JP2014020612A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2014020612A
JP2014020612A JP2012157472A JP2012157472A JP2014020612A JP 2014020612 A JP2014020612 A JP 2014020612A JP 2012157472 A JP2012157472 A JP 2012157472A JP 2012157472 A JP2012157472 A JP 2012157472A JP 2014020612 A JP2014020612 A JP 2014020612A
Authority
JP
Japan
Prior art keywords
compressor
oil
receiver
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012157472A
Other languages
Japanese (ja)
Other versions
JP6003319B2 (en
Inventor
Masatoshi Watanabe
政利 渡辺
Kazuya Funada
和也 船田
Toshiyuki Fuji
利行 藤
Masayoshi Sasano
雅恵 笹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2012157472A priority Critical patent/JP6003319B2/en
Publication of JP2014020612A publication Critical patent/JP2014020612A/en
Application granted granted Critical
Publication of JP6003319B2 publication Critical patent/JP6003319B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner preventing the lowering of concentration of refrigerating machine oil by a refrigerant flooding state in a compressor.SOLUTION: An air conditioner is provided with an inside low pressure type compressor; a receiver capable of collecting refrigerating machine oil; and oil concentration detecting means for detecting the concentration of the refrigerating machine oil in the compressor. During the operation of the compressor, if a detection value detected by the oil concentration detecting means becomes a set value or more, a part of the refrigerating machine oil in the compressor is collected in the receiver by oil level difference between the compressor and the receiver. While the operation of the compressor is stopped, the receiver is insulated from a refrigerating cycle. When the compressor is started, if the detection value detected by the oil concentration detecting means is the set value or less, the refrigerating machine oil of high concentration collected in the receiver is supplied to the compressor by differential pressure between the compressor and the receiver.

Description

この発明は、圧縮機の起動時に冷凍機油を圧縮機に供給し、圧縮機の起動時の寝込み状態によるオイル濃度の低下を防止する機能を搭載した空気調和装置に関する。   The present invention relates to an air conditioner equipped with a function of supplying refrigerating machine oil to a compressor when the compressor is started, and preventing a decrease in oil concentration due to a stagnation state when the compressor is started.

従来、空気調和装置における圧縮機は、ケース内に潤滑用の冷凍機油を充填している。一般的に、冷凍機油には冷媒が溶け込みやすいものが使われている。そのため、圧縮機を低外気温下で長時間運転停止した場合、冷凍サイクル内の冷媒が冷凍機油を溜め込んでいる圧縮機に戻り、その後圧縮機内で冷媒が液化して圧縮機内の冷凍機油に溶け込んだ寝込み状態となる。この状態で圧縮機を起動すると、冷媒が溶け込んだ低濃度で粘度の低い冷凍機油が圧縮機内の摺動部に供給されるため、潤滑不良となり焼き付けを起こすという問題が生じる。また、寝込み状態により生じるオイルフォーミングが起こり、冷凍機油が圧縮機外に持出されるため、圧縮機内の冷凍機油面が低下し、冷凍機油が正常に圧縮機内の圧縮機構部等の摺動部に供給されなくなる問題が生じる。   Conventionally, a compressor in an air conditioner is filled with a refrigerating machine oil for lubrication in a case. Generally, refrigeration oil that is easy to dissolve refrigerant is used. Therefore, when the compressor is shut down for a long time at a low outside temperature, the refrigerant in the refrigeration cycle returns to the compressor in which the refrigeration oil is stored, and then the refrigerant liquefies in the compressor and dissolves in the refrigeration oil in the compressor. It becomes a sleep state. When the compressor is started in this state, the low-concentration and low-viscosity refrigeration oil in which the refrigerant is dissolved is supplied to the sliding portion in the compressor, which causes a problem of poor lubrication and seizure. In addition, since oil forming occurs due to the stagnation state and the refrigeration oil is taken out of the compressor, the refrigeration oil level in the compressor is lowered, and the refrigeration oil is normally applied to sliding parts such as the compression mechanism in the compressor. The problem of not being supplied arises.

なお、圧縮機から吐出側配管に吐出されたガス冷媒と冷凍機油を分離し、冷凍機油だけを吸入側配管に戻すオイルセパレータを設けたものがあるが(例えば、特開平6−2962号公報)、これだと冷凍機油の油面低下を防ぐことはできるものの、圧縮機の起動直後に戻された冷凍機油は液冷媒で希釈されており粘度が低く、さらに、オイルセパレータは圧縮機の運転中に機能するものであり、起動時においては戻す冷凍機油が存在しない。したがって、潤滑不良を防止することができない。   There is an oil separator that separates the gas refrigerant discharged from the compressor into the discharge side pipe and the refrigerating machine oil and returns only the refrigerating machine oil to the suction side pipe (for example, JP-A-6-2962). Although this can prevent the oil level of the refrigerating machine oil from being lowered, the refrigerating machine oil returned immediately after the start-up of the compressor is diluted with liquid refrigerant and has a low viscosity, and the oil separator is in operation of the compressor. There is no refrigerating machine oil to return at startup. Therefore, poor lubrication cannot be prevented.

上記した冷凍機油への冷媒の寝込みを防止する方法として、運転停止中の圧縮機をヒータにより加熱するものが提案されている。(例えば、特開平11-108473号公報)   As a method for preventing the refrigerant from stagnating in the refrigerating machine oil, there has been proposed a method in which a compressor that has been stopped is heated by a heater. (For example, JP-A-11-108473)

しかし、この方法ではヒータを使って圧縮機を加熱しているため、消費電力を増大させてしまうという問題がある。また、電源遮断時には使用できない。   However, in this method, since the compressor is heated using a heater, there is a problem that power consumption is increased. Also, it cannot be used when the power is turned off.

一方、冷凍機油の粘度低下を防ぐ方法として、冷凍機油の濃度を検出し、濃度が所定値以下となったら減圧装置により圧縮機内に流入する冷媒量を調節するものが提案されている。(例えば、特開平5−5562号公報)   On the other hand, as a method for preventing a decrease in the viscosity of the refrigeration oil, a method is proposed in which the concentration of the refrigeration oil is detected and the amount of refrigerant flowing into the compressor is adjusted by a decompression device when the concentration falls below a predetermined value. (For example, JP-A-5-5562)

しかし、この方法では、圧縮機の運転を開始してから所定時間経過後に初めて機能するため、圧縮機の起動時には機能しない。   However, this method functions only after a predetermined time has elapsed since the start of operation of the compressor, and therefore does not function when the compressor is started.

特開平6−2962号公報JP-A-6-2962 特開平11−108473号公報JP 11-108473 A 特開平5−5562号公報JP-A-5-5562

そこで、本発明の目的は、上記の問題点を解決することであり、電力を使うことなく、圧縮機の起動時に寝込み状態による冷凍機油の粘度の低下を防止した空気調和装置を提供することである。   Accordingly, an object of the present invention is to solve the above-described problems, and to provide an air conditioner that prevents a decrease in the viscosity of the refrigerating machine oil due to a stagnation state when the compressor is started without using electric power. is there.

上記課題を解決するため、請求項1の空気調和装置は、内部低圧型の圧縮機と、凝縮器と、膨張手段と、蒸発器とが冷媒配管により順次接続された冷凍サイクルを備えた空気調和装置において、底面が前記圧縮機の底面と同一の高さの面となるように併設され、冷凍機油を貯留できるレシーバと、前記レシーバと前記圧縮機の吐出側配管とを接続し前記レシーバに高圧冷媒を供給する加圧管と、前記レシーバと前記圧縮機の運転停止時において前記冷凍機油が浸からない位置とを接続し前記レシーバと前記圧縮機とを均圧する圧力バランス管と、前記レシーバの底面近傍と前記圧縮機の給油口近傍とを接続し冷凍機油を流通させる油移動管と、前記加圧管と前記圧力バランス管と前記油移動管とにそれぞれ設けられた第1開閉弁と第2開閉弁と第3開閉弁と、制御手段と、前記制御手段に含まれ、前記圧縮機内の前記冷凍機油の濃度を検出するオイル濃度検知手段とを備え、前記圧縮機の運転中は、前記オイル濃度検知手段により検出された検出値が予め設定した設定値A以上の場合、前記第2開閉弁を開けて前記圧力バランス管内を流通可能にすることで前記圧縮機と前記レシーバとを均圧にし、さらに前記第3開閉弁を開けて前記油移動管内を流通可能にすることで前記圧縮機内の前記冷凍機油の一部を前記圧縮機と前記レシーバとの油面レベル差によって前記レシーバへ溜め込み、前記圧縮機の運転停止中は、前記第1開閉弁と前記第2開閉弁と前記第3開閉弁とを閉めることを特徴とする。   In order to solve the above problems, an air conditioner according to claim 1 is an air conditioner having a refrigeration cycle in which an internal low-pressure compressor, a condenser, an expansion means, and an evaporator are sequentially connected by a refrigerant pipe. In the apparatus, a bottom face is provided side by side with the same height as the bottom face of the compressor, and a receiver capable of storing refrigerating machine oil is connected to the receiver and a discharge side pipe of the compressor to connect the receiver to a high pressure. A pressure pipe for supplying a refrigerant, a pressure balance pipe for connecting the receiver and a position where the refrigerating machine oil is not immersed when the compressor is stopped to equalize the receiver and the compressor, and a bottom surface of the receiver An oil moving pipe that connects the vicinity and the vicinity of the oil supply port of the compressor to circulate refrigeration oil, and a first on-off valve and a second on-off valve provided in the pressurizing pipe, the pressure balance pipe, and the oil moving pipe, respectively. valve A third on-off valve; control means; and oil concentration detection means included in the control means for detecting the concentration of the refrigerating machine oil in the compressor. The oil concentration detection means during operation of the compressor When the detected value detected by the above is equal to or greater than a preset set value A, the compressor and the receiver are equalized by opening the second on-off valve and allowing the pressure balance pipe to circulate, A part of the refrigerating machine oil in the compressor is accumulated in the receiver due to a difference in oil level between the compressor and the receiver by opening a third on-off valve so as to be able to flow in the oil moving pipe, and the compressor During the operation stop, the first on-off valve, the second on-off valve, and the third on-off valve are closed.

また、請求項2の空気調和装置は、請求項1の構成を有したものにおいて、前記圧縮機の起動時、前記オイル濃度検知手段により検出された検出値が予め設定した設定値B以下となったら第3開閉弁を開けて油移動管を連通させることで、前記レシーバに貯留した高濃度の冷凍機油を前記圧縮機内の圧力と前記レシーバ内の圧力との差圧によって前記圧縮機に供給し、前記圧縮機内の圧力と前記レシーバ内の圧力とが均圧となった後、前記オイル濃度検知手段により検出された検出値が前記設定値Bを超えなかったら第1開閉弁を開けて加圧管を流通可能にすることで前記レシーバを加圧し、前記レシーバに貯留した高濃度の前記冷凍機油を前記圧縮機の圧力と前記レシーバ内の圧力との差圧によって前記圧縮機に供給することを特徴とする。   The air conditioner according to claim 2 has the configuration according to claim 1, and the detected value detected by the oil concentration detecting means when the compressor is started is equal to or less than a preset set value B. Then, by opening the third on-off valve and communicating the oil moving pipe, the high-concentration refrigerating machine oil stored in the receiver is supplied to the compressor by the differential pressure between the pressure in the compressor and the pressure in the receiver. After the pressure in the compressor and the pressure in the receiver are equalized, if the detection value detected by the oil concentration detection means does not exceed the set value B, the first on-off valve is opened and the pressure tube The receiver is pressurized by allowing the refrigerant to flow, and the high-concentration refrigerating machine oil stored in the receiver is supplied to the compressor by a differential pressure between the pressure of the compressor and the pressure in the receiver. Be

また、請求項3の空気調和装置は、請求項1の構成を有したものにおいて、前記圧縮機の起動時、前記オイル濃度検知手段の検出値が予め設定した設定値B以下となったら、第1開閉弁を開けて加圧管内を流通可能にすることで前記レシーバを加圧し、第3開閉弁を開けて油移動管内を流通可能にすることで前記レシーバに貯留した高濃度の冷凍機油を前記圧縮機内の圧力と前記レシーバ内の圧力との差圧によって前記圧縮機に供給することを特徴とする。   The air conditioner according to claim 3 has the configuration according to claim 1, and when the detected value of the oil concentration detecting means becomes equal to or less than a preset set value B when the compressor is started, 1 Open the on-off valve to pressurize the receiver by allowing it to flow through the pressurization pipe, and open the third on-off valve to enable the flow through the oil transfer pipe to store the high-concentration refrigerating machine oil stored in the receiver. The pressure is supplied to the compressor by a pressure difference between the pressure in the compressor and the pressure in the receiver.

また、請求項4の空気調和装置は、請求項3の構成を有したものにおいて、加圧管は吐出側配管に設けられたトラップの下部に接続されていることを特徴とする。   According to a fourth aspect of the present invention, in the air conditioner having the configuration of the third aspect, the pressurizing pipe is connected to a lower portion of a trap provided in the discharge side pipe.

また、請求項5の空気調和装置は、請求項1ないし3の構成を有したものにおいて、油移動管に減圧手段を設けたことを特徴とする。   An air conditioner according to a fifth aspect of the present invention has the configuration of the first to third aspects, and is characterized in that a pressure reducing means is provided in the oil moving pipe.

上記のように構成した本発明の空気調和装置では、圧縮機の運転中にレシーバ内に高濃度の冷凍機油を溜め込み、前記圧縮機の運転停止中に前記レシーバを冷凍サイクルから遮断するようにしているので、冷凍サイクル内の冷媒が前記レシーバ内へ流入しないので、前記レシーバ内の冷凍機油は電源遮断時でも高濃度を保ち粘度の低下を起こさない。   In the air conditioner of the present invention configured as described above, high-concentration refrigerating machine oil is accumulated in the receiver during operation of the compressor, and the receiver is shut off from the refrigerating cycle while the compressor is stopped. Therefore, since the refrigerant in the refrigeration cycle does not flow into the receiver, the refrigerating machine oil in the receiver maintains a high concentration even when the power is shut off, and does not cause a decrease in viscosity.

また、圧縮機の起動時に高濃度の冷凍機油を前記圧縮機に直接供給するようにしているので、前記圧縮機への冷凍機油の供給が円滑に行われ、潤滑不良を起こさない。また、オイルフォーミングにより冷凍機油が圧縮機外へ持ち出されてもレシーバから冷凍機油を供給するので油面低下の心配がない。   Further, since the high-concentration refrigerating machine oil is directly supplied to the compressor when the compressor is started up, the refrigerating machine oil is smoothly supplied to the compressor, and no lubrication failure occurs. Further, even if the refrigerating machine oil is taken out of the compressor by oil forming, the refrigerating machine oil is supplied from the receiver, so there is no fear of oil level drop.

本発明の第1の実施形態に係る空気調和装置の全体的な構成を示す概略図。Schematic which shows the whole structure of the air conditioning apparatus which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る空気調和装置の圧縮機とレシーバとの関係を示す断面図。Sectional drawing which shows the relationship between the compressor and receiver of the air conditioning apparatus which concern on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る空気調和装置の圧縮機および室内ファンの運転制御動作を示すフローチャート。The flowchart which shows the operation control operation | movement of the compressor and indoor fan of the air conditioning apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る空気調和装置の圧縮機とレシーバとの関係を示す断面図。Sectional drawing which shows the relationship between the compressor and receiver of the air conditioning apparatus which concern on the 2nd Embodiment of this invention.

以下、本発明の実施の形態を図面を参照して詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[全体構成について]
図1は、第1の実施形態による冷凍サイクルの一例としての空気調和装置1の全体構成を示す概略図である。本実施例の空気調和装置1の冷媒サイクルは、圧縮機10と、凝縮器20と、膨張手段40と、蒸発器50とが冷媒配管により順次接続されている。また、圧縮機10と凝縮器20とを接続する吐出側配管81と、圧縮機10とがそれぞれ後述する配管を介してレシーバ70に接続されている。
[Overall configuration]
FIG. 1 is a schematic diagram illustrating an overall configuration of an air-conditioning apparatus 1 as an example of a refrigeration cycle according to the first embodiment. In the refrigerant cycle of the air conditioner 1 of the present embodiment, the compressor 10, the condenser 20, the expansion means 40, and the evaporator 50 are sequentially connected by refrigerant piping. Moreover, the discharge side piping 81 which connects the compressor 10 and the condenser 20, and the compressor 10 are each connected to the receiver 70 via the piping mentioned later.

図1において、圧縮機10で圧縮された高温高圧のガス冷媒は吐出側配管81を介して凝縮器20に流入し、凝縮器20内で外気と熱交換することによって凝縮する。その後、高圧の液冷媒となって冷媒配管83を介して膨張手段40へ流入する。凝縮器20から流出した高圧の液冷媒が膨張手段40を通過すると、減圧され膨張し、低温低圧の液冷媒となって冷媒配管84を介して蒸発器50に流入する。膨張手段40から流出した低温低圧の液冷媒が蒸発器50に流入すると、冷媒が外気と熱交換することによって蒸発し低圧のガス冷媒となる。その後、吸入側配管82を介して圧縮機10へと吸入される。本実施例の冷凍サイクル主回路は上記したように構成されている。   In FIG. 1, the high-temperature and high-pressure gas refrigerant compressed by the compressor 10 flows into the condenser 20 via the discharge side pipe 81 and is condensed by exchanging heat with the outside air in the condenser 20. Thereafter, it becomes a high-pressure liquid refrigerant and flows into the expansion means 40 via the refrigerant pipe 83. When the high-pressure liquid refrigerant that has flowed out of the condenser 20 passes through the expansion means 40, the pressure is reduced, the liquid refrigerant expands, and becomes a low-temperature and low-pressure liquid refrigerant that flows into the evaporator 50 through the refrigerant pipe 84. When the low-temperature and low-pressure liquid refrigerant that has flowed out of the expansion means 40 flows into the evaporator 50, the refrigerant evaporates by exchanging heat with the outside air, and becomes a low-pressure gas refrigerant. Thereafter, the air is sucked into the compressor 10 through the suction side pipe 82. The refrigeration cycle main circuit of the present embodiment is configured as described above.

なお、この冷凍サイクルは、冷媒の流通方向が一定の非可逆サイクルであるが、冷媒の流通方向を変更可能な可逆サイクルであってもよい。   This refrigeration cycle is an irreversible cycle in which the refrigerant flow direction is constant, but may be a reversible cycle in which the refrigerant flow direction can be changed.

次に、圧縮機10とレシーバ70と吐出側配管81および吸入側配管82との関係を図2を用いて説明する。   Next, the relationship among the compressor 10, the receiver 70, the discharge side pipe 81, and the suction side pipe 82 will be described with reference to FIG.

[圧縮機]
図2は、第1の実施形態による圧縮機10とレシーバ70と吐出側配管81および吸入側配管82との関係を示す断面図である。圧縮機10は、制御手段60により回転数が制御されるモータ(例えば、三相ブラシレスモータ)によって駆動される能力可変型圧縮機10である。本実施例では、内部低圧型のスクロール圧縮機を例として説明する。ただし、本発明は内部低圧型であればこれに限定されず、例えば、ロータリ圧縮機等の他の形式の圧縮機であってもよい。圧縮機10は、図示しない室外機筐体内に縦置きされる円筒状の密閉容器11(シェル)を備える。密閉容器11は、円筒状の胴部11aと、胴部11aの上端側に一体的に被せられる上蓋11bと、胴部11aの底部を塞ぐ底蓋11cとから構成され、通常、胴部11aは鋼板を円筒形状に加工したもので、上蓋11bと底蓋11cは鋳物製である。密閉容器11内には、冷媒の圧縮機構部12と、圧縮機構部12を駆動する電動機13とが収納されているが、スクロール圧縮機の場合、圧縮機構部12が上部に配置され、電動機13は圧縮機構部12の下部に配置される。
[Compressor]
FIG. 2 is a cross-sectional view showing the relationship among the compressor 10, the receiver 70, the discharge side pipe 81, and the suction side pipe 82 according to the first embodiment. The compressor 10 is a variable capacity compressor 10 driven by a motor (for example, a three-phase brushless motor) whose rotational speed is controlled by the control means 60. In this embodiment, an internal low-pressure scroll compressor will be described as an example. However, the present invention is not limited to this as long as it is an internal low-pressure type, and may be another type of compressor such as a rotary compressor. The compressor 10 includes a cylindrical sealed container 11 (shell) placed vertically in an outdoor unit casing (not shown). The sealed container 11 includes a cylindrical body portion 11a, an upper lid 11b that is integrally covered with the upper end side of the body portion 11a, and a bottom lid 11c that closes the bottom portion of the body portion 11a. A steel plate is processed into a cylindrical shape, and the top lid 11b and the bottom lid 11c are made of casting. In the sealed container 11, a refrigerant compression mechanism portion 12 and an electric motor 13 that drives the compression mechanism portion 12 are housed. However, in the case of a scroll compressor, the compression mechanism portion 12 is disposed at the upper portion, and the electric motor 13. Is disposed below the compression mechanism 12.

圧縮機構部12は、図示しない固定スクロールと、電動機13による旋回運動を行う旋回スクロールとを含み、固定スクロールに形成されている冷媒吸入ポート14が密閉容器11内に開口している。   The compression mechanism unit 12 includes a fixed scroll (not shown) and a turning scroll that performs a turning motion by the electric motor 13, and a refrigerant suction port 14 formed in the fixed scroll is opened in the sealed container 11.

また、図示しないが、固定スクロールには旋回スクロールによって圧縮された冷媒を吐出する冷媒吐出ポートが形成されており、冷媒吐出ポートには吐出側配管81が接続され、吐出側配管81は密閉容器11の上蓋11bを貫通し凝縮器20に接続されている。   Although not shown, the fixed scroll is formed with a refrigerant discharge port that discharges the refrigerant compressed by the orbiting scroll. The refrigerant discharge port is connected to a discharge side pipe 81, and the discharge side pipe 81 is connected to the sealed container 11. Is connected to the condenser 20 through the upper lid 11b.

通常、電動機13には、ステータコア13a(固定子)の内側にロータ13b(回転子)を配置してなるインナーロータ型電動機が用いられる。ステータコア13aは、胴部11aの内周面に例えば焼き嵌め等により固定される。ロータ13bは、旋回スクロールに連結される出力軸13cを有し、出力軸13cを介して図示しない軸受け部材によりステータコア13a内に回転可能に保持される。   Normally, an inner rotor type electric motor in which a rotor 13b (rotor) is disposed inside a stator core 13a (stator) is used as the electric motor 13. The stator core 13a is fixed to the inner peripheral surface of the body portion 11a by shrink fitting, for example. The rotor 13b has an output shaft 13c connected to the orbiting scroll, and is rotatably held in the stator core 13a by a bearing member (not shown) via the output shaft 13c.

密閉容器11内には、上記軸受け部材等の圧縮機10内の摺動部を潤滑するための冷凍機油15が所定量封入される。冷凍機油15は底蓋11c側に貯留されるが、出力軸13cには、例えば図示しない容積型ポンプに連通する油吸い上げ穴が全長にわたって形成されており、下端部には給油口13dが設けられている。冷凍機油15は上述した容積型ポンプにより、ロータ13bの回転に伴って電動機13の上部側にまで吸い上げられ、上記摺動部を潤滑した後、例えばステータコア13aと胴部11aとの間に形成されている図示しない隙間を通って底蓋11c側に戻される。   A predetermined amount of refrigerating machine oil 15 for lubricating a sliding portion in the compressor 10 such as the bearing member is sealed in the sealed container 11. The refrigerating machine oil 15 is stored on the bottom lid 11c side, but the output shaft 13c has, for example, an oil suction hole that communicates with a positive displacement pump (not shown), and an oil supply port 13d is provided at the lower end. ing. The refrigerating machine oil 15 is sucked up to the upper side of the electric motor 13 with the rotation of the rotor 13b by the positive displacement pump described above, and after lubricating the sliding portion, for example, is formed between the stator core 13a and the trunk portion 11a. It returns to the bottom lid 11c side through a gap (not shown).

吸入側配管82の低圧冷媒は密閉容器11内に流入し、固定スクロールに設けられ密閉容器11内に開口した冷媒吸入ポート14を通って圧縮機構部12に吸入される。圧縮機構部12で圧縮され高圧冷媒となった後冷媒吐出ポートから吐出側配管81へと吐出される。したがって、密閉容器11内は低圧の冷媒が充満している。   The low-pressure refrigerant in the suction side pipe 82 flows into the sealed container 11 and is sucked into the compression mechanism portion 12 through the refrigerant suction port 14 provided in the fixed scroll and opened in the sealed container 11. After being compressed by the compression mechanism 12 to become a high-pressure refrigerant, it is discharged from the refrigerant discharge port to the discharge side pipe 81. Therefore, the closed container 11 is filled with a low-pressure refrigerant.

また、密閉容器11を構成する胴部11aにおける圧縮機10の運転停止時に冷凍機油15が浸からない位置に第1圧縮機開口部16が設けられ、底蓋11cに第2圧縮機開口部17が設けられており、第1圧縮機開口部16には後述する圧力バランス管92が接続され、第2圧縮機開口部17には後述する油移動管93が接続されている。   Further, the first compressor opening 16 is provided at a position where the refrigerating machine oil 15 is not immersed when the operation of the compressor 10 is stopped in the trunk portion 11a constituting the sealed container 11, and the second compressor opening 17 is provided in the bottom lid 11c. , A pressure balance pipe 92 described later is connected to the first compressor opening 16, and an oil moving pipe 93 described later is connected to the second compressor opening 17.

[レシーバ]
図2において、レシーバ70は、底面が圧縮機10の底面と同一面上となるように併設された密閉容器である。レシーバ70は、上面に第1上面開口部71と第2上面開口部72とを有し、底面近傍に底面開口部73を有している。第1上面開口部71は加圧管91を介して吐出側配管81に接続され、第2上面開口部72は圧力バランス管92を介して第1圧縮機開口部16接続されている。底面開口部73は油移動管93を介して第2圧縮機開口部17を通過し圧縮機10内の給油口13d近傍に接続されている。上述した加圧管91、圧力バランス管92および油移動管93にはそれぞれ制御手段60により開閉制御される第1開閉弁101、第2開閉弁102、第3開閉弁103が設けられている。また、油移動管93には減圧手段110が設けられている。
[Receiver]
In FIG. 2, the receiver 70 is an airtight container provided so that the bottom surface is flush with the bottom surface of the compressor 10. The receiver 70 has a first upper surface opening 71 and a second upper surface opening 72 on the upper surface, and a bottom surface opening 73 near the bottom surface. The first upper surface opening 71 is connected to the discharge side pipe 81 via a pressure pipe 91, and the second upper surface opening 72 is connected to the first compressor opening 16 via a pressure balance pipe 92. The bottom opening 73 passes through the second compressor opening 17 via the oil moving pipe 93 and is connected to the vicinity of the oil supply port 13 d in the compressor 10. The pressurizing pipe 91, the pressure balance pipe 92, and the oil moving pipe 93 are provided with the first on-off valve 101, the second on-off valve 102, and the third on-off valve 103, which are controlled to open and close by the control means 60, respectively. Further, the oil moving pipe 93 is provided with a pressure reducing means 110.

[減圧手段]
減圧手段110は、油移動管93に接続されている。キャピラリチューブ等が用いられ、冷凍機油15が油移動管93を通過する際に減圧と流量制御を行う。
[Pressure reduction means]
The decompression means 110 is connected to the oil moving pipe 93. A capillary tube or the like is used, and decompression and flow rate control are performed when the refrigerating machine oil 15 passes through the oil moving pipe 93.

[オイル濃度検知手段]
次にオイル濃度検知手段120について説明する。冷凍機油15の濃度は、圧縮機10内の冷凍機油15が存在する部分の圧力と、その温度とにより一義的に決まる。したがって、本実施例のオイル濃度検知手段120は、圧縮機10の機外で冷凍機油15貯留部に対応する位置に配置され、密閉容器11の胴部11aを介して冷凍機油15の温度を検出する温度センサ121と、吸入側配管82に設けられ、圧縮機10に吸入される冷媒の蒸発圧力を検出する圧力センサ122と、制御手段60に含まれ、温度センサ121と圧力センサ122との検出値から圧縮機10内のオイル濃度を推定するオイル濃度推定部123とから構成されている。ここで求めた値に基づいて、第1開閉弁101、第2開閉弁102、第3開閉弁103の制御を行う。
[Oil concentration detection means]
Next, the oil concentration detection means 120 will be described. The concentration of the refrigerating machine oil 15 is uniquely determined by the pressure of the portion where the refrigerating machine oil 15 exists in the compressor 10 and the temperature thereof. Therefore, the oil concentration detection means 120 of the present embodiment is disposed outside the compressor 10 at a position corresponding to the refrigerating machine oil 15 storage unit, and detects the temperature of the refrigerating machine oil 15 via the body 11a of the sealed container 11. A temperature sensor 121 that is provided, a pressure sensor 122 that is provided in the suction side pipe 82 and that detects the evaporation pressure of the refrigerant sucked into the compressor 10, and is included in the control means 60 and is detected by the temperature sensor 121 and the pressure sensor 122. It comprises an oil concentration estimation unit 123 that estimates the oil concentration in the compressor 10 from the value. Based on the value obtained here, the first on-off valve 101, the second on-off valve 102, and the third on-off valve 103 are controlled.

温度センサ121は、圧縮機10の機外で好ましくは冷凍機油15貯留部に対向する位置の胴部11aに外付けされる。胴部11aは熱伝導率のよい鋼板製であるため、間接的であるにしても密閉容器11内の冷凍機油15の温度をほぼ正確に検出できる。   The temperature sensor 121 is externally attached to the body 11a at a position facing the refrigerating machine oil 15 reservoir outside the compressor 10. Since the trunk portion 11a is made of a steel plate having good thermal conductivity, the temperature of the refrigerating machine oil 15 in the sealed container 11 can be detected almost accurately even if it is indirect.

圧力センサ122は、吸入側配管82に接続され、圧縮機10へ吸入される冷媒の蒸発圧力を検出する。   The pressure sensor 122 is connected to the suction side pipe 82 and detects the evaporation pressure of the refrigerant sucked into the compressor 10.

温度センサ121と圧力センサ122で検出された各検出信号は、図示しないA/D変換器を介して制御手段60のオイル濃度推定部123に与えられる。   The detection signals detected by the temperature sensor 121 and the pressure sensor 122 are given to the oil concentration estimation unit 123 of the control means 60 via an A / D converter (not shown).

温度センサ121と圧力センサ122により冷凍機油温度と吸入圧力がわかると、圧力飽和温度が算出でき、それと実温度(冷凍機油温度)との差は冷凍機油15に対する液相冷媒の溶解度を表す。したがって、冷凍機油温度と吸入圧力から冷凍機油15の濃度を推定できる。オイル濃度推定部123は、冷凍機油15の温度をTcomp、圧力センサ122から出力される冷媒の蒸発飽和圧力をPcとして、蒸発飽和圧力Pcを蒸発飽和温度Tcに換算した上で、冷凍機油温度Tcompと蒸発飽和温度Tcとの温度差ΔT(=Tcomp−Tc)を求める。冷凍機油15の濃度はこの温度差ΔTとして推定される。(以下、オイル濃度推定値ΔTという。)   If the temperature sensor 121 and the pressure sensor 122 are used to determine the refrigerating machine oil temperature and the suction pressure, the pressure saturation temperature can be calculated, and the difference between it and the actual temperature (refrigerating machine oil temperature) represents the solubility of the liquid-phase refrigerant in the refrigerating machine oil 15. Therefore, the concentration of the refrigerating machine oil 15 can be estimated from the refrigerating machine oil temperature and the suction pressure. The oil concentration estimation unit 123 converts the evaporation saturation pressure Pc to the evaporation saturation temperature Tc, where Tcomp is the temperature of the refrigerator oil 15 and Pc is the evaporation saturation pressure of the refrigerant output from the pressure sensor 122, and then the refrigerator oil temperature Tcomp. And a temperature difference ΔT (= Tcomp−Tc) between the evaporation saturation temperature Tc and the evaporation saturation temperature Tc. The concentration of the refrigerating machine oil 15 is estimated as this temperature difference ΔT. (Hereinafter referred to as oil concentration estimated value ΔT.)

[制御手段]
図1において、制御手段60は、主に圧縮機10や室内ファン30の回転数を制御し、さらに、後述するオイル濃度推定部123を含み、第1開閉弁101、第2開閉弁102、第3開閉弁103の開閉制御を行う。
[Control means]
In FIG. 1, the control means 60 mainly controls the rotation speed of the compressor 10 and the indoor fan 30, and further includes an oil concentration estimation unit 123 described later, and includes a first on-off valve 101, a second on-off valve 102, 3 Open / close control of the open / close valve 103 is performed.

なお、凝縮器20の近傍には制御手段60により回転数が制御されるモータによって駆動される室内ファン30が設けられている。室内ファン30は、気流を発生させることによって、凝縮器20に流れる冷媒と外気との熱交換を促進させている。   An indoor fan 30 driven by a motor whose rotational speed is controlled by the control means 60 is provided in the vicinity of the condenser 20. The indoor fan 30 promotes heat exchange between the refrigerant flowing in the condenser 20 and the outside air by generating an air flow.

ところで、圧縮機10の運転停止時は、冷凍機油15は、密閉容器11内で冷媒が溶け込み希釈される。特に、圧縮機10が低外気温下(例えば−20℃程度)で長時間停止した状態では、空気調和装置1の冷凍サイクル内の冷媒が冷凍機油15を多く溜め込んでいる圧縮機10に集中し、その後圧縮機10内で冷媒が液化して圧縮機10内の冷凍機油15に溶け込んだ寝込み状態となる。この状態で圧縮機10を起動すると、冷媒が寝込んだ粘度の低い冷凍機油15が圧縮機10内の摺動部に供給されるため、潤滑不良となり焼き付けを起こすという問題が生じる。また、寝込み状態により生じるオイルフォーミングが起こり、冷凍機油15が圧縮機10外に持出されるため、圧縮機10内の潤滑油面が低下し、冷凍機油15が正常に圧縮機10内の摺動部に供給されなくなる問題が生じる。   By the way, when the operation of the compressor 10 is stopped, the refrigerating machine oil 15 is diluted by dissolving the refrigerant in the sealed container 11. In particular, when the compressor 10 is stopped for a long time at a low outside air temperature (for example, about −20 ° C.), the refrigerant in the refrigeration cycle of the air conditioner 1 concentrates on the compressor 10 in which a large amount of refrigeration oil 15 is stored. Thereafter, the refrigerant is liquefied in the compressor 10 and is in a stagnation state where it is dissolved in the refrigerating machine oil 15 in the compressor 10. When the compressor 10 is started in this state, the low-viscosity refrigerating machine oil 15 in which the refrigerant has stagnated is supplied to the sliding portion in the compressor 10, which causes a problem of poor lubrication and seizure. Further, oil forming caused by the stagnation state occurs, and the refrigerating machine oil 15 is taken out of the compressor 10, so that the lubricating oil surface in the compressor 10 is lowered, and the refrigerating machine oil 15 is normally slid in the compressor 10. There arises a problem that it is not supplied to the section.

このことから、圧縮機10の起動時における圧縮機10内の冷凍機油15の濃度が高い状態であることが重要である。以下に、本発明の圧縮機10の起動時に高濃度のオイルを供給する動作について図2を用いて説明する。   Therefore, it is important that the concentration of the refrigerating machine oil 15 in the compressor 10 is high when the compressor 10 is started. Below, the operation | movement which supplies high concentration oil at the time of starting of the compressor 10 of this invention is demonstrated using FIG.

[オイル回収動作]
まず、圧縮機10内の冷凍機油15をレシーバ70に回収する際の制御手段60による第1開閉弁101、第2開閉弁102、第3開閉弁103の開閉制御について、図2を用いて説明する。
[Oil recovery operation]
First, the opening / closing control of the first on-off valve 101, the second on-off valve 102, and the third on-off valve 103 by the control means 60 when the refrigerating machine oil 15 in the compressor 10 is recovered by the receiver 70 will be described with reference to FIG. To do.

圧縮機10の運転中、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出する。制御手段60は、オイル濃度推定値ΔTが予め設定されている設定値のAdeg.以上である場合には、密閉容器11の底蓋11c側に滞留している冷凍機油15の濃度が十分高いと推定し、第2開閉弁102、第3開閉弁103を開にする。第2開閉弁102を開にすることでレシーバ70と圧縮機10とは圧力バランス管92より連通し、レシーバ70と圧縮機10とが均圧となる。さらに、第3開閉弁103を開にすることで密閉容器11の底蓋11c側に滞留している冷凍機油15が油面のレベル差により油移動管93を介してレシーバ70に流れ込む。その後、制御手段60は所定時間(レシーバ70内の冷凍機油15の油面と圧縮機10内の冷凍機油15の油面が同じレベルになるのに必要な時間)が経過したら第2開閉弁102、第3開閉弁103を閉にする。以上の動作で、圧縮機10内の高濃度の冷凍機油15をレシーバ70に回収する。   During the operation of the compressor 10, the oil concentration detection means 120 detects the estimated oil concentration value ΔT. The control means 60 determines whether the oil concentration estimated value ΔT is a preset value of Adeg. In the case above, it is estimated that the concentration of the refrigerating machine oil 15 staying on the bottom lid 11c side of the sealed container 11 is sufficiently high, and the second on-off valve 102 and the third on-off valve 103 are opened. By opening the second on-off valve 102, the receiver 70 and the compressor 10 communicate with each other through the pressure balance pipe 92, and the receiver 70 and the compressor 10 are equalized. Further, by opening the third on-off valve 103, the refrigerating machine oil 15 staying on the bottom lid 11c side of the sealed container 11 flows into the receiver 70 through the oil moving pipe 93 due to the difference in the oil level. After that, when the predetermined time (the time required for the oil level of the refrigerating machine oil 15 in the receiver 70 and the oil level of the refrigerating machine oil 15 in the compressor 10 to reach the same level) has passed, the control means 60 passes the second on-off valve 102. Then, the third on-off valve 103 is closed. With the above operation, the high-concentration refrigerating machine oil 15 in the compressor 10 is collected in the receiver 70.

冷凍機油15の回収動作をした後、レシーバ70は冷凍機油15と共に低圧冷媒が入ったまま冷凍サイクルから遮断される。圧縮機10は停止すると冷凍サイクル内で差圧がなくなり冷凍サイクル全体で均圧となる。すると、遮断されたレシーバ70内はサイクル全体で均圧となった圧縮機10より低圧になる。したがって、レシーバ70から圧縮機10へ冷凍機油15を供給する際に開閉弁103を開けると、圧縮機10内から低圧のレシーバ70内へ冷凍機油15が逆流してしまう。これを防止するため、運転停止後に第2開閉弁102を開く。   After the refrigerating machine oil 15 is collected, the receiver 70 is shut off from the refrigerating cycle while the low-pressure refrigerant is contained together with the refrigerating machine oil 15. When the compressor 10 stops, there is no differential pressure in the refrigeration cycle, and the pressure becomes equal throughout the refrigeration cycle. Then, the shut-off receiver 70 has a lower pressure than the compressor 10 that has equalized pressure over the entire cycle. Therefore, if the on-off valve 103 is opened when supplying the refrigerating machine oil 15 from the receiver 70 to the compressor 10, the refrigerating machine oil 15 flows backward from the compressor 10 into the low-pressure receiver 70. In order to prevent this, the second on-off valve 102 is opened after the operation is stopped.

その後、均圧になったら第2開閉弁102を閉にし、圧縮機10の運転停止中は、レシーバ70は冷凍サイクルと接続されていない状態を保つ。これによって、圧縮機10の運転停止時にレシーバ70内に冷媒が流入しなくなるので、レシーバ70内の冷凍機油15に冷媒が寝込むのを防止し、圧縮機10の起動時まで冷凍機油15を高濃度に保つことができる。   Thereafter, when the pressure becomes equal, the second on-off valve 102 is closed, and the receiver 70 is not connected to the refrigeration cycle while the operation of the compressor 10 is stopped. As a result, the refrigerant does not flow into the receiver 70 when the operation of the compressor 10 is stopped. Therefore, the refrigerant is prevented from sleeping in the refrigerating machine oil 15 in the receiver 70, and the refrigerating machine oil 15 is kept at a high concentration until the compressor 10 is started. Can be kept in.

なお、冷凍機油15の回収は、レシーバ70内の冷凍機油15の油面と圧縮機10内の冷凍機油15の油面が同じレベルになるまで行うが、その時、必要最低限の冷凍機油15が圧縮機10内に残るようにしなければならないため、予めレシーバ70の大きさを調節する必要がある。   The refrigerating machine oil 15 is collected until the oil level of the refrigerating machine oil 15 in the receiver 70 and the oil level of the refrigerating machine oil 15 in the compressor 10 are at the same level. Since it must remain in the compressor 10, it is necessary to adjust the size of the receiver 70 in advance.

[オイル供給動作]
次に、レシーバ70に回収した冷凍機油15を圧縮機10に供給する際の制御手段60による第1開閉弁101、第2開閉弁102、第3開閉弁103の開閉制御について説明する。
[Oil supply operation]
Next, the opening / closing control of the first on-off valve 101, the second on-off valve 102, and the third on-off valve 103 by the control means 60 when the refrigerating machine oil 15 collected in the receiver 70 is supplied to the compressor 10 will be described.

圧縮機10の起動時、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出する。ΔTと予め設定され、この値を下回るとレシーバ70から圧縮機10へ冷凍機油15の供給を行う設定値Bとの関係がΔT<Bだった場合、制御手段60は、密閉容器11の底蓋11c側に滞留している冷凍機油15が冷媒により希釈され濃度が低下していると推定して、第3開閉弁103を開にする。圧縮機10の起動時に圧縮機10内は徐々に低圧になっていく。この時レシーバ70内は、運転停止後に第2開閉弁102を開けて冷凍サイクル全体と均圧したときの圧力を保っている。そこで第3開閉弁103を開にすることで、レシーバ70と圧縮機10内の給油口13d近傍とは油移動管93により連通し、レシーバ70内の圧力と圧縮機10と内の圧力が均圧になろうとする。この場合、レシーバ70内の圧力が圧縮機10内の圧力より高くなるのでレシーバ70内の冷凍機油15が圧縮機10内に流れ込む。その後、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出し、ΔT>Bとなったら、第3開閉弁103を閉にする。以上の動作により、圧縮機10の起動時にレシーバ70内に回収した高濃度の冷凍機油15を圧縮機10内の給油口13d近傍に供給することができる。   When the compressor 10 is started, the oil concentration detection means 120 detects the oil concentration estimated value ΔT. If the relationship between ΔT and the setting value B that supplies the refrigerating machine oil 15 from the receiver 70 to the compressor 10 is less than this value, ΔT <B, the control means 60 may The third open / close valve 103 is opened by estimating that the refrigerating machine oil 15 staying on the 11c side has been diluted by the refrigerant and the concentration has decreased. When the compressor 10 is started, the inside of the compressor 10 gradually becomes a low pressure. At this time, the pressure in the receiver 70 is maintained when the second on-off valve 102 is opened after the operation is stopped and the pressure is equalized with the entire refrigeration cycle. Therefore, by opening the third on-off valve 103, the receiver 70 and the vicinity of the oil filler opening 13d in the compressor 10 are communicated by the oil moving pipe 93, and the pressure in the receiver 70 and the pressure in the compressor 10 are equalized. Try to become pressure. In this case, since the pressure in the receiver 70 becomes higher than the pressure in the compressor 10, the refrigeration oil 15 in the receiver 70 flows into the compressor 10. Thereafter, the estimated oil concentration value ΔT is detected by the oil concentration detecting means 120, and when ΔT> B, the third on-off valve 103 is closed. With the above operation, the high-concentration refrigerating machine oil 15 collected in the receiver 70 when the compressor 10 is started can be supplied to the vicinity of the oil supply port 13 d in the compressor 10.

また、この供給動作は起動時に生じる差圧を用いているので、レシーバ70内の圧力と圧縮機10内の圧力とが均圧となったらレシーバ70と圧縮機10との間の冷凍機油15の移動は中断されるが、圧縮機10の回転数を上昇させるなど、再び差圧が発生した場合、圧縮機10へ冷凍機油15の供給が再開される。   Further, since this supply operation uses a differential pressure generated at the time of start-up, when the pressure in the receiver 70 and the pressure in the compressor 10 are equalized, the refrigerating machine oil 15 between the receiver 70 and the compressor 10 is discharged. Although the movement is interrupted, the supply of the refrigerating machine oil 15 to the compressor 10 is resumed when a differential pressure occurs again, such as by increasing the rotational speed of the compressor 10.

また、レシーバ70内の圧力と圧縮機10内の圧力とが均圧となり冷凍機油15の供給が中断しているとき、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出する。ΔT<Bだった場合、第1開閉弁101を開にする。第1開閉弁101を開にすることで、吐出側配管81とレシーバ70とは加圧管91により連通する。これによって、圧縮機10から吐出側配管81に吐出された高圧冷媒をレシーバ70に供給しレシーバ70内を加圧する。すると、レシーバ70内の圧力が圧縮機10内の圧力より高くなるので、圧縮機10内に冷凍機油15が流れ込む。その後、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出し、ΔT>Bとなったら、第1開閉弁101、第3開閉弁103を閉にする。   Further, when the pressure in the receiver 70 and the pressure in the compressor 10 become equal and the supply of the refrigerating machine oil 15 is interrupted, the oil concentration detection means 120 detects the estimated oil concentration value ΔT. When ΔT <B, the first on-off valve 101 is opened. By opening the first on-off valve 101, the discharge side pipe 81 and the receiver 70 communicate with each other through the pressurizing pipe 91. As a result, the high-pressure refrigerant discharged from the compressor 10 to the discharge side pipe 81 is supplied to the receiver 70 to pressurize the receiver 70. Then, since the pressure in the receiver 70 becomes higher than the pressure in the compressor 10, the refrigerating machine oil 15 flows into the compressor 10. Thereafter, the estimated oil concentration value ΔT is detected by the oil concentration detecting means 120. When ΔT> B, the first on-off valve 101 and the third on-off valve 103 are closed.

以上の動作により、圧縮機10の運転停止中は冷凍サイクルから遮断したレシーバ70内に高濃度の冷凍機油15を貯留するようにしているので、冷凍サイクル配管内の冷媒が圧縮機10に集中してもレシーバ70内の冷凍機油15に寝込むことはなく、電源遮断時でも高濃度を保つことができる。また、圧縮機10の起動時に高濃度の冷凍機油15を圧縮機10内の給油口13d近傍に直接供給するようにしているので、圧縮機10への冷凍機油の供給が円滑に行われ、潤滑不良を防止する。また、オイルフォーミングにより冷凍機油15が圧縮機10外へ持ち出されてもレシーバ70から冷凍機油15を供給するので油面低下の心配がない。   With the above operation, when the compressor 10 is stopped, the high-concentration refrigerating machine oil 15 is stored in the receiver 70 that is cut off from the refrigerating cycle, so that the refrigerant in the refrigerating cycle pipe concentrates on the compressor 10. However, it does not lie in the refrigerating machine oil 15 in the receiver 70 and can maintain a high concentration even when the power is shut off. Further, since the high-concentration refrigerating machine oil 15 is directly supplied to the vicinity of the oil filler opening 13d in the compressor 10 when the compressor 10 is started, the refrigerating machine oil is smoothly supplied to the compressor 10 and lubrication is performed. Prevent defects. Further, even if the refrigerating machine oil 15 is taken out of the compressor 10 by oil forming, the refrigerating machine oil 15 is supplied from the receiver 70, so there is no fear of oil level drop.

次に、第2の実施形態における空気調和装置1を図3ないし図4を用いて説明する。なお、本実施例の空気調和装置1は冷媒回路は、圧縮機10と、凝縮器20と、膨張手段40と、蒸発器50とが冷媒配管により順次接続されており、圧縮機10と凝縮器20とを接続する吐出側配管81と、圧縮機10とがそれぞれ配管でレシーバ70に接続されているという構成については第1の実施形態と同じであるため詳細な説明を省略する。本実施例は、第1の実施形態の構成を有する空気調和装置1において、さらに圧縮機10の立ち上がり性能を向上させる制御を備えた空気調和装置1である。   Next, the air conditioning apparatus 1 in 2nd Embodiment is demonstrated using FIG. 3 thru | or FIG. In the air conditioner 1 of the present embodiment, the refrigerant circuit includes a compressor 10, a condenser 20, an expansion means 40, and an evaporator 50 that are sequentially connected by a refrigerant pipe. The compressor 10 and the condenser Since the configuration in which the discharge side pipe 81 connecting to the compressor 20 and the compressor 10 are connected to the receiver 70 by pipes is the same as that of the first embodiment, detailed description thereof is omitted. This example is the air conditioner 1 having the control of improving the startup performance of the compressor 10 in the air conditioner 1 having the configuration of the first embodiment.

[フィードバック制御]
従来、圧縮機10の起動時に圧縮機10からの冷凍機油15の吐出による油面低下を防ぐため、圧縮機10起動直後の回転数を低い値に保ち、段階的に要求回転数まで上昇させることにより、圧縮機10から冷凍サイクルに吐出される冷凍機油15の量を抑制するとともに、圧縮機10外へ吐出された冷凍機油15を圧縮機10内へ回収するまでの時間を稼ぐようにしている。しかし、これは過酷な条件で安全率を見込んで予め定められたものであり、起動時の条件によっては実際の油面に余裕があっても必要以上に能力が抑制される場合がある。
[Feedback control]
Conventionally, in order to prevent the oil level from being lowered due to the discharge of the refrigerating machine oil 15 from the compressor 10 when the compressor 10 is started, the rotational speed immediately after the compressor 10 is started is kept at a low value and gradually increased to the required rotational speed. Thus, the amount of the refrigerating machine oil 15 discharged from the compressor 10 to the refrigerating cycle is suppressed, and the time until the refrigerating machine oil 15 discharged to the outside of the compressor 10 is recovered into the compressor 10 is gained. . However, this is predetermined in consideration of the safety factor under severe conditions, and depending on the starting conditions, even if there is a margin in the actual oil level, the capacity may be suppressed more than necessary.

本実施例は上記の問題を解決することが目的であり、圧縮機10内の冷凍機油15の濃度を検出し、検出値に基づいて圧縮機10および室内ファン30の回転数を制御するものである。以下に、本実施例の制御について図3のフローチャートを用いて説明する。   The purpose of this embodiment is to solve the above-described problem, and the concentration of the refrigerating machine oil 15 in the compressor 10 is detected, and the rotational speed of the compressor 10 and the indoor fan 30 is controlled based on the detected value. is there. Hereinafter, the control of this embodiment will be described with reference to the flowchart of FIG.

[圧縮機回転数制御]
図3は、本実施例のオイル濃度検知手段120に基づいた圧縮機10の回転数制御のフローチャートである。ST1で圧縮機10を起動した後、ST2でオイル濃度検知手段120によりオイル濃度推定値ΔTを推定し、ΔTを初期値ΔT0に設定する。ST3でΔT<Bの場合、ST4に進み、第1開閉弁101と第3開閉弁103が閉じているか判定し、閉じていたらST5に進み、第1開閉弁101と第3開閉弁103を開制御して冷凍機油15の供給動作を開始する。その後ST6で圧縮機10の回転数(RPMcomp)と室内ファン30の回転数(RPMfan)とをその時点でのそれぞれの回転数にホールドする。一方、ST3でΔT≧Bだった場合はST7に進み、圧縮機10の回転数(RPMcomp)と要求された回転数(RPMcomps)とを比較し、RPMcomp<RPMcompsであった場合、ST8へ進み、以下の圧縮機10の回転数制御を開始する。
[Compressor speed control]
FIG. 3 is a flowchart of the rotational speed control of the compressor 10 based on the oil concentration detection means 120 of the present embodiment. After starting the compressor 10 in ST1, an oil concentration estimation value ΔT is estimated by the oil concentration detection means 120 in ST2, and ΔT is set to an initial value ΔT0. If ΔT <B in ST3, the process proceeds to ST4, where it is determined whether the first on-off valve 101 and the third on-off valve 103 are closed. If they are closed, the process proceeds to ST5, where the first on-off valve 101 and the third on-off valve 103 are opened. The supply operation of the refrigerating machine oil 15 is started by controlling. Thereafter, in ST6, the rotation speed (RPMcomp) of the compressor 10 and the rotation speed (RPMfan) of the indoor fan 30 are held at the respective rotation speeds at that time. On the other hand, if ΔT ≧ B in ST3, the process proceeds to ST7, the rotation speed (RPMcomp) of the compressor 10 is compared with the requested rotation speed (RPMcomps), and if RPMcomp <RPMcomps, the process proceeds to ST8. The following rotation speed control of the compressor 10 is started.

圧縮機10の回転数制御は、まず、ST8で再びオイル濃度検知手段120によりオイル濃度推定値ΔTを推定し、その時のΔTと初期値ΔT0とを比較する。ΔT>ΔT0の場合はST9へ進み、圧縮機10の回転数(RPMcomp)を大きく上昇させる。一方、ΔT≦ΔT0の場合はST10へ進み、ΔT=ΔT0であった場合はST11へ進み、圧縮機10の回転数(RPMcomp)を小さく上昇させる。一方、ΔT<ΔT0の場合はST12へ進み、冷凍機油15への冷媒の寝込みが進んでいると判断し、圧縮機10の回転数(RPMcomp)をその時点での回転数にホールドする。それぞれ圧縮機10の回転数制御をした後は、ST2まで戻る。   In the rotation speed control of the compressor 10, first, the oil concentration detection unit 120 estimates the oil concentration estimated value ΔT again in ST8, and compares ΔT at that time with the initial value ΔT0. When ΔT> ΔT0, the process proceeds to ST9, and the rotation speed (RPMcomp) of the compressor 10 is greatly increased. On the other hand, if ΔT ≦ ΔT0, the process proceeds to ST10, and if ΔT = ΔT0, the process proceeds to ST11, and the rotational speed (RPMcomp) of the compressor 10 is slightly increased. On the other hand, if ΔT <ΔT0, the process proceeds to ST12, where it is determined that the refrigerant has stagnated in the refrigerating machine oil 15, and the rotation speed (RPMcomp) of the compressor 10 is held at the rotation speed at that time. After controlling the rotation speed of the compressor 10, the process returns to ST2.

[室内ファン回転数制御]
次に、ST7で圧縮機10の回転数(RPMcomp)と要求された回転数(RPMcomps)とを比較し、RPMcomp≧RPMcompsであった場合、ST13へ進み、凝縮器20の温度を検出する図示しない凝縮器温度センサで検出した室内機温度(Ti)が室内機温度設定値(Ts)を超えたら、ST14へ進み室内ファン30を起動し、ST15へ進む。なお、Ti≦Tsであった場合は、ST2まで戻る。ST15で、室内ファン30の回転数(RPMfan)が要求された回転数(RPMfans)より低い場合、ST16に進み、以下の室内ファン30の回転数制御を開始する。
[Indoor fan speed control]
Next, in ST7, the rotation speed (RPMcomp) of the compressor 10 is compared with the requested rotation speed (RPMcomps). If RPMcomp ≧ RPMcomps, the process proceeds to ST13 to detect the temperature of the condenser 20 (not shown). When the indoor unit temperature (Ti) detected by the condenser temperature sensor exceeds the indoor unit temperature set value (Ts), the process proceeds to ST14, the indoor fan 30 is activated, and the process proceeds to ST15. If Ti ≦ Ts, the process returns to ST2. In ST15, when the rotational speed (RPMfan) of the indoor fan 30 is lower than the requested rotational speed (RPMfans), the process proceeds to ST16 and the following rotational speed control of the indoor fan 30 is started.

室内ファン30の回転数制御は、まず、ST16でオイル濃度検知手段120によりオイル濃度推定値ΔTを推定し、初期値ΔT0からその時のΔTで急激な濃度変化により変化量が設定値(C)を超えていないかを判定する。例えば、オイル濃度推定値ΔTが急激に低下している場合は冷媒の溶解が進んでいると判断でき、また、オイル濃度推定値ΔTが急激に上昇している場合は圧力変化による冷媒の蒸発がおこり油面が低下していると判断できる。−C≦ΔT−ΔT0≦Cであった場合、ST17に進み、室内ファン30の回転数(RPMfan)を小さく上昇させる。一方、ST16でΔT−ΔT0<−C、もしくはC<ΔT−ΔT0であった場合、ST18に進み、室内ファン30の回転数(RPMfan)をその時点での回転数にホールドする。それぞれ室内ファン30の回転数制御をした後は、ST2まで戻る。   In the rotation speed control of the indoor fan 30, first, in ST16, the oil concentration detection means 120 estimates the oil concentration estimated value ΔT, and the change amount is set to the set value (C) due to a rapid concentration change from the initial value ΔT0 to ΔT at that time. Judge whether it exceeds. For example, when the estimated oil concentration value ΔT is rapidly decreased, it can be determined that the refrigerant is being dissolved, and when the estimated oil concentration value ΔT is rapidly increased, the refrigerant is evaporated due to a pressure change. It can be determined that the oil level has dropped. When −C ≦ ΔT−ΔT0 ≦ C, the process proceeds to ST17, and the rotation speed (RPMfan) of the indoor fan 30 is increased small. On the other hand, if [Delta] T- [Delta] T0 <-C or C <[Delta] T- [Delta] T0 in ST16, the process proceeds to ST18, and the rotational speed (RPMfan) of the indoor fan 30 is held at the rotational speed at that time. After controlling the rotation speed of each indoor fan 30, the process returns to ST2.

次に、ST15で室内ファン30の回転数(RPMfan)と要求された回転数(RPMfans)とを比較し、RPMfan≧RPMfansであった場合、ST19へ進み、
第1開閉弁101と第3開閉弁103とが開いているか判定する。冷凍機油15の供給動作で開制御していた場合、ST20に進み、第1開閉弁101と第3開閉弁103とを閉制御し、その後通常運転を行う。なお、ST19で第1開閉弁101と第3開閉弁103とが閉じていた場合、そのまま通常運転に切り替わる。
Next, in ST15, the rotation speed (RPMfan) of the indoor fan 30 is compared with the requested rotation speed (RPMfans). If RPMfan ≧ RPMfans, the process proceeds to ST19.
It is determined whether the first on-off valve 101 and the third on-off valve 103 are open. When the opening control is performed by the supply operation of the refrigerating machine oil 15, the process proceeds to ST20, the first opening / closing valve 101 and the third opening / closing valve 103 are controlled to be closed, and then normal operation is performed. If the first on-off valve 101 and the third on-off valve 103 are closed in ST19, the operation is switched to the normal operation as it is.

上記した圧縮機10の回転数および室内ファン30の回転数の制御を行うことにより、従来の圧縮機10の起動方法よりも早く圧縮機10の回転数を上昇させることができるので、立ち上がり性能が向上する。   By controlling the rotational speed of the compressor 10 and the rotational speed of the indoor fan 30 as described above, the rotational speed of the compressor 10 can be increased faster than the conventional starting method of the compressor 10, so that the startup performance is improved. improves.

[オイル戻し]
上述した圧縮機10の回転数制御で回転数を上昇させると、圧縮機10からの吐油量が上昇する。すると、レシーバ70に貯留した冷凍機油15の油量では圧縮機10の起動時の供給量を十分に確保できなくなるという問題が発生する。したがって、圧縮機10から吐出された冷凍機油15をレシーバ70に戻す必要があり、その構成を以下に説明する。
[Oil return]
When the rotational speed is increased by the rotational speed control of the compressor 10 described above, the amount of oil discharged from the compressor 10 increases. Then, there arises a problem that the supply amount at the time of starting the compressor 10 cannot be sufficiently secured with the oil amount of the refrigerating machine oil 15 stored in the receiver 70. Therefore, it is necessary to return the refrigerating machine oil 15 discharged from the compressor 10 to the receiver 70, and the configuration thereof will be described below.

図4は、第2の実施形態の圧縮機10とレシーバ70との関係を示した断面図である。第1の実施例と同様にレシーバ70は、底面が圧縮機10の底面と同一面上となるように併設された密閉容器である。レシーバ70は、上面に第1上面開口部71と第2上面開口部72とを有し、底面近傍に底面開口部73を有している。第1上面開口部71には加圧管91が接続され、第2上面開口部72には圧力バランス管92が接続されている。底面開口部73には、油移動管93が接続されている。上述した加圧管91、圧力バランス管92および油移動管93にはそれぞれ制御手段60により開閉制御される第1開閉弁101、第2開閉弁102、第3開閉弁103が設けられている。また、油移動管93には減圧手段110が設けられている。本実施例では、吐出側配管81にトラップ130を設けており、加圧管91はトラップ130の液溜りとなるトラップ下部131に接続されている。これによって、圧縮機10から冷媒とともに吐出された冷凍機油15がトラップ130のトラップ下部131に溜り、溜った冷凍機油15は加圧管91を介してレシーバ70に回収されるので、本実施例の圧縮機10の回転数制御で回転数を上昇させても起動時に供給される冷凍機油15を十分に確保できる。   FIG. 4 is a cross-sectional view showing the relationship between the compressor 10 and the receiver 70 of the second embodiment. Similarly to the first embodiment, the receiver 70 is a sealed container provided so that the bottom surface is flush with the bottom surface of the compressor 10. The receiver 70 has a first upper surface opening 71 and a second upper surface opening 72 on the upper surface, and a bottom surface opening 73 near the bottom surface. A pressure tube 91 is connected to the first upper surface opening 71, and a pressure balance tube 92 is connected to the second upper surface opening 72. An oil moving pipe 93 is connected to the bottom opening 73. The pressurizing pipe 91, the pressure balance pipe 92, and the oil moving pipe 93 are provided with the first on-off valve 101, the second on-off valve 102, and the third on-off valve 103, which are controlled to open and close by the control means 60, respectively. Further, the oil moving pipe 93 is provided with a pressure reducing means 110. In this embodiment, a trap 130 is provided in the discharge side pipe 81, and the pressurizing pipe 91 is connected to a trap lower part 131 that serves as a liquid reservoir for the trap 130. As a result, the refrigerating machine oil 15 discharged together with the refrigerant from the compressor 10 is collected in the trap lower part 131 of the trap 130, and the accumulated refrigerating machine oil 15 is recovered by the receiver 70 through the pressurizing pipe 91. Even if the rotational speed is increased by controlling the rotational speed of the machine 10, the refrigerating machine oil 15 supplied at the time of startup can be sufficiently secured.

次に、本実施例の構成における冷凍機油15の回収動作と供給動作とを以下に説明する。   Next, the collection | recovery operation | movement and supply operation | movement of the refrigerating machine oil 15 in the structure of a present Example are demonstrated below.

[オイル回収動作]
圧縮機10内の冷凍機油15をレシーバ70に回収する際の制御手段60による第1開閉弁101、第2開閉弁102、第3開閉弁103の開閉制御については、第1の実施例と同じであるため省略する。
[Oil recovery operation]
The on-off control of the first on-off valve 101, the second on-off valve 102, and the third on-off valve 103 by the control means 60 when collecting the refrigerating machine oil 15 in the compressor 10 to the receiver 70 is the same as in the first embodiment. Therefore, it is omitted.

[オイル供給動作]
次に、レシーバ70に回収した冷凍機油15を圧縮機10に供給する際の制御手段60による電磁第1開閉弁101、第2開閉弁102、第3開閉弁103の開閉制御について説明する。
[Oil supply operation]
Next, opening / closing control of the electromagnetic first on-off valve 101, the second on-off valve 102, and the third on-off valve 103 by the control means 60 when supplying the refrigerating machine oil 15 collected to the receiver 70 to the compressor 10 will be described.

圧縮機10の起動時、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出する。ΔTと予め設定され、この値を下回ると前記レシーバから前記圧縮機へ冷凍機油の供給を行う設定値Bとの関係がΔT<Bだった場合、制御手段60は、密閉容器11の底蓋11c側に滞留している冷凍機油15が冷媒により希釈され濃度が低下していると推定して、第1開閉弁101、第3開閉弁103を開にする。第1開閉弁101を開にすることで、吐出側配管81とレシーバ70とが加圧管91により連通される。これによって、圧縮機10から吐出側配管81に吐出された高圧冷媒は、レシーバ70に供給されレシーバ70内を加圧する。第3開閉弁103を開にすることで、レシーバ70と圧縮機10とが油移動管93により連通され、レシーバ70内の圧力と圧縮機10内の圧力とが均圧になろうとする。この場合、レシーバ70内の圧力が圧縮機10内の圧力より高くなるので、レシーバ70内の冷凍機油15が圧縮機10内の給油口13d近傍に流れ込む。その後、オイル濃度検知手段120によりオイル濃度推定値ΔTを検出し、ΔT>Bとなったら、第3開閉弁103を閉にする。以上の動作で、レシーバ70内に回収した高濃度の冷凍機油15を圧縮機10に供給する。   When the compressor 10 is started, the oil concentration detection means 120 detects the oil concentration estimated value ΔT. If the relationship between ΔT and a preset value B at which refrigeration oil is supplied from the receiver to the compressor when ΔT <B is below this value, ΔT <B, the control means 60 controls the bottom lid 11c of the sealed container 11 It is presumed that the refrigerating machine oil 15 staying on the side is diluted with the refrigerant and the concentration is lowered, and the first on-off valve 101 and the third on-off valve 103 are opened. By opening the first on-off valve 101, the discharge side pipe 81 and the receiver 70 are communicated by the pressurizing pipe 91. As a result, the high-pressure refrigerant discharged from the compressor 10 to the discharge-side pipe 81 is supplied to the receiver 70 and pressurizes the receiver 70. By opening the third on-off valve 103, the receiver 70 and the compressor 10 are communicated with each other by the oil moving pipe 93, and the pressure in the receiver 70 and the pressure in the compressor 10 tend to be equalized. In this case, since the pressure in the receiver 70 becomes higher than the pressure in the compressor 10, the refrigerating machine oil 15 in the receiver 70 flows into the vicinity of the oil supply port 13 d in the compressor 10. Thereafter, the estimated oil concentration value ΔT is detected by the oil concentration detecting means 120, and when ΔT> B, the third on-off valve 103 is closed. With the above operation, the high-concentration refrigerating machine oil 15 collected in the receiver 70 is supplied to the compressor 10.

上記した構成により、起動時に実際の油面に余裕があっても必要以上に能力が抑制されることなく、従来の起動方法よりも圧縮機10の回転数を早く上げることができるので、立ち上がり性能が向上する。   With the above-described configuration, even if there is a margin in the actual oil level at the time of startup, the capacity can be increased more quickly than necessary, and the rotation speed of the compressor 10 can be increased faster than the conventional startup method. Will improve.

1 空気調和装置
10 圧縮機
11 密閉容器
11a 胴部
11b 上蓋
11c 底蓋
12 圧縮機構部
13 電動機
13a ステータコア
13b ロータ
13c 出力軸
13d 給油口
14 冷媒吸入ポート
15 冷凍機油
16 第1圧縮機開口部
17 第2圧縮機開口部
20 凝縮器
30 室内ファン
40 膨張手段
50 蒸発器
60 制御手段
70 レシーバ
71 第1上面開口部
72 第2上面開口部
73 底面開口部
81 吐出側配管
82 吸入側配管
83 冷媒配管
84 冷媒配管
91 加圧管
92 圧力バランス管
93 油移動管
101 第1開閉弁
102 第2開閉弁
103 第3開閉弁
110 減圧手段
120 オイル濃度検知手段
121 温度センサ
122 圧力センサ
123 オイル濃度推定部
130 トラップ
131 トラップ下部
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 10 Compressor 11 Sealed container 11a Body part 11b Top cover 11c Bottom cover 12 Compression mechanism part 13 Electric motor 13a Stator core 13b Rotor 13c Output shaft 13d Oil supply port 14 Refrigerant intake port 15 Refrigeration machine oil 16 First compressor opening part 17 2 compressor opening 20 condenser 30 indoor fan 40 expansion means 50 evaporator 60 control means 70 receiver 71 first upper surface opening 72 second upper surface opening 73 bottom surface opening 81 discharge side piping 82 suction side piping 83 refrigerant piping 84 Refrigerant piping 91 Pressurizing pipe 92 Pressure balance pipe 93 Oil moving pipe 101 First on-off valve 102 Second on-off valve 103 Third on-off valve 110 Pressure reducing means 120 Oil concentration detecting means 121 Temperature sensor 122 Pressure sensor 123 Oil concentration estimating section 130 Trap 131 Trap bottom

Claims (5)

内部低圧型の圧縮機と、凝縮器と、膨張手段と、蒸発器とが冷媒配管により順次接続された冷凍サイクルを備えた空気調和装置において、
底面が前記圧縮機の底面と同一の高さの面となるように併設され、冷凍機油を貯留できるレシーバと、
前記レシーバと前記圧縮機の吐出側配管とを接続し前記レシーバに高圧冷媒を供給する加圧管と、
前記レシーバと前記圧縮機の運転停止時において前記冷凍機油が浸からない位置とを接続し前記レシーバと前記圧縮機とを均圧する圧力バランス管と、
前記レシーバの底面近傍と前記圧縮機の給油口近傍とを接続し冷凍機油を流通させる油移動管と、
前記加圧管と前記圧力バランス管と前記油移動管とにそれぞれ設けられた第1開閉弁と第2開閉弁と第3開閉弁と、
制御手段と、前記制御手段に含まれ、前記圧縮機内の前記冷凍機油の濃度を検出するオイル濃度検知手段とを備え、
前記圧縮機の運転中は、前記オイル濃度検知手段により検出された検出値が予め設定した設定値A以上の場合、前記第2開閉弁を開けて前記圧力バランス管内を流通可能にすることで前記圧縮機と前記レシーバとを均圧にし、さらに前記第3開閉弁を開けて前記油移動管内を流通可能にすることで前記圧縮機内の前記冷凍機油の一部を前記圧縮機と前記レシーバとの油面レベル差によって前記レシーバへ溜め込み、
前記圧縮機の運転停止中は、前記第1開閉弁と前記第2開閉弁と前記第3開閉弁とを閉めることを特徴とした空気調和装置。
In an air conditioner including a refrigeration cycle in which an internal low-pressure compressor, a condenser, an expansion means, and an evaporator are sequentially connected by a refrigerant pipe,
A receiver that is provided side by side with the same height as the bottom surface of the compressor, and that can store refrigerating machine oil;
A pressurized pipe for connecting the receiver and a discharge side pipe of the compressor and supplying a high-pressure refrigerant to the receiver;
A pressure balance pipe that equalizes the receiver and the compressor by connecting the receiver and a position where the refrigerating machine oil is not immersed when the compressor is stopped;
An oil moving pipe that connects the vicinity of the bottom surface of the receiver and the vicinity of the oil filler opening of the compressor and distributes refrigeration oil;
A first on-off valve, a second on-off valve, and a third on-off valve respectively provided on the pressurizing pipe, the pressure balance pipe, and the oil moving pipe;
Control means, and oil concentration detection means included in the control means for detecting the concentration of the refrigerating machine oil in the compressor,
During operation of the compressor, when the detected value detected by the oil concentration detecting means is equal to or higher than a preset set value A, the second on-off valve is opened to allow the inside of the pressure balance pipe to flow. By equalizing the compressor and the receiver, and further opening the third on-off valve so that the oil moving pipe can be circulated, a part of the refrigerating machine oil in the compressor is separated from the compressor and the receiver. Accumulated in the receiver due to oil level difference,
The air conditioner is characterized in that the first on-off valve, the second on-off valve, and the third on-off valve are closed while the compressor is stopped.
前記圧縮機の起動時、前記オイル濃度検知手段により検出された検出値が予め設定した設定値B以下となったら第3開閉弁を開けて油移動管を連通させることで、前記レシーバに貯留した高濃度の冷凍機油を前記圧縮機内の圧力と前記レシーバ内の圧力との差圧によって前記圧縮機に供給し、前記圧縮機内の圧力と前記レシーバ内の圧力とが均圧となった後、前記オイル濃度検知手段により検出された検出値が前記設定値Bを超えなかったら第1開閉弁を開けて加圧管を流通可能にすることで前記レシーバを加圧し、前記レシーバに貯留した高濃度の前記冷凍機油を前記圧縮機の圧力と前記レシーバ内の圧力との差圧によって前記圧縮機に供給することを特徴とした請求項1に記載の空気調和装置。   When the compressor is started, when the detected value detected by the oil concentration detecting means is equal to or less than a preset set value B, the third open / close valve is opened and the oil moving pipe is communicated to store in the receiver. A high concentration refrigeration oil is supplied to the compressor by a differential pressure between the pressure in the compressor and the pressure in the receiver, and after the pressure in the compressor and the pressure in the receiver are equalized, If the detection value detected by the oil concentration detection means does not exceed the set value B, the first on-off valve is opened to allow the pressurization pipe to flow, the receiver is pressurized, and the high concentration stored in the receiver is stored. The air conditioner according to claim 1, wherein the refrigerating machine oil is supplied to the compressor by a differential pressure between a pressure of the compressor and a pressure in the receiver. 前記圧縮機の起動時、前記オイル濃度検知手段の検出値が予め設定した設定値B以下となったら、第1開閉弁を開けて加圧管内を流通可能にすることで前記レシーバを加圧し、第3開閉弁を開けて油移動管内を流通可能にすることで前記レシーバに貯留した高濃度の冷凍機油を前記圧縮機内の圧力と前記レシーバ内の圧力との差圧によって前記圧縮機に供給することを特徴とした請求項1に記載の空気調和装置。   When the compressor starts up, if the detection value of the oil concentration detection means is equal to or lower than a preset value B, the receiver is pressurized by opening the first on-off valve and allowing the inside of the pressure pipe to flow, By opening the third on-off valve and allowing it to flow through the oil moving pipe, high-concentration refrigerating machine oil stored in the receiver is supplied to the compressor by the differential pressure between the pressure in the compressor and the pressure in the receiver. The air conditioning apparatus according to claim 1, wherein: 加圧管は圧縮機の吐出側配管に設けられたトラップの下部に接続されていることを特徴とした請求項3に記載の空気調和装置。   The air conditioner according to claim 3, wherein the pressurizing pipe is connected to a lower portion of a trap provided in a discharge side pipe of the compressor. 油移動管に減圧手段を設けたことを特徴とした請求項1ないし4に記載の空気調和装置。




The air conditioner according to any one of claims 1 to 4, wherein a pressure reducing means is provided in the oil moving pipe.




JP2012157472A 2012-07-13 2012-07-13 Air conditioner Active JP6003319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012157472A JP6003319B2 (en) 2012-07-13 2012-07-13 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012157472A JP6003319B2 (en) 2012-07-13 2012-07-13 Air conditioner

Publications (2)

Publication Number Publication Date
JP2014020612A true JP2014020612A (en) 2014-02-03
JP6003319B2 JP6003319B2 (en) 2016-10-05

Family

ID=50195719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012157472A Active JP6003319B2 (en) 2012-07-13 2012-07-13 Air conditioner

Country Status (1)

Country Link
JP (1) JP6003319B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163046A (en) * 1974-11-30 1976-06-01 Daikin Ind Ltd Reitoki niokeru junkatsuyuno hokyusochi
JPS56154196A (en) * 1980-04-30 1981-11-28 Hitachi Ltd Oil feeder
JPS6019785U (en) * 1983-07-18 1985-02-09 松下冷機株式会社 Compressor startup protection device
JPS6083873U (en) * 1983-11-16 1985-06-10 三菱重工業株式会社 Refrigerator lubrication system
JPH03172583A (en) * 1989-11-30 1991-07-25 Toshiba Corp Compressor
JPH05272477A (en) * 1992-03-26 1993-10-19 Daikin Ind Ltd Operation control method of connected type compression device
JPH08144953A (en) * 1994-11-22 1996-06-04 Mitsubishi Electric Corp Oil feeder for compressor
JP2001201219A (en) * 2000-01-21 2001-07-27 Toshiba Kyaria Kk Oil quantity detector and refrigeration system
JP2002317785A (en) * 2001-04-25 2002-10-31 Mitsubishi Electric Corp Refrigerating device and refrigerant compressor
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner
JP2010127543A (en) * 2008-11-27 2010-06-10 Samsung Electronics Co Ltd Refrigerating cycle device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163046A (en) * 1974-11-30 1976-06-01 Daikin Ind Ltd Reitoki niokeru junkatsuyuno hokyusochi
JPS56154196A (en) * 1980-04-30 1981-11-28 Hitachi Ltd Oil feeder
JPS6019785U (en) * 1983-07-18 1985-02-09 松下冷機株式会社 Compressor startup protection device
JPS6083873U (en) * 1983-11-16 1985-06-10 三菱重工業株式会社 Refrigerator lubrication system
JPH03172583A (en) * 1989-11-30 1991-07-25 Toshiba Corp Compressor
JPH05272477A (en) * 1992-03-26 1993-10-19 Daikin Ind Ltd Operation control method of connected type compression device
JPH08144953A (en) * 1994-11-22 1996-06-04 Mitsubishi Electric Corp Oil feeder for compressor
JP2001201219A (en) * 2000-01-21 2001-07-27 Toshiba Kyaria Kk Oil quantity detector and refrigeration system
JP2002317785A (en) * 2001-04-25 2002-10-31 Mitsubishi Electric Corp Refrigerating device and refrigerant compressor
JP2007248001A (en) * 2006-03-17 2007-09-27 Mitsubishi Electric Corp Refrigeration air conditioner
JP2010127543A (en) * 2008-11-27 2010-06-10 Samsung Electronics Co Ltd Refrigerating cycle device

Also Published As

Publication number Publication date
JP6003319B2 (en) 2016-10-05

Similar Documents

Publication Publication Date Title
TWI577949B (en) Lubrication and cooling system
US7886550B2 (en) Refrigerating machine
JP4816220B2 (en) Refrigeration equipment
JPH10131889A (en) Compressor for perforator
WO2002066872A1 (en) Self-contained regulating valve, and compression type refrigerating machine having the same
JP2007285681A (en) Refrigerating appliance
JP5091015B2 (en) Compression refrigerator
JP2007285675A (en) Refrigerating appliance
JP5098472B2 (en) Chiller using refrigerator
WO2015025515A1 (en) Refrigeration device
JP2008082622A (en) Compression type refrigerating device
JP2008082623A (en) Compression type refrigerating device
JP6094080B2 (en) Air conditioner
JP2009257684A (en) Compression refrigerating machine and method for recovering lubricating oil for the same
WO2006095572A1 (en) Refrigeration cycle system
JP5543093B2 (en) Compressive refrigerator and operation method thereof
JP6003319B2 (en) Air conditioner
JP6255832B2 (en) Air conditioner
JP2013139890A (en) Refrigeration apparatus
JP4591402B2 (en) Refrigeration equipment
JP2011214778A (en) Refrigerating device
JP2008275291A (en) Hot water supply device
JP7042929B2 (en) Refrigeration cycle device
JP2008232564A (en) Refrigerating device and control method for refrigerating device
JP2011141078A (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160822

R151 Written notification of patent or utility model registration

Ref document number: 6003319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151