JP2014020362A - Gas combustion method with high mileage and low emission gas for diesel engine - Google Patents

Gas combustion method with high mileage and low emission gas for diesel engine Download PDF

Info

Publication number
JP2014020362A
JP2014020362A JP2012175374A JP2012175374A JP2014020362A JP 2014020362 A JP2014020362 A JP 2014020362A JP 2012175374 A JP2012175374 A JP 2012175374A JP 2012175374 A JP2012175374 A JP 2012175374A JP 2014020362 A JP2014020362 A JP 2014020362A
Authority
JP
Japan
Prior art keywords
water
light oil
diesel engine
droplet
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012175374A
Other languages
Japanese (ja)
Inventor
Satoru Tashiro
哲 田代
Tsuyoshi Kubota
強 久保田
Yukio Akusawa
幸雄 阿久澤
Hitoshi Suzuki
均 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012175374A priority Critical patent/JP2014020362A/en
Publication of JP2014020362A publication Critical patent/JP2014020362A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a combustion method that mixes gasified water with a diesel engine having light oil as a fuel at a ratio of 40-55 vol.% to light oil sprayed by a plunger, creates high combustion performance and high torque performance, and enable considerable reduction of fuel consumption and reduction of emission gas.SOLUTION: In a combustion method in which light oil is sprayed into a cylinder by a plunger and combusted, water micro droplet or gasified water is mixed with a feed part of an injection pump of the plunger at a ratio of 40-55 vol.% to light oil, and then is dispersed and mixed to be combusted.

Description

本発明はジーゼル機関において、軽油にガス状化水を分散混合せしめて、燃焼性の向上と大幅な燃費の低減化及び排出ガスの削減化を可能とする、ジーゼル機関の燃焼方法に関する。  The present invention relates to a diesel engine combustion method in which gasified water is dispersed and mixed in diesel oil to improve combustibility, drastically reduce fuel consumption, and reduce exhaust gas.

車輌や船舶等は主にガソリン内燃機やジーゼル内燃機が使用されているが、ガソリン内燃機はシリンダー内に供給された空気及び燃料を加圧のうえプラグで点火燃焼させ、而もキャブレーターで所要の空燃比を以って燃料の供給がなされることから、始動時はもとより低速回転時或いは高速回転時にもスムーズな燃焼がなされる。
反面ジーゼル内燃機では吸入させた空気を高圧縮高温化させたうえ、軽油を高圧噴霧させて燃焼させるものであるから、始動時や低速回転時、更には低温時等には燃焼斑が発生するものの、高速回転時には大きなトルクが発揮されるため、トラックや船舶等の内燃機として使用されてきた。
Gasoline internal combustion engines and diesel internal combustion engines are mainly used in vehicles and ships, etc., but gasoline internal combustion engines pressurize the air and fuel supplied into the cylinders and ignite and burn them with plugs. Thus, the fuel is supplied, so that smooth combustion is performed not only at the start but also at the time of low speed rotation or high speed rotation.
On the other hand, in diesel internal combustion engines, inhaled air is heated to a high compression temperature and light oil is sprayed at high pressure and burned, so although combustion spots occur at start-up, low-speed rotation, and even at low temperatures. Since a large torque is exhibited during high-speed rotation, it has been used as an internal combustion machine for trucks, ships and the like.

而して今日に至っては過去における膨大な石油資源の消費による資源の枯渇化はもとより、これら膨大な石油消費に伴って排出され続けて来た排出ガスや煤煙等による環境汚染は極限にまで至っており、これによる多種多様な健康被害が各地で頻発しており、更に近年においてはこれら排気ガスや煤煙等による地球温暖化も急速に進み、異常気象の惹起により世界各地での豪雨、洪水等の多大な災害発生も見聞されるに至っている。  Thus, in the past, not only has there been a depletion of resources due to the consumption of enormous oil resources in the past, but also the environmental pollution caused by exhaust gases and soot that has continued to be emitted due to the enormous consumption of oil has reached its limit. As a result, various health damages are frequently occurring in various places, and in recent years, global warming due to exhaust gases and soot has rapidly progressed, and the occurrence of abnormal weather has caused heavy rains, floods, etc. in various parts of the world. A great deal of disaster has been observed.

かかる問題への対処策として、一方においては軽油を初めとする石油燃料の大幅な使用低減化を図ることであり、且他方においては排気ガスや煤煙の排出削減化を図ることである。
この具体的解決の糸口として、古くからガソリンや軽油或いは重油等の石油類に水を乳化剤と共に所要の混合割合で混合させた所謂エマルジョン化燃料として燃焼させることが試みられて来た。即ちこのエマルジョン化燃料が十分に燃焼しえる根拠として、石油+水(水蒸気)+熱=水素(H)+一酸化炭素(CO)のメカニズム所謂水蒸気改質反応が考えられ、更には混合される水が燃焼時に発火点を下げるまでに至らぬ場合における燃焼性が高められる根拠として、炭火の燃焼で説明できるような木炭(C)+水(HO)=CO+Hのメカニズム即ち水成ガス反応が生成されると考えられている。
One solution to this problem is to significantly reduce the use of light oil and other petroleum fuels on the one hand, and to reduce exhaust gas and soot emissions on the other.
As a clue for this concrete solution, it has been tried to burn as a so-called emulsified fuel in which water is mixed with an emulsifier at a required mixing ratio in petroleum, such as gasoline, light oil or heavy oil, for a long time. That is, as a basis for the sufficient emulsification of the emulsified fuel, the so-called steam reforming reaction of petroleum + water (steam) + heat = hydrogen (H 2 ) + carbon monoxide (CO) can be considered and further mixed. The reason why the combustibility is improved when the water that does not reach the ignition point during combustion is increased, is the mechanism of charcoal (C) + water (H 2 O) = CO + H 2 that can be explained by the combustion of charcoal, that is, water formation It is believed that a gas reaction is generated.

ところでガソリンや軽油或いは重油等の石油類と水とは非相溶性であるから、相互を分散混合させるためには、乳化剤による化学結合によるエマルジョン化燃料とせねばならない。そしてこのエマルジョン化燃料により高い燃焼性を発揮させるためには、燃焼に際して混合される水が可能な限り微細化した状態で且燃焼時に燃焼性を保持する石油類の燃焼熱を気化熱として剥奪し微爆作用が積極的に促進させることである。
而しながらエマルジョン化燃料は乳化剤により石油分子と水分子とを強力に化学結合させるため、この結合された水分子は微細化がなされにくく、従って燃焼に際しての微爆化には極めて大きな気化熱の剥奪と且微爆作用も十分に促進されず、結局十分な燃焼性が発揮されず、且水の混合割合もせいぜい7乃至10%割合が限度とされ、燃費の低減化や排出ガスの削減効果も期待できない。
そして留意すべきは内燃機内に水分残留とその放置により内燃機関の腐蝕の危険も想定されることにある。
By the way, since petroleum such as gasoline, light oil or heavy oil and water are incompatible with each other, in order to disperse and mix each other, it must be used as an emulsified fuel by chemical bonding with an emulsifier. In order to exhibit high combustibility with this emulsified fuel, the heat of vaporization of the petroleum that maintains the combustibility during combustion is stripped off as vaporization heat in a state where the water mixed during combustion is as fine as possible. The micro-explosive action is to actively promote.
However, since the emulsified fuel strongly binds petroleum molecules and water molecules by the emulsifier, the combined water molecules are difficult to be refined. Deprivation and micro-explosive action are not promoted sufficiently, after all, sufficient flammability is not exhibited, and the mixing ratio of water is limited to 7 to 10% at the maximum, reducing fuel consumption and reducing exhaust gas I can't expect.
It should be noted that there is a risk of corrosion of the internal combustion engine due to moisture remaining in the internal combustion engine and leaving it there.

そこで発明者等はエマルジョン化燃料のかかる問題を解決するため更なる研究を重ねた結果、軽油と水とを所要の割合で混合のうえ高速で高密度に衝突させ撹乱させ破砕させる衝突撹乱破砕モジュールを流通させることにより、乳化剤を利用することなく相互を均等に分散混合でき且その液滴も微細化され、ボイラー等の燃焼装置として実用化しえることを究明し、既に特願2011−254387号においてその内容を開示している。
特願2011−254387号
Therefore, the inventors conducted further research to solve this problem of emulsified fuel, and as a result, a collision disturbance crushing module that mixes light oil and water at a required ratio and collides them at high speed, disturbs them, and crushes them. Circulated, and it was found that the droplets can be dispersed and mixed evenly without using an emulsifier and that the droplets can be made fine and can be put to practical use as a combustion apparatus such as a boiler. In Japanese Patent Application No. 2011-254387, The contents are disclosed.
Japanese Patent Application No. 2011-254387

そこでかかる衝突撹乱破砕モジュールにおいては、混合される軽油と水とが略均等に分散混合され、一般的燃焼においては水を略40乃至50容量%程度に混合しても燃焼しえることから、低燃費化や排出ガス削減化には大きく寄与できる。
反面ジーゼル内燃機関においては、外気温の変化とりわけ低温時においても安定した燃焼はもとより、高い燃焼性とともに高トルクの発生が望まれ、且残留水分による腐蝕防止への対処も要請される。
かかる課題に対し発明者等は鋭意研究を重ねた結果、ジーゼル機関に供給する軽油と水との混合において、この混合供給水を予めその液滴径を30μm以下に微滴化したうえ、高電場付加によりレイリー分裂を図り以っての滴径を300nm以下の極微滴化したガス状化水となしたうえ、このガス状化水を軽油に対し40乃至55容量%割合で混合のうえジーゼル内燃機関に噴霧供給することにより、ガス状化液滴のため気化熱の剥奪が殆ど無くなり且極微細化液滴であるから微爆作用も積極的になされることを究明し本発明に至った。
Therefore, in such a collision disturbance crushing module, the light oil and water to be mixed are dispersed and mixed substantially evenly, and in general combustion, even if water is mixed to about 40 to 50% by volume, it can be burned. It can greatly contribute to fuel efficiency and exhaust gas reduction.
On the other hand, in diesel internal combustion engines, it is desired to generate high torque with high combustibility as well as stable combustion even when the outside air temperature changes, particularly at low temperatures, and to cope with corrosion prevention due to residual moisture.
As a result of repeated researches by the inventors on the subject, in mixing the light oil and water supplied to the diesel engine, the mixed supply water is finely divided into droplets of 30 μm or less in advance, and a high electric field is obtained. By adding Rayleigh splitting, it became gasified water with a droplet size of 300 nm or less, and this gasified water was mixed at a ratio of 40 to 55% by volume with respect to light oil. As a result of spray supply to the engine, the vaporization of the vaporized droplets almost eliminated the vaporization heat, and since the droplets were extremely miniaturized, it was determined that a micro-explosive action was positively achieved, leading to the present invention.

本発明は軽油を燃料とするジーゼル機関において、プランジャーで噴霧供給する軽油に対して、ガス状化水を軽油に対して40乃至55容量%で分散混合せしめ、高燃焼性と高トルクを創出せしめ、大幅な燃費の低減化と排出ガスの削減化を可能とする、ジーゼル機関の低燃費低排出ガス燃焼方法を提供することにある。  In the diesel engine fueled with light oil, the gasified water is dispersed and mixed with the light oil supplied by the plunger at 40 to 55% by volume with respect to the light oil to create high combustibility and high torque. It is an object of the present invention to provide a low fuel consumption and low exhaust gas combustion method for a diesel engine that can greatly reduce fuel consumption and exhaust gas.

上述の課題を解決するために本発明が用いた技術的手段は、軽油を燃料とするジーゼル機関のシリンダーに装着される燃料噴霧プランジャーの噴射ポンプ供給部に、水をアトマイザー若しくは超音波霧化器により、その液滴径を最大30μm以下に微液滴化させる微液滴化機構と、この微液滴に7000乃至21000Vの高電場を付加させレイリー分裂により、その液滴径を300nm以下のガス状化水となすガス状化水機構、或いは水を超音波振動板において、その液滴径を最大10μm以下に撹乱微液滴化させる撹乱微液滴化機構と、この撹乱微液滴に7000乃至21000Vのマイナス高電位を付加させて、ガス状化マイナス電位水となすガス状化マイナス電位機構と、これら生成されたガス状化水若しくはガス状化マイナス電位水を軽油の供給口に供給される軽油量に対して、40乃至55%容量割合で混合させる混合機構とにより、軽油とガス状化水とを供給し高燃焼と高トルクを創出せしめるとともに、大幅な燃費低減化と排出ガスの削減化を可能とする燃焼機構とからなるジーゼル機関の低燃費低排出ガス燃焼方法に存する。  The technical means used by the present invention in order to solve the above-mentioned problems is that the atomizer or ultrasonic atomization of water is performed on the injection pump supply part of the fuel spray plunger attached to the cylinder of the diesel engine fueled with light oil. The droplet size is reduced to a maximum of 30 μm or less by a vessel, and a high electric field of 7000 to 21000 V is applied to the droplet to make the droplet size 300 nm or less. Gaseous water mechanism that turns into gasified water, or a disturbance microdroplet mechanism that makes water droplets into a maximum of 10 μm or less in the ultrasonic vibration plate, and a disturbance microdroplet A gasification minus potential mechanism that adds a minus high potential of 7000 to 21000 V to form gasification minus potential water, and the generated gasification water or the gasification minus potential water. With a mixing mechanism that mixes 40 to 55% by volume with the amount of light oil supplied to the light oil supply port, light oil and gaseous water are supplied to create high combustion and high torque. The present invention resides in a low fuel consumption low exhaust gas combustion method of a diesel engine comprising a combustion mechanism capable of reducing fuel consumption and exhaust gas.

本発明は上述の如き構成からなるものであって、燃料として軽油が供給されるジーゼル機関のシリンダーに装着されてなる噴霧供給具(プランジャー)の噴射ポンプ供給部に、水をアトマイザー若しくは超音波霧化手段によりその液滴径が30μm以下の微液滴が多量に生成しえるとともに、この微液滴にその電圧が7000乃至21000Vの高電場を付加させることにより、微液滴が強力な電場吸引力によりその液滴径が300nm以下の膨大数且極微滴状に引裂破砕されガス状化水が生成される。そしてこのガス状化水が軽油に対して40乃至55容量%割合で混合のうえプランジャーの噴射ポンプ供給部に供給され、且シリンダー内に噴霧され高温燃焼がなされるものであるが、シリンダー内において加圧高温化された空気中に噴霧されると、噴霧された軽油の液滴径に対してガス状化水ではその極微液滴径が少なくとも1/100以下であるから、体積比では略120,000分の1以下となり、而もこのガス状化水が軽油液滴の外周面を密に包被混合された状態となるから、シリンダー内の高圧高温下ではその僅かな気化熱により瞬時に微爆作用が働き高燃焼化と高トルクの発生がなされる。  The present invention is configured as described above, and water is supplied to an atomizer or an ultrasonic wave in an injection pump supply part of a spray supply tool (plunger) mounted on a cylinder of a diesel engine to which light oil is supplied as fuel. A large amount of fine droplets having a droplet diameter of 30 μm or less can be generated by the atomizing means, and by adding a high electric field having a voltage of 7000 to 21000 V to the fine droplets, the fine droplets have a strong electric field. Due to the suction force, the droplet diameter is torn and crushed into a very large number of extremely fine droplets having a diameter of 300 nm or less, and gaseous water is generated. The gasified water is mixed at a rate of 40 to 55% by volume with respect to the light oil and supplied to the injection pump supply part of the plunger, and sprayed into the cylinder for high-temperature combustion. When sprayed into air that has been pressurized and heated at a high temperature, the droplet size of the atomized gas oil is at least 1/100 or less of the droplet size of the gasified water. The gasified water is in a state in which the gas oil droplets are densely enveloped and mixed with the gas oil droplets under a high pressure and high temperature in the cylinder. The micro-explosion action works, and high combustion and high torque are generated.

更には水を超音波振動板によりその液滴径を10μm以下に微液滴化させたうえ、この微液滴に7000乃至21000Vの高電位付加させてガス状化水となしたうえ軽油に対して40乃至55容量%割合で混合のうえ、プランジャーの噴射ポンプ供給部に供給し且シリンダー内に噴霧燃焼させるものでは、超音波振動数を自在に変動できるとともに、この超音波振動数の変動により生成される水の液滴径も10μm以下からその液滴径が1μm以下に亘る極微液滴にまで自在に生成し供給できるため、ジーゼル機関の稼働態様や使用環境等に合せて超音波振動を変化させて微液滴化や極微液滴化されたガス状化水を所要割合を以って燃料噴霧プランジャーの噴射ポンプ供給部に供給することで、該ガス状化水はその付加されたイオン性と且微液滴若しくは極微液滴により軽油液滴の外表面を包被するよう分散混合され、高圧高温化されたシリンダー内で、僅かな気化熱の剥奪で瞬時に微爆作用が働き高燃焼と高トルクが創出される。
加えて本発明において軽油と混合される水はアトマイザーや超音波霧化装置により一旦液滴径が30μm以下の微液滴となしたうえ更にその電圧が7000乃至21000Vの高電場を付加させて、レイリー分裂させてその液滴径が300nm以下のガス状化水、若しくは超音波振動板によりその液滴径が1μm以下の極微液滴のガス状化水を使用するため水分としての性質が無くなり、従ってジーゼル機関の腐蝕の問題も解決される。
Further, water is made into fine droplets with an ultrasonic vibration plate so that the droplet diameter is 10 μm or less, and a high potential of 7000 to 21000 V is applied to the fine droplets to form gasified water. When mixing at a ratio of 40 to 55% by volume and supplying to the injection pump supply part of the plunger and spray combustion in the cylinder, the ultrasonic frequency can be freely changed and the fluctuation of the ultrasonic frequency can be changed. Since the water droplet size generated by this can be freely generated and supplied from 10 μm or less to ultrafine droplets with a droplet size of 1 μm or less, ultrasonic vibrations can be used according to the operation mode and usage environment of the diesel engine. The gasified water is added to the injection pump supply section of the fuel spray plunger at a required ratio by changing the gas to a fine droplet or a microdroplet. Ionic and fine In a cylinder that is dispersed and mixed to cover the outer surface of light oil droplets by droplets or ultrafine droplets, in a cylinder that has been heated to high pressure and high temperature, a slight explosive heat is used to instantly generate a micro-explosion effect, resulting in high combustion and high torque. Created.
In addition, the water mixed with light oil in the present invention is once converted into fine droplets having a droplet diameter of 30 μm or less by an atomizer or an ultrasonic atomizer, and a high electric field with a voltage of 7000 to 21000 V is further added. The property as moisture is lost because Rayleigh splitting and gasified water having a droplet diameter of 300 nm or less, or ultrafine droplet gasified water having a droplet diameter of 1 μm or less by an ultrasonic vibration plate are used. Therefore, the problem of corrosion of diesel engine is solved.

軽油を燃料とするジーゼル機関において、軽油を噴霧するプランジャーの噴射ポンプ供給部に、水を超音波振動板によりその液滴径を1μm以下の極微液滴のガス状化水となし、且このガス状化水に略10,000Vの高電位を付加しえるガス状化水生成機構を設け、このガス状化水生成機構で生成されたガス状化水を、軽油に対し40乃至55容量%割合で供給混合させて噴霧燃焼する。  In a diesel engine using light oil as fuel, water is made into ultrafine droplet gasified water with a droplet diameter of 1 μm or less by means of an ultrasonic vibration plate in the injection pump supply part of a plunger that sprays light oil. A gasified water generating mechanism capable of applying a high potential of approximately 10,000 V to the gasified water is provided, and the gasified water generated by the gasified water generating mechanism is 40 to 55% by volume with respect to light oil. Spray-combustion with mixing at a rate.

以下に本発明実施例を図とともに詳細に説明すれば、図1は本発明燃焼方法のフロー図であり、図2はアトマイザーによるガス状化水機構の説明図、図3は超音波霧化器によるガス状化水機構の説明図、第4図は超音波振動板によるガス状化水機構の説明図であって、本発明は軽油1を燃料とするジーゼル機関において水2を該軽油1に対してその燃焼性や発生トルクを損なうことなく、且軽油1に対して40乃至55容量%割合で混合分散せしめ、高燃焼と高トルクを創出せしむるとともに、燃費の大幅な低減と煤煙や排気ガスの削減化を実現することにある。
これがためには図1の燃焼方法フロー図において理解される如く、本発明では本質的に軽油1とは非相溶で且自主燃性を保持しない水2とを分散混合せしめ、而も軽油1の燃焼性を加重せしめる技術が要請される。かかる場合に軽油に対しガス状化水2Bが40乃至55容量%割合で混合されるのは、40容量%以下では燃費低減化や排出ガス等の削減化が期待薄となることであり、反面55容量%を超えると安定した燃焼性が難しくなることによる。
In the following, the embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a flowchart of the combustion method of the present invention, FIG. 2 is an explanatory diagram of a gasified water mechanism by an atomizer, and FIG. FIG. 4 is an explanatory view of a gasified water mechanism using an ultrasonic vibration plate. FIG. 4 is an explanatory view of a gasified water mechanism using an ultrasonic vibration plate. On the other hand, it does not impair the combustibility and generated torque, and it is mixed and dispersed at a rate of 40 to 55% by volume with respect to the light oil 1 to create high combustion and high torque. The purpose is to reduce exhaust gas.
For this purpose, as understood from the combustion method flow chart of FIG. 1, in the present invention, water 2 which is essentially incompatible with light oil 1 and does not retain self-combustibility is dispersed and mixed. The technology that weights the flammability is required. In such a case, the gasified water 2B is mixed at 40 to 55% by volume with respect to the light oil because, if it is 40% by volume or less, reduction in fuel consumption and reduction of exhaust gas, etc. will be less expected. If it exceeds 55% by volume, stable combustibility becomes difficult.

そこで本発明においてはかかる要請技術のうち、燃料としての軽油1と非相溶性の水2とをなるべく均質に且可能な限り微液滴状で分散混合させるうえから、プランジャー20により噴霧される軽油1の油滴径に対して少なくとも略1/60乃至1/100以下の微液滴径2A若しくは極微液滴に相当するガス状化水2Bとなすことにより、インジェクター20により噴霧される軽油1の油滴径は略20乃至30μm程度であるから、該軽油1の油滴径に対して略1/60乃至1/100以下の微液滴2A、好ましくは1/300乃至1/1000以下の極微液滴からなるガス状化水2Bとなすことが、噴霧される微油滴1A相互の間隙に十分に分散混合される所謂均質な分散混合がなされ以って均質な燃焼がなしえることと、自燃性を保持しない水2を微液滴2Aや極微液滴即ちガス状化水2Bとなすことにより、シリンダー30内での高圧高温により僅かな気化熱の剥奪で瞬時に微爆化し、以って微油滴1Aの燃焼を著しく高めて高トルクの創出がなされることとなる。  Therefore, in the present invention, among the required technologies, the light oil 1 as the fuel and the incompatible water 2 are dispersed and mixed as homogeneously as possible in the form of fine droplets and then sprayed by the plunger 20. The light oil 1 sprayed by the injector 20 by forming the fine droplet diameter 2A or the gasified water 2B corresponding to the ultrafine droplet at least about 1/60 to 1/100 or less with respect to the oil droplet diameter of the light oil 1. The oil droplet diameter of the liquid oil is about 20 to 30 μm, so that the fine droplet 2A is about 1/60 to 1/100 or less, preferably 1/300 to 1/1000 or less of the oil droplet diameter of the light oil 1. The formation of the gasified water 2B composed of ultrafine droplets can achieve homogeneous combustion by so-called homogeneous dispersion mixing that is sufficiently dispersed and mixed in the gaps between the sprayed fine oil droplets 1A. Retains self-flammability By making the water 2 that has not been converted into fine droplets 2A or ultrafine droplets, that is, gaseous water 2B, the high pressure and high temperature in the cylinder 30 instantly causes a slight explosion of the heat of vaporization, resulting in fine oil droplets. The combustion of 1A is remarkably enhanced and high torque is created.

これがため水2を微液滴2Aさせる微液滴化機構3及びこの微液滴2Aの液滴径を300nm以下の極微液滴即ちガス状化水2Bとなすガス状化水機構4とがプランジャー20の噴霧ポンプ20Aの軽油供給部20Bの前部に配位され、且生成された微液滴2A若しくは極微液滴所謂ガス状化水2Bを、プランジャー20の噴霧ポンプ20Aの軽油供給部20Bに、その供給される軽油1の供給容量に対して40乃至55容量%割合で混合させる混合機構7が設けられている。  For this reason, the microdroplet forming mechanism 3 for causing the water 2 to form the microdroplet 2A and the gasified water mechanism 4 for converting the microdroplet 2A into a microdroplet having a droplet diameter of 300 nm or less, that is, the gaseous water 2B, are planned. Fine oil droplets 2A or so-called gasified water 2B arranged and generated in front of the light oil supply part 20B of the spray pump 20A of the jar 20 is used as the light oil supply part of the spray pump 20A of the plunger 20 20B is provided with a mixing mechanism 7 for mixing at a rate of 40 to 55% by volume with respect to the supplied capacity of the light oil 1 to be supplied.

即ち図2にはアトマイザー10による微液滴化機構3並びにガス状化水機構4が示されてなるもので、同図2にはノズル体10A相互を略直交状に噴霧10Cさせる形態が示されてなるもので、ノズル先端10Bより噴霧される微液滴2Aが噴霧衝突して、ノズル体10Aのノズル先端よりそのまま噴霧させる場合に比べて、その微液滴径は略30乃至50%程度にまで微液滴化が可能となる。
かかる場合において、現状のアトマイザー10により噴霧される微液滴2Aの液滴径は噴霧圧力とノズル先端口径とによりある範囲での変化も可能であるが、本発明では可能な限り微液滴2A乃至ガス状化水2Bが望まれるものの、現状のアトマイザー10では噴霧圧力が略2乃至5kg/cmノズル先端孔径が最少のものでも、噴霧される微液滴2Aの液滴径はせいぜい20乃至30μmであり、従ってより液滴径を小さく形成するうえからは直交状の噴霧が望まれる。当然にかかる噴霧は特定区画内で行う必要上噴霧ケーシング10D内でなされ、且噴霧水滴を排出する排出溝10Eが設けられている。
That is, FIG. 2 shows the atomizing mechanism 3 and the gasified water mechanism 4 by the atomizer 10, and FIG. 2 shows a form in which the nozzle bodies 10A are sprayed 10C substantially orthogonally. Compared to the case where the fine droplet 2A sprayed from the nozzle tip 10B is sprayed and collided and sprayed as it is from the nozzle tip of the nozzle body 10A, the diameter of the fine droplet is about 30 to 50%. Can be made into fine droplets.
In such a case, the droplet diameter of the fine droplet 2A sprayed by the current atomizer 10 can be changed within a certain range depending on the spray pressure and the nozzle tip diameter. Although the gasified water 2B is desired, the atomizer 10 has a spray pressure of about 2 to 5 kg / cm 2 with a minimum nozzle tip hole diameter, and the sprayed fine droplet 2A has a droplet diameter of 20 to 20 at most. Therefore, in order to form a droplet having a smaller diameter, an orthogonal spray is desired. Needless to say, such spraying is performed in the spray casing 10D because it is necessary to be performed in a specific section, and a discharge groove 10E for discharging spray water droplets is provided.

かくしてアトマイザー10により生成された微液滴2Aの液滴径では未だ液滴が大きすぎるもので、仮令噴霧混合させても、軽油1の微油滴1Aの周面を密に包被しえる混合には至らず、且微液滴2Aの燃焼に際しては大きな気化熱の剥奪を要し、瞬時の微爆燃焼に難点が生ずる。そこで図2に示される如く、この生成された微液滴2Aに高電場を付加しその電場吸引力により微液滴2Aを膨大数に引裂破砕所謂レイリー分裂させて、極微液滴のガス状化水2Bとなす、ガス状化水機構4が設けられている。  Thus, the droplet size of the fine droplet 2A generated by the atomizer 10 is still too large, and even if it is temporarily spray-mixed, the mixture of the fine oil droplet 1A of the light oil 1 can be tightly covered. However, when the fine droplets 2A are burned, it is necessary to remove the heat of vaporization, and there is a difficulty in instantaneous fine explosion combustion. Therefore, as shown in FIG. 2, a high electric field is applied to the generated fine droplets 2A, and the electric field attractive force causes the fine droplets 2A to be ruptured into a large number, so-called Rayleigh splitting, so that the fine droplets are gasified. A gasified water mechanism 4 is provided as water 2B.

このガス状化水機構4は、アトマイザー10により直交噴霧により生成された微液滴2Aを、このアトマイザー10に連接して生成された微液滴2Aを可能な限り多数の電場付加路4Aが形成されてなるとともに、この電場付加路4A内を流通させる微液滴2Aに直近で7000乃至21000Vの高電圧を均等に付加させるため、それぞれの電場付加路4Aの中央には、マイナス電極4Bが配位されている。
かかる場合におけるレイリー分裂のために電場付加路4Aのマイナス電極4Bに付加するマイナス電圧は、該電場付加路4A内の微液滴2Aの流通量と且微液滴2Aの液滴径によっても異るが、流通量が4乃至40cc/minで略7000乃至12000V、流通量が40乃至400cc/minでは略12000乃至18000V、及び流通量が400乃至4000cc/minでは略18000乃至21000Vが目処となる。更に流通する微液滴2Aの液滴径が20乃至30μmでは略7000乃至21000V、液滴径が300nm乃至10μmでは略7000乃至14000V程度が目安となる。
The gasified water mechanism 4 forms as many electric field addition paths 4A as possible with the fine droplets 2A generated by orthogonal spraying by the atomizer 10 and the fine droplets 2A generated by connecting to the atomizer 10 as much as possible. At the same time, in order to uniformly apply a high voltage of 7000 to 21000 V to the fine droplets 2A flowing through the electric field addition path 4A, a negative electrode 4B is arranged at the center of each electric field addition path 4A. It is ranked.
In this case, the negative voltage applied to the negative electrode 4B of the electric field addition path 4A due to Rayleigh splitting also varies depending on the flow rate of the fine droplets 2A in the electric field addition path 4A and the droplet diameter of the fine droplets 2A. However, when the flow rate is 4 to 40 cc / min, approximately 7000 to 12000 V, when the flow rate is 40 to 400 cc / min, approximately 12000 to 18000 V, and when the flow rate is 400 to 4000 cc / min, approximately 18000 to 21000 V are expected. Further, when the droplet diameter of the circulated fine droplet 2A is 20 to 30 μm, approximately 7000 to 21000 V is used, and when the droplet diameter is 300 nm to 10 μm, approximately 7000 to 14000 V is approximately.

図3は超音波霧化器による微液滴化機構3の説明図であって、超音波霧化器11は通常加湿機やショーケース等に使用されている超音波霧化器の使用も可能であるが、本発明においてはジーゼル機関に使用することから、小型強固で且水2の扱い性に優れる構成のものとしてシャワータイプ霧化器11が提案される。即ちシャワータイプ霧化器11は、水2を供給する供給部11Aと直交するシャワノズル部11Bの上面には超音波振動子11Cが設けられてなり、且下面には超音波霧化された所謂微液滴2Aを噴霧する噴霧ノズル11Dが形成されており、且この超音波振動子11Cには振動出力のための超音波発信機(図示せず)と連結されている。
そしてかかるシャワータイプ霧化器11の超音波振動子11Cへの超音波付加は略19MHz乃至60MHz程度でなされるものであるが、かかる付加超音波振動の範囲でも、生成される微液滴2Aの液滴径としては略10乃至20μm程度である。
FIG. 3 is an explanatory diagram of the microdroplet forming mechanism 3 using an ultrasonic atomizer. The ultrasonic atomizer 11 can be an ultrasonic atomizer that is usually used in a humidifier or a showcase. However, in the present invention, since it is used for a diesel engine, a shower type atomizer 11 is proposed as a small and strong structure with excellent water 2 handling. That is, the shower type atomizer 11 is provided with an ultrasonic vibrator 11C on the upper surface of the shower nozzle portion 11B orthogonal to the supply portion 11A for supplying water 2, and is so-called finely atomized on the lower surface. A spray nozzle 11D for spraying the droplet 2A is formed, and the ultrasonic transducer 11C is connected to an ultrasonic transmitter (not shown) for vibration output.
Further, the ultrasonic wave is added to the ultrasonic vibrator 11C of the shower type atomizer 11 at about 19 MHz to 60 MHz. However, even in the range of the additional ultrasonic vibration, the generated fine droplets 2A The droplet diameter is about 10 to 20 μm.

当然にかかる噴霧液滴径では高燃焼や高トルクの創出が十分に実現しにくいことから、シャワータイプ霧化器11のシャワノズル部11Bより噴霧された微液滴2Aは、前記の如く噴霧ケーシング10D内で噴霧のうえ、該噴霧ケーシング10Dを連接して設けられたガス状化水機構4において高電場を付加し、その電場吸引力により微液滴2Aを膨大数に引裂破砕所謂レイリー分裂させて極微液滴のガス状化水2Bとなすもので、かかるガス状化水機構4では略その極微液滴径が10乃至200nm程度のガス状化水2Bの生成も可能となる。  Naturally, it is difficult to achieve high combustion and high torque with such a spray droplet diameter. Therefore, the fine droplet 2A sprayed from the shower nozzle portion 11B of the shower type atomizer 11 is spray casing 10D as described above. After spraying inside, a high electric field is applied in the gasified water mechanism 4 provided by connecting the spray casing 10D, and the electric field suction force causes the fine droplets 2A to be ruptured and ruptured so-called Rayleigh. The gasified water mechanism 4 can generate the gasified water 2B having a diameter of about 10 to 200 nm.

図4には超音波振動板による撹乱微液滴化機構5と、これにより生成された撹乱微液滴に均質分散性を付与せしめるガス状化マイナス電位機構6が示されてなるもので、該撹乱微液滴化機構5は図示する如く圧電素材よりなる超音波振動板12に吸水性素地12Aを配位し、該吸水性素地12Aに適宜に水2を補給のうえ超音波振動板12に超音波振動を付加し、水2を撹乱破砕してその破砕液滴径が略1.0μm乃至20nm程度の微液滴2A若しくは極微液滴2Bが生成されるもので、この超音波振動板12、並びに吸水性素地12Aは、生成される微液滴2A若しくは極微液滴2Bが拡散されぬよう生成区画12B内に形成される。そして生成された微液滴2A若しくは極微液滴2Bの噴霧燃焼に際してマイナス高電位を付加せしめて軽油1との包着性を高めるため、マイナス高電極12Cが設けられている。  FIG. 4 shows a disturbing microdroplet forming mechanism 5 using an ultrasonic diaphragm and a gasified minus potential mechanism 6 for imparting homogeneous dispersibility to the disturbing microdroplets generated thereby. As shown in the figure, the disturbance microdroplet mechanism 5 arranges a water absorbent base 12A on an ultrasonic vibration plate 12 made of a piezoelectric material, replenishes the water absorbent base 12A with water 2 as appropriate, and then supplies the ultrasonic vibration plate 12 to the ultrasonic vibration plate 12. Ultrasonic vibration is applied, and the water 2 is disrupted and crushed to produce microdroplets 2A or microdroplets 2B having a crushed droplet diameter of approximately 1.0 μm to 20 nm. In addition, the water-absorbing substrate 12A is formed in the generation section 12B so that the generated microdroplets 2A or microdroplets 2B are not diffused. Further, a minus high electrode 12C is provided in order to add a minus high potential during spray combustion of the generated fine droplet 2A or microfine droplet 2B and to improve the sealing property with the light oil 1.

かかる場合の撹乱破砕に係る液滴径は、付加超音波周波数により変化する反面生成量の変化も大きい。即ち付加させる超音波周波数が50MHz、超音波振動板12Aの面積3cm平方の超音波振動板12で生成される微液滴若しくは極微液滴所謂ガス状化水2Bの液滴径は略5μm乃至は400nm程度で且生成量として4.0乃至6.0cc/min程度である。
反面付加超音波周波数を18乃至20MHzでは、生成されるガス状化水2Bの液滴径は略7乃至15μmで且その生成量としては略15乃至20cc/min程度である。更に付加超音波周波数を80乃至120MHzと高周波数にした場合には、生成液滴径としては略20乃至50nmと極微液滴となるが、生成量としては僅か0.5乃至1.2cc/min程度まで減少する。
従ってジーゼル機関における燃料として、軽油1に対して略40乃至55容量%割合で混合使用させるうえからは、該混合割合に相当するガス状化水2Bの生成をする必要に際しては、かかる超音波振動板12のユニットを多数併設させることにより対処することが提案される。
In such a case, the droplet diameter related to the disruption and fracturing changes greatly depending on the added ultrasonic frequency, but the amount of generation is also large. That is, the droplet diameter of the so-called gaseous water 2B formed by the ultrasonic vibration plate 12 having an ultrasonic frequency of 50 MHz and an ultrasonic vibration plate 12A having an area of 3 cm square is about 5 μm or more. It is about 400 nm and the production amount is about 4.0 to 6.0 cc / min.
On the other hand, when the added ultrasonic frequency is 18 to 20 MHz, the droplet diameter of the generated gaseous water 2B is about 7 to 15 μm, and the generated amount is about 15 to 20 cc / min. Further, when the additional ultrasonic frequency is set to a high frequency of 80 to 120 MHz, the generated droplet diameter is approximately 20 to 50 nm, which is an extremely fine droplet, but the generated amount is only 0.5 to 1.2 cc / min. Decrease to a degree.
Accordingly, when the diesel engine is mixed and used at a rate of approximately 40 to 55% by volume with respect to the light oil 1, the ultrasonic vibration is required when generating the gaseous water 2B corresponding to the mixing rate. It is proposed to deal with this by providing a large number of units of the plate 12.

かかる如き微液滴化機構3やガス状化水機構4、若しくは撹乱微液滴化機構5やガス状化水マイナス電位機構6等により生成された微液滴2A若しくはガス状化水2Bは、図5に示すプランジャー20に付帯する噴射ポンプ20Aの供給部20Bに所要の混合割合を以って混合させる分散混合機構7が連結されている。即ち該分散混合機構7はその一方側が微液滴2A若しくはガス状化水2Bの生成部21と移送管21Aで連結され、且他方側はプランジャー20の噴射ポンプ20Aの軽油供給部20Bに同様に移送管21Aが連結されているものであるが、プランジャー20によりシリンダー30内への噴霧に際して噴射ポンプ20Aの軽油供給部20Bに働く吸引力に対応して吸引供給される軽油1量に対して40乃至55容量%割合で混合供給させる調整弁21B及び軽油1が逆流せぬよう逆止弁21Cが設けられた構成からなる。  The microdroplet 2A or the gasified water 2B generated by the microdroplet mechanism 3, the gasified water mechanism 4, the disturbing microdroplet mechanism 5, the gasified water minus potential mechanism 6, or the like, A dispersion mixing mechanism 7 for mixing at a required mixing ratio is connected to a supply unit 20B of an injection pump 20A attached to the plunger 20 shown in FIG. That is, one side of the dispersion mixing mechanism 7 is connected to the generation unit 21 of the fine droplet 2A or gaseous water 2B and the transfer pipe 21A, and the other side is similar to the light oil supply unit 20B of the injection pump 20A of the plunger 20. 21 A is connected to the transfer pipe 21A, but with respect to 1 quantity of light oil sucked and supplied corresponding to the suction force acting on the light oil supply part 20B of the injection pump 20A when spraying into the cylinder 30 by the plunger 20. The control valve 21B is mixed and supplied at a rate of 40 to 55% by volume and the check valve 21C is provided so that the light oil 1 does not flow backward.

図6は本発明の軽油1と微液滴2A若しくはガス状化水2Bとの混合燃料を燃焼させる燃焼機構8におけるシリンダー30内の説明図であって、該シリンダー30内のピストン30Aの頂部には、軽油1と水2の微液滴2A若しくはガス状化水2Bとが混合され混合機構7のプランジャー20が設けられ、加圧高温化されたシリンダー30内に噴霧することで、高燃焼と高トルクで且大幅な燃費の低減化と排出煤煙及び排気ガスの削減化が実現される。  FIG. 6 is an explanatory view of the inside of the cylinder 30 in the combustion mechanism 8 for burning the mixed fuel of the light oil 1 and the fine droplets 2A or the gasified water 2B of the present invention, at the top of the piston 30A in the cylinder 30. Is a mixture of light oil 1 and fine droplets 2A of water 2 or gasified water 2B, provided with a plunger 20 of a mixing mechanism 7, and sprayed into a pressurized cylinder 30 for high combustion. High torque and drastic reduction in fuel consumption and reduction of exhaust smoke and exhaust gas are realized.

以下に本発明による燃焼試験を2ストローク低速ジーゼル機関を用いて、使用燃料として軽油に対してその平均極微液滴径が300nmのガス状化水を45%割合で混合した混合燃料を用いたもので、燃焼性については図7のAに、更にエンジン回転数とトルクについては同図Bに、及びNO排気データについては同図Cに示す。The following is a combustion test according to the present invention, using a two-stroke low-speed diesel engine and a mixed fuel obtained by mixing gasified water having an average microdroplet diameter of 300 nm at a ratio of 45% with a light oil. FIG. 7A shows the combustibility, FIG. 7B shows the engine speed and torque, and FIG. 7C shows the NO x exhaust data.

既存のジーゼル機関のプランジャーの噴射ポンプの軽油供給部に、軽油に対し40乃至55容量%割合で混合供給させることにより、即時使用できる。  It can be used immediately by mixing and supplying 40 to 55% by volume of the light oil to the light oil supply part of the injection pump of the plunger of the existing diesel engine.

本発明のフロー図である。  It is a flowchart of this invention. アトマイザーによる微液滴、ガス状化水機構の説明図である。  It is explanatory drawing of the microdroplet by an atomizer, and a gaseous water mechanism. 超音波ノズルによる微液滴、ガス状化水機構の説明図である。  It is explanatory drawing of the fine droplet by an ultrasonic nozzle, and a gaseous water mechanism. 撹乱微液滴化、ガス状化マイナス電位機構の説明図である。  It is explanatory drawing of disturbance microdroplet formation and a gasification minus electric potential mechanism. 混合機構の説明図である。  It is explanatory drawing of a mixing mechanism. シリンダーの説明図である。  It is explanatory drawing of a cylinder. 燃焼性、トルク及びNO排気データ図である。Flammability, a torque and NO x exhaust data view.

1 軽油
1A 油液滴
2 水
2A 微液滴
2B ガス状化水
3 微液滴化機構
4 ガス状化水機構
4A 電場付加路
4B マイナス電極
5 撹乱微液滴化機構
6 ガス状化マイナス電位機構
7 混合機構
8 燃焼機構
10 アトマイザー
10A ノズル体
10B ノズル
10C 直交状噴霧
10D 噴霧ケーシング
10E 排出溝
11 シャワータイプ霧化器
11A 供給部
11B シャワノズル部
11C 超音波振動子
11D 噴霧ノズル
12 超音波振動板
12A 吸水性素地
12B 生成区画
12C マイナス高電極
20 プランジャー
20A 噴射ポンプ
20B 噴射ポンプの供給部
21 ガス状化水等の生成部
21A 移送管
21B 調整弁
21C 逆止弁
30 シリンダー
30A ピストン
DESCRIPTION OF SYMBOLS 1 Light oil 1A Oil droplet 2 Water 2A Fine droplet 2B Gaseous water 3 Fine droplet formation mechanism 4 Gaseous water mechanism 4A Electric field addition path 4B Negative electrode 5 Disturbing microdrop formation mechanism 6 Gasification negative potential mechanism 7 Mixing mechanism 8 Combustion mechanism 10 Atomizer 10A Nozzle body 10B Nozzle 10C Orthogonal spray 10D Spray casing 10E Discharge groove 11 Shower type atomizer 11A Supply section 11B Shower nozzle section 11C Ultrasonic vibrator 11D Spray nozzle 12 Ultrasonic vibration plate 12A Water absorption Natural substrate 12B Generation section 12C Minus high electrode 20 Plunger 20A Injection pump 20B Injection pump supply unit 21 Gasified water generation unit 21A Transfer pipe 21B Control valve 21C Check valve 30 Cylinder 30A Piston

Claims (4)

軽油を燃料とするジーゼル機関のシリンダーに装着されるプランジャーの噴射ポンプの軽油供給部に、水を微液滴化機構及びガス状化機構により生成したガス状化水を、軽油に対して40乃至55容量%割合で供給混合せしめ、以って大幅な燃費の低減化及び排出ガスの削減化を可能とする、ジーゼル機関の低燃費低排出ガス燃焼方法。  Gasified water produced by a microdroplet mechanism and a gasification mechanism is supplied to a light oil supply portion of a plunger injection pump attached to a cylinder of a diesel engine that uses light oil as fuel. A fuel-efficient and low-emission gas combustion method for a diesel engine, which can be supplied and mixed at a rate of 55% by volume or less, thereby significantly reducing fuel consumption and exhaust gas. 水の微液滴化機構が、アトマイザーのノズル体相互を略直交状に配位し、該ノズル体より水を噴霧衝突させて微液滴化させる機構からなり、且ガス状化機構がこの微液滴を電場付加路を流通させ、且7000乃至21000Vの高電圧を付加させてレイリー分裂させ、以ってその液滴径が300nm以下のガス状化水となす構成である、請求項1記載のジーゼル機関の低燃費排出ガス燃焼方法。  The water droplet formation mechanism consists of a mechanism in which the nozzle bodies of the atomizer are arranged substantially orthogonally, and water is sprayed into and collided with the nozzle body to form droplets. 2. A structure in which droplets are circulated through an electric field addition path and a high voltage of 7000 to 21000 V is applied to cause Rayleigh splitting, thereby forming gaseous water having a droplet diameter of 300 nm or less. Of low fuel consumption exhaust gas for diesel engines. 水の微液滴化機構が超音波シャワータイプ霧化器により超音波振動子の振動で略10乃至20μmの微液滴を噴霧ノズルより噴霧のうえ、この微液滴をガス状化水機構において電場付加路を流通させ、且7000乃至21000Vの高電圧を付加させてその液滴径が10乃至200nmのガス状化水となす構成の請求項1記載のジーゼル機関の低燃費低排出ガス燃焼方法。  The water droplet formation mechanism is an ultrasonic shower type atomizer that sprays approximately 10 to 20 μm droplets from the spray nozzle by vibration of an ultrasonic vibrator. 2. A low fuel consumption and low exhaust gas combustion method for a diesel engine according to claim 1, wherein the electric field addition path is circulated and a high voltage of 7000 to 21000 V is applied to form gaseous water having a droplet diameter of 10 to 200 nm. . 水を圧電素材よりなる超音波振動板により超音波振動させて水を撹乱破砕しその破砕液滴径が1.0乃至20nmとなす撹乱微液滴化機構と、この撹乱微液滴にマイナス高電位を付加させる、ガス状化マイナス電位機構とからなる、請求項1記載のジーゼル機関の低燃費低排出ガス燃焼方法。  A disturbing microdroplet forming mechanism in which water is ultrasonically oscillated by an ultrasonic vibration plate made of a piezoelectric material so that the water is disturbed and crushed to a crushed droplet diameter of 1.0 to 20 nm; The low fuel consumption low exhaust gas combustion method of a diesel engine according to claim 1, comprising a gasification minus potential mechanism for adding a potential.
JP2012175374A 2012-07-20 2012-07-20 Gas combustion method with high mileage and low emission gas for diesel engine Pending JP2014020362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012175374A JP2014020362A (en) 2012-07-20 2012-07-20 Gas combustion method with high mileage and low emission gas for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012175374A JP2014020362A (en) 2012-07-20 2012-07-20 Gas combustion method with high mileage and low emission gas for diesel engine

Publications (1)

Publication Number Publication Date
JP2014020362A true JP2014020362A (en) 2014-02-03

Family

ID=50195535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012175374A Pending JP2014020362A (en) 2012-07-20 2012-07-20 Gas combustion method with high mileage and low emission gas for diesel engine

Country Status (1)

Country Link
JP (1) JP2014020362A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183083A (en) * 2018-04-17 2019-10-24 エックスブレイン ピーティーイー リミテッド Modifier generating apparatus for producing modifier for manufacturing fusion fuel and container containing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019183083A (en) * 2018-04-17 2019-10-24 エックスブレイン ピーティーイー リミテッド Modifier generating apparatus for producing modifier for manufacturing fusion fuel and container containing the same
JP7278032B2 (en) 2018-04-17 2023-05-19 エックスブレイン ピーティーイー リミテッド A modifier generator that generates a modifier for manufacturing fusion fuel and a container containing it

Similar Documents

Publication Publication Date Title
US11274259B2 (en) Fuel including poly-oxygenated aluminum hydroxide
RU2330985C2 (en) Antidetonation system of fuel feed
CA2315094A1 (en) Supercritical water fuel composition and combustion system
Gopidesi et al. Review on effects of performance, emission and combustion characteristics of emulsified fuel in bifuel engine
US20160101391A1 (en) Infrared Aided Fuel Emulsion
US3977604A (en) Fuel injection nozzle assembly
MXPA02007774A (en) Device and method to optimize combustion of hydrocarbons.
KR20060106331A (en) Environmentally friendly micro-encapsulated clean fuel in form of water-in-oil, method and system for preparing the same
EP2294305B1 (en) Sonic system and method for producing liquid-gas mixtures
JP2014020362A (en) Gas combustion method with high mileage and low emission gas for diesel engine
US20040255873A1 (en) System and method for effervescent fuel atomization
WO2012126146A1 (en) Front atomizing and liquid-mixing oil economizer
JP2015075097A (en) Gas-liquid mixture fuel manufacturing device
CN101280746B (en) Ultrasonic wave fuel oil minuteness atomizing device
Vigneswaran et al. Experimental investigation of a diesel engine with diesel/water emulsion at various injection timing
JP2011001533A (en) Apparatus for synthesizing emulsion fuel
KR100829844B1 (en) Preparing system of emulsified fuel for decreasing greenhouse gases
JPH061983A (en) Gas-and water-mixed fuel oil
CN102828875A (en) Oil-water instantaneous emulsifying injector for diesels
US11634653B2 (en) Droplet for fuels
JP2002201480A (en) Water-in-oil type emulsion and its burning method and manufacturing method
JP3212777U (en) Electronically controlled gasoline vaporizer
KR100907673B1 (en) Encapsulated emulsion fuel oil and process for preparing same
RO130776A2 (en) Carburettor with gasoline atomization by centrifugation
Öztürk et al. Investigation of effects on fuel consumption and exhaust emissions by using bioethanol gasoline mixture in an engine with ultrasonic fuel system