JP6572598B2 - Nanoparticle size measurement method - Google Patents

Nanoparticle size measurement method Download PDF

Info

Publication number
JP6572598B2
JP6572598B2 JP2015076289A JP2015076289A JP6572598B2 JP 6572598 B2 JP6572598 B2 JP 6572598B2 JP 2015076289 A JP2015076289 A JP 2015076289A JP 2015076289 A JP2015076289 A JP 2015076289A JP 6572598 B2 JP6572598 B2 JP 6572598B2
Authority
JP
Japan
Prior art keywords
particle size
dispersant
nanoparticles
nanoparticle
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015076289A
Other languages
Japanese (ja)
Other versions
JP2016197031A (en
Inventor
大輔 板橋
大輔 板橋
俊介 谷口
俊介 谷口
水上 和実
和実 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2015076289A priority Critical patent/JP6572598B2/en
Publication of JP2016197031A publication Critical patent/JP2016197031A/en
Application granted granted Critical
Publication of JP6572598B2 publication Critical patent/JP6572598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フィールドフローフラクショネーション(field flow fractionation:FFF)を利用した金属材料中の析出物等のナノ粒子の粒径測定方法に関する。   The present invention relates to a method for measuring the particle size of nanoparticles such as precipitates in metal materials using field flow fractionation (FFF).

フィールドフローフラクショネーション(field flow fractionation:FFF)を原理として用いる分析装置は、様々な粒径の微粒子を粒径毎にふるい分け、粒径毎の微粒子の個数密度を測定する装置である。   An analyzer that uses field flow fractionation (FFF) as a principle is a device that screens fine particles having various particle sizes for each particle size and measures the number density of the fine particles for each particle size.

ふるい分けされた微粒子の粒径は、レーザー光を照射して、レイリー散乱光を多角度で検出し、その光の散乱度合いから測定することができる(非特許文献1)。但し、レーザー光の散乱強度は粒径の6乗に比例して小さくなる。このため、特に粒径が50nm以下の微粒子の検出は困難である。その一方で、紫外線(ultra violet:UV)吸収や誘導結合プラズマ(inductively coupled plasma:ICP)発光分析法やICP質量分析法を利用することで、粒径が50nm以下であっても、微粒子の存在や化学成分を検出することが可能である(特許文献1)。しかし、これらの検出手法では微粒子の存在は検出できても、微粒子の粒径を実測することは困難である。そこで、微粒子の粒径の特定には、標準微粒子の透過型電子顕微鏡(transmission electron microscope:TEM)観察で得られた平均粒径(以下、TEM観察平均粒径ということがある)とFFFにおける保持時間(以下、FFF保持時間ということがある)との相関関係を利用したキャリブレーションが行われる。測定対象の微粒子の粒径がシングルナノサイズである場合、キャリブレーションには、金属ナノコロイド粒子が分散した溶液が標準ナノ粒子分散試料として用いられる。   The particle size of the fine particles thus screened can be measured from the degree of light scattering by irradiating laser light, detecting Rayleigh scattered light at multiple angles (Non-Patent Document 1). However, the laser light scattering intensity decreases in proportion to the sixth power of the particle diameter. For this reason, it is particularly difficult to detect fine particles having a particle size of 50 nm or less. On the other hand, by using ultraviolet (UV) absorption, inductively coupled plasma (ICP) emission spectrometry, or ICP mass spectrometry, the presence of fine particles even when the particle size is 50 nm or less. And chemical components can be detected (Patent Document 1). However, even though the presence of fine particles can be detected by these detection methods, it is difficult to actually measure the particle size of the fine particles. Therefore, in order to specify the particle size of the fine particles, the average particle size obtained by transmission electron microscope (TEM) observation of standard fine particles (hereinafter sometimes referred to as TEM observation average particle size) and the retention in FFF Calibration using a correlation with time (hereinafter also referred to as FFF holding time) is performed. When the particle size of the fine particles to be measured is a single nanosize, a solution in which metal nanocolloid particles are dispersed is used as a standard nanoparticle-dispersed sample for calibration.

しかしながら、シングルナノサイズの金属ナノコロイド粒子が分散した溶液を用いて取得されるFFF保持時間とTEM観察平均粒径との相関関係は良好なものとならない。例えば、相関線の直線回帰の決定係数R2が1から大きくずれてしまう。このため、この相関関係を用いて、微粒子の粒径を取得したとしても、その正確性は十分なものとはいえない。 However, the correlation between the FFF retention time obtained using a solution in which single nano-sized metal nanocolloid particles are dispersed and the TEM observation average particle size is not good. For example, the coefficient of determination R 2 for linear regression of the correlation line is greatly deviated from 1. For this reason, even if the particle size of the fine particles is obtained using this correlation, the accuracy is not sufficient.

特開2014−21060号公報JP 2014-21060 A 特許第4572001号公報Japanese Patent No. 4572001

Field Flow Fractionation Handbook, Wiley-Interscience(2000)Field Flow Fractionation Handbook, Wiley-Interscience (2000) K. Songsilawat, J. Shiowatana, A. Siripinyanond, J. Chromatgr, A1218 (2011) 4213K. Songsilawat, J. Shiowatana, A. Siripinyanond, J. Chromatgr, A1218 (2011) 4213

本発明の目的は、上記の問題を解決するために創案されたものであって、測定対象の粒径が10nm以下であっても優れた精度での測定を可能とするナノ粒子の粒径測定方法を提供することにある。   The object of the present invention was devised to solve the above-mentioned problem, and it is possible to measure the particle size of a nanoparticle that enables measurement with excellent accuracy even when the particle size of the measurement object is 10 nm or less. It is to provide a method.

本発明に係るナノ粒子の粒径測定方法は、標準ナノ粒子分散試料に含まれる標準ナノ粒子を透過型電子顕微鏡にて観察し、前記標準ナノ粒子の第1の平均粒径を取得する工程と、前記標準ナノ粒子分散試料に含まれる第1の分散剤の粒径及び前記第1の平均粒径から前記標準ナノ粒子の第1の水力学的粒径を取得する工程と、前記標準ナノ粒子分散試料のフィールドフローフラクショネーションにおける第1の保持時間を取得する工程と、前記第1の水力学的粒径と前記第1の保持時間との相関線を作成する工程と、ナノ粒子及び第2の分散剤を含むナノ粒子分散試料のフィールドフローフラクショネーションにおける第2の保持時間を取得する工程と、前記第2の保持時間に対応する第2の水力学的粒径を前記相関線から取得する工程と、前記第2の水力学的粒径及び前記第2の分散剤の粒径から前記ナノ粒子の粒径を取得する工程と、を有することを特徴とする。   The method for measuring the particle size of nanoparticles according to the present invention includes a step of observing standard nanoparticles contained in a standard nanoparticle-dispersed sample with a transmission electron microscope and obtaining a first average particle size of the standard nanoparticles. Obtaining a first hydrodynamic particle size of the standard nanoparticles from the particle size of the first dispersant contained in the standard nanoparticle-dispersed sample and the first average particle size; and the standard nanoparticles Obtaining a first retention time in field flow fractionation of a dispersed sample; creating a correlation line between the first hydraulic particle size and the first retention time; A step of obtaining a second retention time in field flow fractionation of a nanoparticle-dispersed sample containing two dispersants, and a second hydraulic particle size corresponding to the second retention time from the correlation line A process of acquiring; A step of acquiring a particle size of serial second hydrodynamic particle size and the nanoparticles from the particle size of the second dispersing agent, and having a.

本発明に係るナノ粒子の粒径測定方法によれば、測定対象の粒径が10nm以下であっても高精度でナノ粒子の粒径を測定することができる。   According to the method for measuring the particle size of nanoparticles according to the present invention, the particle size of the nanoparticles can be measured with high accuracy even if the particle size of the measurement target is 10 nm or less.

FFF法のサイズ分離原理を示す図である。It is a figure which shows the size separation principle of FFF method. グルタチオン、タンニン酸、ドデシル硫酸ナトリウムの構造式を示す図である。It is a figure which shows the structural formula of glutathione, tannic acid, and sodium dodecyl sulfate. TEM観察平均粒径dTEMとFFF保持時間RTとの相関線、及び水力学的粒径dHDとFFF保持時間RTとの相関線を示す図である。It is a figure which shows the correlation line of TEM observation average particle diameter dTEM and FFF retention time RT, and the correlation line of hydraulic particle diameter dHD and FFF retention time RT. ICPプラズマ質量分析の結果を示す図である。It is a figure which shows the result of ICP plasma mass spectrometry. TEM観察による析出物の粒径の測定結果を示す図である。It is a figure which shows the measurement result of the particle size of the precipitate by TEM observation.

本願発明者らは、従来の技術において、微小な粒子、特にシングルナノサイズの粒子におけるTEM観察平均粒径とFFF保持時間との相関関係が良好なものとならない原因について検討した。この結果、相関関係を取得するためのFFF分析に供する標準ナノ粒子分散試料に含まれる分散剤の種類が当該標準ナノ粒子分散試料に含まれるナノ粒子の粒径に応じて異なっていることが一因であることが判明した。   The inventors of the present application examined the cause of the poor correlation between the TEM observation average particle size and the FFF retention time in the conventional technology, particularly in the case of fine particles, particularly single nano-sized particles. As a result, the type of dispersant contained in the standard nanoparticle dispersed sample subjected to FFF analysis for obtaining the correlation is different depending on the particle size of the nanoparticle contained in the standard nanoparticle dispersed sample. It turned out to be a cause.

一般に、標準ナノ粒子分散試料として用いられる金属ナノコロイド粒子が分散した溶液の作製には溶液還元法が用いられている。この手法は分散剤を溶媒中に予め拡散させた状態で種となる金属イオンを還元していく手法である。分散剤は、当該溶液中で金属ナノコロイド粒子を高効率で分散させるために用いられており、当該溶液中で金属ナノコロイド粒子の表面に付着している。そして、詳細は後述するが、FFF分析に供された場合には、FFF装置の分離層内において、金属ナノコロイド粒子とこれに付着した分散剤とが一体化したものが一つの構造物として移動している。また、分散剤としては、金属ナノコロイド粒子の粒径に適したものが用いられている。例えば、粒径が2.1nmの金属ナノコロイド粒子の溶液にはグルタチオンが用いられ、粒径が10.4nmの金属ナノコロイド粒子の溶液にはタンニン酸が用いられる。種類が相違する分散剤の間では、分散剤の粒径も相違する。そして、FFF保持時間は上記構造物の粒径、すなわち水力学的粒径の影響を受ける。従って、このFFF保持時間は、金属ナノコロイド粒子の粒径だけでなく、分散剤の粒径の影響も受ける。   In general, a solution reduction method is used for preparing a solution in which metal nanocolloid particles used as a standard nanoparticle-dispersed sample are dispersed. This technique is a technique in which metal ions that become seeds are reduced in a state in which a dispersant is previously diffused in a solvent. The dispersant is used to disperse the metal nanocolloid particles in the solution with high efficiency, and is attached to the surface of the metal nanocolloid particles in the solution. As will be described in detail later, in the case of FFF analysis, in the separation layer of the FFF device, the metal nanocolloid particles and the dispersant adhering thereto move together as a single structure. doing. In addition, as the dispersant, those suitable for the particle size of the metal nanocolloid particles are used. For example, glutathione is used for a solution of metal nanocolloid particles having a particle size of 2.1 nm, and tannic acid is used for a solution of metal nanocolloid particles having a particle size of 10.4 nm. Among different types of dispersants, the particle size of the dispersant is also different. The FFF holding time is affected by the particle size of the structure, that is, the hydraulic particle size. Therefore, the FFF retention time is influenced not only by the particle size of the metal nanocolloid particles but also by the particle size of the dispersant.

その一方で、TEM観察平均粒径は分散剤の粒径の影響を受けない。これは、TEM観察は乾燥状態で行われるからである。   On the other hand, the TEM observation average particle size is not affected by the particle size of the dispersant. This is because TEM observation is performed in a dry state.

そして、相関線(検量線)を作成する際に粒径が相違する複数の標準ナノ粒子分散試料についての測定が行われるところ、上記のように、これら標準ナノ粒子分散試料の間で分散剤の種類は必ずしも共通したものとなっていない。TEM観察平均粒径は分散剤の種類の影響を受けず、FFF保持時間が分散剤の種類の影響を受けるため、TEM観察平均粒径とFFF保持時間との間に良好な相関関係が得られないのである。   Then, when creating a correlation line (calibration curve), measurement is performed on a plurality of standard nanoparticle dispersion samples having different particle diameters. Types are not necessarily common. The average TEM observation particle size is not affected by the type of dispersant, and the FFF retention time is affected by the type of dispersant, so a good correlation is obtained between the TEM observation average particle size and the FFF retention time. There is no.

ここで、図1を用いて、FFF法のサイズ分離原理を説明する。FFF装置の溶離流出液としては、界面活性剤を含む分離溶液を用いて、まず、クロスフロー14と呼ばれる液の流れをセルの上方から下方セルに向かって生じさせながら、分離層16の左側と右側からも液を流し、その間に微粒子を含むサンプル溶液15を添加する。すると、下方の分離膜21には大きなサイズの大粒子20がクロスフロー14の流れによって押し付けられて張り付く。その一方で、比較的サイズが大きな中粒子19及び小さな小粒子18は、クロスフロー14の流れに打ち勝つだけのブラウン運動を起こすため、分離層16の下側に位置する分離膜21に押し付けられることなく、分離層16の中にサイズ毎に浮遊する状態になる。これをフォーカシングと呼ぶ。この状態にすることで、分離層16の中に粒子がサイズ毎に並び替えられることとなる。その後、分離層16の左右から押し付けていた流れを変えて、チャネルフロー17により、例えば図1の左から右に向かって分離層16に存在する粒子を右側に押し出していく。   Here, the size separation principle of the FFF method will be described with reference to FIG. As the elution effluent of the FFF apparatus, a separation solution containing a surfactant is used. First, a liquid flow called a cross flow 14 is generated from the upper side of the cell toward the lower cell, The liquid is also flowed from the right side, and the sample solution 15 containing fine particles is added therebetween. Then, large particles 20 having a large size are pressed and stuck to the lower separation membrane 21 by the flow of the cross flow 14. On the other hand, the relatively large medium particles 19 and small small particles 18 cause Brownian motion to overcome the flow of the cross flow 14, so that they are pressed against the separation membrane 21 located below the separation layer 16. Instead, it floats in the separation layer 16 for each size. This is called focusing. In this state, the particles are rearranged for each size in the separation layer 16. Thereafter, the flow pressed from the left and right of the separation layer 16 is changed, and the channel flow 17 pushes particles present in the separation layer 16 to the right, for example, from left to right in FIG.

このとき、上から分離膜21に向かって押さえつける役割のクロスフロー14の圧力を徐々にゼロまで減らしていくと、分離膜21に押さえつけられていた粒子が、徐々に小さな粒子から大きな粒子の順で右側から排出される。チャネルフローの右側には、図示していない出口の下流側に光散乱検出器が設けられており、粒子からの散乱光強度の時間変化が記録される。FFF保持時間は、各ピークの時刻までの時間である。ここで、時間の起点(t=0)は、毎測定で同じ条件となるように適宜決めてよい。例えば、フォーカシングの開始あるいはチャネルフローの流出開始のタイミングとすることができる。   At this time, when the pressure of the cross flow 14 that plays a role of pressing toward the separation membrane 21 from the top is gradually reduced to zero, the particles pressed against the separation membrane 21 are gradually increased from small particles to large particles. It is discharged from the right side. On the right side of the channel flow, a light scattering detector is provided on the downstream side of the outlet (not shown), and the time change of the scattered light intensity from the particles is recorded. The FFF holding time is the time until the time of each peak. Here, the starting point of time (t = 0) may be appropriately determined so as to satisfy the same conditions for each measurement. For example, the timing can be the start of focusing or the start of outflow of channel flow.

なお、ここでは、分離するためにクロスフロー液による押さえつけ力とブラウン運動とを組み合わせることにより、サイズ分離する例を示したが、FFFの分離原理としては、この他にも、重力、電場、磁場、温度勾配等をかけることにより、より精密に粒子を分離することができる。   In addition, although the example which carried out size separation by combining the pressing force by a crossflow liquid and Brownian motion for separation was shown here, as a separation principle of FFF, besides this, gravity, electric field, magnetic field By applying a temperature gradient or the like, the particles can be separated more precisely.

サンプル溶液15として金属ナノコロイド粒子分散試料が用いられる場合、上記のように、分離層16内において、金属ナノコロイド粒子とこれに付着した分散剤とが一体化したものが一つの構造物として移動する。そして、FFF保持時間は上記構造物の粒径、すなわち水力学的粒径の影響を受ける。従って、このFFF保持時間は、金属ナノコロイド粒子の粒径だけでなく、分散剤の粒径の影響も受ける。   When a metal nanocolloid particle-dispersed sample is used as the sample solution 15, as described above, in the separation layer 16, the metal nanocolloid particles and the dispersant attached thereto move as a single structure. To do. The FFF holding time is affected by the particle size of the structure, that is, the hydraulic particle size. Therefore, the FFF retention time is influenced not only by the particle size of the metal nanocolloid particles but also by the particle size of the dispersant.

次に、本発明の実施形態について添付の図面を参照しながら具体的に説明する。本実施形態では、上記の知見に基づき、予め標準ナノ粒子分散試料を用いて水力学的粒径と各分画のFFF保持時間RTとの相関線(検量線)を作成しておき、これを用いながら測定対象のナノ粒子分散試料中に分散したナノ粒子の粒径を特定する。   Next, embodiments of the present invention will be specifically described with reference to the accompanying drawings. In this embodiment, based on the above knowledge, a correlation line (calibration curve) between the hydrodynamic particle size and the FFF retention time RT of each fraction is prepared in advance using a standard nanoparticle-dispersed sample. The particle size of the nanoparticles dispersed in the nanoparticle dispersed sample to be measured is specified while being used.

先ず、相関線の作成について説明する。相関線の作成に際しては、粒径が相違する種々の標準ナノ粒子分散試料について、TEM観察平均粒径dTEM及び分散剤の粒径dDPを取得する。   First, creation of a correlation line will be described. In creating the correlation line, the TEM observation average particle diameter dTEM and the particle diameter dDP of the dispersant are obtained for various standard nanoparticle dispersed samples having different particle diameters.

TEM観察平均粒径dTEMは、TEM観察により取得することができる。本実施形態では、TEMで観察される粒子の各最大径を手動で測定し、その平均値をTEM観察平均粒径dTEMとする。   The TEM observation average particle diameter dTEM can be obtained by TEM observation. In the present embodiment, each maximum diameter of particles observed with a TEM is manually measured, and the average value is defined as a TEM observation average particle diameter dTEM.

分散剤の粒径dDPは、動的光散乱法、静的光散乱法等によって測定することができる。一般に、市販の金属ナノコロイド粒子が分散した溶液に含まれる分散剤の種類はその販売元により表示されている。そして、分散剤の種類が特定されれば、同種の分散剤を含む溶液を調製し、動的光散乱法、静的光散乱法等によって当該溶液中の分散剤の粒径を特定することができる。また、分散剤の粒径はデータベースとして蓄積することができ、粒径が既知の分散剤を使用する場合には、溶媒の種類や分散剤の濃度等が大きく変わらない限りは、既知の粒径を適用することができるので、新たに粒径を測定しなくてもよい。   The particle diameter dDP of the dispersant can be measured by a dynamic light scattering method, a static light scattering method, or the like. In general, the type of dispersant contained in a solution in which commercially available metal nanocolloid particles are dispersed is indicated by the vendor. If the type of dispersant is specified, a solution containing the same type of dispersant can be prepared, and the particle size of the dispersant in the solution can be specified by a dynamic light scattering method, a static light scattering method, or the like. it can. In addition, the particle size of the dispersant can be accumulated as a database, and when using a dispersant with a known particle size, the known particle size is not limited unless the type of solvent or the concentration of the dispersant is significantly changed. Therefore, it is not necessary to newly measure the particle size.

次いで、粒径が相違する種々の標準ナノ粒子分散試料について、TEM観察平均粒径dTEM及び分散剤の粒径dDPから水力学的粒径dHDを取得する。水力学的粒径dHDは次の式(1)により求められる。
dHD=dTEM+2×dDP ・・・(1)
Next, for various standard nanoparticle dispersed samples having different particle diameters, the hydrodynamic particle diameter dHD is obtained from the TEM observation average particle diameter dTEM and the particle diameter dDP of the dispersant. The hydrodynamic particle diameter dHD is obtained by the following equation (1).
dHD = dTEM + 2 × dDP (1)

また、標準ナノ粒子分散試料ごとにFFF保持時間RTを取得する。そして、標準ナノ粒子分散試料の各々の水力学的粒径dHD及びFFF保持時間RTを用いて、水力学的粒径dHDとFFF保持時間RTとの相関線を作成する。   Further, the FFF retention time RT is acquired for each standard nanoparticle dispersed sample. Then, a correlation line between the hydrodynamic particle size dHD and the FFF retention time RT is created using the hydrodynamic particle size dHD and the FFF retention time RT of each standard nanoparticle dispersed sample.

また、測定対象とするナノ粒子分散試料のFFF保持時間RTxを取得する。次いで、このFFF保持時間RTxを相関線に照らし合わせて、FFF保持時間RTxに対応する水力学的粒径dHDxを取得する。その後、このナノ粒子分散試料について、水力学的粒径dHDx及び分散剤の粒径dDPxからナノ粒子分散試料に含まれるナノ粒子の粒径dxを取得する。粒径dxは次の式(2)により求められる。ここで、粒径dDPxはナノ粒子分散試料に含まれる分散剤の粒径である。
dx=dHDx−2×dDPx ・・・(2)
Further, the FFF retention time RTx of the nanoparticle dispersed sample to be measured is acquired. Next, the FFF retention time RTx is collated with the correlation line to obtain the hydraulic particle size dHDx corresponding to the FFF retention time RTx. Thereafter, for this nanoparticle-dispersed sample, the particle size dx of the nanoparticles contained in the nanoparticle-dispersed sample is obtained from the hydrodynamic particle size dHDx and the particle size dDPx of the dispersant. The particle size dx is obtained by the following equation (2). Here, the particle size dDPx is the particle size of the dispersant contained in the nanoparticle-dispersed sample.
dx = dHDx−2 × dDPx (2)

このようにして、測定対象とするナノ粒子分散試料に含まれるナノ粒子の粒径を測定することができる。   In this way, the particle size of the nanoparticles contained in the nanoparticle dispersed sample to be measured can be measured.

本実施形態によれば、TEM観察平均粒径とFFF保持時間との相関線ではなく、水力学的粒径とFFF保持時間との相関線を用いているため、優れた精度でナノ粒子の粒径を測定することができる。また、本実施形態を、例えば、鋼材から抽出した微細な析出物のサイズ個数密度分布の測定に適用した場合には、析出強化量の見積もりの正確性が向上し、鋼材の設計指針としての利用価値が向上するといった利点が得られる。FFF装置を用いる分析方法は、バイオテクノロジー、ナノテクノロジー、有機材料等の分野において広く使用されている。本実施形態はこれらの分析方法に適用することもできる。   According to this embodiment, since the correlation line between the hydrodynamic particle size and the FFF retention time is used instead of the correlation line between the TEM observation average particle size and the FFF retention time, the nanoparticle particles can be obtained with excellent accuracy. The diameter can be measured. Moreover, when this embodiment is applied to, for example, the measurement of the size number density distribution of fine precipitates extracted from steel, the accuracy of estimation of the precipitation strengthening amount is improved and used as a design guide for steel. Benefits include increased value. Analysis methods using FFF devices are widely used in fields such as biotechnology, nanotechnology, and organic materials. The present embodiment can also be applied to these analysis methods.

次に、本願発明者らが行った実験に基づいて本発明の効果について更に詳細かつ具体的に説明する。   Next, the effects of the present invention will be described in more detail and specifically based on experiments conducted by the present inventors.

この実験では、標準ナノ粒子分散試料として、4種類のAu標準ナノ粒子分散試料を用いた。これら4種類のAu標準ナノ粒子分散試料に含まれるAu標準ナノ粒子のTEM観察を行ったところ、TEM観察平均粒径dTEMは2.1nm〜10.4nmであった。また、平均粒径が2.1nmのAu標準ナノ粒子分散試料には分散剤としてグルタチオン(GSH)が含まれ、その他の3種類のAu標準ナノ粒子分散溶試料は分散剤としてタンニン酸が含まれていた。図2(a)にグルタチオンの構造式を示し、図2(b)にタンニン酸の構造式を示す。これら分散剤の粒径dDPを測定した結果及び分子量等を表1に示す。なお、粒径dDPは、分散剤を超純水中に分散させた液体試料を調製し、25℃にて、Malvern社製の動的光散乱装置ゼータサイザーナノSを用いて測定された90°散乱光から算出した値である。   In this experiment, four kinds of Au standard nanoparticle dispersion samples were used as standard nanoparticle dispersion samples. When TEM observation of Au standard nanoparticles contained in these four types of Au standard nanoparticle dispersion samples was performed, the TEM observation average particle diameter dTEM was 2.1 nm to 10.4 nm. In addition, an Au standard nanoparticle dispersion sample having an average particle diameter of 2.1 nm contains glutathione (GSH) as a dispersant, and the other three kinds of Au standard nanoparticle dispersion samples contain tannic acid as a dispersant. It was. FIG. 2A shows the structural formula of glutathione, and FIG. 2B shows the structural formula of tannic acid. The results of measuring the particle diameter dDP of these dispersants and the molecular weight are shown in Table 1. The particle size dDP was 90 ° measured by preparing a liquid sample in which a dispersant was dispersed in ultrapure water and using a dynamic light scattering device Zeta Sizer Nano S manufactured by Malvern at 25 ° C. It is a value calculated from scattered light.

Figure 0006572598
Figure 0006572598

その後、各Au標準ナノ粒子分散試料について、展開溶媒として0.05wt%のドデシル硫酸ナトリウム(SDS)溶液を1mL/minの流速で流しながら、FFF保持時間RTを取得した。このときの条件を表2に示す。図2(c)にタンニン酸の構造式を示す。   Thereafter, for each Au standard nanoparticle-dispersed sample, an FFF retention time RT was obtained while flowing 0.05 wt% sodium dodecyl sulfate (SDS) solution as a developing solvent at a flow rate of 1 mL / min. Table 2 shows the conditions at this time. FIG. 2C shows the structural formula of tannic acid.

Figure 0006572598
Figure 0006572598

次いで、TEM観察平均粒径dTEMとFFF保持時間RTとの相関線を作製した。この結果を図3(a)に示す。この相関線の直線回帰の決定係数R2は0.9801であった。 Next, a correlation line between the TEM observation average particle diameter dTEM and the FFF retention time RT was prepared. The result is shown in FIG. The coefficient of determination R 2 for linear regression of this correlation line was 0.9801.

その一方で、(1)式を用いてTEM観察平均粒径dTEM及び分散剤の粒径dDPから水力学的粒径dHDを求め、水力学的粒径dHDとFFF保持時間RTとの相関線を作成した。この結果を図3(b)に示す。この相関線の直線回帰の決定係数R2は0.9978であり、非常に良好な値が得られた。 On the other hand, the hydrodynamic particle diameter dHD is obtained from the TEM observation average particle diameter dTEM and the dispersant particle diameter dDP using the equation (1), and the correlation line between the hydraulic particle diameter dHD and the FFF retention time RT is obtained. Created. The result is shown in FIG. The coefficient of determination R 2 for linear regression of this correlation line was 0.9978, and a very good value was obtained.

その後、1gのモデル鋼材中から電解抽出した析出物が分散したナノ粒子分散試料を作製した。電解抽出操作は、アセチルアセトン系電解液に予め界面活性剤等の分散剤を適宜添加しておき、定電流電解抽出(500mA、2hr)で行った。そして、分散剤として分子量が288.38g/molのドデシル硫酸ナトリウムを用いてナノ粒子分散試料のFFF保持時間RTxを取得し、このFFF保持時間RTxを相関線に照らし合わせて、水力学的粒径dHDxを取得した。続いて、(2)式を用いて水力学的粒径dHDx及び分散剤の粒径dDPxからナノ粒子分散試料に含まれるナノ粒子の粒径dxを取得した。ドデシル硫酸ナトリウムの動的光散乱法によって吸着サイズを測定したところ、この値は0.73nmであり、これを分散剤の粒径dDPxとして用いた。   Then, the nanoparticle dispersion | distribution sample in which the precipitate extracted electrolytically from 1g model steel materials was produced. The electrolytic extraction operation was performed by constant current electrolytic extraction (500 mA, 2 hr) by adding a dispersant such as a surfactant as appropriate to the acetylacetone-based electrolytic solution in advance. Then, using a sodium dodecyl sulfate having a molecular weight of 288.38 g / mol as a dispersant, the FFF retention time RTx of the nanoparticle dispersion sample is obtained, and the FFF retention time RTx is compared with the correlation line to obtain a hydraulic particle size. dHDx was obtained. Subsequently, the particle size dx of the nanoparticles contained in the nanoparticle-dispersed sample was obtained from the hydrodynamic particle size dHDx and the particle size dDPx of the dispersant using the equation (2). When the adsorption size was measured by the dynamic light scattering method of sodium dodecyl sulfate, this value was 0.73 nm, and this was used as the particle size dDPx of the dispersant.

また、FFF装置からの流出液を逐次ICPプラズマ質量分析装置(ICP−MS)に導入してTiの信号強度を測定した。この結果を図4に示す。図4の横軸は、上記の方法で取得した粒径dxを示し、縦軸はTiの信号強度を示す。図4において信号強度のピークを示す粒径dxは3.8nmであった。一方、TEM観察平均粒径とFFF保持時間との相関線を用いて取得した粒径は3.5nmであった。   Further, the effluent from the FFF apparatus was sequentially introduced into an ICP plasma mass spectrometer (ICP-MS), and the signal intensity of Ti was measured. The result is shown in FIG. The horizontal axis in FIG. 4 indicates the particle size dx obtained by the above method, and the vertical axis indicates the signal intensity of Ti. In FIG. 4, the particle size dx showing the peak of the signal intensity was 3.8 nm. On the other hand, the particle size acquired using the correlation line between the TEM observation average particle size and the FFF retention time was 3.5 nm.

また、ナノ粒子分散試料中の析出物の粒径をTEM観察により測定したところ、図5に示す結果が得られた。この結果から、ピークの粒径は4.1nmであった。なお、析出物の形状は板状であり、このTEM観察では各析出物の最大径を手動で測定した。   Moreover, when the particle size of the precipitate in the nanoparticle-dispersed sample was measured by TEM observation, the results shown in FIG. 5 were obtained. From this result, the particle size of the peak was 4.1 nm. In addition, the shape of the precipitate was plate-shaped, and in this TEM observation, the maximum diameter of each precipitate was measured manually.

以上のことから、水力学的粒径を用いる方法によれば、より正確性が高い粒径の測定が可能であるといえる。   From the above, it can be said that according to the method using the hydraulic particle size, it is possible to measure the particle size with higher accuracy.

14:クロスフロー
15:サンプル溶液
16:分離層
17:チャネルフロー
18:小粒子
19:中粒子
20:大粒子
21:分離膜
14: Cross flow 15: Sample solution 16: Separation layer 17: Channel flow 18: Small particles 19: Medium particles 20: Large particles 21: Separation membrane

Claims (3)

標準ナノ粒子分散試料に含まれる標準ナノ粒子を透過型電子顕微鏡にて観察し、前記標準ナノ粒子の第1の平均粒径を取得する工程と、
前記標準ナノ粒子分散試料に含まれる第1の分散剤の粒径及び前記第1の平均粒径から前記標準ナノ粒子の第1の水力学的粒径を取得する工程と、
前記標準ナノ粒子分散試料のフィールドフローフラクショネーションにおける第1の保持時間を取得する工程と、
前記第1の水力学的粒径と前記第1の保持時間との相関線を作成する工程と、
ナノ粒子及び第2の分散剤を含むナノ粒子分散試料のフィールドフローフラクショネーションにおける第2の保持時間を取得する工程と、
前記第2の保持時間に対応する第2の水力学的粒径を前記相関線から取得する工程と、
前記第2の水力学的粒径及び前記第2の分散剤の粒径から前記ナノ粒子の粒径を取得する工程と、
を有することを特徴とするナノ粒子の粒径測定方法。
Observing standard nanoparticles contained in the standard nanoparticle-dispersed sample with a transmission electron microscope, and obtaining a first average particle size of the standard nanoparticles;
Obtaining a first hydrodynamic particle size of the standard nanoparticles from the particle size of the first dispersant contained in the standard nanoparticle dispersion sample and the first average particle size;
Obtaining a first retention time in field flow fractionation of the standard nanoparticle dispersed sample;
Creating a correlation line between the first hydraulic particle size and the first retention time;
Obtaining a second retention time in field flow fractionation of a nanoparticle dispersed sample comprising nanoparticles and a second dispersant;
Obtaining a second hydraulic particle size corresponding to the second retention time from the correlation line;
Obtaining the particle size of the nanoparticles from the second hydraulic particle size and the particle size of the second dispersant;
A method for measuring the particle size of nanoparticles, comprising:
前記第1の平均粒径をdTEM、前記第1の水力学的粒径をdHD、前記第1の分散剤の粒径をdDPとしたとき、下記(1)式が成り立ち、
前記第2の水力学的粒径をdHDx、前記第2の分散剤の粒径をdDPx、前記ナノ粒子の粒径をdxとしたとき、下記(2)式が成り立つことを特徴とする請求項1に記載のナノ粒子の粒径測定方法。
dHD=dTEM+2×dDP ・・・(1)
dx =dHDx−2×dDP ・・・(2)
When the first average particle size is dTEM, the first hydraulic particle size is dHD, and the particle size of the first dispersant is dDP, the following equation (1) holds:
The following equation (2) is satisfied, where dHDx is the second hydraulic particle size, dDPx is the particle size of the second dispersant, and dx is the particle size of the nanoparticles. 2. The method for measuring the particle size of nanoparticles according to 1.
dHD = dTEM + 2 × dDP (1)
dx = dHDx−2 × dDP x (2)
前記第1の分散剤を含む第1の溶液を用いて動的光散乱法により前記第1の分散剤の粒径を測定し、
前記第2の分散剤を含む第2の溶液を用いて動的光散乱法により前記第2の分散剤の粒径を測定することを特徴とする請求項1又は2に記載のナノ粒子の粒径測定方法。
The particle size of the first dispersant is measured by a dynamic light scattering method using the first solution containing the first dispersant,
3. The nanoparticle particle according to claim 1, wherein the particle size of the second dispersant is measured by a dynamic light scattering method using the second solution containing the second dispersant. Diameter measurement method.
JP2015076289A 2015-04-02 2015-04-02 Nanoparticle size measurement method Active JP6572598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015076289A JP6572598B2 (en) 2015-04-02 2015-04-02 Nanoparticle size measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015076289A JP6572598B2 (en) 2015-04-02 2015-04-02 Nanoparticle size measurement method

Publications (2)

Publication Number Publication Date
JP2016197031A JP2016197031A (en) 2016-11-24
JP6572598B2 true JP6572598B2 (en) 2019-09-11

Family

ID=57358424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015076289A Active JP6572598B2 (en) 2015-04-02 2015-04-02 Nanoparticle size measurement method

Country Status (1)

Country Link
JP (1) JP6572598B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911368B2 (en) * 2017-02-15 2021-07-28 日本製鉄株式会社 Analytical method for fine particles in steel materials
JP7372605B2 (en) 2019-12-24 2023-11-01 株式会社島津製作所 Data processing device, analysis device and data processing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156039A (en) * 1991-01-14 1992-10-20 University Of Utah Procedure for determining the size and size distribution of particles using sedimentation field-flow fractionation
EP2039352A1 (en) * 2007-09-18 2009-03-25 Institut National De La Sante Et De La Recherche Medicale (Inserm) Aqueous-core lipid nanocapsules for encapsulating hydrophilic and/or lipophilic molecules
KR101165162B1 (en) * 2008-04-25 2012-07-11 신닛뽄세이테쯔 카부시키카이샤 Method of determining particle size distribution of fine particles contained in metallic material
JP2013525477A (en) * 2010-05-07 2013-06-20 国立大学法人 東京大学 Iron oxide core / gold shell nanoparticles coated with high density polyalkylene glycol
JP2014021060A (en) * 2012-07-23 2014-02-03 Jfe Steel Corp Measuring method for particle size distribution of fine particle in metal

Also Published As

Publication number Publication date
JP2016197031A (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP4572001B2 (en) Method for measuring particle size distribution of fine particles in metal materials
Majedi et al. Recent advances in the separation and quantification of metallic nanoparticles and ions in the environment
Yang et al. Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry
Ulrich et al. Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach
López-Sanz et al. Analytical metrology for nanomaterials: Present achievements and future challenges
Mitrano et al. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS)
TWI549745B (en) Apparatus and method for mixing solution and monitoring particles in solution
JP6062504B2 (en) Filter evaluation method
Du et al. Measuring number‐concentrations of nanoparticles and viruses in liquids on‐line
Bi et al. Quantitative resolution of nanoparticle sizes using single particle inductively coupled plasma mass spectrometry with the K-means clustering algorithm
Lee et al. Optimisation, evaluation and application of asymmetrical flow field-flow fractionation with single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) to characterise silver nanoparticles in environmental media
WO2010061487A1 (en) Method for analyzing metallic material
JP7350334B2 (en) Particle separation method
JP6572598B2 (en) Nanoparticle size measurement method
Soto-Alvaredo et al. Initial results on the coupling of sedimentation field-flow fractionation (SdFFF) to inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS) for the detection and characterization of TiO 2 nanoparticles
Kim et al. Nanometrology and its perspectives in environmental research
JP5611276B2 (en) Quantification method of gold nanoparticles
Lee et al. Influence of colloidal particles with bimodal size distributions on retention and pressure drop in ultrafiltration membranes
JP2014021060A (en) Measuring method for particle size distribution of fine particle in metal
De Momi et al. Behaviour of environmental aquatic nanocolloids when separated by split-flow thin-cell fractionation (SPLITT)
Hadioui et al. Assessing the fate of silver nanoparticles in surface water using single particle ICP-MS
JP2018130670A (en) Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
JP2009155155A (en) Methods for manufacturing and evaluating metal oxide particulate and the metal oxide particulate
Stephan et al. Analysis of iron nanoparticles in organic solvents used in the semiconductor industry using single particle ICP-MS in reaction mode
Raveendran et al. Ultrasensitive analyte detection by combining nanoparticle-based surface-enhanced Raman scattering (SERS) substrates with multivariate analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190729

R151 Written notification of patent or utility model registration

Ref document number: 6572598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151