JP2014019940A - Method for controlling composition of complex oxide thin film and thin film growth apparatus - Google Patents

Method for controlling composition of complex oxide thin film and thin film growth apparatus Download PDF

Info

Publication number
JP2014019940A
JP2014019940A JP2012162567A JP2012162567A JP2014019940A JP 2014019940 A JP2014019940 A JP 2014019940A JP 2012162567 A JP2012162567 A JP 2012162567A JP 2012162567 A JP2012162567 A JP 2012162567A JP 2014019940 A JP2014019940 A JP 2014019940A
Authority
JP
Japan
Prior art keywords
thin film
composite oxide
metal
vapor pressure
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012162567A
Other languages
Japanese (ja)
Other versions
JP5801772B2 (en
Inventor
Hideki Yamamoto
秀樹 山本
Krockenberger Yoshiharu
クロッケンバーガー ヨシハル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012162567A priority Critical patent/JP5801772B2/en
Publication of JP2014019940A publication Critical patent/JP2014019940A/en
Application granted granted Critical
Publication of JP5801772B2 publication Critical patent/JP5801772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To control a composition of metal materials consisting a complex oxide easier and more rapidly.SOLUTION: On growing a thin film of a complex oxide LaScO, PrScO, NdScO, and SmScOon a LaAlOsubstrate by reacting a plurality of metal elements using a molecular beam epitaxy (MBE) method, excess amount of Sc over other metal elements is supplied based on the fact that the vapor pressure of ScOis higher than that of metal Sc.

Description

本発明は、2種類以上の金属元素を含む複合酸化物薄膜組成の制御方法に関する。   The present invention relates to a method for controlling a composite oxide thin film composition containing two or more metal elements.

複合酸化物の薄膜を成長・形成する代表的な方法として、(i)スパッタリング法、(ii)パルス・レーザー堆積(PLD)法、(iii)化学気相成長(CVD)法、(iv)分子線エピタキシー(MBE)法、などがあり、このうち、(iv)のMBE法は一般に、(i)〜(iii)の方法に比べて、結晶性が高く、高い精度で膜厚を制御した薄膜を作製できることが知られている。しかし、MBE法では、化学量論組成をもつ複合酸化物を構成するそれぞれの金属を別々の蒸発源を用いて蒸発させて、酸化雰囲気下で、結晶基板上に供給するため、それぞれの金属フラックスの供給レートを制御する必要がある。例えば非特許文献1では、金属フラックスへの電子照射により発生する特性波長の光を定量化する方法(発光分光法)が開示されている。   As typical methods for growing and forming thin films of complex oxides, (i) sputtering, (ii) pulsed laser deposition (PLD), (iii) chemical vapor deposition (CVD), (iv) molecules There is a line epitaxy (MBE) method, and among these, the MBE method (iv) generally has a higher crystallinity than the methods (i) to (iii) and is a thin film whose film thickness is controlled with high accuracy. It is known that can be produced. However, in the MBE method, each metal constituting a composite oxide having a stoichiometric composition is evaporated using a separate evaporation source and supplied onto a crystal substrate in an oxidizing atmosphere. It is necessary to control the supply rate. For example, Non-Patent Document 1 discloses a method (emission spectroscopy) for quantifying light having a characteristic wavelength generated by electron irradiation of a metal flux.

非特許文献2では、金属フラックスに特性波長の光を照射してその吸収量からフラックスを定量化する方法が開示されている。   Non-Patent Document 2 discloses a method of quantifying a flux from the amount of absorption by irradiating a metal flux with light having a characteristic wavelength.

非特許文献3では、供給される金属毎に配置した水晶振動子式膜厚計への蒸着物の付着による振動数の変化を利用する方法が開示されている。   Non-Patent Document 3 discloses a method of using a change in frequency due to adhesion of a deposit to a quartz vibrator type film thickness meter disposed for each supplied metal.

C. Lu et al., "An electron impact emission spectroscopy flux sensor for monitoring deposition rate at high background gas pressure with improved accuracy,"J. Vac. Sci. Technol, A26 (2008) 956-960.C. Lu et al., "An electron impact emission spectroscopy flux sensor for monitoring deposition rate at high background gas pressure with improved accuracy," J. Vac. Sci. Technol, A26 (2008) 956-960. C. Lu et al., "Improved method of nonintrusive deposition rate monitoring by atomic absorption spectroscopy for physical vapor deposition processes," J. Vac. Sci. Technol. A13 (1995) 1797-1801.C. Lu et al., "Improved method of nonintrusive deposition rate monitoring by atomic absorption spectroscopy for physical vapor deposition processes," J. Vac. Sci. Technol. A13 (1995) 1797-1801. A. Wajid et al., "Method and a simple apparatus for rapid simultaneous measurement of resonance frequency and Q factor of a quartz crystal," Rev. Sci. Instrum. 67 (1996) 1961-1964.A. Wajid et al., "Method and a simple apparatus for rapid simultaneous measurement of resonance frequency and Q factor of a quartz crystal," Rev. Sci. Instrum. 67 (1996) 1961-1964.

従来の非特許文献1〜3においては、金属フラックスの供給レートを制御して薄膜の組成制御を行うようにしている。しかしながら、複合酸化物を構成する金属材料の化学量論的組成比を保つには、それぞれの金属材料の供給量を調整しながらチューニングしなければならず、煩雑でかつ膨大な時間がかかるという問題があった。   In the conventional non-patent documents 1 to 3, the composition control of the thin film is performed by controlling the supply rate of the metal flux. However, in order to maintain the stoichiometric composition ratio of the metal materials constituting the composite oxide, it is necessary to tune while adjusting the supply amount of each metal material, which is complicated and takes a lot of time. was there.

そこで本発明は、複合酸化物を構成する金属材料の組成をより簡易にかつ迅速に制御することが可能な複合酸化物組成の制御方法およびその制御方法により薄膜を作製することを可能とする薄膜成長装置を提供することを目的とする。   Therefore, the present invention provides a method for controlling a composite oxide composition capable of more easily and rapidly controlling the composition of a metal material constituting the composite oxide, and a thin film capable of producing a thin film by the control method. An object is to provide a growth apparatus.

上記の目的を達成するための複合酸化物薄膜組成の制御方法は、複数種の金属元素を含む複合酸化物薄膜組成の制御方法であって、前記複数種の金属元素を分子線エピタキシー(MBE)法により反応させて前記複合酸化物薄膜の成長を行う際に、前記複数種の金属元素のうちの1種類の金属元素は、その金属元素単体の蒸気圧よりも、その金属の単純酸化物の蒸気圧の方が高いものを選択し、かつ、他の金属元素よりも過剰に供給するものである。   A method for controlling a composite oxide thin film composition for achieving the above object is a method for controlling a composite oxide thin film composition containing a plurality of types of metal elements, wherein the plurality of types of metal elements are converted into molecular beam epitaxy (MBE). When the composite oxide thin film is grown by reacting by the method, one kind of metal element of the plurality of kinds of metal elements is more than the vapor pressure of the metal element alone, of the simple oxide of the metal. A material having a higher vapor pressure is selected and supplied in excess of other metal elements.

ここで、前記1種類の金属元素は、Sc,V,Ge,Mo,Ru,Pd,W,Reのいずれかとしてよい。   Here, the one type of metal element may be any of Sc, V, Ge, Mo, Ru, Pd, W, and Re.

前記他の金属元素は、Sc,V,Ge,Mo,Ru,Pd,W,Re以外の任意の元素、例えば、La,Pr,Nd,Smなどがある。   The other metal element includes any element other than Sc, V, Ge, Mo, Ru, Pd, W, and Re, for example, La, Pr, Nd, and Sm.

上記の目的を達成するための本発明には、上記複合酸化物薄膜組成の制御方法により薄膜を作製することを可能にする薄膜成長装置が含まれる。   The present invention for achieving the above object includes a thin film growth apparatus that makes it possible to produce a thin film by the method for controlling the composite oxide thin film composition.

本発明によれば、複合酸化物を構成する金属材料の組成をより簡易にかつ迅速に制御することができる。   According to the present invention, the composition of the metal material constituting the composite oxide can be controlled more easily and quickly.

Sc過剰条件下で成長したM(1)ScO薄膜(M(1)=La,Pr,Nd,Sm)のX線回折パターンの例を説明するための図である。Sc excess conditions in growing the M (1) ScO 3 thin film is a diagram for describing (M (1) = La, Pr, Nd, Sm) is an example of X-ray diffraction pattern of.

以下、本実施例の薄膜成長装置における複合酸化物薄膜組成の制御方法について説明する。この制御方法では、真空中で、MBE法を利用して複数の種類の金属元素からなる複合酸化物の組成を制御して薄膜を作製する例について具体的に説明する。   Hereinafter, a method for controlling the composite oxide thin film composition in the thin film growth apparatus of this example will be described. In this control method, an example in which a thin film is manufactured by controlling the composition of a composite oxide composed of a plurality of types of metal elements using an MBE method in a vacuum will be specifically described.

[複合酸化物薄膜組成の制御方法]
この実施例では、2種類の金属元素をM(1),M(2)で表しており、M(1),M(2)からなる複合酸化物M(1)(2)の薄膜を結晶基板上に作製する場合を想定する。この場合に、M(1)とM(2)の量を1:1の比率で供給するときには、下記の反応式(1)に従って反応が進行する。
(1)+M(2)+(x/2)O2=M(1)(2)+[(x-3)/2]O↑ (1)
[Control method of composite oxide thin film composition]
In this embodiment, two kinds of metal elements M (1), are expressed on M (2), M (1 ), M complex oxide consisting of (2) M (1) M (2) of the O 3 Assume that a thin film is formed on a crystal substrate. In this case, when the amounts of M (1) and M (2) are supplied at a ratio of 1: 1, the reaction proceeds according to the following reaction formula (1).
M (1) + M (2) + (x / 2) O 2 = M (1) M (2) O 3 + [(x−3) / 2] O 2 ↑ (1)

一方、M(1)とM(2)の量が1:1の比率で供給されないとき、例えば、M(2)が過剰に供給されるときは、下記の反応式(2)に従って反応が進行する。
(1)+(1+δ)M(2)+(x/2)O2=M(1)(2)+δM(2)Oy+[(x-3-δy)/2]O↑ (2)
On the other hand, when the amounts of M (1) and M (2) are not supplied at a ratio of 1: 1, for example, when M (2) is supplied excessively, the reaction proceeds according to the following reaction formula (2). To do.
M (1) + (1 + δ) M (2) + (x / 2) O 2 = M (1) M (2) O 3 + δM (2) Oy + [(x−3−δy) / 2] O 2 ↑ (2)

反応式(2)では、M(1),M(2)からなる所望の複合酸化物M(1)(2)が生成されることになるが、反応式(2)に示すように、不純物であるδM(2)Oyが生成されるため、作製される薄膜の品質が著しく低下する。 In Scheme (2), M (1), M desired composite oxide of (2) M (1) M (2) is O 3 will be produced, as shown in Scheme (2) In addition, since the impurity δM (2) Oy is generated, the quality of the thin film to be manufactured is significantly lowered.

ところが、反応式(2)において、過剰に供給するM(2)を例えばSc(スカンジウム)とし、成膜温度と成長速度とを適切に設定した場合には、下記の反応式(3)に従って反応が進行する。
(1)+(1+δ)Sc+(x/2)O2=M(1)ScO+(δ/2)Sc↑+[(x-3-3δ/2)/2]O↑ (3)
However, in the reaction formula (2), when M (2) supplied excessively is, for example, Sc (scandium) and the film formation temperature and the growth rate are appropriately set, the reaction is performed according to the following reaction formula (3). Progresses.
M (1) + (1 + δ) Sc + (x / 2) O 2 = M (1) ScO 3 + (δ / 2) Sc 2 O 3 ↑ + [(x−3−3δ / 2) / 2] O 2 ↑ (3)

反応式(3)では、不純物であるScが気体となり、基板から再蒸発する。そして、組成が適切に調整された所望の複合酸化物M(1)ScO(この場合、M(2)=Sc)が生成される。これは、反応式(3)において、供給されたScのうち過剰なScも酸化されて不純物であるScとなるが、この不純物のScの蒸気圧が高いために、成膜用基板からScが再蒸発するためである。 In the reaction formula (3), Sc 2 O 3 as an impurity becomes a gas and re-evaporates from the substrate. Then, a desired composite oxide M (1) ScO 3 (in this case, M (2) = Sc) whose composition is appropriately adjusted is generated. This is because, in the reaction formula (3), excessive Sc in the supplied Sc is also oxidized to become Sc 2 O 3 as an impurity, but the vapor pressure of Sc 2 O 3 as the impurity is high, so This is because Sc 2 O 3 re-evaporates from the film substrate.

この観点から、本実施例では、金属元素単体の蒸気圧よりも単純酸化物の蒸気圧が高い元素をM(2)として採用する。この具体的な例を表1に示す。 From this viewpoint, in this embodiment, an element having a vapor pressure of a simple oxide higher than that of a single metal element is adopted as M (2) . A specific example of this is shown in Table 1.

表1は、金属元素単体の蒸気圧よりも単純酸化物の蒸気圧が高い元素の例を示す表である。   Table 1 is a table showing examples of elements having a vapor pressure of a simple oxide higher than that of a single metal element.

Figure 2014019940
Figure 2014019940

表1では、元素の一例として、Sc,V,Ge,Mo,Ru,Pd,W,Reの場合を例示し、当該元素に対応する各単純酸化物が、それぞれSc,V,GeO,MoO,RuO,PdO,WO,Reとなる場合を想定している。この例では、単純酸化物の蒸気圧は元素単体の蒸気圧よりも高くなるので、元素の蒸気圧が10-4 Torrとなるときの温度D1は、単純酸化物の蒸気圧が10-4 Torrとなるときの温度D3よりも高くなる。さらにこの例では、元素の蒸気圧が10-8 Torrとなるときの温度D2も、温度D3より高くなる。すなわち、表1では、D1>D2>D3を満足する。例えば、Scの場合、D1=1002℃、D2=714℃、D3=400℃となる。 In Table 1, the case of Sc, V, Ge, Mo, Ru, Pd, W, Re is illustrated as an example of the element, and each simple oxide corresponding to the element is Sc 2 O 3 , V 2 O, respectively. 5 , GeO 2 , MoO 3 , RuO 4 , PdO, WO 3 , Re 2 O 7 are assumed. In this example, the simple vapor pressure of the oxide is higher than the vapor pressure of the single element, the temperature D1 at which the vapor pressure of the element is 10 -4 Torr, the vapor pressure of the simple oxide 10 -4 Torr It becomes higher than the temperature D3 when Furthermore, in this example, the temperature D2 when the vapor pressure of the element is 10 −8 Torr is also higher than the temperature D3. That is, in Table 1, D1>D2> D3 is satisfied. For example, in the case of Sc, D1 = 1002 ° C., D2 = 714 ° C., and D3 = 400 ° C.

なお、表1において、各元素の単純酸化物の蒸気圧は、その元素単体の蒸気圧よりも高くなるが、一般に、元素単体は、その元素からなる単純酸化物の蒸気圧よりも蒸気圧が高いことが知られている。あるいは、単純酸化物の蒸発温度に達する以前に、単純酸化物が分解してしまうことが知られている。   In Table 1, the vapor pressure of the simple oxide of each element is higher than the vapor pressure of the element alone. In general, the vapor pressure of the element simple substance is higher than the vapor pressure of the simple oxide of the element. It is known to be expensive. Alternatively, it is known that the simple oxide decomposes before reaching the evaporation temperature of the simple oxide.

次に、反応式(3)において、M(1)を、La,Pr,Nd,Smのいずれかとしたときに、例えばLaAlO基板の温度を650−700℃として、LaAlO基板上にMBE法により薄膜成長を行った場合のX線回析パターンについて図1を参照して説明する。 Next, when M (1) is any one of La, Pr, Nd, and Sm in the reaction formula (3), for example, the temperature of the LaAlO 3 substrate is set to 650-700 ° C., and the MBE method is performed on the LaAlO 3 substrate. An X-ray diffraction pattern when a thin film is grown by the method will be described with reference to FIG.

図1は、Sc過剰条件下で成長した複合酸化物であるM(1)ScO薄膜(M(1)=La,Pr,Nd,Sm)のX線回折パターンの例を説明するための図である。なお、図1では、横軸は回析角(度)、縦軸はX線回析強度(カウント/秒)を表してある。 FIG. 1 is a diagram for explaining an example of an X-ray diffraction pattern of a M (1) ScO 3 thin film (M (1) = La, Pr, Nd, Sm), which is a complex oxide grown under an excessive Sc condition. It is. In FIG. 1, the horizontal axis represents the diffraction angle (degree), and the vertical axis represents the X-ray diffraction intensity (count / second).

図1に示すように、X線回析パターンは、4種類のM(1)ScO(M(1)=La,Pr,Nd,Sm)のパターンがある。各パターンでは、LaAlO基板に由来するピーク(該当するピークの右側に「LaAlO基板」と示してある。)と、エピタキシャル成長したM(1)ScO薄膜に由来するピークとが存在している。換言すれば、それら以外のピーク、すなわち、不純物相のピークは確認することができない。このことは、金属組成のチューニングに高い技術を要するため普及が限定的であったMBE法において、酸化物自体の蒸気圧が高い金属元素を含む場合には、格段に組成調節が容易となることを示している。 As shown in FIG. 1, the X-ray diffraction patterns include four types of M (1) ScO 3 (M (1) = La, Pr, Nd, Sm) patterns. In each pattern, there are a peak derived from the LaAlO 3 substrate (shown as “LaAlO 3 substrate” on the right side of the corresponding peak) and a peak derived from the epitaxially grown M (1) ScO 3 thin film. . In other words, any other peak, that is, the peak of the impurity phase cannot be confirmed. This means that, in the MBE method, which requires high technology to tune the metal composition, the spread of the metal composition is limited, and when the oxide itself contains a metal element having a high vapor pressure, the composition can be remarkably adjusted. Is shown.

以上説明したように、本実施例によれば、複数種の金属元素M(1),M(2)をMBE法により反応させて複合酸化物薄膜の成長を行う際に、M(2)として、M(2)の単純酸化物の蒸気圧がM(2)の蒸気圧よりも高いものを選択し、かつ、M(2)をM(1)よりも過剰に供給する。この場合、単純純酸化物は、気体となって基板から蒸発して不純物が取り除かれるため、適切な組成を有する複合酸化物を自動的に生成することができる。したがって、複合酸化物を構成する金属材料の組成をより簡易にかつ迅速に制御することができる。 As described above, according to this example, when a composite oxide thin film is grown by reacting a plurality of kinds of metal elements M (1) and M (2) by the MBE method, M (2) , the vapor pressure of a simple oxide of M (2) selects a higher than the vapor pressure of the M (2), and excess supply than M (1) to M (2). In this case, since the simple pure oxide becomes a gas and is evaporated from the substrate to remove impurities, a complex oxide having an appropriate composition can be automatically generated. Therefore, the composition of the metal material constituting the composite oxide can be controlled more easily and quickly.

なお、上記実施例では、ゲート絶縁体など、誘電体としての応用が期待されるScを含む複合酸化物薄膜の成長を例にとって説明したが、他の元素を含む複合酸化膜の成長に適用してもよい。例えば、良導体であり、かつ酸化物エレクトロニクスにおいて電極としての応用が期待されるSrRuO(酸化物の蒸気圧が高いRuを含むもの。例えば、G. Koster et al., "Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry," Phys. Rev. B 76 (2007) 075126-1〜6を参照)の成長や、SrPdO(酸化物の蒸気圧が高いPdを含む。)の成長などに適用することも可能である。 In the above embodiment, the growth of a composite oxide thin film containing Sc, which is expected to be applied as a dielectric, such as a gate insulator, has been described as an example. However, the present invention is applied to the growth of a composite oxide film containing other elements. May be. For example, SrRuO 3 which is a good conductor and is expected to be applied as an electrode in oxide electronics (including Ru having a high vapor pressure of oxide. For example, G. Koster et al., “Dependence of the electronic structure of SrRuO3 and its degree of correlation on cation off-stoichiometry, "Phys. growth or Rev. B 76 (2007) see 075126-1~6), including Pd is high vapor pressure of Sr 2 PdO 4 (oxides. It is also possible to apply to the growth of).

また、上記実施例の金属元素M(1),M(2)、LaAlO基板を用いることは、複合酸化物を得るための一方策に過ぎない。単純酸化物を蒸発させて適切な組成を有する複合酸化物を得るためのいかなる他の公知の構成も利用され得る。 In addition, the use of the metal elements M (1) , M (2) and LaAlO 3 substrate of the above embodiment is only one measure for obtaining the composite oxide. Any other known configuration for evaporating the simple oxide to obtain a composite oxide having the proper composition can be utilized.

Claims (4)

複数種の金属元素を含む複合酸化物薄膜組成の制御方法であって、
前記複数種の金属元素を分子線エピタキシー(MBE)法により反応させて前記複合酸化物薄膜の成長を行う際に、前記複数種の金属元素のうちの1種類の金属元素は、その単純酸化物の蒸気圧の方が元素の蒸気圧よりも高いものを選択し、かつ、他の金属元素よりも過剰に供給する
ことを特徴とする複合酸化物薄膜組成の制御方法。
A method for controlling a composite oxide thin film composition containing a plurality of types of metal elements,
When the composite oxide thin film is grown by reacting the plurality of types of metal elements by a molecular beam epitaxy (MBE) method, one type of the metal elements is a simple oxide. A method for controlling a composite oxide thin film composition, wherein the vapor pressure of the element is selected to be higher than the vapor pressure of the element and is supplied in excess of other metal elements.
前記1種類の金属元素は、Sc,V,Ge,Mo,Ru,Pd,W,Reのいずれかであることを特徴とする請求項1に記載の複合酸化物薄膜組成の制御方法。   2. The method of controlling a composite oxide thin film composition according to claim 1, wherein the one type of metal element is any one of Sc, V, Ge, Mo, Ru, Pd, W, and Re. 前記他の金属元素は、Sc,V,Ge,Mo,Ru,Pd,W,Re以外の任意の元素であることを特徴とする請求項1または2に記載の複合酸化物薄膜組成の制御方法。   3. The method of controlling a composite oxide thin film composition according to claim 1, wherein the other metal element is any element other than Sc, V, Ge, Mo, Ru, Pd, W, and Re. . 請求項1ないし3のいずれか1項に記載の複合酸化物薄膜組成の制御方法により薄膜を作製することを可能とする薄膜成長装置。   A thin film growth apparatus capable of producing a thin film by the method for controlling a composite oxide thin film composition according to any one of claims 1 to 3.
JP2012162567A 2012-07-23 2012-07-23 Control method of composite oxide thin film composition and thin film growth apparatus Active JP5801772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012162567A JP5801772B2 (en) 2012-07-23 2012-07-23 Control method of composite oxide thin film composition and thin film growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012162567A JP5801772B2 (en) 2012-07-23 2012-07-23 Control method of composite oxide thin film composition and thin film growth apparatus

Publications (2)

Publication Number Publication Date
JP2014019940A true JP2014019940A (en) 2014-02-03
JP5801772B2 JP5801772B2 (en) 2015-10-28

Family

ID=50195185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012162567A Active JP5801772B2 (en) 2012-07-23 2012-07-23 Control method of composite oxide thin film composition and thin film growth apparatus

Country Status (1)

Country Link
JP (1) JP5801772B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355926A (en) * 1986-08-26 1988-03-10 Seiko Instr & Electronics Ltd Growing process of compound semiconductor thin film
JPS6451320A (en) * 1987-08-19 1989-02-27 Asahi Chemical Ind Superconducting compound oxide
JPH05208895A (en) * 1990-12-21 1993-08-20 Heinrich Hertz Inst Nachrichtentech Berlin Gmbh Production of thin film of perovskite material
WO1996001549A1 (en) * 1994-07-04 1996-01-18 Nippon Hoso Kyokai Ternary compound film and manufacturing method therefor
US5740668A (en) * 1994-04-20 1998-04-21 Hitachi, Ltd. High efficiency gas turbine
JPH10158094A (en) * 1996-11-29 1998-06-16 Agency Of Ind Science & Technol Crystal growth method for thin film of multiple oxide containing bismuth as constituent element
JPH1126296A (en) * 1997-06-30 1999-01-29 Tdk Corp Manufacture of film structure, electronic device, recording medium and oxide conductive thin film
JP2002093710A (en) * 2000-09-13 2002-03-29 Japan Science & Technology Corp Manufacturing method of magnetic semiconductor thin film
JP2007099618A (en) * 2006-10-04 2007-04-19 Tdk Corp Ferroelectric thin film
JP2008066668A (en) * 2006-09-11 2008-03-21 Toshiba Corp Semiconductor device and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355926A (en) * 1986-08-26 1988-03-10 Seiko Instr & Electronics Ltd Growing process of compound semiconductor thin film
JPS6451320A (en) * 1987-08-19 1989-02-27 Asahi Chemical Ind Superconducting compound oxide
JPH05208895A (en) * 1990-12-21 1993-08-20 Heinrich Hertz Inst Nachrichtentech Berlin Gmbh Production of thin film of perovskite material
US5740668A (en) * 1994-04-20 1998-04-21 Hitachi, Ltd. High efficiency gas turbine
WO1996001549A1 (en) * 1994-07-04 1996-01-18 Nippon Hoso Kyokai Ternary compound film and manufacturing method therefor
JPH10158094A (en) * 1996-11-29 1998-06-16 Agency Of Ind Science & Technol Crystal growth method for thin film of multiple oxide containing bismuth as constituent element
JPH1126296A (en) * 1997-06-30 1999-01-29 Tdk Corp Manufacture of film structure, electronic device, recording medium and oxide conductive thin film
JP2002093710A (en) * 2000-09-13 2002-03-29 Japan Science & Technology Corp Manufacturing method of magnetic semiconductor thin film
JP2008066668A (en) * 2006-09-11 2008-03-21 Toshiba Corp Semiconductor device and manufacturing method therefor
JP2007099618A (en) * 2006-10-04 2007-04-19 Tdk Corp Ferroelectric thin film

Also Published As

Publication number Publication date
JP5801772B2 (en) 2015-10-28

Similar Documents

Publication Publication Date Title
JP5397794B1 (en) Method for producing oxide crystal thin film
US7074272B2 (en) Cubic (zinc-blend) aluminum nitride and method of making same
US9966439B2 (en) Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
US20110120855A1 (en) Vanadium oxide thin films
US20080193366A1 (en) Film of N Type (100) Oriented Single Crystal Diamond Semiconductor Doped with Phosphorous Atoms, and a Method of Producing the Same
KR20150032617A (en) Method of manufacturing single crystal diamond
Singh et al. Structural and optical properties of RF magnetron sputtered aluminum nitride films without external substrate heating
Smith et al. Exploiting kinetics and thermodynamics to grow phase-pure complex oxides by molecular-beam epitaxy under continuous codeposition
Yoo et al. Deep-ultraviolet light source with a carbon nanotube cold-cathode electron beam
JP6233959B2 (en) Method for producing oxide crystal thin film
Casamento et al. Strong effect of scandium source purity on chemical and electronic properties of epitaxial ScxAl1− xN/GaN heterostructures
JP5949064B2 (en) GaN bulk crystal
Makin et al. Growth of ordered and disordered ZnSnN2
US8329002B1 (en) Thin films and methods and machines for forming the thin films
US20210335608A1 (en) Gallium oxide-based semiconductor and production method thereof
JP5801772B2 (en) Control method of composite oxide thin film composition and thin film growth apparatus
Hu et al. Low temperature growth of Ga2O3 films on sapphire substrates by plasma assisted pulsed laser deposition
JP2007049032A (en) Apparatus for growing oxide crystal, and manufacturing method using same
JP5128560B2 (en) Method for producing composite oxide
JP6649302B2 (en) Method of forming single crystalline thin film
Cramer et al. BBr3 as a boron source in plasma-assisted molecular beam epitaxy
KR101384404B1 (en) Method for producing ZnO nanosheets
Fredrickson et al. Theoretical modeling and experimental observations of the atomic layer deposition of SrO using a cyclopentadienyl Sr precursor
JP2007063618A (en) Apparatus for growing oxide thin film
Ahmed et al. Self-regulating plasma-assisted growth of epitaxial BaBiO3 thin-film on SrTiO3-buffered Si (001) substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150827

R150 Certificate of patent or registration of utility model

Ref document number: 5801772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150