆制動力差の様子とを、概念的に示す。なお、図5は、ステアリングホイール20を反時計回りに操作した状態、つまり、左旋回時の様子であり、図5(a)は、比較的車速vが高い場合(以下、便宜的に「高速時」という場合がある)を、図5(b)は、比較的車速vが低い場合(以下、便宜的に「低速時」という場合がある)を、それぞれ示す。ちなみに、ステアリングホイール20の操作角θは、図5(a)の場合も、図5(b)の場合も、互いに同じである。なお、以下の説明において、便宜的に、転舵輪である前輪12F,後輪12Rが、上方からみて反時計回りに回転するように転舵される場合を、「左方に転舵される」といい、時計回りに回転するように転舵される場合を、「右方に転舵される」ということとする。
iv) Front wheel and rear wheel steering and left and right wheel driving braking force difference by turning control Figure 5 shows the front and rear wheel steering and left and right wheel driving braking force difference in turning control. Conceptually. FIG. 5 shows a state in which the steering wheel 20 is operated counterclockwise, that is, when turning left, and FIG. 5A shows a case where the vehicle speed v is relatively high (hereinafter, “high speed” for convenience. FIG. 5B shows a case where the vehicle speed v is relatively low (hereinafter sometimes referred to as “low speed” for convenience). Incidentally, the operation angle θ of the steering wheel 20 is the same in both the case of FIG. 5A and the case of FIG. In the following description, for convenience, the case where the front wheels 12F and the rear wheels 12R, which are steered wheels, are steered so as to rotate counterclockwise when viewed from above is “steered to the left”. It is said that the case where the vehicle is turned so as to rotate clockwise is "turned to the right".
 図から解るように、高速時においても低速時においても、当然ながら、前輪12Fは、左方に転舵される。高速時においても低速時においても、上記式(8)により、ステアリングホイール20の操作角θが同じであれば、目標横加速度Gy*は同じであるが、前輪転舵角δFが一定である場合には、一般的には、車速vが高い程、前輪12Fの転舵によって得られる横加速度Gyが大きい。したがって、図5に示すように、本旋回制御では、概して、高速時のほうが低速時に比べて前輪転舵角δFが小さくなるように、上記各種のゲインが設定されている。 As can be seen from the figure, the front wheel 12F is naturally steered to the left at both high and low speeds. If the operation angle θ of the steering wheel 20 is the same at the high speed and the low speed, the target lateral acceleration Gy * is the same but the front wheel turning angle δ F is constant according to the above equation (8). In this case, generally, the higher the vehicle speed v, the greater the lateral acceleration Gy obtained by turning the front wheel 12F. Therefore, as shown in FIG. 5, in this turning control, the various gains are generally set so that the front wheel turning angle δ F is smaller at high speed than at low speed.
 また、上記式(11)に従い、ステアリングホイール20の操作角θが一定である場合には、高速時のほうが低速時に比較して目標ヨーレートγ*が小さくされている。そのため、図5に示すように、高速時のほうが、低速時に比較して、左右輪駆制動力差ΔFは小さくなっている。ちなみに、図では、便宜的に、左右輪駆制動力差ΔFの1/2ずつが、左輪14Lを制動する方向に付与され、右輪14Rを駆動する方向に付与されるように示されている。車両が加速中であるか減速中であるかによって駆動力差となるか制動力差になるかが決まるが、加速中である場合には、左輪14Lの駆動力が右輪14Rの駆動力より小さくされ、逆に、減速中である場合には、左輪14Rの制動力が右輪14Rの制動力よりも大きくされる。このように、本旋回制御では、車速vが高いときには、比較的小さなヨーレートの旋回を、車速vが低いときには、比較的大きなヨーレートの旋回が行われるように、上記各種のゲインが設定されている。 Further, according to the above equation (11), when the operation angle θ of the steering wheel 20 is constant, the target yaw rate γ * is made smaller at high speed than at low speed. Therefore, as shown in FIG. 5, the left and right wheel drive braking force difference ΔF is smaller at high speed than at low speed. Incidentally, in the figure, for convenience, it is shown that 1/2 each of the left and right wheel drive braking force difference ΔF is given in the direction of braking the left wheel 14L and given in the direction of driving the right wheel 14R. . Depending on whether the vehicle is accelerating or decelerating, the driving force difference or the braking force difference is determined. When the vehicle is accelerating, the driving force of the left wheel 14L is greater than the driving force of the right wheel 14R. Conversely, when the vehicle is decelerating, the braking force of the left wheel 14R is made larger than the braking force of the right wheel 14R. Thus, in this turning control, the various gains are set so that turning at a relatively low yaw rate is performed when the vehicle speed v is high, and turning at a relatively large yaw rate is performed when the vehicle speed v is low. .
 後輪12Rは、ある程度成り行きで転舵されるが、簡単にいえば、上記式(14)~(17)を参照して解るように、車両に生じる公転求心加速度Goがそれの目標となる目標公転求心加速度Go*となるように、後輪転舵角δRが転舵される。具体的に言えば、実横加速度Gyが目標横加速度Gy*よりも小さくかつ実ヨーレートγが目標ヨーレートγ*よりも大きい場合には、後輪12Rは前輪12Fと同じ方向に転舵される。つまり、後輪12Rは前輪12Fと同相に転舵される。逆に、実横加速度Gyが目標横加速度Gy*よりも大きくかつ実ヨーレートγが目標ヨーレートγ*よりも小さい場合には、後輪12Rは前輪12Fは逆の方向に転舵される。つまり、後輪12Rは前輪12Fと逆相に転舵されるのである。先に説明したように、本旋回制御では、車速vが高いときには、比較的小さなヨーレートの旋回を、車速vが低いときには、比較的大きなヨーレートの旋回が行われるにされているため、図5に示すように、車速vが高いときには、概して、前輪12Fと同じ方向である左方に転舵される。上述のことを換言すれば、後輪転舵角δRは、前輪12Fの転舵による実横加速度Gyの目標横加速度Gy*への接近をアシストするように、また、左右輪駆制動力差ΔFの制御による実ヨーレートγの目標ヨーレートγ*への接近をアシストするような角度とされるのである。このような後輪12Rの転舵が行われるように、上記各種のゲインが設定されている。 The rear wheel 12R is steered to some extent, but simply speaking, as will be understood with reference to the above formulas (14) to (17), the revolution centripetal acceleration Go generated in the vehicle is the target. The rear wheel turning angle δ R is steered so that the revolution centripetal acceleration Go * is obtained. Specifically, when the actual lateral acceleration Gy is smaller than the target lateral acceleration Gy * and the actual yaw rate γ is larger than the target yaw rate γ * , the rear wheel 12R is steered in the same direction as the front wheel 12F. That is, the rear wheel 12R is steered in phase with the front wheel 12F. On the contrary, when the actual lateral acceleration Gy is larger than the target lateral acceleration Gy * and the actual yaw rate γ is smaller than the target yaw rate γ * , the rear wheel 12R is steered in the opposite direction. That is, the rear wheel 12R is steered in the opposite phase to the front wheel 12F. As described above, in this turning control, when the vehicle speed v is high, turning at a relatively small yaw rate is performed, and when the vehicle speed v is low, turning at a relatively large yaw rate is performed. As shown, when the vehicle speed v is high, the vehicle is generally steered to the left, which is the same direction as the front wheels 12F. In other words, the rear wheel turning angle δ R is set so as to assist the approach of the actual lateral acceleration Gy to the target lateral acceleration Gy * due to the turning of the front wheel 12F, and the left and right wheel drive braking force difference ΔF. The angle is set so as to assist the approach of the actual yaw rate γ to the target yaw rate γ * by the above control. The various gains are set so that the rear wheel 12R is steered.
 v)旋回制御による効果
 車両に生じる横加速度Gyが、ある目標横加速度Gy*となるような、かつ、ヨーレートγがある目標ヨーレートγ*となるような旋回を行うとする。この旋回を前輪12Fの転舵によってのみ行わせる場合と、それと同じ旋回を上記旋回制御の下で行わせる場合とで、横加速度Gyおよびヨーレートγの時間的変化を比較する。図6は、この比較の結果を示すグラフであり、図6(a)は、横加速度Gyについての比較を、図6(b)は、ヨーレートγについての比較を、それぞれ示している。いずれの図も、実線が、上記旋回制御下で旋回する場合の変化を表しており、破線が、前輪12Fの転舵のみによって旋回する場合の変化を表している。ちなみに、いずれの場合のいずれの変化も、ある操作角θまでステアリングホイール20をステップ的に操作することを前提とした変化である。
v) Effect of turning control It is assumed that turning is performed such that the lateral acceleration Gy generated in the vehicle becomes a certain target lateral acceleration Gy * and the yaw rate γ becomes a certain target yaw rate γ * . A time change of the lateral acceleration Gy and the yaw rate γ is compared between the case where the turning is performed only by turning the front wheel 12F and the case where the same turning is performed under the turning control. FIG. 6 is a graph showing the results of this comparison. FIG. 6A shows a comparison for the lateral acceleration Gy, and FIG. 6B shows a comparison for the yaw rate γ. In both figures, the solid line represents the change when turning under the turning control, and the broken line represents the change when turning only by turning the front wheel 12F. Incidentally, any change in any case is a change on the premise that the steering wheel 20 is operated stepwise to a certain operation angle θ.
 図6(a)から解るように、上記旋回制御下の旋回では、横加速度Gyが比較的短時間で目標横加速度Gy*にまで到達するのに対して、前輪12Fの転舵のみによる旋回では、横加速度Gyが目標横加速度Gy*にまで到達するのに比較的長い時間がかかる。また、図6(b)から解るように、横加速度Gyと同様に、上記旋回制御下の旋回では、ヨーレートγが比較的短時間で目標ヨーレートγ*にまで到達するのに対して、前輪12Fの転舵のみによる旋回では、ヨーレートγが目標ヨーレートγ*にまで到達するのに比較的長い時間がかかる。この結果から、上記旋回制御によれば、目標横加速度Gy*の変化に対する追従性(横加速度Gyについての応答性)、目標ヨーレートγ*の変化に対する追従性(ヨーレートγについての応答性)の両方ともが良好な旋回が実現されることになる。 As can be seen from FIG. 6A, in the turn under the turn control described above, the lateral acceleration Gy reaches the target lateral acceleration Gy * in a relatively short time, whereas in the turn only by turning the front wheel 12F. It takes a relatively long time for the lateral acceleration Gy to reach the target lateral acceleration Gy * . Further, as can be seen from FIG. 6B, in the turn under the turn control, the yaw rate γ reaches the target yaw rate γ * in a relatively short time, whereas the front wheel 12F, as in the case of the lateral acceleration Gy. In the turning by only turning, it takes a relatively long time for the yaw rate γ to reach the target yaw rate γ * . From this result, according to the turning control described above, both the followability to the change in the target lateral acceleration Gy * (responsiveness for the lateral acceleration Gy) and the followability to the change in the target yaw rate γ * (responsiveness to the yaw rate γ). In both cases, a good turn is realized.
 次に、図7を参照しつつ、ある時間内でのレーンチェンジを行った場合における、上記旋回制御下での横加速度Gyおよびヨーレートγの変化と、前輪12Fの転舵のみによる場合のそれらの変化とを比較する。ちなみに、図7は、2秒でレーンチェンジを行った場合の変化であり、図7(a)が横加速度Gyの変化を示し、図(b)がヨーレートγの変化を示している。また、図では、目標横加速度Gy*若しくは目標ヨーレートγ*の変化が一点鎖線で表わされており、上記旋回制御下での横加速度Gy若しくはヨーレートγの変化が実線で、前輪12Fの転舵のみによる場合のそれらの変化が破線で、それぞれ表わされている。 Next, referring to FIG. 7, changes in the lateral acceleration Gy and yaw rate γ under the above-described turning control when a lane change is performed within a certain time, and those in the case of only turning the front wheel 12F Compare changes. Incidentally, FIG. 7 shows changes when a lane change is performed in 2 seconds. FIG. 7A shows changes in the lateral acceleration Gy, and FIG. 7B shows changes in the yaw rate γ. In the figure, the change in the target lateral acceleration Gy * or the target yaw rate γ * is indicated by a one-dot chain line, the change in the lateral acceleration Gy or the yaw rate γ under the turning control is a solid line, and the front wheel 12F is steered. Those changes due to only are respectively represented by broken lines.
 図7(a)から解るように、レーンチェンジにおいても、上記旋回制御によれば、前輪12Fの転舵のみによって行う場合と比較して、目標横加速度Gy*の変化に対する追従性が良好であり、また、図7(b)から解るように、目標ヨーレートγ*の変化に対する追従性が良好である。 As can be seen from FIG. 7 (a), also in the lane change, according to the turning control, the followability to the change in the target lateral acceleration Gy * is better than in the case where only the front wheel 12F is steered. Further, as can be seen from FIG. 7B, the followability to the change of the target yaw rate γ * is good.
 c)分担荷重比変更制御
 以下、車体の重量のうちの前輪12Fおよび後輪12Rが分担する分を、前後輪分担荷重WFRと、左輪14Lおよび右輪14Rが分担する分を、左右輪分担荷重WLRと、それぞれ表わし、前後輪分担荷重WFRに対する左右輪分担荷重WLRの比を、分担荷重比Rw(=WLR/WFR)と表わすこととする。本車両運動制御では、その分担荷重比Rwの制御が行われる。
c) shared load ratio change control or less, the amount of the front wheel 12F and rear wheel 12R of the vehicle body weight is shared, and the front and rear wheel shared load W FR, the amount that the left wheel 14L and the right wheel 14R is shared, the left and right wheels sharing the load W LR, represent respectively, the ratio of the left and right wheels shared load W LR for the front and rear wheels shared load W FR, will be represented with the shared load ratio Rw (= W LR / W FR ). In this vehicle motion control, the shared load ratio Rw is controlled.
 i)分担荷重比変更制御の内容
 先に説明したように、左輪14L,右輪14Rの各々を支持するサスペンションスプリング46の上端部は、それぞれ、左輪ばね支持位置調整装置44L,右輪ばね支持位置調整装置44Rを介して車体に取り付けられている。車体を剛体として考えれば、例えば、それらばね支持位置調整装置44によって、サスペンションスプリング46の各々の上端部の車体に対する位置、つまり、ばね支持位置を下降させれば、サスペンションスプリング46が押し縮められ、サスペンションスプリング46のばね反力が増加するとともに、車体がある程度上昇する。それに伴って、前輪12F,後輪12Rを支持するサスペンションスプリング108は伸ばされて、それのばね反力は減少する。この結果、前後輪分担荷重WFRは減少し、左右輪分担荷重WLRが増加することで、分担荷重比Rwが大きくなる。逆に、ばね支持位置調整装置44によって、ばね支持位置を上昇させれば、左輪14L,右輪14Rを支持するサスペンションスプリング46が伸ばされるとともに、前輪12F,後輪12Rを支持するサスペンションスプリング108が縮められる。その結果、前後輪分担荷重WFRは増加し、左右輪分担荷重WLRが減少することで、分担荷重比Rwが大きくなる。本車両では、このようにして、分担荷重比Rwが変更される。
i) Contents of shared load ratio change control As described above, the upper end portions of the suspension springs 46 that support the left wheel 14L and the right wheel 14R are respectively connected to the left wheel spring support position adjusting device 44L and the right wheel spring support position. It is attached to the vehicle body via an adjusting device 44R. Considering the vehicle body as a rigid body, for example, if the spring support position adjusting device 44 lowers the position of each upper end of the suspension spring 46 relative to the vehicle body, that is, if the spring support position is lowered, the suspension spring 46 is compressed. The spring reaction force of the suspension spring 46 increases and the vehicle body rises to some extent. Accordingly, the suspension spring 108 that supports the front wheel 12F and the rear wheel 12R is extended, and the spring reaction force thereof decreases. As a result, the front / rear wheel shared load WFR decreases, and the left / right wheel shared load WLR increases, thereby increasing the shared load ratio Rw. Conversely, when the spring support position is raised by the spring support position adjusting device 44, the suspension spring 46 supporting the left wheel 14L and the right wheel 14R is extended, and the suspension spring 108 supporting the front wheel 12F and the rear wheel 12R is extended. It is shortened. As a result, the front and rear wheel shared load WFR increases and the left and right wheel shared load WLR decreases, so that the shared load ratio Rw increases. In this vehicle, the shared load ratio Rw is changed in this way.
 上記のことに鑑みれば、左輪ばね支持位置調整装置44L,右輪ばね支持位置調整装置44Rは、それぞれ、左輪14Lの車体との上下方向における距離および右輪14Rと車体との上下方向における距離を変更する向きの力を発生させることで、分担荷重比Rwを変更する分担荷重比変更装置として機能するものとなっているのである。 In view of the above, the left wheel spring support position adjustment device 44L and the right wheel spring support position adjustment device 44R respectively determine the distance in the vertical direction between the left wheel 14L and the vehicle body and the distance in the vertical direction between the right wheel 14R and the vehicle body. By generating a force in the changing direction, it functions as a shared load ratio changing device that changes the shared load ratio Rw.
 左輪14Lに設けられたサスペンションスプリング46の上端部と車体の取付部との間隔(左輪側取付間隔)hL,右輪14Rに設けられたサスペンションスプリング46の上端部と車体の取付部との間隔(右輪側取付間隔)hRは、それぞれ、左輪ばね支持位置センサ144L,右輪ばね支持位置センサ144Rによって検出されている。分担荷重比変更制御は、具体的には、それら左輪側取付間隔hL,右輪側取付間隔hRが、それぞれ、目標左輪側取付間隔hL *,目標右輪側取付間隔hR *となるように、左輪ばね支持位置調整装置44L,右輪ばね支持位置調整装置44Rの各々が有する電磁モータへの電流供給が制御される。 The distance between the upper end of the suspension spring 46 provided on the left wheel 14L and the mounting portion of the vehicle body (left wheel side mounting interval) h L , and the distance between the upper end of the suspension spring 46 provided on the right wheel 14R and the mounting portion of the vehicle body (Right wheel side mounting interval) h R is detected by the left wheel spring support position sensor 144L and the right wheel spring support position sensor 144R, respectively. Specifically, in the shared load ratio change control, the left wheel side mounting interval h L and the right wheel side mounting interval h R are respectively set as a target left wheel side mounting interval h L * and a target right wheel side mounting interval h R * . Thus, the current supply to the electromagnetic motor of each of the left wheel spring support position adjusting device 44L and the right wheel spring support position adjusting device 44R is controlled.
 本分担荷重比変更制御は、車速vに基づいて行われる。詳しく言えば、上記分担荷重比Rwが、車速vが高い場合に、低い場合に比べて小さくなるように制御される。具体的には、分担荷重比Rwが、車速vに応じて、図8に示すような変化を示すように制御される。具体的には、実現されるべき分担荷重比Rwが、車速vに応じて設定されてECU130内に格納されたマップデータを参照しつつ決定され、その決定された分担荷重比Rwに基づいて、目標左輪側取付間隔hL *,目標右輪側取付間隔hR *が、次式(18),(19)に従って決定される。
  hL *=fL(Rw) ・・・(18)
  hR *=fR(Rw) ・・・(19)
なお、fL(Rw),fR(Rw)は、分担荷重比Rをパラメータとして目標左輪側取付間隔hL *,目標右輪側取付間隔hR *を決定するための関数であり、ECU130に格納されている。そして、目標左輪側取付間隔hL *,目標右輪側取付間隔hR *が決定された後、左輪側取付間隔hL,右輪側取付間隔hRが、その決定された目標左輪側取付間隔hL *,目標右輪側取付間隔hR *となるように、左輪ばね支持位置調整装置44L,右輪ばね支持位置調整装置44Rが制御されるのである。
This shared load ratio change control is performed based on the vehicle speed v. Specifically, the shared load ratio Rw is controlled to be smaller when the vehicle speed v is high than when it is low. Specifically, the shared load ratio Rw is controlled so as to change as shown in FIG. 8 according to the vehicle speed v. Specifically, the shared load ratio Rw to be realized is determined with reference to map data set according to the vehicle speed v and stored in the ECU 130, and based on the determined shared load ratio Rw, The target left wheel side mounting interval h L * and the target right wheel side mounting interval h R * are determined according to the following equations (18) and (19).
h L * = f L (Rw) (18)
h R * = f R (Rw) (19)
Note that f L (Rw) and f R (Rw) are functions for determining the target left wheel side mounting interval h L * and the target right wheel side mounting interval h R * using the shared load ratio R as a parameter. Stored in After the target left wheel side mounting interval h L * and the target right wheel side mounting interval h R * are determined, the left wheel side mounting interval h L and the right wheel side mounting interval h R are determined as the determined target left wheel side mounting interval. The left wheel spring support position adjusting device 44L and the right wheel spring support position adjusting device 44R are controlled so that the interval h L * and the target right wheel side mounting interval h R * are obtained.
 なお、図8に示すような分担荷重比Rwの変化について、さらに詳しく言えば、分担荷重比Rwは、車速vがある閾車速(第1閾車速)v1を超えた場合に、車速vの増大に応じて連続的に減少するように制御される。また、車速vがある閾車速(第2閾車速)v2より低い場合には、前後輪分担荷重WFRが左右輪分担荷重WLRよりも小さく、車速vがその閾速v2よりも高い場合には、前後輪分担荷重WFRが左右輪分担荷重WLRよりも大きくなる。ちなみに、車速vがある閾車速v2となる場合は、前後輪分担荷重WFRと左右輪分担荷重WLRとが互いに等しく、分担荷重比Rwが1となる。 More specifically, with regard to the change in the shared load ratio Rw as shown in FIG. 8, the shared load ratio Rw is determined when the vehicle speed v exceeds a certain threshold vehicle speed (first threshold vehicle speed) v 1 . It is controlled so as to continuously decrease in accordance with the increase. When the vehicle speed v is lower than a certain threshold vehicle speed (second threshold vehicle speed) v 2 , the front and rear wheel shared load W FR is smaller than the left and right wheel shared load W LR , and the vehicle speed v is higher than the threshold speed v 2. case, the front and rear wheels shared load W FR is larger than the left and right wheel shared load W LR. Incidentally, if the閾車speed v 2 which is the vehicle speed v has a front and rear wheel shared load W FR left and right wheels shared load W LR are equal to each other, shared load ratio Rw is 1.
 上記分担荷重比変更制御によれば、車体の荷重は、図9に概念的に示すように、前輪12Fおよび後輪12Rと、左輪14Lおよび右輪14Rとに分担される。図9(a)は、車速vが高い場合の荷重の分担の様子を、図9(b)は、車速vが高い場合の荷重の分担の様子を、それぞれ表している。ちなみに、説明を簡単にするため、図では、前輪12Fの分担荷重と後輪12Rの分担荷重とが互いに等しいものと扱っている。 According to the shared load ratio change control, the vehicle body load is shared between the front wheel 12F and the rear wheel 12R, and the left wheel 14L and the right wheel 14R as conceptually shown in FIG. FIG. 9A shows the state of load sharing when the vehicle speed v is high, and FIG. 9B shows the state of load sharing when the vehicle speed v is high. Incidentally, in order to simplify the explanation, in the figure, the shared load of the front wheel 12F and the shared load of the rear wheel 12R are treated as being equal to each other.
 i)分担荷重比変更制御による効果
 本車両は、菱形車輪配置の車両であることから、特に高速時において、高い直進安定性が求められている。そのため、高速時に、分担荷重比Rwを小さくすることによって、つまり、前後輪分担荷重WFRを比較的大きくすることによって、直進安定性を高めることが可能である。また、低速時に、分担荷重比Rwを大きくすることによって、つまり、左右輪分担荷重WLRを比較的大きくすることによって、車両の駆動性能を向上させることが可能となる。
i) Effect by shared load ratio change control Since this vehicle is a vehicle with rhombus wheels, high straight running stability is required particularly at high speeds. Therefore, it is possible to improve the straight running stability by reducing the shared load ratio Rw at high speeds, that is, by relatively increasing the front and rear wheel shared load WFR . Further, by increasing the shared load ratio Rw at a low speed, that is, by relatively increasing the left and right wheel shared load WLR , it becomes possible to improve the driving performance of the vehicle.
 旋回時の車両の運動に関し、図10を参照しつつ説明すれば、以下のようである。なお、図10(a)は、高速時の運動を説明するための図であり、左側の図が、分担荷重比Rwを1とした場合を、右側の図が、分担荷重比Rwを小さくした場合を、それぞれ示す。図10(b)は、低速時の運動を説明するための図であり、左側の図が、分担荷重比Rwを1とした場合を、右側の図が、分担荷重比Rwを大きくした場合を、それぞれ示す。 The movement of the vehicle during turning will be described with reference to FIG. In addition, Fig.10 (a) is a figure for demonstrating the exercise | movement at the time of high speed, the left figure made the shared load ratio Rw small when the shared load ratio Rw was set to 1, and the right figure made the shared load ratio Rw small. Each case is shown. FIG. 10B is a diagram for explaining the motion at a low speed. The left diagram shows a case where the shared load ratio Rw is 1, and the right diagram shows a case where the shared load ratio Rw is increased. , Respectively.
 高速時には、先に説明したように、比較的ヨーレートγの小さな旋回が望まれ、前輪12Fと後輪12Rとが、互いに同相に転舵させられる。その際、図10(a)から解るように、左輪14Lおよび右輪14Rと路面との摩擦(白抜き矢印)は、車両の旋回に対する大きな抵抗となる。そのため、所望の横加速度Gyを得ようとする場合、前輪転舵角δF,後輪転舵角δRが、ともに、大きくなってしまう。上記分担荷重比変更制御を行うことによって、高速時に、左右輪分担荷重WLRが比較的小さくされるため、左輪14L,右輪14Rの接地荷重が減少し、車両の旋回に対する抵抗が小さくなる。その結果、前輪転舵角δF,後輪転舵角δRが小さくてすむため、旋回時の負担を軽減させることが可能となる。また、一方で、前後輪分担荷重WFRが比較的大きくされるため、前輪12F,後輪12Rによって発生させられる横加速度Gy増加することになり、そのことも、前輪転舵角δF,後輪転舵角δRを小さくすることに寄与している。 At high speed, as described above, turning with a relatively low yaw rate γ is desired, and the front wheels 12F and the rear wheels 12R are steered in phase with each other. At that time, as can be seen from FIG. 10A, the friction between the left wheel 14L and the right wheel 14R and the road surface (white arrow) is a great resistance against turning of the vehicle. Therefore, when the desired lateral acceleration Gy is to be obtained, both the front wheel turning angle δ F and the rear wheel turning angle δ R are increased. By performing the shared load ratio change control, at high speeds, because the left and right wheels shared load W LR it is relatively small, reduces the ground contact load of the left wheel 14L, right wheel 14R, the resistance to turning of the vehicle is reduced. As a result, since the front wheel turning angle δ F and the rear wheel turning angle δ R can be small, the burden during turning can be reduced. On the other hand, since the front and rear wheel share load W FR is relatively large, the lateral acceleration Gy generated by the front wheels 12F and the rear wheels 12R is increased, and this also means that the front wheel turning angle δ F and the rear wheels are increased. This contributes to reducing the wheel turning angle δ R.
 低速時には、先に説明したように、比較的ヨーレートγの大きな旋回が望まれる。その際、図10(b)から解るように、前輪12Fおよび後輪12Rと路面との摩擦(白抜き矢印)は、車両の旋回に対する大きな抵抗となる。そのため、所望のヨーレートγの旋回を行おうとする場合には、左右輪駆制動力差ΔFを大きくしなければならない(太い黒矢印参照)。上記分担荷重比変更制御を行うことによって、低速時に、前後輪分担荷重WFRが比較的小さくされるため、前輪12F,後輪12Rの接地荷重が減少し、車両の旋回に対する抵抗が小さくなる。その結果、左右輪駆制動力差ΔFを小さくすることができる。なお、先に説明したように、後輪12Rの転舵の向きは、目標後輪転舵角δF *を決定するための各種ゲインによって、いずれの方向になるかが決まるが、図10(b)に示すように、前輪12F,後輪12Rの車両旋回に対する抵抗の減少により、上記分担荷重比変更制御を行わない場合とは逆に、前輪12Fと同相に転舵される場合もある。 At low speed, as described above, turning with a relatively high yaw rate γ is desired. At that time, as can be seen from FIG. 10B, the friction between the front wheel 12F and the rear wheel 12R and the road surface (white arrow) is a great resistance against turning of the vehicle. Therefore, when turning at a desired yaw rate γ, the left and right wheel drive braking force difference ΔF must be increased (see the thick black arrow). By performing the shared load ratio change control, the front and rear wheel shared loads WFR are relatively reduced at low speeds, so that the ground load on the front wheels 12F and the rear wheels 12R is reduced and the resistance to turning of the vehicle is reduced. As a result, the left and right wheel drive braking force difference ΔF can be reduced. As described above, the direction of turning of the rear wheel 12R is determined depending on various gains for determining the target rear wheel turning angle δ F * , but FIG. As shown in FIG. 5B, the resistance of the front wheels 12F and the rear wheels 12R with respect to turning of the vehicle may be steered in the same phase as the front wheels 12F, contrary to the case where the shared load ratio change control is not performed.
 図11は、車速vが100Km/hのときの2秒間レーンチェンジにおいて、上記分担荷重比変更制御を行う場合と、行わない場合との比較を説明するためのグラフ群である。また、図12は、車速vが10Km/hのときの2秒間レーンチェンジにおいて、上記分担荷重比変更制御を行う場合と、行わない場合との比較を説明するためのグラフ群である。各図には、レーンチェンジの際の目標横加速度Gy*,目標ヨーレートγ*,前輪転舵角δF,後輪転舵角δR,左輪についての左右輪駆制動力差ΔFの成分(ΔF/2)のそれぞれの変化についてのグラフによって構成されている。なお、各グラフは、レーンチェンジの際中の最大のヨーレートが、車速vが100Km/hのときも10Km/hのときも互いに同じとなり、最大の横加速度Gyが、車速vが100Km/hのときに10Km/hのときの約10倍となるような条件のレーンチェンジにおける結果を示している。なお、車速vが100Km/hのときには、分担荷重比Rwが、約0.74と、車速vが10Km/hのときには、分担荷重比Rwが、約1.35となっている。ちなみに、前輪転舵角δF,後輪転舵角δR,左輪についての左右輪駆制動力差ΔFの成分(ΔF/2)のそれぞれのグラフにおける実線が、分担荷重比変更制御を行った場合の変化を、破線が、分担荷重比変更制御を行わなかった場合の変化を、それぞれ表している。 FIG. 11 is a graph group for explaining a comparison between the case where the shared load ratio change control is performed and the case where it is not performed in the 2-second lane change when the vehicle speed v is 100 km / h. FIG. 12 is a graph group for explaining a comparison between the case where the shared load ratio change control is performed and the case where it is not performed in the 2-second lane change when the vehicle speed v is 10 km / h. Each figure shows the components of the target lateral acceleration Gy * , the target yaw rate γ * , the front wheel turning angle δ F , the rear wheel turning angle δ R , and the left and right wheel drive braking force difference ΔF for the left wheel (ΔF / It is configured by a graph for each change of 2). Each graph shows that the maximum yaw rate during the lane change is the same when the vehicle speed v is 100 km / h and when the vehicle speed v is 10 km / h, and the maximum lateral acceleration Gy is the vehicle speed v is 100 km / h. The result in the lane change under the condition that it is about 10 times that at 10 km / h is shown. When the vehicle speed v is 100 km / h, the shared load ratio Rw is about 0.74, and when the vehicle speed v is 10 km / h, the shared load ratio Rw is about 1.35. Incidentally, the solid lines in the respective graphs of the front wheel turning angle δ F , the rear wheel turning angle δ R , and the left and right wheel drive braking force difference ΔF component (ΔF / 2) for the left wheel are when the shared load ratio change control is performed. The broken line represents the change when the shared load ratio change control is not performed.
 図11から解るように、高速時においては、分担荷重比Rwが小さくされて左右輪分担荷重WLRが比較的小さくされるため、分担荷重比変更制御を行った場合に、行わなかった場合に比較して、前輪転舵角δF,後輪転舵角δRが小さくなっている。また、図12から解るように、低速時においては、分担荷重比Rwが大きくされて前後輪分担荷重WFRが比較的小さくされるため、左輪についての左右輪駆制動力差ΔFの成分(ΔF/2)の成分が小さくなる。つまり、左右輪駆制動力差ΔFが小さくなる。なお、低速時においては、先に説明した理由から、後輪12Rの転舵の向きが、分担荷重比変更制御を行うことによって、前輪12Fの転舵の向きと同じ向きになっている。 As can be seen from FIG. 11, at the time of high speed, since the shared load ratio Rw is reduced and the left and right wheel shared load WLR is relatively reduced, when the shared load ratio change control is performed, it is not performed. In comparison, the front wheel turning angle δ F and the rear wheel turning angle δ R are smaller. Also, as can be seen from FIG. 12, at low speed, the shared load ratio Rw is increased and the front and rear wheel shared load WFR is relatively reduced, so the left and right wheel drive braking force difference ΔF component (ΔF The component of / 2) becomes small. That is, the left and right wheel drive braking force difference ΔF is reduced. At low speeds, the direction of turning of the rear wheels 12R is the same as the direction of turning of the front wheels 12F by performing the shared load ratio change control for the reason described above.
 ≪車両運動制御プログラムおよび制御装置の機能構成≫
 本車両運動制御システムによる車両運動制御は、制御装置としてのECU130が、図13にフローチャートを示す車両運動制御プログラムを実行することによって行われる。このプログラムは、短い時間ピッチ(例えば、数~数十μ秒)で繰り返し行われる。このプログラムでは、まず、ステップ1(以下、ステップを「S」と略す)において、車速vが取得され、次いで、S2において、ステアリングホイール20の操作角θが、取得される。それらの取得の後、S3において、旋回制御が、続くS4において、加減速制御が、さらに続くS5において、分担荷重比変更制御が行われる。
≪Function of vehicle motion control program and control device≫
The vehicle motion control by this vehicle motion control system is performed by the ECU 130 as a control device executing a vehicle motion control program whose flowchart is shown in FIG. This program is repeatedly performed at a short time pitch (for example, several to several tens of microseconds). In this program, first, in step 1 (hereinafter, step is abbreviated as “S”), the vehicle speed v is acquired, and then in S2, the operation angle θ of the steering wheel 20 is acquired. After these acquisitions, turning control is performed in S3, acceleration / deceleration control is performed in subsequent S4, and shared load ratio change control is performed in further subsequent S5.
 S3の旋回制御では、図14にフローチャートを示す旋回制御サブルーチンが実行される。このサブルーチンにおいては、S10において、前輪転舵量制御が、続くS20において、左右輪駆制動力差制御が、さらに続くS30では、後輪転舵量制御が行われる。それら、前輪転舵量制御,左右輪駆制動力差制御,後輪転舵量制御は、それぞれ、図15にフローチャートを示す前輪転舵量制御サブルーチン、図16にフローチャートを示す左右輪駆制動力差制御サブルーチン、図17にフローチャートを示す後輪転舵量制御サブルーチンがそれぞれ実行される。それらのサブルーチンに従う処理については、先に詳しく説明されているので、ここでは、説明は省略することとする。 In the turning control of S3, a turning control subroutine whose flowchart is shown in FIG. 14 is executed. In this subroutine, front wheel steering amount control is performed in S10, left and right wheel drive braking force difference control is performed in S20, and rear wheel steering amount control is performed in S30. The front wheel turning amount control, the left and right wheel driving braking force difference control, and the rear wheel turning amount control are respectively a front wheel turning amount control subroutine shown in a flowchart in FIG. 15, and a left and right wheel driving braking force difference shown in a flowchart in FIG. The control subroutine and the rear wheel turning amount control subroutine shown in the flowchart of FIG. 17 are executed. Since processing according to these subroutines has been described in detail earlier, description thereof will be omitted here.
 上記S4の加減速制御では、図18にフローチャートを示す加減速制御サブルーチンが実行され、上記S5の分担荷重比変更制御では、図19にフローチャートを示す分担荷重比変更制御サブルーチンが実行される。それらのサブルーチンに従う処理についても、先に詳しく説明されているので、ここでの説明は省略することとする。 In the acceleration / deceleration control in S4, the acceleration / deceleration control subroutine shown in the flowchart in FIG. 18 is executed, and in the shared load ratio change control in S5, the shared load ratio change control subroutine shown in the flowchart in FIG. 19 is executed. Since processing according to these subroutines has also been described in detail earlier, description thereof will be omitted here.
 上記車両運動制御プログラムを実行するECU130は、図20に示すように、上記各制御を実行する機能部を有していると考えることができる。詳しく言えば、ECU130は、上記旋回制御を実行する機能部としての旋回制御部160と、上記加減速制御を実行する機能部としての加減速制御部162と、上記分担荷重比変更制御を実行する機能部としての分担荷重比変更制御部164とを有していると考えることができるのである。また、上記旋回制御部160は、上記前輪転舵量制御を実行する機能部としての前輪転舵量制御部166と、上記左右輪駆制動力差制御を実行する機能部としての左右輪駆制動力差制御部168と、上記後輪転舵量制御を実行する機能部としての後輪転舵量制御部170とを有していると考えることができるのである。 The ECU 130 that executes the vehicle motion control program can be considered to have a functional unit that executes the above-described controls as shown in FIG. Specifically, the ECU 130 executes the turning control unit 160 as a functional unit that executes the turning control, the acceleration / deceleration control unit 162 as a functional unit that executes the acceleration / deceleration control, and the shared load ratio change control. It can be considered that it has a shared load ratio change control unit 164 as a functional unit. The turning control unit 160 includes a front wheel turning amount control unit 166 as a functional unit that executes the front wheel turning amount control, and a left and right wheel driving unit as a functional unit that executes the left and right wheel driving braking force difference control. It can be considered that the power difference control unit 168 and the rear wheel turning amount control unit 170 as a functional unit that executes the rear wheel turning amount control are included.
 10:車体  12F:前輪  12R:後輪  14L:左輪  14R:右輪  20:ステアリングホイール(ステアリング操作部材)  44L:左輪ばね支持位置調整装置(分担荷重比変更装置)  44R:右輪ばね支持位置調整装置(分担荷重比変更装置)  46:サスペンションスプリング  64L:左輪駆動装置  64R:右輪駆動装置  70L:左輪制動装置  70R:右輪制動装置  98F:前輪転舵装置  98R:後輪転舵装置  130:電子制御ユニット(ECU)(制御装置)  164:分担荷重比変更制御部  166:前輪転舵量制御部  168:左右輪駆制動力差制御部  170:後輪転舵量制御部
                                                                                
10: Vehicle body 12F: Front wheel 12R: Rear wheel 14L: Left wheel 14R: Right wheel 20: Steering wheel (steering operation member) 44L: Left wheel spring support position adjusting device (shared load ratio changing device) 44R: Right wheel spring supporting position adjusting device (Shared load ratio changing device) 46: Suspension spring 64L: Left wheel drive device 64R: Right wheel drive device 70L: Left wheel brake device 70R: Right wheel brake device 98F: Front wheel steering device 98R: Rear wheel steering device 130: Electronic control unit (ECU) (Control Device) 164: Shared Load Ratio Change Control Unit 166: Front Wheel Steering Amount Control Unit 168: Left / Right Wheel Driving Braking Force Difference Control Unit 170: Rear Wheel Steering Amount Control Unit

Claims (10)

  1.  自身の前方部に配置された単一の前輪と、その前輪よりも後方において自身の左右にそれぞれ配置された左輪および右輪と、それら左輪および右輪よりも後方に配置された単一の後輪とを有する車両の運動を制御するための車両運動制御システムであって、
     前記前輪を転舵させる前輪転舵装置と、
     前記車両を駆動および制動するための力である駆制動力を前記左輪,前記右輪に対してそれぞれ付与する左輪駆制動装置および右輪駆制動装置と、
     前記車両の車体の重量のうちの前記前輪および前記後輪が分担する分である前後輪分担荷重に対しての、前記左輪および前記右輪が分担する分である左右輪分担荷重の比である分担荷重比を変更する分担荷重比変更装置と、
     前記車両の制御を司る制御装置と
     を備え、
     前記制御装置が、
     前記分担荷重比変更装置を制御することで、前記分担荷重比を制御する分担荷重比変更制御部を有する車両運動制御システム。
    A single front wheel located at the front of itself, a left wheel and a right wheel respectively located on the left and right sides behind the front wheel, and a single rear located behind the left wheel and the right wheel A vehicle motion control system for controlling motion of a vehicle having wheels,
    A front wheel steering device for steering the front wheels;
    A left wheel driving braking device and a right wheel driving braking device for applying a driving braking force, which is a force for driving and braking the vehicle, to the left wheel and the right wheel, respectively;
    It is a ratio of left and right wheel shared load that is a share of the left wheel and the right wheel to a front and rear wheel share load that is a share of the front wheel and the rear wheel of the weight of the vehicle body. A shared load ratio changing device for changing the shared load ratio;
    A control device for controlling the vehicle,
    The control device is
    The vehicle motion control system which has a shared load ratio change control part which controls the said shared load ratio by controlling the said shared load ratio change apparatus.
  2.  前記分担荷重比変更制御部が、前記車両の走行速度に基づいて前記分担荷重比を制御するように構成された請求項1に記載の車両運動制御システム。 The vehicle motion control system according to claim 1, wherein the shared load ratio change control unit is configured to control the shared load ratio based on a traveling speed of the vehicle.
  3.  前記分担荷重比変更制御部が、前記車両の走行速度が高い場合に、低い場合に比べて、前記分担荷重比が小さくなるように前記分担荷重比変更装置を制御するように構成された請求項2に記載の車両運動制御システム。 The shared load ratio changing control unit is configured to control the shared load ratio changing device so that the shared load ratio becomes smaller when the traveling speed of the vehicle is high than when the vehicle is low. The vehicle motion control system according to 2.
  4.  前記分担荷重比変更制御部が、前記車両の走行速度が設定閾速度より高い場合に前記前後輪分担荷重が前記左右輪分担荷重より大きくなるように、かつ、前記車両の走行速度が前記設定閾速度より低い場合に前記前後輪分担荷重が前記左右輪分担荷重より小さくなるように前記分担荷重比変更装置を制御するように構成された請求項2または請求項3に記載の車両運動制御システム。 The shared load ratio change control unit is configured such that when the vehicle traveling speed is higher than a set threshold speed, the front and rear wheel shared load is larger than the left and right wheel shared load, and the vehicle traveling speed is set to the set threshold value. 4. The vehicle motion control system according to claim 2, wherein the shared load ratio changing device is controlled so that the front and rear wheel shared load becomes smaller than the left and right wheel shared load when the speed is lower than a speed. 5.
  5.  前記左輪駆制動装置および前記右輪駆制動装置が、前記左輪,前記右輪に対して互いに独立して前記駆制動力を付与可能に構成されており、
     前記制御装置が、
     前記車両の旋回時において、前記左輪駆制動装置および前記右輪駆制動装置を制御して前記左輪の駆制動力と前記右輪の駆制動力との差である左右輪駆制動力差を制御する左右輪駆制動力差制御部を有する請求項1ないし請求項4のいずれか1つに記載の車両運動制御システム。
    The left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
    The control device is
    When the vehicle turns, the left wheel drive braking device and the right wheel drive braking device are controlled to control a left and right wheel drive braking force difference that is a difference between the left wheel drive braking force and the right wheel drive braking force. The vehicle motion control system according to any one of claims 1 to 4, further comprising a left and right wheel driving braking force difference control unit.
  6.  前記左右輪駆制動力差制御部が
     ステアリング操作部材の操作に基づいて、前記車両の旋回において実現されるべきヨーレートである目標ヨーレートを決定し、実際に前記車両に生じているヨーレートである実ヨーレートが前記目標ヨーレートに近づくように、前記左右輪駆制動力差を制御するように構成された請求項5に記載の車両運動制御システム。
    The left and right wheel drive braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on an operation of a steering operation member, and an actual yaw rate that is actually generated in the vehicle The vehicle motion control system according to claim 5, configured to control the difference between the left and right wheel driving braking forces so as to approach the target yaw rate.
  7.  前記制御装置が、
     前記車両の旋回時において、前記前輪転舵装置を制御して前記前輪の転舵量を制御する前輪転舵量制御部を有し、
     その前輪転舵量制御部が、ステアリング操作部材の操作に基づいて、前記車両の旋回において前記車両に生じるべき横加速度である目標横加速度を決定し、実際に前記車両に生じている横加速度である実横加速度が前記目標横加速度に近づくように、前記前輪の転舵量を制御するように構成された請求項1ないし請求項6のいずれか1つに記載の車両運動制御システム。
    The control device is
    A front wheel turning amount control unit that controls the front wheel turning device to control the turning amount of the front wheel during turning of the vehicle;
    The front wheel turning amount control unit determines a target lateral acceleration that is a lateral acceleration that should be generated in the vehicle during the turning of the vehicle based on the operation of the steering operation member, and the lateral acceleration actually generated in the vehicle is determined. The vehicle motion control system according to any one of claims 1 to 6, configured to control a turning amount of the front wheel so that a certain actual lateral acceleration approaches the target lateral acceleration.
  8.  前記制御装置が、
     前記車両の旋回時において、その後輪転舵装置を制御して前記後輪の転舵量を制御する後輪転舵量制御部を有する請求項7に記載の車両運動制御システム。
    The control device is
    The vehicle motion control system according to claim 7, further comprising a rear wheel turning amount control unit that controls a rear wheel turning device to control a turning amount of the rear wheel during turning of the vehicle.
  9.  前記左輪駆制動装置および前記右輪駆制動装置が、前記左輪,前記右輪に対して互いに独立して前記駆制動力を付与可能に構成されており、
     前記制御装置が、
     前記車両の旋回時において、前記左輪駆制動装置および前記右輪駆制動装置を制御して前記左輪の駆制動力と前記右輪の駆制動力との差である左右輪駆制動力差を制御する左右輪駆制動力差制御部を有し、
     その左右輪駆制動力差制御部が
     ステアリング操作部材の操作に基づいて、前記車両の旋回において実現されるべきヨーレートである目標ヨーレートを決定し、実際に前記車両に生じているヨーレートである実ヨーレートが前記目標ヨーレートに近づくように、前記左右輪駆制動力差を制御するように構成された請求項8に記載の車両運動制御システム。
    The left wheel driving braking device and the right wheel driving braking device are configured to be able to apply the driving braking force to the left wheel and the right wheel independently of each other,
    The control device is
    When the vehicle turns, the left wheel drive braking device and the right wheel drive braking device are controlled to control a left and right wheel drive braking force difference that is a difference between the left wheel drive braking force and the right wheel drive braking force. The left and right wheel drive braking force difference control unit
    The left and right wheel drive braking force difference control unit determines a target yaw rate that is a yaw rate to be realized in turning of the vehicle based on the operation of the steering operation member, and an actual yaw rate that is actually generated in the vehicle The vehicle motion control system according to claim 8, wherein the vehicle motion control system is configured to control the difference between the left and right wheel drive braking forces so as to approach the target yaw rate.
  10.  前記後輪転舵量制御部が、前記前輪転舵量制御部による制御によって実現される前記実横加速度の前記目標横加速度への接近と、前記左右輪駆制動力差制御部による制御によって実現される前記実ヨーレートの前記目標ヨーレートへの接近との少なくとも一方がアシストされるように、前記後輪の転舵量を制御するように構成された請求項9に記載の車両運動制御システム。
                                                                                    
    The rear wheel turning amount control unit is realized by the approach of the actual lateral acceleration to the target lateral acceleration realized by the control by the front wheel turning amount control unit and the control by the left and right wheel drive braking force difference control unit. The vehicle motion control system according to claim 9, wherein the steering amount of the rear wheel is controlled such that at least one of the actual yaw rate and the approach to the target yaw rate is assisted.
PCT/JP2009/068707 2009-10-30 2009-10-30 Vehicle motion control system WO2011052077A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068707 WO2011052077A1 (en) 2009-10-30 2009-10-30 Vehicle motion control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/068707 WO2011052077A1 (en) 2009-10-30 2009-10-30 Vehicle motion control system

Publications (1)

Publication Number Publication Date
WO2011052077A1 true WO2011052077A1 (en) 2011-05-05

Family

ID=43921518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068707 WO2011052077A1 (en) 2009-10-30 2009-10-30 Vehicle motion control system

Country Status (1)

Country Link
WO (1) WO2011052077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814279B2 (en) 2009-10-14 2014-08-26 Toyota Jidosha Kabushiki Kaisha Brake system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841283B1 (en) * 1965-06-03 1973-12-05
JPS6118914U (en) * 1984-07-11 1986-02-03 日産自動車株式会社 Vehicle with three sets of wheels
JPH03125687U (en) * 1990-03-31 1991-12-18
JP2005096769A (en) * 2004-12-21 2005-04-14 Koyo Seiko Co Ltd Steering gear for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4841283B1 (en) * 1965-06-03 1973-12-05
JPS6118914U (en) * 1984-07-11 1986-02-03 日産自動車株式会社 Vehicle with three sets of wheels
JPH03125687U (en) * 1990-03-31 1991-12-18
JP2005096769A (en) * 2004-12-21 2005-04-14 Koyo Seiko Co Ltd Steering gear for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8814279B2 (en) 2009-10-14 2014-08-26 Toyota Jidosha Kabushiki Kaisha Brake system

Similar Documents

Publication Publication Date Title
JP5177298B2 (en) Vehicle motion control system
JP4179348B2 (en) Traveling device
US9828044B2 (en) Feedback control of vehicle aerodynamics
CN102596674B (en) Vehicle motion control system
JP4887771B2 (en) Traveling device
WO1990011905A1 (en) Electric car
CN107042740A (en) Steering and control system for three-wheeled vehicle
CN108602532B (en) Method for influencing the direction of travel of a motor vehicle
US20210300457A1 (en) Vehicle steering system
US20170106755A1 (en) Vehicle control apparatus
JP2007131212A (en) Controller for vehicle
JP6298242B2 (en) Suspension device and vehicle
JP2008012972A (en) Travelling device and vehicle posture controller
CN110239499A (en) The control device of vehicle and the control method of vehicle
WO2011052078A1 (en) Vehicle motion control system
JP5157306B2 (en) Wheel position variable vehicle
WO2011052077A1 (en) Vehicle motion control system
JP5652339B2 (en) Vehicle motion control system
JP5251837B2 (en) Vehicle motion control system
JP2022011895A (en) Wheel steering device
JP2021169248A (en) Vehicular steering system
WO2018180754A1 (en) Vehicle
JP2006182050A (en) Braking force control device for four-wheel independent drive vehicle
JP2011116269A (en) Vehicle motion control system
WO2022085303A1 (en) Vehicle control device and vehicle control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09850856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09850856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP