JP6649302B2 - Method of forming single crystalline thin film - Google Patents

Method of forming single crystalline thin film Download PDF

Info

Publication number
JP6649302B2
JP6649302B2 JP2017036312A JP2017036312A JP6649302B2 JP 6649302 B2 JP6649302 B2 JP 6649302B2 JP 2017036312 A JP2017036312 A JP 2017036312A JP 2017036312 A JP2017036312 A JP 2017036312A JP 6649302 B2 JP6649302 B2 JP 6649302B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
cuo
evaporation
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017036312A
Other languages
Japanese (ja)
Other versions
JP2018141205A (en
Inventor
愛 池田
愛 池田
クロッケンバーガー ヨシハル
クロッケンバーガー ヨシハル
山本 秀樹
秀樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2017036312A priority Critical patent/JP6649302B2/en
Publication of JP2018141205A publication Critical patent/JP2018141205A/en
Application granted granted Critical
Publication of JP6649302B2 publication Critical patent/JP6649302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、単結晶性薄膜の形成方法に関し、特に、Ca1-xAExCuO2(AE=SrまたはBa)の単結晶性薄膜を形成する単結晶性薄膜の形成方法に関する。 The present invention relates to a method for forming a single-crystal thin film, and more particularly to a method for forming a single-crystal thin film for forming a single-crystal thin film of Ca 1-x AE x CuO 2 (AE = Sr or Ba).

AECuO2で表される無限層構造銅酸化物は、銅酸化物高温超伝導体の中で最も単純な結晶構造を有する。特に、RE(希土類元素)でSrを一部置換した(Sr,RE)CuO2で表される無限層構造銅酸化物は、超伝導転移温度Tc=43Kの代表的な高温超伝導体として知られている。ところで、SrCuO2は、常圧下での固相反応法によるバルク合成では、無限層構造は得られず、別の結晶構造を持つ物質が生成される。従って、SrCuO2の無限層構造の安定化には、3GPa以上の高圧酸素合成が必要である(非特許文献1参照)。 The infinite layer structure copper oxide represented by AECuO 2 has the simplest crystal structure among copper oxide high-temperature superconductors. In particular, an infinite layer structure copper oxide represented by (Sr, RE) CuO 2 in which Sr is partially substituted by RE (rare earth element) is a typical high-temperature superconductor having a superconducting transition temperature T c = 43 K. Are known. By the way, SrCuO 2 cannot obtain an infinite layer structure by bulk synthesis by a solid phase reaction method under normal pressure, and a substance having another crystal structure is generated. Therefore, in order to stabilize the infinite layer structure of SrCuO 2 , high-pressure oxygen synthesis of 3 GPa or more is required (see Non-Patent Document 1).

さらに、希土類元素は高価であるので、製造コストの高騰が予想されている。希土類元素を用いいず、銅と酸素以外には安価なアルカリ土類金属のみから構成される無限層構造の銅酸化物超伝導体Ca1-xAExCuO2(AE=SrまたはBa)が注目されている。しかし、例えば、無限層構造CaCuO2ついては、希土類REを用いた(Sr,RE)CuO2とは対照的に、合成方法は未だ確立していない。 Further, since rare earth elements are expensive, the production cost is expected to rise. A copper oxide superconductor Ca 1-x AE x CuO 2 (AE = Sr or Ba) having an infinite layer structure composed of only an inexpensive alkaline earth metal other than copper and oxygen without using a rare earth element. Attention has been paid. However, for example, in the case of CaCuO 2 having an infinite layer structure, a synthesis method has not yet been established in contrast to (Sr, RE) CuO 2 using a rare earth RE.

これまでの報告によると、バルク合成においては、SrCuO2の場合と同様に高圧酸素(〜3GPa)を用いた合成により、CaCuO2の無限層構造の安定化が報告されている(非特許文献1参照)。しかしながら、CaCuO2が化学的に不安定なために良質な結晶が得られず、上記製造方法で作製したCaCuO2は、超伝導特性が確立していない。一方、薄膜成長では、CaCuO2と近い絶縁性の物質からなる基板を用いることで、高圧条件とすることなく安定に合成することができる。しかしながら、この製造方法で得られるCaCuO2は、結晶性が乏しく、良質な単結晶を得ることは困難である。 According to previous reports, the bulk synthesis, by synthesis using a high-pressure oxygen (~3GPa) as in the case of SrCuO 2, stabilization of the infinite layer structure of CaCuO 2 have been reported (Non-Patent Document 1 reference). However, high quality crystals cannot be obtained because CaCuO 2 is chemically unstable, and the superconducting properties of CaCuO 2 produced by the above-mentioned production method have not been established. On the other hand, in the case of thin-film growth, by using a substrate made of an insulating material close to CaCuO 2 , stable synthesis can be performed without high-pressure conditions. However, CaCuO 2 obtained by this manufacturing method has poor crystallinity, and it is difficult to obtain a high-quality single crystal.

N. Kobayashi et al., "Compounds and Phase Relations in the SrO-CaO-CuO System under High Pressure", Journal of Solid State Chemistry, vol. 132, pp. 274-283, 1997.N. Kobayashi et al., "Compounds and Phase Relations in the SrO-CaO-CuO System under High Pressure", Journal of Solid State Chemistry, vol. 132, pp. 274-283, 1997.

前述したように、Ca1-xAExCuO2(AE=SrまたはBa)は、結晶構造が単純であり高価な元素を含まないので、製造コストの面で従来の銅酸化物超伝導に比べて有利である。また、水銀などの元素を含まないので、より容易な生産環境を実現できる。また、デバイス応用や電波資源拡大のための超伝導フィルタへの実用化を積極的に行うことも可能である。しかしながら、上述したように、Ca1-xAExCuO2(AE=SrまたはBa)は、カチオン・アニオンが理想的な結晶構造のように配列し(結晶性がよく)、化学量論組成に近い品質のよい薄膜の形成が容易ではないという問題があった。 As described above, Ca 1-x AE x CuO 2 (AE = Sr or Ba) has a simple crystal structure and does not contain expensive elements. It is advantageous. Further, since it does not contain elements such as mercury, an easier production environment can be realized. In addition, it is possible to positively implement the practical application to a superconducting filter for device application and expansion of radio wave resources. However, as described above, in Ca 1-x AE x CuO 2 (AE = Sr or Ba), cations and anions are arranged like an ideal crystal structure (having good crystallinity) and have a stoichiometric composition. There is a problem that it is not easy to form a thin film of close quality.

本発明は、以上のような問題点を解消するためになされたものであり、品質のよいCa1-xAExCuO2(AE=SrまたはBa)が、より容易に形成できるようにすることを目的とする。 SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to make it possible to more easily form high - quality Ca 1-x AE x CuO 2 (AE = Sr or Ba). With the goal.

本発明に係る単結晶性薄膜の形成方法は、Cuからなる第1蒸着源と、Caからなる第2蒸着源と、SrまたはBaからなる第3蒸着源と、酸素供給源とを用いた共蒸着法によるCa1-xAExCuO2(AE=SrまたはBa)の単結晶性薄膜を基板の上に形成する方法であって、第1蒸着源および第2蒸着源よりCuおよびCaをCa1-xAExCuO2の化学量論組成比に合わせて基板の上に供給するとともに、第2蒸着源からのCaの供給量の10%以下のモル量で、第3蒸着源よりSrまたはBaを基板の上に供給する。 The method for forming a single-crystal thin film according to the present invention is characterized in that a single deposition source made of Cu, a second deposition source made of Ca, a third deposition source made of Sr or Ba, and an oxygen supply source are used. A method for forming a single-crystal thin film of Ca 1-x AE x CuO 2 (AE = Sr or Ba) on a substrate by vapor deposition, wherein Cu and Ca are converted from a first vapor deposition source and a second vapor deposition source to Ca 1-x AE x CuO 2 is supplied onto the substrate in accordance with the stoichiometric composition ratio, and Sr or Sr is supplied from the third deposition source at a molar amount of 10% or less of the supply amount of Ca from the second deposition source. Ba is supplied on the substrate.

上記単結晶性薄膜の形成方法において、酸素供給源は、原子状酸素を供給する。   In the method for forming a single crystalline thin film, the oxygen supply source supplies atomic oxygen.

以上説明したことにより、本発明によれば、品質のよいCa1-xAExCuO2(AE=SrまたはBa)が、より容易に形成できるという優れた効果が得られる。 As described above, according to the present invention, there is obtained an excellent effect that high - quality Ca 1-x AE x CuO 2 (AE = Sr or Ba) can be more easily formed.

図1は、本発明の実施の形態における単結晶性薄膜の形成方法を説明するためのフローチャートである。FIG. 1 is a flowchart illustrating a method for forming a single-crystal thin film according to an embodiment of the present invention. 図2は、Ca1-xAExCuO2(AE=SrまたはBa)の結晶構造を示す斜視図である。FIG. 2 is a perspective view showing a crystal structure of Ca 1-x AE x CuO 2 (AE = Sr or Ba). 図3は、実施の形態の単結晶性薄膜の形成方法により実際に作製したCaSrCuO2薄膜およびCaCuO2薄膜のX線回折結果について示す特性図である。FIG. 3 is a characteristic diagram showing the results of X-ray diffraction of a CaSrCuO 2 thin film and a CaCuO 2 thin film actually produced by the method of forming a single crystalline thin film according to the embodiment. 図4は、実施の形態の単結晶性薄膜の形成方法により実際に作製したCaSrCuO2薄膜のRHEEDパターンを示す写真である。FIG. 4 is a photograph showing an RHEED pattern of a CaSrCuO 2 thin film actually manufactured by the method for forming a single crystalline thin film according to the embodiment.

以下、本発明の実施の形態に係る単結晶性薄膜の形成方法について図1のフローチャートを参照して説明する。この単結晶性薄膜の形成方法は、Cuからなる第1蒸着源と、Caからなる第2蒸着源と、SrまたはBaからなる第3蒸着源と、酸素供給源とを用いた共蒸着法によるCa1-xAExCuO2(AE=SrまたはBa)の単結晶性薄膜を基板の上に形成する方法である。 Hereinafter, a method for forming a single crystalline thin film according to an embodiment of the present invention will be described with reference to the flowchart of FIG. The single-crystal thin film is formed by a co-evaporation method using a first evaporation source made of Cu, a second evaporation source made of Ca, a third evaporation source made of Sr or Ba, and an oxygen supply source. This is a method of forming a single crystalline thin film of Ca 1-x AE x CuO 2 (AE = Sr or Ba) on a substrate.

まず、ステップS101で、第1蒸着源よりCuをCa1-xAExCuO2の化学量論組成比に合わせて基板の上に供給する。また、ステップS102で、第2蒸着源よりCaをCa1-xAExCuO2の化学量論組成比に合わせて基板の上に供給する。また、ステップS103で、第2蒸着源からのCaの供給量の10%以下のモル量で、第3蒸着源よりSrまたはBaを基板の上に供給する。また、ステップS104で、原子状酸素(酸素ラジカル)を蒸着雰囲気に供給する。上述したステップS101,ステップS102,ステップS103,ステップS104を同時に実施する。形成される無限層構造銅酸化物Ca1-xAExCuO2(AE=SrまたはBa)の結晶構造を図2に示す。 First, in step S101, Cu is supplied from the first evaporation source onto the substrate in accordance with the stoichiometric composition ratio of Ca 1-x AE x CuO 2 . In step S102, Ca is supplied from the second evaporation source onto the substrate in accordance with the stoichiometric composition ratio of Ca 1-x AE x CuO 2 . In step S103, Sr or Ba is supplied onto the substrate from the third deposition source in a molar amount of 10% or less of the supply amount of Ca from the second deposition source. In step S104, atomic oxygen (oxygen radical) is supplied to the deposition atmosphere. Steps S101, S102, S103, and S104 described above are simultaneously performed. FIG. 2 shows the crystal structure of the formed infinite layer structure copper oxide Ca 1-x AE x CuO 2 (AE = Sr or Ba).

上述した実施の形態における単結晶性薄膜の形成方法のポイントは、成長時に数%のSrまたはBaを共蒸着することで、品質の高い無限層構造銅酸化物Ca1-xAExCuO2(AE=SrまたはBa)を作製するところにある。SrまたはBaの共蒸着がない場合、供給したCaが再蒸発し、結晶性など膜の品質が著しく低下するが、〜5%以下のSrまたはBaの共蒸着で十分Caの再蒸発を抑制できる。 The point of the method of forming a single-crystal thin film in the above-described embodiment is that a few percent of Sr or Ba is co-evaporated during the growth to provide a high quality infinite layer structure copper oxide Ca 1-x AE x CuO 2 ( AE = Sr or Ba). When there is no co-evaporation of Sr or Ba, the supplied Ca is re-evaporated, and the quality of the film such as crystallinity is remarkably deteriorated. .

蒸着中に、SrまたはBaは酸化触媒として働き、2Ca+O2→2CaOの反応を促進し、基板の上に形成されているCa1-xAExCuO2(AE=SrまたはBa)の単結晶性薄膜からのCaの再蒸発を抑制する。 During deposition, Sr or Ba acts as an oxidation catalyst, promoting the reaction of 2Ca + O 2 → 2CaO, and the single crystallinity of Ca 1-x AE x CuO 2 (AE = Sr or Ba) formed on the substrate Re-evaporation of Ca from the thin film is suppressed.

例えば、よく知られた分子線エピタキシー(MBE)装置を用いて上述した単結晶性薄膜の形成を行えばよい。例えば、MBE装置の真空チャンバー内に、例えば、LSAT(Lanthanum Strontium Aluminum Tantalum oxide)基板を搬入する。この状態で、真空チャンバー内で、Cu、Ca、Srの金属原料からなる各蒸着源に、電子銃より放射される加速・収束した電子線を照射して加熱し、各蒸着源より各金属を蒸着させる。   For example, the above-mentioned single crystalline thin film may be formed using a well-known molecular beam epitaxy (MBE) apparatus. For example, an LSAT (Lanthanum Strontium Aluminum Tantalum oxide) substrate is carried into a vacuum chamber of an MBE apparatus, for example. In this state, in a vacuum chamber, each of the deposition sources made of a metal material of Cu, Ca, and Sr is irradiated with an accelerated and converged electron beam emitted from an electron gun and heated, and each of the metals is deposited from each of the deposition sources. Deposit.

各蒸着源からの蒸発量は、蒸着源と向かい合う位置に設置されたLSAT基板の近傍に設置された電子衝撃発光分光法センサーにより、即時的に計測され、この計測結果をもとに電子銃の出力を帰還制御する。この電子銃の制御により、前述した第1蒸着源、第2蒸着源、第3蒸着源からの供給量を制御する。また、MBE装置の真空チャンバー内に配置されたLSAT基板は、ヒーターにより所定の温度に加熱される。   The amount of evaporation from each evaporation source is immediately measured by an electron impact emission spectroscopy sensor installed near the LSAT substrate installed at a position facing the evaporation source, and based on the measurement result, the electron gun Output feedback control. By controlling the electron gun, the supply amounts from the first, second, and third evaporation sources are controlled. In addition, the LSAT substrate placed in the vacuum chamber of the MBE apparatus is heated to a predetermined temperature by a heater.

また、設置されたLSAT基板の近傍には、ラジカル酸素発生装置(酸素供給源)が設置されている。このラジカル酸素発生装置から原子状酸素をLSAT基板に吐出することで、蒸着する金属を基板上で酸化する。ラジカル酸素発生装置内では、高周波電力により酸素を活性化して酸素プラズマを生成し、原子状酸素を供給している。酸素ガスの供給流量と印加する高周波電力を変化させることで、酸素プラズマの生成量・原子状酸素の供給量を制御し、LSAT基板の上に形成されるCa1-xAExCuO2(AE=SrまたはBa)の単結晶性薄膜における酸素組成を制御する。 In addition, a radical oxygen generator (oxygen supply source) is installed near the installed LSAT substrate. By discharging atomic oxygen from the radical oxygen generator to the LSAT substrate, the metal to be deposited is oxidized on the substrate. In the radical oxygen generator, oxygen is activated by high-frequency power to generate oxygen plasma and supply atomic oxygen. By changing the supply flow rate of oxygen gas and the applied high frequency power, the amount of oxygen plasma generated and the supply amount of atomic oxygen are controlled, and Ca 1-x AE x CuO 2 (AE) formed on the LSAT substrate is controlled. = Sr or Ba) to control the oxygen composition in the single crystalline thin film.

成膜中の薄膜の表面構造や組成ずれの有無の確認は、反射高速電子線回折(RHEED)電子銃による電子線回折像をRHEEDスクリーンで観察して行う。組成ずれが生じると、形成されている薄膜の表面に析出物が形成されるため、RHEEDパターンが変化する。   Confirmation of the surface structure of the thin film during film formation and presence / absence of composition deviation is performed by observing an electron beam diffraction image by a reflection high-energy electron diffraction (RHEED) electron gun on a RHEED screen. When the composition deviation occurs, a precipitate is formed on the surface of the formed thin film, so that the RHEED pattern changes.

上述した薄膜の成長においては、格子不整合の小さい基板を使用し、基板温度・酸素流量・高周波電力・カチオン組成比などの成長パラメータを最適化する。   In the growth of the thin film described above, a substrate having a small lattice mismatch is used, and growth parameters such as substrate temperature, oxygen flow rate, high-frequency power, and cation composition ratio are optimized.

以下、実施例を用いてより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

[CaCuO2薄膜の作製]
まず、CaCuO2薄膜の形成、およびSrを共蒸着したCaSrCuO2薄膜の形成により、各条件の設定を検討した。CaとCuの蒸着レートのモル比をCa/Cu=1の化学量論組成比から3.0のCa過多の領域まで変化させ、基板温度600℃、酸素流量1.5sccm、高周波電力300Wで成長した。なお、sccmは流量の単位であり、0℃・1013hPaの流体が1分間に1cm3流れることを示す。
[Preparation of CaCuO 2 thin film]
First, formation of CaCuO 2 thin film, and the formation of CaSrCuO 2 thin films by co-evaporation Sr, were investigated settings for each condition. The molar ratio of the deposition rates of Ca and Cu was changed from the stoichiometric composition ratio of Ca / Cu = 1 to the region of Ca excess of 3.0, and the substrate was grown at 600 ° C., oxygen flow rate of 1.5 sccm, and high frequency power of 300 W. did. Note that sccm is a unit of flow rate, and indicates that a fluid at 0 ° C. and 1013 hPa flows at 1 cm 3 per minute.

作製したCaCuO2薄膜およびCaSrCuO2薄膜のX線回折結果について図3を用いて説明する。 The X-ray diffraction results of the prepared CaCuO 2 thin film and CaSrCuO 2 thin film will be described with reference to FIG.

図3に白丸で示すように、CaCuO2薄膜における無限層構造由来のX線回折ピーク強度は、モル比Ca/Cuに大きく依存し、Ca過剰のCa/Cu=1.9の時に最大のピーク強度を示した。さらに、Ca/Cu=1.0から1.9へCaの蒸着レートを増やすにつれて、成膜中のRHEEDパターンがスポットからストリーク像へと変化し、Ca/Cu=1.9よりさらに増やすと再びスポット像へ変化した。このことは、適切なCaの過剰供給により、化学量論組成比に近い無限層構造CaCuO2が得られたことを示し、成長時にCaの再蒸発が起こっていることを示している。 As shown by white circles in FIG. 3, the X-ray diffraction peak intensity derived from the infinite layer structure in the CaCuO 2 thin film largely depends on the molar ratio Ca / Cu. The strength was indicated. Further, as the deposition rate of Ca is increased from Ca / Cu = 1.0 to 1.9, the RHEED pattern during film formation changes from a spot to a streak image. It changed to a spot image. This indicates that an infinite layer structure CaCuO 2 having a stoichiometric composition ratio close to the stoichiometric composition ratio was obtained by appropriate excess Ca supply, and that Ca re-evaporation occurred during growth.

次に、CaSrCuO2薄膜について説明する。CaSrCuO2薄膜の形成では、CaとCuの蒸着レートのモル比をCa/Cu=1:1に固定し、成長時に〜10%のSrを共蒸着しながら上記と同じ成長条件を用いて無限層構造Ca1-xSrxCuO2薄膜を作製した。図3に黒三角で示すように、得られたCa1-xSrxCuO2薄膜における無限層構造のX線回折強度は格段に強くなり、品質の高い無限層構造が得られていることが示された。 Next, the CaSrCuO 2 thin film will be described. In the formation of the CaSrCuO 2 thin film, the molar ratio of the deposition rates of Ca and Cu is fixed at Ca / Cu = 1: 1, and an infinite layer is formed using the same growth conditions as above while co-depositing 10% of Sr during growth. A structure Ca 1-x SrxCuO 2 thin film was prepared. As shown by the black triangle in FIG. 3, the X-ray diffraction intensity of the infinite layer structure in the obtained Ca 1-x SrxCuO 2 thin film was significantly increased, indicating that a high quality infinite layer structure was obtained. Was.

蒸着レートを最適化することで、Ca/Cu=0.95の時に、最大ピーク強度が得られている。このときの(001)方向の回折ピーク位置から計算したc軸格子定数は、0.3197nmであり、格子定数の変化から約6%のSrがCaを置換していることを確認した。図4に示すように、形成したCaSrCuO2薄膜のRHEEDパターンはストリーク像を示しており、得られた無限層構造の組成比は供給蒸着レートと一致していた。このことは、Srの共蒸着により、成長時におけるCaの再蒸発が抑制されたことを示す。Srが酸化触媒として働き、Caの酸化を促進したためと考えられる。 By optimizing the deposition rate, the maximum peak intensity is obtained when Ca / Cu = 0.95. At this time, the c-axis lattice constant calculated from the diffraction peak position in the (001) direction was 0.3197 nm, and it was confirmed from the change in the lattice constant that about 6% of Sr replaced Ca. As shown in FIG. 4, the RHEED pattern of the formed CaSrCuO 2 thin film showed a streak image, and the composition ratio of the obtained infinite layer structure coincided with the supplied vapor deposition rate. This indicates that re-evaporation of Ca during growth was suppressed by the co-evaporation of Sr. This is probably because Sr acted as an oxidation catalyst and promoted the oxidation of Ca.

上述したSrの共蒸着によるCa再蒸発抑制の効果は、10%以下のSr置換においても有効であることが、発明者らの実験により確認されている。Caベースの無限層構造銅酸化物の作製にむけて、Srの代わりにBaを共蒸着しても同様の効果が得られた。   It has been confirmed by experiments by the inventors that the above-described effect of suppressing the re-evaporation of Ca by co-evaporation of Sr is effective even when Sr is substituted by 10% or less. For producing a Ca-based copper oxide having an infinite layer structure, the same effect was obtained by co-evaporating Ba instead of Sr.

以上に説明したように、本発明によれば、第2蒸着源からのCaの供給量の10%以下のモル量で、第3蒸着源よりSrまたはBaを基板の上に供給するようにしたので、結晶性がよく品質の高いCa1-xAExCuO2(AE=SrまたはBa)が、より容易に形成できるようになる。CuやCaのように酸素親和性が低く、またCaのように蒸気圧が高い元素との複合酸化物の合成において、本発明で得られたような数%オーダーのSrやBaなどの置換による酸化触媒効果は、薄膜合成のみならず、バルク合成においても化学量論組成を実現するための有効な方法となる。 As described above, according to the present invention, Sr or Ba is supplied from the third deposition source onto the substrate in a molar amount of 10% or less of the supply amount of Ca from the second deposition source. Therefore, Ca 1-x AE x CuO 2 (AE = Sr or Ba) having good crystallinity and high quality can be more easily formed. In the synthesis of a composite oxide with an element having a low oxygen affinity such as Cu or Ca and having a high vapor pressure such as Ca, substitution of Sr or Ba on the order of several percent as obtained in the present invention is performed. The oxidation catalyst effect is an effective method for realizing a stoichiometric composition not only in thin film synthesis but also in bulk synthesis.

なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。例えば、上述では、分子線エピタキシー法を用いる場合を例示したが、これに限るものではなく、他の蒸着法を用いるようにしてもよいことは、言うまでもない。   Note that the present invention is not limited to the above-described embodiments, and many modifications and combinations can be made by those having ordinary knowledge in the art without departing from the technical concept of the present invention. That is clear. For example, although the case where the molecular beam epitaxy method is used has been described above, the present invention is not limited to this. It goes without saying that another vapor deposition method may be used.

Claims (2)

Cuからなる第1蒸着源と、Caからなる第2蒸着源と、SrまたはBaからなる第3蒸着源と、酸素供給源とを用いた共蒸着法によるCa1-xAExCuO2(AE=SrまたはBa)の単結晶性薄膜を基板の上に形成する方法であって、
前記第1蒸着源および前記第2蒸着源よりCuおよびCaをCa1-xAExCuO2の化学量論組成比に合わせて前記基板の上に供給するとともに、
前記第2蒸着源からのCaの供給量の10%以下のモル量で、前記第3蒸着源よりSrまたはBaを前記基板の上に供給する
ことを特徴とする単結晶性薄膜の形成方法。
Ca 1-x AE x CuO 2 (AE) formed by a co-evaporation method using a first evaporation source made of Cu, a second evaporation source made of Ca, a third evaporation source made of Sr or Ba, and an oxygen supply source. = Sr or Ba) on a substrate, comprising:
Supplying Cu and Ca from the first vapor deposition source and the second vapor deposition source onto the substrate in accordance with the stoichiometric composition ratio of Ca 1-x AE x CuO 2 ;
Sr or Ba is supplied from the third deposition source onto the substrate in a molar amount of 10% or less of the supply amount of Ca from the second deposition source.
請求項1記載の単結晶性薄膜の形成方法において、
前記酸素供給源は、原子状酸素を供給することを特徴とする単結晶性薄膜の形成方法。
The method for forming a single-crystal thin film according to claim 1,
The method for forming a single crystalline thin film, wherein the oxygen supply source supplies atomic oxygen.
JP2017036312A 2017-02-28 2017-02-28 Method of forming single crystalline thin film Active JP6649302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017036312A JP6649302B2 (en) 2017-02-28 2017-02-28 Method of forming single crystalline thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017036312A JP6649302B2 (en) 2017-02-28 2017-02-28 Method of forming single crystalline thin film

Publications (2)

Publication Number Publication Date
JP2018141205A JP2018141205A (en) 2018-09-13
JP6649302B2 true JP6649302B2 (en) 2020-02-19

Family

ID=63527641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017036312A Active JP6649302B2 (en) 2017-02-28 2017-02-28 Method of forming single crystalline thin film

Country Status (1)

Country Link
JP (1) JP6649302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101965605B1 (en) * 2018-11-02 2019-08-13 주식회사 아이브이웍스 Apparatus, method and recording medium storing command for controlling thin-film deposition process

Also Published As

Publication number Publication date
JP2018141205A (en) 2018-09-13

Similar Documents

Publication Publication Date Title
JP4994235B2 (en) ZnO crystal and method for growing the same, and method for manufacturing light-emitting element
US7935616B2 (en) Dynamic p-n junction growth
US20180226472A1 (en) Semiconductor device and manufacturing method for same, crystal, and manufacturing method for same
JP5064232B2 (en) Doped metal oxide film and system for producing the same
JPH088217B2 (en) Crystal growth method for gallium nitride-based compound semiconductor
JP2010114423A (en) Substrate for growing wurtzite type crystal and method for manufacturing the same and semiconductor device
EP2140038A2 (en) Group-iii metal nitride and preparation thereof
JP3716440B2 (en) Boron-containing aluminum nitride thin film and manufacturing method
JP6649302B2 (en) Method of forming single crystalline thin film
US20160138182A1 (en) Methods for forming mixed metal oxide epitaxial films
TWI425559B (en) Method for growing non-polar m-plane epitaxy layer of wurtzite semiconductors on single crystal oxide substrates
Shtepliuk et al. Features of the influence of the deposition power and Ar/O2 gas ratio on the microstructure and optical properties of the Zn0. 9Cd0. 1O films
JP4036436B2 (en) Method for growing quantum well structures
JPWO2006088261A1 (en) InGaN layer generation method and semiconductor device
Aketagawa et al. Limiting conditions of Si selective epitaxial growth in Si2H6 gas‐source molecular beam epitaxy
JP2012174796A (en) Method of forming gallium nitride film, and device of forming gallium nitride film
JP2004214405A (en) Light emitting device and method for manufacturing the same
US6071338A (en) Method for crystal growth of multi-element oxide thin film containing bismuth as constituent element
JPH0476217B2 (en)
JP2013170098A (en) Method and apparatus for producing transition metal nitride thin film
Miyahara et al. Photoluminescence of (Zno) 0.82 (inn) 0.18 films: Incident light angle dependence
JP5801755B2 (en) Superconductor fabrication method
JP5345983B2 (en) Manufacturing method of superconductor thin film
JP2004146483A (en) Manufacturing method of gallium nitride-based solid solution thin film
JP2004084001A (en) Method for growing zinc oxide crystalline film

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200116

R150 Certificate of patent or registration of utility model

Ref document number: 6649302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150