JP2014021060A - Measuring method for particle size distribution of fine particle in metal - Google Patents

Measuring method for particle size distribution of fine particle in metal Download PDF

Info

Publication number
JP2014021060A
JP2014021060A JP2012162877A JP2012162877A JP2014021060A JP 2014021060 A JP2014021060 A JP 2014021060A JP 2012162877 A JP2012162877 A JP 2012162877A JP 2012162877 A JP2012162877 A JP 2012162877A JP 2014021060 A JP2014021060 A JP 2014021060A
Authority
JP
Japan
Prior art keywords
fine particles
particle size
particle
fine
size distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012162877A
Other languages
Japanese (ja)
Inventor
Tomoharu Ishida
智治 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012162877A priority Critical patent/JP2014021060A/en
Publication of JP2014021060A publication Critical patent/JP2014021060A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure a particle size distribution of fine particles even when a distribution width of particle sizes of the fine particles is wide.SOLUTION: The measuring method for a particle size distribution of fine particles in metal includes an extraction step of extracting fine particles in a metallic material, a dispersion step of preparing a fine particle dispersion solution by dispersing the fine particles extracted in the extraction step in a liquid; a classification step of classifying the fine particles in the fine particle dispersion solution by particle sizes by applying centrifugal force to the fine particle dispersion solution prepared in the dispersion step; and a calculation step of calculating volume fractions of the fine particles by the particle sizes classified in the classification step. Consequently, even when a distribution width of the particle sizes of the fine particles is wide, the particle size distribution of the fine particles can be precisely measured.

Description

本発明は、金属材料中の微粒子の粒径分布を測定する金属中微粒子の粒径分布測定方法に関する。   The present invention relates to a method for measuring the particle size distribution of fine particles in a metal, which measures the particle size distribution of fine particles in a metal material.

近年、様々な技術分野において、微粒子の特異な機能を利用した製品や技術の開発が盛んに行なわれている。これは、材質が同じであっても粒径が小さくなることによって、粒子表面の活性度が著しく変化し、新たな機能が発現することが期待できるためである。微粒子の特異な機能を利用した製品や技術の性能は、微粒子の粒径と密接に関係している。このため、微粒子の材料の開発と共に微粒子の粒径分布を測定する技術の開発も盛んに行われている。特許文献1には、微粒子の粒径分布を測定する方法が開示されている。特許文献2には、粒径の大きい微粒子と粒径の小さい微粒子とをそれぞれ独立した光学系で評価する方法が開示されている。   In recent years, in various technical fields, development of products and technologies using unique functions of fine particles has been actively performed. This is because even if the material is the same, the particle size becomes small, so that the activity of the particle surface is remarkably changed and a new function can be expected. The performance of products and technologies that utilize the unique function of fine particles is closely related to the particle size of the fine particles. For this reason, development of techniques for measuring the particle size distribution of fine particles has been actively conducted along with the development of fine particle materials. Patent Document 1 discloses a method for measuring the particle size distribution of fine particles. Patent Document 2 discloses a method for evaluating fine particles having a large particle size and fine particles having a small particle size by using independent optical systems.

特開平02−96636号公報Japanese Patent Laid-Open No. 02-96636 特開昭63−265139号公報JP-A-63-265139

ところで、鉄鋼分野においても、鋼中に存在する微細な析出物の機能を積極的に利用する材料開発が盛んに行なわれている。鋼中に微細な析出物を分散させることによって強度や張力を向上させた自動車用鋼板や鋼中の微細な析出物をインヒビター析出物として活用する方向性電磁鋼板等がこれに該当する。このような鉄鋼材料では、析出物の量や粒径が鉄鋼材料の品質に直接的に影響するために、析出物の粒径分布を測定する必要がある。いずれの鉄鋼材料でも最も高頻度で存在する析出物の粒径は数nmから数十nm程度であることから、例えば特許文献1に開示されている方法を利用することによって充分に測定できる。   By the way, in the steel field, material development that actively utilizes the function of fine precipitates existing in steel is being actively conducted. This includes steel sheets for automobiles in which strength and tension are improved by dispersing fine precipitates in steel, grain-oriented electrical steel sheets that utilize fine precipitates in steel as inhibitor precipitates, and the like. In such a steel material, since the amount and particle size of the precipitates directly affect the quality of the steel material, it is necessary to measure the particle size distribution of the precipitates. In any steel material, the particle diameter of the precipitate that is present most frequently is about several nanometers to several tens of nanometers. Therefore, it can be sufficiently measured by using, for example, the method disclosed in Patent Document 1.

しかしながら、本発明の発明者の検討によれば、特許文献1記載の方法を利用して測定された析出物の粒径分布とSEM(Scanning Electron Microscope)等の電子顕微鏡を利用して観察された析出物の粒径分布との間には隔たりがあった。そこで、本発明の発明者は、この隔たりは析出物の粒径の分布幅が広いことに起因していると考えた。すなわち、電子顕微鏡で観察される析出物の粒径分布は、粒子数の分布状態、すなわち個数分布であるのに対して、特許文献1記載の方法をはじめとする光をプローブとして測定する方法で得られる析出物の粒径分布は光の散乱強度の分布である。   However, according to the study of the inventor of the present invention, the particle size distribution of the precipitates measured using the method described in Patent Document 1 and observed using an electron microscope such as SEM (Scanning Electron Microscope). There was a gap between the particle size distribution of the precipitates. Therefore, the inventor of the present invention considered that this separation is caused by the wide distribution width of the particle size of the precipitate. That is, the particle size distribution of the precipitate observed with an electron microscope is a distribution state of the number of particles, that is, a number distribution, whereas the method described in Patent Document 1 is used to measure light as a probe. The particle size distribution of the resulting precipitate is a distribution of light scattering intensity.

一般に光の散乱強度は析出物の粒径の6乗に比例する。このため、特に粒径の分布幅が大きい場合や分布状態が正規分布ではなくピークが複数ある等の複雑な分布になる場合、散乱強度の分布に対しては粒径が大きい粒子の寄与度が大きくなり、個数分布と散乱強度分布との違いが顕著になる。この結果、散乱強度の分布状態は個数分布と比較して粒径が大きい側にシフトし、場合によっては個数分布における平均粒径の違いを検知できない場合がある。特に鉄鋼材料中の析出物の大きさの分布幅は広いために、析出物の粒径の分布状態を正確に測定することは難しい。   In general, the light scattering intensity is proportional to the sixth power of the particle size of the precipitate. For this reason, especially when the distribution range of the particle size is large or when the distribution state is not a normal distribution but a complicated distribution such as a plurality of peaks, the contribution of particles having a large particle size to the scattering intensity distribution is The difference between the number distribution and the scattered intensity distribution becomes significant. As a result, the distribution state of the scattering intensity shifts to the larger particle size as compared with the number distribution, and in some cases, the difference in the average particle size in the number distribution may not be detected. In particular, since the distribution range of the size of the precipitates in the steel material is wide, it is difficult to accurately measure the particle size distribution state of the precipitates.

本発明は、上記課題に鑑みてなされたものであって、その目的は、微粒子の粒径の分布幅が広い場合であっても微粒子の粒径分布を精度よく測定可能な金属中微粒子の粒径分布測定方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to make fine particles in metal capable of accurately measuring the particle size distribution of fine particles even when the particle size distribution range of the fine particles is wide. It is to provide a diameter distribution measuring method.

上記課題を解決し、目的を達成するために、本発明に係る金属中微粒子の粒径分布測定方法は、金属材料中の微粒子を抽出する抽出ステップと、前記抽出ステップによって抽出された微粒子を液体中に分散させることによって微粒子分散溶液を調製する分散ステップと、前記分散ステップによって調製された微粒子分散溶液に対し遠心力を印加することによって微粒子分散溶液中の微粒子を粒径毎に分級する分級ステップと、前記分級ステップによって分級された粒径毎の微粒子の体積分率を算出する算出ステップと、を含むことを特徴とする。   In order to solve the above problems and achieve the object, a method for measuring the particle size distribution of fine particles in a metal according to the present invention includes an extraction step for extracting fine particles in a metal material, and the fine particles extracted by the extraction step as a liquid. Dispersion step of preparing a fine particle dispersion solution by dispersing in, and a classification step of classifying the fine particles in the fine particle dispersion solution for each particle size by applying centrifugal force to the fine particle dispersion solution prepared by the dispersion step And a calculating step of calculating a volume fraction of fine particles for each particle size classified by the classification step.

本発明に係る金属中微粒子の粒径分布測定方法は、上記発明において、前記分級ステップが、フィールドフローフラクショネーション法を利用して微粒子分散溶液中の微粒子を連続的に粒径毎に分級するステップを含み、前記算出ステップは、前記フィールドフローフラクショネーション法によって連続的に分級される微粒子を誘導結合プラズマ発光分光分析装置又は誘導結合プラズマ質量分析装置に導入することにより、粒径毎の微粒子の体積分率を算出するステップを含むことを特徴とする。   In the method for measuring the particle size distribution of fine particles in metal according to the present invention, in the above invention, the classification step continuously classifies the fine particles in the fine particle dispersion solution for each particle size using a field flow fractionation method. The calculation step includes introducing fine particles continuously classified by the field flow fractionation method into an inductively coupled plasma emission spectrometer or an inductively coupled plasma mass spectrometer, thereby forming fine particles for each particle size. The step of calculating the volume fraction of is included.

本発明に係る金属中微粒子の粒径分布測定方法は、上記発明において、前記算出ステップは、前記粒径毎の微粒子の体積分率から微粒子の個数分布を算出するステップを含むことを特徴とする。   The particle size distribution measuring method for fine particles in metal according to the present invention is characterized in that, in the above invention, the calculating step includes a step of calculating a number distribution of fine particles from a volume fraction of fine particles for each particle size. .

本発明に係る金属中微粒子の粒径分布測定方法は、上記発明において、測定対象の微粒子の粒径が1μm以下であることを特徴とする。   The particle size distribution measuring method for fine particles in metal according to the present invention is characterized in that, in the above invention, the particle size of the fine particles to be measured is 1 μm or less.

本発明に係る金属中微粒子の粒径分布測定方法によれば、微粒子の粒径の分布幅が広い場合であっても微粒子の粒径分布を精度よく測定することができる。   According to the method for measuring the particle size distribution of fine particles in metal according to the present invention, the particle size distribution of the fine particles can be accurately measured even when the particle size distribution range of the fine particles is wide.

図1は、混合液中の微粒子の分布状態を動的光散乱方式の粒度分布計で測定した結果を示す図である。FIG. 1 is a diagram showing the results of measuring the distribution state of fine particles in a mixed solution using a dynamic light scattering particle size distribution meter. 図2は、遠心分離機を用いて混合液を分離した後、浮遊成分及び沈降成分の粒径を動的光散乱方式の粒度分布計で測定した結果を示す図である。FIG. 2 is a diagram showing the results of measuring the particle size of the suspended component and the sedimented component with a dynamic light scattering type particle size distribution meter after separating the mixed solution using a centrifuge. 図3は、電解装置の一構成例を示す模式図である。FIG. 3 is a schematic diagram illustrating a configuration example of the electrolysis apparatus. 図4は、本発明の一実施形態である金属中微粒子の粒径分布測定方法によって測定されたTi析出物の個数分布を示す図である。FIG. 4 is a diagram showing the number distribution of Ti precipitates measured by the particle size distribution measuring method for fine particles in metal according to an embodiment of the present invention.

以下、図面を参照して、本発明の一実施形態である金属中微粒子の粒径分布測定方法について説明する。   Hereinafter, a method for measuring the particle size distribution of fine particles in metal, which is an embodiment of the present invention, will be described with reference to the drawings.

本発明の発明者は、鋭意研究を重ねた結果、金属材料中から抽出、安定分散させた微粒子を予め粒径ごとに分級した後、微粒子の体積分率を粒径毎に測定することによって、微粒子の粒径分布を精度よく測定できることを見出した。また、本発明の発明者は、微粒子を分級する際には、特に遠心力を利用した分級方法が極めて有効であることを見出した。具体的には、本発明の一実施形態である金属中微粒子の粒径分布測定方法は、微粒子を安定分散させた懸濁溶液が入った容器に遠心力を印加することによって粒径に応じて拡散と釣合う位置に微粒子を分布させ、各位置での濃度を光の透過量で測定することにより、微粒子の粒径分布を測定する。   The inventors of the present invention, as a result of earnest research, after classifying the fine particles extracted and stably dispersed from the metal material for each particle size, by measuring the volume fraction of the fine particles for each particle size, It was found that the particle size distribution of fine particles can be measured with high accuracy. The inventors of the present invention have also found that a classification method using centrifugal force is extremely effective when classifying fine particles. Specifically, in the method for measuring the particle size distribution of fine particles in metal according to an embodiment of the present invention, centrifugal force is applied to a container containing a suspension solution in which fine particles are stably dispersed in accordance with the particle size. The particle size distribution of the fine particles is measured by distributing the fine particles at positions that balance the diffusion, and measuring the concentration at each position by the amount of transmitted light.

微粒子が1種類であれば粒径に応じて容器内に微粒子が分布するため、各位置での光強度を指標とすることによって、微粒子の粒径分布を知ることができる。この方法を用いた場合、微粒子が存在しない場合には何も検知されないことから、粒径中心及び分布幅から全体の粒径分布状態を評価する一般的な粒度分布装置と比較して、粒径分布を正確に測定することができる。但し、微粒子の量を測定する場合には光強度以外の指標を用いることが好ましい。これは、先述したように、光強度は粒子の絶対量とは異なるためであり、微粒子の量の測定には定量等の手段を用いることが適切である。   If there is only one kind of fine particles, the fine particles are distributed in the container according to the particle size. Therefore, the particle size distribution of the fine particles can be known by using the light intensity at each position as an index. When this method is used, nothing is detected when fine particles are not present, so the particle size is compared with a general particle size distribution apparatus that evaluates the entire particle size distribution state from the particle size center and distribution width. The distribution can be measured accurately. However, it is preferable to use an index other than light intensity when measuring the amount of fine particles. This is because, as described above, the light intensity is different from the absolute amount of particles, and it is appropriate to use a means such as quantification for the measurement of the amount of fine particles.

例えば、上記のように、容器に入れた微粒子に遠心力を印加して容器内での分布状態を創製した後、各位置に存在する微粒子を分取し、酸等で分解した後、元素分析を行なう方法が考えられる。元素分析によって得られる情報は微粒子の体積を反映した数値であるため、粒径毎に分級・分取した溶液の元素分析を行なうことによって、粒径毎の微粒子の体積分率を知ることができる。例えば鋼板の性能において、析出物の分散状態が大きく影響している場合、析出物の分布状態評価においては、析出物の個数分布を知ることが重要であり、その点において散乱強度分布と比較して体積分布から個数分布を求める方が正確さは向上する。   For example, as described above, a centrifugal force is applied to the fine particles placed in the container to create a distribution state in the container, and then the fine particles present at each position are collected, decomposed with acid, etc., and then subjected to elemental analysis. A method of performing is considered. Since the information obtained by elemental analysis is a numerical value that reflects the volume of fine particles, it is possible to know the volume fraction of fine particles by particle size by conducting elemental analysis of the solution classified and sorted by particle size. . For example, when the dispersion state of precipitates greatly affects the performance of steel sheets, it is important to know the number distribution of precipitates in the evaluation of the distribution state of precipitates, and in that respect, it is compared with the scattering intensity distribution. Thus, the accuracy is improved by obtaining the number distribution from the volume distribution.

また、近年、液中の微粒子を連続的に分級できる方法として、遠心力を利用したフィールドフローフラクショネーション(Field Flow Fractionation : FFF)法が提案されている。このFFF方法は、液中の微粒子に対し遠心力を印加し、印加した負荷に対する抵抗力の違いから連続的に微粒子の分級を行なう手法である。このFFF法では、粒径が小さい微粒子ほど、液中での移動速度、すなわち印加された負荷に対する抵抗力が大きいため、回転数を徐々に弱めることによって粒径が小さい微粒子から順次、微粒子が排出される。このFFF法を用いてカラム排出後の粒径毎に分級された溶液を分取、分解、定量すれば、粒径毎の微粒子の体積分布を知ることができる。さらに、対象となる粒径が小さい場合には、排出後の粒子分散溶液をそのまま誘導結合プラズマ発光分光分析装置(ICP発光分光分析装置)や誘導結合プラズマ質量分析装置(ICP質量分析装置)に導入することによって、元素毎の体積分布を評価できる。但し、粒子が大きい場合にはプラズマ内で微粒子が充分に分解されないことがあるので、注意が必要である。   In recent years, a field flow fractionation (FFF) method using centrifugal force has been proposed as a method for continuously classifying fine particles in a liquid. This FFF method is a technique in which centrifugal force is applied to the fine particles in the liquid, and the fine particles are continuously classified based on the difference in resistance to the applied load. In this FFF method, the smaller the particle size, the higher the moving speed in the liquid, that is, the resistance to the applied load, so the particles are discharged in order from the smaller particle size by gradually decreasing the rotational speed. Is done. If the solution classified according to the particle size after discharging the column using this FFF method is collected, decomposed, and quantified, the volume distribution of the fine particles for each particle size can be known. Furthermore, if the target particle size is small, the discharged particle dispersion solution is directly introduced into the inductively coupled plasma emission spectrometer (ICP emission spectrometer) or inductively coupled plasma mass spectrometer (ICP mass spectrometer). By doing so, the volume distribution for each element can be evaluated. However, when the particles are large, care must be taken because the particles may not be sufficiently decomposed in the plasma.

ここで、FFF法には、微粒子の流れと直交する方向から別の溶液流れを作り、微粒子に対し負荷を印加する手法もある。調査の結果、溶液や微粒子の種類によってはカラム内に配置されたメンブレンフィルタへの吸着が顕著な場合があり、定量的な評価が難しかったため、遠心力により負荷を印加する方法がより適切であると判断された。なお、微粒子に印加する負荷が遠心力である場合、粒子密度の影響も受けるため、この方法で実際に得られる体積分布は粒子の種類毎に異なる。従って、数種類の粒子が混在する場合には、粒子密度に応じて横軸である大きさのキャリブレーションを行なえばよい。   Here, the FFF method also includes a method in which another solution flow is created from a direction orthogonal to the flow of the fine particles, and a load is applied to the fine particles. As a result of investigation, depending on the type of solution and fine particles, adsorption to the membrane filter arranged in the column may be remarkable, and quantitative evaluation is difficult, so a method of applying a load by centrifugal force is more appropriate It was judged. Note that when the load applied to the fine particles is centrifugal force, the volume distribution actually obtained by this method varies depending on the type of particles because the load is also affected by the particle density. Therefore, when several types of particles are mixed, calibration with a size on the horizontal axis may be performed according to the particle density.

以上の方法により、粒径の分布幅が大きかったり、粒径分布のピークが2山になる等の複雑な分布プロファイルを示したりするような、金属材料中の析出物や介在物等の微粒子の粒径分布を精度よく評価することができる。   By the above method, fine particles such as precipitates and inclusions in the metal material that have a large distribution width of the particle size or a complicated distribution profile such as two peaks of the particle size distribution are shown. The particle size distribution can be accurately evaluated.

〔実施例1〕
本実施例では、金属中微粒子の模擬試料として金コロイド溶液を準備した。これは、金属中微粒子の存在状態を正確に評価することは難しく、本法を用いた測定手段の確からしさを検証する手段として、粒径及び粒子密度が既知の微粒子を標準試料として用いることが妥当と判断したためである。市販されている金コロイド標準溶液のうち、Au微粒子の平均粒径が20nm及び100nmのものを購入し、散乱強度が概ね1:1前後となるような割合で混合して混合液を調製した。
[Example 1]
In this example, a gold colloid solution was prepared as a simulated sample of fine particles in metal. This is because it is difficult to accurately evaluate the presence state of fine particles in metal, and as a means for verifying the accuracy of the measurement means using this method, fine particles with known particle diameters and particle densities can be used as standard samples. This is because it was judged appropriate. Among the commercially available gold colloid standard solutions, Au fine particles having an average particle diameter of 20 nm and 100 nm were purchased and mixed at a ratio such that the scattering intensity was approximately 1: 1 to prepare a mixed solution.

始めに、混合液を動的光散乱方式の粒度分布計(以下、DLSと表記)にて測定した。測定結果を図1に示す。なお、図1にはDLSで測定した際に算出される平均粒径も併せて記載した。図1に示すように、DLSでの測定結果は10nmから300nm程度までの広い領域にわたるブロードなプロファイル形状となっている。但し、実際の混合溶液中には例えば50nmや200nmといった粒径のAu微粒子はほとんど存在しない。これは、DLS等の粒度分布計は中心粒径及び分散度から粒径の分布状態を評価する装置であり、本試料のように粒径ピークが2山になっている試料や粒径の分布幅が広い試料に対する正確な評価が難しいということを示唆している。   First, the mixed solution was measured with a dynamic light scattering particle size distribution meter (hereinafter referred to as DLS). The measurement results are shown in FIG. FIG. 1 also shows the average particle size calculated when measured by DLS. As shown in FIG. 1, the measurement result by DLS has a broad profile shape over a wide region from about 10 nm to about 300 nm. However, there are almost no Au fine particles having a particle size of, for example, 50 nm or 200 nm in the actual mixed solution. This is a particle size distribution meter such as DLS, which is a device that evaluates the distribution state of particle size from the center particle size and dispersion degree. This suggests that accurate evaluation of a wide sample is difficult.

そこで、卓上型の遠心分離機を用いて混合液を分離した後、浮遊成分及び沈降成分の粒径をDLSでそれぞれ測定した。遠心分離条件については、混合した各Au微粒子の粒径に応じて回転数及び分離時間を設定した。それぞれの条件で遠心分離を利用した分級を行なった後、粒径の小さい浮遊成分については上澄み液を採取することによって、粒径の大きい沈降成分についてはセルの底部に付着した成分を適切な溶媒中に再分散させることでそれぞれ粒度分布測定を行なった。測定結果を図2に示す。図2に示すように、遠心分離後に測定される各Au微粒子の中心粒径は19.6nm、97.5nmと混合前の標準値(粒径)通りの妥当な数値となっている。但し、同じ操作を繰り返し行なった際に得られる散乱強度の比(20nm:100nm)はばらつきが大きかった。   Therefore, after separating the mixed solution using a desktop centrifuge, the particle sizes of the suspended component and the sedimented component were measured by DLS. About the centrifugation conditions, the rotation speed and the separation time were set according to the particle diameter of each Au fine particle mixed. After classification using centrifugal separation under each condition, collect supernatant liquid for suspended components with small particle size, and remove components attached to the bottom of the cell with appropriate solvent for sedimented components with large particle size. Each particle size distribution was measured by re-dispersing it. The measurement results are shown in FIG. As shown in FIG. 2, the center particle diameter of each Au fine particle measured after centrifugation is 19.6 nm and 97.5 nm, which are reasonable numerical values according to the standard value (particle diameter) before mixing. However, the scattering intensity ratio (20 nm: 100 nm) obtained when the same operation was repeated was highly variable.

一方、全く同様の操作で標準溶液の混合、遠心分離操作を行なった後、それぞれの粒径粒子を酸で溶解し、ICP発光分光分析装置でAu元素濃度の定量を行なった。繰り返しの測定結果を表1に示す。表1から明らかなように、Au微粒子の中心粒径は精度良く評価できているが、散乱強度の比のばらつきが大きい。これに対して、Au元素濃度の定量値から算出される体積分率は繰り返しの精度が良い。これは、光強度を指標とする粒度分布測定法では、体積分率等の量の評価を正確に行なうことが難しいことを示唆している。従って、遠心分離法と粒径測定法のみでなく、体積分率を評価可能な別途の手段と組み合わせることにより、材料開発に有益な正確な量の評価を行なうことが可能となる。   On the other hand, the standard solution was mixed and centrifuged in exactly the same manner, and then each particle size particle was dissolved with acid, and the concentration of Au element was quantified with an ICP emission spectrometer. Table 1 shows the repeated measurement results. As is apparent from Table 1, the center particle diameter of the Au fine particles can be evaluated with high accuracy, but the scattering intensity ratio varies greatly. On the other hand, the volume fraction calculated from the quantitative value of the Au element concentration has good repeatability. This suggests that it is difficult to accurately evaluate the volume fraction and the like in the particle size distribution measurement method using the light intensity as an index. Therefore, not only the centrifugal separation method and the particle size measurement method but also a combination with another means capable of evaluating the volume fraction makes it possible to evaluate an accurate amount useful for material development.

Figure 2014021060
Figure 2014021060

〔実施例2〕
鉄鋼試料(C:0.1質量%、Mn:0.05質量%、Ti:0.2質量%、S:0.002質量%)を溶製、熱処理した後、鉄鋼試料中の析出物の粒径を変化させる目的から、さらに温度を変化させた2水準(900℃、1000℃)で再加熱した。熱処理後の鋼試料を20mm×50mm×1mmの大きさに加工した後、表層酸化層を研削により除去した。熱処理温度を変化させた2種類の各試料(900℃処理材、1000℃処理材)について、表面を洗浄後、10vol%アセチルアセトン−10g/L塩化テトラメチルアンモニウム−90vol%メタノール(以下、10%AA系と略記)溶液を電解液として使用し、図3に示す電解装置1で約0.5gを電解した。
[Example 2]
After melting and heat-treating steel samples (C: 0.1% by mass, Mn: 0.05% by mass, Ti: 0.2% by mass, S: 0.002% by mass), the purpose is to change the grain size of precipitates in the steel samples. Further, reheating was performed at two levels (900 ° C. and 1000 ° C.) with different temperatures. After the heat-treated steel sample was processed into a size of 20 mm × 50 mm × 1 mm, the surface oxide layer was removed by grinding. After washing the surface of each of the two types of samples (900 ° C treated material, 1000 ° C treated material) with different heat treatment temperatures, 10vol% acetylacetone-10g / L tetramethylammonium chloride-90vol% methanol (hereinafter, 10% AA) (Abbreviated as “system”) The solution was used as an electrolytic solution, and about 0.5 g was electrolyzed by the electrolytic apparatus 1 shown in FIG.

図3に示す電解装置1は、容器2内に入れられた電解液3と、電解液3に浸漬されたリング状の陽極電極4と、陽極電極4に挿通された陰極電極としての試料5と、を備えている。陽極電極4は定電流電源6の正極に接続され、試料5は固定用治具7を介して定電流電源6の負極に接続されている。この電解装置1では、定電流電源6を利用して陽極電極4と試料5との間に電圧を印加することによって試料5を電解できる。電解後の試料は、ビーカーに入れた約20mlの0.05%ヘキサメタリン酸水溶液中に浸漬させた後、超音波剥離操作により鋼中から抽出した粒子を液中に分散保持した。   3 includes an electrolytic solution 3 placed in a container 2, a ring-shaped anode electrode 4 immersed in the electrolytic solution 3, and a sample 5 as a cathode electrode inserted through the anode electrode 4. It is equipped with. The anode electrode 4 is connected to the positive electrode of the constant current power source 6, and the sample 5 is connected to the negative electrode of the constant current power source 6 through a fixing jig 7. In the electrolysis apparatus 1, the sample 5 can be electrolyzed by applying a voltage between the anode electrode 4 and the sample 5 using the constant current power source 6. The electrolyzed sample was immersed in about 20 ml of 0.05% hexametaphosphoric acid aqueous solution in a beaker, and then the particles extracted from the steel by ultrasonic peeling operation were dispersed and held in the liquid.

次に、得られたスラリー試料をPostnova社製のFFF装置にて遠心分離することで分級した。具体的には、最大の回転数で回転させた状態の円盤状カラム内に試料100μlを導入し、時間の経過と共に徐々に回転数を低下させることで微粒子に印加している応力を開放し、小さい微粒子から順次、カラム外に排出した。排出後の粒子量は、接続された粒径測定装置によって粒度分布状態を評価することも可能であるが、散乱強度分布ではなく、より正確な粒径分布状態を評価する目的から体積分率を算出した。   Next, the obtained slurry sample was classified by centrifuging with an FFF apparatus manufactured by Postnova. Specifically, 100 μl of the sample is introduced into the disc-shaped column that is rotated at the maximum rotation speed, and the stress applied to the fine particles is released by gradually decreasing the rotation speed as time passes. The small particles were discharged sequentially from the column. It is possible to evaluate the particle size distribution state with a connected particle size measurement device, but the volume fraction is not the scattering intensity distribution but the volume fraction for the purpose of evaluating a more accurate particle size distribution state. Calculated.

手順としては、カラムから排出されたスラリーを逐次的に一定量ずつ分取し、分取後のスラリーを酸で溶解した後、ICP質量分析装置にて元素毎の含有量を定量評価した。微粒子は小さいものから順に排出されるため、この操作により元素毎の体積分率を知ることができる。但し、排出されるまでの時間については、粒径に加えて密度の影響も受けるため、時間を粒径に換算するためには適切なキャリブレーションを必要とする。評価したい微粒子と同じ密度の標準粒径粒子を入手できれば最もよいが、なるべく近い密度の標準粒子を用いれば、計算による補正を行なうことによって評価対象粒子の粒径に換算することもできる。   As a procedure, a certain amount of the slurry discharged from the column was sequentially collected. After the separated slurry was dissolved with an acid, the content of each element was quantitatively evaluated with an ICP mass spectrometer. Since the fine particles are discharged in ascending order, the volume fraction for each element can be known by this operation. However, since the time until discharge is affected by the density in addition to the particle size, an appropriate calibration is required to convert the time into the particle size. It is best if standard particle diameters having the same density as the fine particles to be evaluated can be obtained. However, if standard particles having a density as close as possible are used, the particle diameters of the evaluation target particles can be converted by correction by calculation.

なお、分級後スラリーは短時間のピッチで分取するほど詳細な粒径分布を求めることができるが、それぞれの粒子密度、すなわち元素含有量は当然少なくなり、分析感度の観点からは不利な方法になるため、知りたい情報に応じて適切な条件で分取間隔を決定する必要がある。また、分取量が少なくなるほど、同じ時間分取を行なった場合でも液量にはばらつきが生じてくるため、分取後のスラリーから一定量を計りとる等の操作で正確さを向上させることが望ましい。   In addition, the more detailed particle size distribution can be obtained for the slurry after classification at a short pitch, but each particle density, that is, the element content is naturally reduced, which is disadvantageous from the viewpoint of analytical sensitivity. Therefore, it is necessary to determine the sorting interval under appropriate conditions according to information to be known. In addition, the smaller the amount, the more the liquid amount will vary even if the same time fraction is taken, so the accuracy can be improved by operations such as measuring a certain amount from the slurry after fractionation. Is desirable.

この操作により評価したTi析出物の個数分布を図4に示す。図4に示す縦軸の個数分布は、分取溶液を分解・定量して求められる体積分率を粒径の3乗で割ることで算出した。また、この操作による測定の再現性を評価する目的から、900℃処理材についてはスラリーの導入以降の操作を同じ手順にて行なって確認した。図4に示すように、900℃処理材と比較して1000℃処理材では中心粒径でおよそ3.5nmの大径化が認められ、熱処理温度の上昇によるTi析出物の粗大化が示唆された。   The number distribution of Ti precipitates evaluated by this operation is shown in FIG. The number distribution on the vertical axis shown in FIG. 4 was calculated by dividing the volume fraction obtained by decomposing and quantifying the preparative solution by the cube of the particle size. Further, for the purpose of evaluating the reproducibility of the measurement by this operation, the operation after the introduction of the slurry was confirmed by the same procedure for the 900 ° C. treated material. As shown in FIG. 4, in the 1000 ° C. treated material, the diameter of the center particle was increased by about 3.5 nm compared to the 900 ° C. treated material, suggesting that the Ti precipitate was coarsened due to an increase in the heat treatment temperature. .

この結果については、透過電子顕微鏡法(TEM法)を用いて同じ材料中の析出物を評価した場合と概ね同じ結果が得られたが、TEM法ではおよそ1ヶ月の時間を要したのに対し、本法ではおよそ半日と極めて短時間で評価が可能であることに加え、定量性や再現性の観点からは本法が良好であると判断された。また、同じ操作で得たスラリーをカラム内で微粒子の流れと直行する方向からの溶液流れを利用することで微粒子に負荷を印加するタイプのFFF法でも測定したが、カラム内に設置されているメンブレンフィルタへの吸着が著しく、確からしい結果を得ることができなかった。   This result was almost the same as when the precipitates in the same material were evaluated using transmission electron microscopy (TEM method), whereas the TEM method took about one month. In addition to being able to evaluate in an extremely short time of about half a day, this method was judged to be good from the viewpoint of quantitativeness and reproducibility. In addition, the slurry obtained by the same operation was measured by the FFF method of applying a load to the fine particles by using the solution flow from the direction perpendicular to the fine particle flow in the column, but it was installed in the column. Adsorption to the membrane filter was remarkable, and a reliable result could not be obtained.

なお、今回の大きさであればカラム内でサイズ分離した後のスラリーをそのままICP質量分析装置に導入しても分解可能であると考えられる。但し、粒径が1μmを超えると粒子の種類によってはプラズマ内での分解が充分でなくなり、正確さの低下に繋がるため、注意・確認が必要である。   In addition, if it is this size, even if it introduce | transduces the slurry after size separation in a column as it is to an ICP mass spectrometer as it is, it is thought that it can decompose | disassemble. However, if the particle size exceeds 1 μm, depending on the type of particles, decomposition in the plasma may not be sufficient, leading to a decrease in accuracy, so caution and confirmation are required.

1 電解装置
2 容器
3 電解液
4 陽極電極
5 試料
6 定電流電源
7 固定用治具
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Container 3 Electrolyte solution 4 Anode electrode 5 Sample 6 Constant current power supply 7 Fixing jig

Claims (4)

金属材料中の微粒子を抽出する抽出ステップと、
前記抽出ステップによって抽出された微粒子を液体中に分散させることによって微粒子分散溶液を調製する分散ステップと、
前記分散ステップによって調製された微粒子分散溶液に対し遠心力を印加することによって微粒子分散溶液中の微粒子を粒径毎に分級する分級ステップと、
前記分級ステップによって分級された粒径毎の微粒子の体積分率を算出する算出ステップと、
を含むことを特徴とする金属中微粒子の粒径分布測定方法。
An extraction step for extracting fine particles in the metal material;
A dispersion step of preparing a fine particle dispersion solution by dispersing the fine particles extracted in the extraction step in a liquid;
A classification step of classifying the fine particles in the fine particle dispersion solution for each particle size by applying centrifugal force to the fine particle dispersion solution prepared by the dispersion step;
A calculation step of calculating a volume fraction of fine particles for each particle size classified by the classification step;
A method for measuring the particle size distribution of fine particles in a metal.
前記分級ステップは、フィールドフローフラクショネーション法を利用して微粒子分散溶液中の微粒子を連続的に粒径毎に分級するステップを含み、
前記算出ステップは、前記フィールドフローフラクショネーション法によって連続的に分級される微粒子を誘導結合プラズマ発光分光分析装置又は誘導結合プラズマ質量分析装置に導入することにより、粒径毎の微粒子の体積分率を算出するステップを含む
ことを特徴とする請求項1に記載の金属中微粒子の粒径分布測定方法。
The classifying step includes a step of continuously classifying the fine particles in the fine particle dispersion solution for each particle size using a field flow fractionation method,
The calculation step includes introducing the fine particles continuously classified by the field flow fractionation method into an inductively coupled plasma emission spectrometer or an inductively coupled plasma mass spectrometer, so that the volume fraction of the fine particles for each particle size is obtained. The method of measuring a particle size distribution of fine particles in metal according to claim 1, further comprising:
前記算出ステップは、前記粒径毎の微粒子の体積分率から微粒子の個数分布を算出するステップを含むことを特徴とする請求項1又は2に記載の金属中微粒子の粒径分布測定方法。   The particle size distribution measuring method for fine particles in metal according to claim 1, wherein the calculating step includes a step of calculating a number distribution of fine particles from a volume fraction of fine particles for each particle size. 測定対象の微粒子の粒径が1μm以下であることを特徴とする請求項1〜3のうち、いずれか1項に記載の金属中微粒子の粒径分布測定方法。   The particle size distribution measuring method for fine particles in metal according to any one of claims 1 to 3, wherein the particle size of the fine particles to be measured is 1 µm or less.
JP2012162877A 2012-07-23 2012-07-23 Measuring method for particle size distribution of fine particle in metal Pending JP2014021060A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162877A JP2014021060A (en) 2012-07-23 2012-07-23 Measuring method for particle size distribution of fine particle in metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162877A JP2014021060A (en) 2012-07-23 2012-07-23 Measuring method for particle size distribution of fine particle in metal

Publications (1)

Publication Number Publication Date
JP2014021060A true JP2014021060A (en) 2014-02-03

Family

ID=50196062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162877A Pending JP2014021060A (en) 2012-07-23 2012-07-23 Measuring method for particle size distribution of fine particle in metal

Country Status (1)

Country Link
JP (1) JP2014021060A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197031A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Nanoparticle size measurement method
WO2018092573A1 (en) * 2016-11-16 2018-05-24 株式会社堀場製作所 Particle diameter distribution measuring device, particle diameter distribution measuring method, and program for particle diameter distribution measuring device
JP2018130670A (en) * 2017-02-15 2018-08-23 新日鐵住金株式会社 Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
WO2021131602A1 (en) * 2019-12-24 2021-07-01 株式会社島津製作所 Data processing device, analysis device, and data processing method
WO2021235169A1 (en) * 2020-05-20 2021-11-25 国立研究開発法人産業技術総合研究所 Number based particle diameter distribution measurement method and measurement system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131175A1 (en) * 2008-04-25 2009-10-29 新日本製鐵株式会社 Method of determining particle size distribution of fine particles contained in metallic material
JP2010127790A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method of measuring particle size distribution of particulate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131175A1 (en) * 2008-04-25 2009-10-29 新日本製鐵株式会社 Method of determining particle size distribution of fine particles contained in metallic material
JP2010127790A (en) * 2008-11-28 2010-06-10 Jfe Steel Corp Method of measuring particle size distribution of particulate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197031A (en) * 2015-04-02 2016-11-24 新日鐵住金株式会社 Nanoparticle size measurement method
WO2018092573A1 (en) * 2016-11-16 2018-05-24 株式会社堀場製作所 Particle diameter distribution measuring device, particle diameter distribution measuring method, and program for particle diameter distribution measuring device
JPWO2018092573A1 (en) * 2016-11-16 2019-10-17 株式会社堀場製作所 Particle size distribution measuring device, particle size distribution measuring method, and program for particle size distribution measuring device
US11047786B2 (en) 2016-11-16 2021-06-29 Horiba, Ltd. Apparatus and method for measuring particle size distribution, and program for particle size distribution measuring apparatus
JP2018130670A (en) * 2017-02-15 2018-08-23 新日鐵住金株式会社 Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
WO2021131602A1 (en) * 2019-12-24 2021-07-01 株式会社島津製作所 Data processing device, analysis device, and data processing method
WO2021235169A1 (en) * 2020-05-20 2021-11-25 国立研究開発法人産業技術総合研究所 Number based particle diameter distribution measurement method and measurement system

Similar Documents

Publication Publication Date Title
TWI403714B (en) Determination of Particle Size Distribution of Microparticles in Metallic Materials
Montaño et al. Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times
Wells et al. Marine submicron particles
JP2014021060A (en) Measuring method for particle size distribution of fine particle in metal
KR101152438B1 (en) Method for analysis of metallic material
WO2015151226A1 (en) Particle analysis device and particle analysis method
JPH0146813B2 (en)
US20180200728A1 (en) Method for the selective purification of aerosols
Wilbur et al. Characterization of nanoparticles in aqueous samples by ICP-MS
Lee et al. Characterization of colloidal nanoparticles in mixtures with polydisperse and multimodal size distributions using a particle tracking analysis and electrospray-scanning mobility particle sizer
JP5277906B2 (en) Measuring method of particle size distribution of fine particles
JP4972784B2 (en) Analysis method of fine particles in steel
Óvári et al. Total reflection X-ray fluorescence spectrometric determination of element inlets from mining activities at the upper Tisza catchment area, Hungary
CN105547777A (en) A preparing method of a pig iron standard sample
JP6911368B2 (en) Analytical method for fine particles in steel materials
JP5042806B2 (en) Method for producing metal oxide fine particles, method for evaluating metal oxide fine particles, and metal oxide fine particles
JP6572598B2 (en) Nanoparticle size measurement method
CN109883904B (en) Method for representing distribution of nonmetallic inclusions in large steel ingot by using electrolytic method
CN113552311A (en) Method for analyzing gold content of gold-containing ore sample
JP5359244B2 (en) Method for analyzing precipitates and / or inclusions in a metal sample
JP7307414B1 (en) Detection method, detection support device, detection support program, detection support method
US20230333083A1 (en) Method for detecting nanoplastics in ecosystem using vertical nanogap electrode and raman spectroscopy
Waegeneers ICP-MS: a promising tool in the detection and analysis of nanoparticles
JPH0943151A (en) Particle size distribution measuring method for metal inclusion
WO2022250618A2 (en) Flow cytometry device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209